

Synchronization between AUTOSAR Cry and Fls
Version 1.00.02

2017-06-14

Application Note AN-ISC-8-1207

Author Bernhard Wissinger

Restrictions Customer Confidential – Vector decides

Abstract AUTOSAR Crypto and Flash Driver might access a common hardware resource. This
application note describes possible synchronization mechanisms.

Table of Contents

1 Introduction ... 2
1.1 Access Conflict Types .. 2

2 Use Case Description ... 3
3 Synchronization Methods of SecOC and Fls ... 3

3.1 Prevent Execution of SecOC_MainFunction ... 4
3.2 Prevent Execution of Cry Function .. 5
3.3 Optimized Execution Prevention .. 5
3.4 Interrupt Fls Operation ... 5
3.5 Asynchronous Operation of SecOC ... 6

4 Synchronization Method for Key Management .. 8
5 Contacts ... 8

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 2
Contact Information: www.vector.com or +49-711-80 670-0

1 Introduction

AUTOSAR defines Crypto Driver (Cry) and Flash Driver (Fls) as MCAL modules for independent

hardware modules. But as the crypto module also provides key storage functionality, this is often

implemented in the microcontroller by using a shared flash unit. This can lead to race conditions, if

AUTOSAR Crypto Driver and Flash Driver are used concurrently.

Figure 1 - Race Condition During Flash Memory Access

This application note describes several synchronization methods and gives advice which method

should be applied. The synchronization itself must be implemented by the application during the

integration of the MICROSAR stack, as the used method depends on the system layout and

requirements.

Caution
The occurrence and effect of the race condition heavily depends on the used
microcontroller. Please double-check whether your specific hardware is affected and
confirm whether the methods described in this application note are applicable to your
system.

Caution
The examples in this application note are not thoroughly tested. The user must verify the
functionality for the intended use case. Vector´s liability shall be expressly excluded to the
extent admissible by law or statute.

1.1 Access Conflict Types

Table 1 lists possible access conflict types. In this application note, it is assumed that each of these

combinations will lead to a race condition and must be prevented. E.g. even if the Crypto driver

performs only a read access to the key (like MacVerify), a parallel read access of the flash driver to

the hardware is not allowed.

If the used microcontroller is less restrictive, a less restrictive synchronization scheme might be

applied. Such optimized synchronization scheme is not covered by this application note.

Flash ModuleCrypto Module

Flash Memory

Flash DriverCrypto Driver

Hardware

Software

No Synchronization

Race Condition

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 3
Contact Information: www.vector.com or +49-711-80 670-0

Crypto Driver Flash Driver Conflict

Use Key (e.g. MacVerify, MacGenerate) Read Flash Memory Read / Read

Write Key (e.g. KeyElementSet) Read Flash Memory Write / Read

Use Key (e.g. MacVerify, MacGenerate) Write Flash Memory Read / Write

Write Key (e.g. KeyElementSet) Write Flash Memory Write / Write

Table 1 - Access Conflict Types

2 Use Case Description

The synchronization methods are discussed based on three different users of Crypto and Flash Driver.

Please adapt the described concepts in case of a different use case shall be implemented.

Caution
The described behavior of the Fls module is implementation-specific. Please confirm this
behavior for the used Fls module.

User Functionality Call context of hardware access

Nonvolatile Memory Fls: Read and Write Fls_MainFunction

SecOC Cry: MAC Processing SecOC_MainFunction

Key Management Cry: Key Update KM_MainFunction

Table 2 - Users of Crypto Driver and Flash Driver

The Fls is used asynchronously: the flash operation is started in Fls_MainFunction, but will be

finished later.

The Cry is used synchronously: the crypto hardware is idle after the execution of

SecOC_MainFunction and KM_MainFunction is completed.

Figure 2 - Conflict between Fls and Cry

3 Synchronization Methods of SecOC and Fls

This chapter describes synchronization methods between Fls and Cry for the SecOC use case.

Fls

Cry

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
M

a
in

F
u
n
c
ti
o
n

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
M

a
in

F
u
n
c
ti
o
n

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

cycle time

Fls HW busy
Cry HW busyconflict

no Fls HW
access in
this call
cycle

asynchronous handling of Fls HW

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 4
Contact Information: www.vector.com or +49-711-80 670-0

Caution

It is assumed that Fls_MainFunction cannot interrupt

SecOC_MainFunction. E.g. Fls_MainFunction is mapped to the same or a

lower priority OS task as SecOC_MainFunction.

