

Compiler Warnings
Version 1.0

2015-11-02

Application Note AN-ISC-8-1184

Author Andreas Raisch

Restrictions Customer confidential – Vector decides

Abstract Warning free code is an important quality goal for embedded software. Nevertheless,
compiler warnings can occur for highly configurable software. Typical compiler
warnings are listed and justified within this document.

Table of Contents

1 Overview .. 2
1.1 Deviation Procedure .. 3
1.2 Default BSW Delivery Process .. 3

2 Accepted Deviations ... 3
2.1 Unused/unreferenced parameter/argument ... 4
2.2 Unused/unreferenced define, enum value ... 4
2.3 Unused/unreferenced variable ... 4
2.4 Unused/unreferenced function ... 5
2.5 Condition evaluates always to true/false ... 5
2.6 Unreachable code/statement ... 6
2.7 Dead assignment / variable set but not used ... 6
2.8 ASM statements used .. 6

3 Additional Resources ... 7
4 Contacts ... 8

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 2
Contact Information: www.vector.com or +49-711-80 670-0

1 Overview

MICROSAR BasicSoftware (BSW) is developed in a product line approach, independent from specific

ECU projects or compilers. MICROSAR BSW supports the AUTOSAR MemoryAbstraction and

CompilerAbstraction concepts and supports a huge range of different compiler vendors, versions and

options.

MICROSAR BSW is delivered as static source code and code generators to support the ECU project

specific adaption and optimization of the BSW behavior and feature set based on AUTOSAR

configuration files and user defined selections.

Additionally, MICROSAR BSW supports compile time configuration, link time configuration and post-

build configuration.

Figure 1 MICROSAR BSW Component

A general quality goal for MICROSAR BSW is “warning free code”. The coding style guide for

MICROSAR BSW is based on MISRA-C:2004. Checks for MISRA compliance are an essential part of

our development process. Based on “HIS Gemeinsames Subset der MISRA C Guidelines v2.0“

(http://www.automotive-his.de) all rules are active.

Nevertheless, we accept deviations to the “warning free code” goal based on the here defined list of

exceptions. Known and accepted deviations are reported within the delivery as ESCAN type “Warning

in released product”.

Document [2] explains the relationship between user-selected code generation (optimization) options

and compiler warnings.

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 3
Contact Information: www.vector.com or +49-711-80 670-0

1.1 Deviation Procedure

Priority Rule Rationale

1

MICROSAR BSW shall be compiler
warning free. Thus, compiler warnings
shall be prevented wherever possible.

Detection of compiler warning either during
component development or more frequently
when applying the customer specific
compiler/options/BSW configuration during
the delivery tests.

2

If a compiler warning is detected, the code
shall be analyzed and, if reasonable, be
changed/extended to become warning
free.

We want to prevent to deliver defect code to
our customers. We also need to take into
account e.g. runtime efficiency, maintainability
and standardized code for many use-cases.

3

If fixing the compiler warning is not a
solution, an ESCAN of type “Warning in
released product” shall be created to
document the accepted deviation also in
the report of known issues of deliveries.

See list of accepted deviations in this
document.

Table 1 Priority of measures to prevent compiler warnings

1.2 Default BSW Delivery Process

The configuration and compilation and linkage during the delivery test activities yield most of the

compiler warnings, because the development tool chain and settings specified by you are used.

The process in short is:

> Customer specifies the compiler brand, version and options (via Questionnaire) and provides
more information on the expected use-case

> Delivery engineer creates example configurations of the BSW and compiles and links the outcome
> Compiler warnings are analyzed and either documented as ESCAN of type “Warning in released

product” or reported to the development teams to trigger a fix.
> ESCANs of type “Issue in released product” and “Warning in released product” are reported within

the delivery documentation as “known issues”

2 Accepted Deviations

Deviations in this chapter are typically accepted as “Warning in released product” when

> it has been checked that no incorrect behavior at ECU runtime occurs
> no simple remedy exists

Information
If a compiler warning has passed the analyzing steps according Table 1 Priority of
measures to prevent compiler warnings and the result is still “accepted deviation”, the

compiler warning will not be fixed in the product.

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 4
Contact Information: www.vector.com or +49-711-80 670-0

2.1 Unused/unreferenced parameter/argument

Deviation ID CW_001

Example compiler
warning strings

„Unreferenced formal parameters“, „parameter is never used“, „has no-used
argument“

Reason
BSW provides APIs as described by standards. Not all parameters are
necessary and used within the function in all possible usage scenarios.

Configuration
dependent

Yes

Potential risk The function contains unused code.

Prevention of risk
Code inspection has to check that the unused code is not critical concerning
the expected behavior. Small increase of ROM footprint is accepted.

Note

Workarounds for suppressing such compiler warnings often conflict with
MISRA-C:2004, rule 14.2 (See MISRA Compliance Documentation, Deviation
ID MD_MSR_14.2)

Table 2 CW_001

2.2 Unused/unreferenced define, enum value

Deviation ID CW_002

Example compiler
warning strings

„Unused enumeration values“, „Unused define value“

Reason
Encapsulation of defines, enum-values and similar items for multiple complex
configuration data sets (via #ifdef) reduces readability and maintainability.

Configuration
dependent

Yes

Potential risk
Defined but never used enums or defines may decrease readability and
maintainability.

Prevention of risk Execution of runtime tests with different configuration variants.

Note -

Table 3 CW_002

2.3 Unused/unreferenced variable

Deviation ID CW_003

Example compiler
warning strings

„unreferenced local variable within abc.c“, „variable "abc" was declared but
never referenced“, „Variables related to message supervision are set but
never used“

Reason

Because of goal "minimize RAM footprint", unused variables shall be disabled
via #ifdef based on configuration data sets.

Nevertheless, warning can occur for rare cases where encapsulation for
multiple complex configuration data sets (via #ifdef) reduces readability and
maintainability.

Configuration
dependent

Yes

Potential risk The function contains unused code.

Prevention of risk

Code inspection has to check that the unused variable is not critical
concerning the expected behavior. Small increase of RAM footprint is
accepted.

Note -

Table 4 CW_003

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 5
Contact Information: www.vector.com or +49-711-80 670-0

2.4 Unused/unreferenced function

Deviation ID CW_004

Example compiler
warning strings

„Declared but unused function abc“, „unused static function abc“

Reason

BSW provides APIs as described by standard.

Because of goal "minimize ROM footprint", unused functions shall be
disabled via #ifdef based on configuration data sets.

Not all provided functions might be used in the concrete ECU project
(configuration and usage dependent). Encapsulation for multiple complex
configuration data sets (via #ifdef) reduces readability and maintainability and
is thus not provided on a per-function base for all APIs.

Configuration
dependent

Yes

Potential risk The project contains unused code.

Prevention of risk See “Reason”

Note
Partly addressed by MISRA-C:2004, rule 8.10 (See MISRA Compliance
Documentation, Deviation ID MD_MSR_8.10)

Table 5 CW_004

2.5 Condition evaluates always to true/false

Deviation ID CW_005

Example compiler
warning strings

„conditional expression is constant“, „conditional expression or part of it is
always true/false / statement not reached“, „condition is always true/false“,
„compare out of range / condition is always true/false“, „The result of this
logical operation is always 'false' or ‘true’“

Reason

Typically caused by an if-statement applied on external configuration data.
Configuration data is const for the given compilation context but might be
changed at link-time or post-build time.

Configuration
dependent

Yes

Potential risk The function contains useless conditions with possibly dead code.

Prevention of risk
The code inspection is in charge to distinguish between useless conditions
with possibly dead code and correct code as described in “reason”.

Note -

Table 6 CW_005

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 6
Contact Information: www.vector.com or +49-711-80 670-0

2.6 Unreachable code/statement

Deviation ID CW_006

Example compiler
warning strings

„conditional expression or part of it is always true/false / statement not
reached“, „statement will never be executed“, „this switch default label is
unreachable“

Reason

Because of goal "minimize ROM footprint", unreachable code shall be
disabled via #ifdef based on configuration data sets.

Nevertheless, warning might occur as secondary effect on e.g. "condition
evaluates to true/false"

Configuration
dependent

Yes

Potential risk The function contains unused code.

Prevention of risk
Code inspection has to check that the unused code is not critical concerning
the expected behavior. Small increase of ROM footprint is accepted.

Note
Addressed by MISRA-C:2004, rule 14.1 (See MISRA Compliance
Documentation, Deviation ID MD_MSR_14.1)

Table 7 CW_006

2.7 Dead assignment / variable set but not used

Deviation ID CW_007

Example compiler
warning strings

“Variable 'abc' was set but never used“, „"local variable is initialized but not
referenced", „dead assignment to "abc" eliminated“, „Dead assignment
(subtraction with zero)“, „Removed dead assignment“

Reason
Variable shall be always assigned a valid value. Overwriting the value before
use can therefore happen based on the assumed execution path.

Configuration
dependent

Yes

Potential risk The function contains unused code and variables.

Prevention of risk
Code inspection has to check that the unused code is not critical concerning
the expected behavior. Small increase of ROM/RAM footprint is accepted.

Note -

Table 8 CW_007

2.8 ASM statements used

Deviation ID CW_008

Example compiler
warning strings

“asm statements used“

Reason
MICROSAR is written in C but might use compiler specific ASM statements in
rare cases. Usage of ASM is strictly limited by coding style guide.

Configuration
dependent

No

Potential risk ASM syntax is compiler and compiler version dependent.

Prevention of risk Component release test and delivery test shows correct behavior.

Note -

Table 9 CW_008

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 7
Contact Information: www.vector.com or +49-711-80 670-0

3 Additional Resources

No Source Title Version

[1] Vector
Compliance Documentation MISRA-C:2004 /
MICROSAR

2.3.0 or later

[2] Vector Technical Reference MICROSAR ComStackLib 2.0.0 or later

Compiler Warnings

Copyright © 2015 - Vector Informatik GmbH 8
Contact Information: www.vector.com or +49-711-80 670-0

4 Contacts

For a full list with all Vector locations and addresses worldwide, please visit http://vector.com/contact/.

http://vector.com/contact/