Table 3 gives an overview and comparison of the different methods which are described in this

chapter.

Method Characteristics AUTOSAR Extensions

3.1
SecOC messages will not be sent during Fls
operation. Especially Fls erase might take a long
time.

None

3.2 Same as 3.1 Cry extension “Read Start” interface

3.3
Less impact on SecOC messages for “short” Fls
operations

Fls extension “GetHWStatus”

3.4 Difficult if Suspend/Resume needs a long time Fls extension “Suspend/Resume”

3.5 Most complex approach
Fls extensions “Suspend/Resume”
and “asynchronous notification”

Table 3 – Comparison Matrix

3.1 Prevent Execution of SecOC_MainFunction

The current state of Fls can be polled by the function Fls_GetStatus. Therefore

SecOC_MainFunction should not be called in case Fls_GetStatus returns “busy”.

Caution

It is assumed that Fls_GetStatus can be called reentrant. Please confirm this behavior

for the used Fls module.

Figure 3 - Prevent Execution of SecOC_MainFunction

Fls

Cry

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
M

a
in

F
u
n
c
ti
o
n

C
h
e
c
k
 F

ls
_
G

e
tS

ta
tu

s

F
ls

_
M

a
in

F
u
n
c
ti
o
n

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

cycle time

Fls HW busy
Cry HW busy

no Fls HW
access in
this call
cycle

asynchronous handling of Fls HW

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 5
Contact Information: www.vector.com or +49-711-80 670-0

3.2 Prevent Execution of Cry Function

This approach is similar to chapter 3.1. But instead of preventing the execution of

SecOC_MainFunction, an API like Cry_XXX_DataFlashReadStart_Callout would be used.

With the API Cry_XXX_DataFlashReadStart_Callout, the read permission is checked by the

Cry driver: this shall be denied in case the Fls is busy.

The SecOC_MainFunction will retry with the next cyclic call, if the parameter

SecOCAuthenticationBuildAttempts in SecOC is set accordingly.

Note

The API Cry_XXX_DataFlashReadStart_Callout is not defined by AUTOSAR and

might not be available for your hardware.

3.3 Optimized Execution Prevention

The API Fls_GetStatus returns the status of the Fls driver. Whereas this is implementation-specific,

it might be only updated in context of Fls_MainFunction. Therefore it would report still “busy”,

whereas the operation in the Fls hardware might be already finished.

It is assumed an API like Fls_GetHWStatus is available, which reads the status of the Fls hardware

itself. An optimized version of methods in chapter 3.1 and chapter 3.2 can be applied in this case:

> In task scheduling, SecOC_MainFunction is executed immediately before

Fls_MainFunction. Therefore the Fls operation from the previous Fls_MainFunction might

be already completed.

> The API Fls_GetHWStatus is used instead of Fls_GetStatus

Figure 4 - Optimized Execution Prevention

With this approach, Cry handling is only skipped if the Fls needs a long processing time.

3.4 Interrupt Fls Operation

Some Fls drivers have a possibility to suspend and resume the current Fls operation. Such

functionality is used for this approach:

> In task scheduling, SecOC_MainFunction is executed immediately before

Fls_MainFunction. Therefore the Fls operation from the previous Fls_MainFunction might

be already completed.

Fls

Cry

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
M

a
in

F
u
n
c
ti
o
n

C
h
e
c
k
 F

ls
_
G

e
tH

W
S
ta

tu
s

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

cycle time

Fls HW busy
Cry HW busy

asynchronous handling of Fls HW

F
ls

_
M

a
in

F
u
n
c
ti
o
n

Fls HW busy

F
ls

_
M

a
in

F
u
n
c
ti
o
n

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 6
Contact Information: www.vector.com or +49-711-80 670-0

> In case Fls is busy: Fls operation is suspended before SecOC_MainFunction is called

> If Fls operation was suspended: resume Fls operation after SecOC_MainFunction is completed

Figure 5 - Interrupt Fls Operation

Caution

The Fls_Suspend/Fls_Resume operation itself might need considerable time. This can

lead to issues, if a high call frequency of SecOC_MainFunction of Fls_MainFunction

is needed.

3.5 Asynchronous Operation of SecOC

In case Fls_Suspend/Fls_Resume needs a long processing time, a full-preemptive operating

system might be used during waiting time.

Figure 6 - Asynchronous Operation of SecOC

SecOC_MainFunction is called by a separated extended OS task. Following example code

illustrates the concept.

Fls

Cry

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
M

a
in

F
u
n
c
ti
o
n

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

cycle time

Fls busy
Cry busy

F
ls

_
M

a
in

F
u
n
c
ti
o
n

Fls busy

F
ls

_
S
u
s
p
e
n
d

F
ls

_
R
e
s
u
m

e

Fls suspended

Cry

S
e
c
O

C
_
M

a
in

F
u
n
c
ti
o
n

F
ls

_
S
u
s
p
e
n
d

Appl

T
ri
g
g
e
r

S
e
c
O

C
p
ro

c
e
s
s
in

g

T
ri
g
g
e
r:

 S
u
s
p
e
n
d
 f

in
is

h
e
d

F
ls

_
R
e
s
u
m

e

T
ri
g
g
e
r:

 R
e
s
u
m

e
 f

in
is

h
e
d

P
ro

c
e
s
s
in

g
 f

in
is

h
e
d

Task active

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 7
Contact Information: www.vector.com or +49-711-80 670-0

SecOC_Task:

While(TRUE){

 WaitEvent(Event_TriggerSecOC);

 If(FLS busy) {

 Fls_Suspend();

 suspended=true;

 WaitEvent(Event_SuspendFinished);

 ClearEvent(Event_SuspendFinished);

 }

 ClearEvent(Event_TriggerSecOC); //clear trigger

 SecOC_MainfunctionRx();

 SecOC_MainfunctionRx(); // call a 2nd time for verification retry

 SecOC_MainfunctionTx();

 If(suspended){

 Fls_Resume();

 WaitEvent(Event_ResumeFinished);

 ClearEvent(Event_ResumeFinished);

 suspended=false;

 }}

The Fls must inform the SecOC_Task when Fls_Suspend/Fls_Resume is finished.

Suspend_Finished:

SetEvent(Event_SuspendFinished);

Resume_Finished:

SetEvent(Event_ResumeFinished);

The application can trigger SecOC_Task either cyclic, or only if SecOC processing is needed.

The transmission trigger can be obtained in following way.

ComIPduCallout: //get transmission condition – added for all secured messages in Com

SecOC_TxFlag=TRUE;

After call to Com_MainFunction:

Com_MainFunction();

if(SecOC_TxFlag){ // call this after Com_MainFunction

 SecOC_TxFlag=FALSE;

 SetEvent(Event_TriggerSecOC); //data of SecOC was prepared in Com

}

The reception trigger can be obtained in following way. Please make sure the CAN driver is operated

in interrupt mode.

CanGenericPrecopy: // enable “CanGenericPrecopy” feature in CAN driver

If(CANID=SecOCMessage CANID){

 SetEvent(Event_TriggerSecOC);

}

Synchronization between AUTOSAR Cry and Fls

Copyright © 2017 - Vector Informatik GmbH 8
Contact Information: www.vector.com or +49-711-80 670-0

The OS Event is set before the message data is transferred to SecOC. But the SecOC_Task is

activated only after the CAN ISR processing is finished due to OS priority handling.

4 Synchronization Method for Key Management

Synchronization between SecOC and Key Management is not needed, as both utilize the same Cry

driver. Therefore the Cry driver should take care of this synchronization.

Caution

It is assumed that Fls_MainFunction cannot interrupt KM_MainFunction. E.g.

Fls_MainFunction is mapped to the same or a lower priority OS task as

KM_MainFunction.

Synchronization of Key Management and Fls is less time critical than the synchronization between

SecOC and Fls. Therefore simpler methods as described in chapter 3.1 and chapter 3.2 can be

applied.

If chapter 3.2 is applied, a callback form Cry driver which queries the write permission should be used.

Such an API Cry_XXX_DataFlashWriteStart_Callout is implemented as an AUTOSAR

extension for some Cry drivers developed by Vector.

5 Contacts

For a full list with all Vector locations and addresses worldwide, please visit http://vector.com/contact/.

http://vector.com/contact/

	1 Introduction
	1.1 Access Conflict Types

	2 Use Case Description
	3 Synchronization Methods of SecOC and Fls
	3.1 Prevent Execution of SecOC_MainFunction
	3.2 Prevent Execution of Cry Function
	3.3 Optimized Execution Prevention
	3.4 Interrupt Fls Operation
	3.5 Asynchronous Operation of SecOC

	4 Synchronization Method for Key Management
	5 Contacts

