

Safety Manual

CBD1601056 D05

ID SPECDOC42381

Status Draft

Generated on 2018-07-31 08:53

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 2 / 103

Contents

Safety Manual ... 10

1 General Part .. 11

1.1 Introduction.. 11

1.1.1 Purpose ... 11

1.1.2 Scope .. 11

1.1.3 Definitions .. 11

1.1.4 References .. 12

1.1.5 Overview .. 12

1.2 Concept ... 12

1.2.1 Technical Safety Requirements .. 13

1.2.1.1 Initialization... 13

1.2.1.2 Self-test .. 13

1.2.1.3 Reset of ECU ... 13

1.2.1.4 Data consistency .. 14

1.2.1.5 Non-volatile memory ... 14

1.2.1.5.1 Saving data ... 14

1.2.1.5.2 Loading data ... 14

1.2.1.6 Scheduling.. 15

1.2.1.6.1 Deterministic, hard real-time scheduling .. 15

1.2.1.7 Partitioning ... 15

1.2.1.7.1 Memory partitioning ... 15

1.2.1.7.2 Time partitioning .. 15

1.2.1.8 Communication protection .. 16

1.2.1.8.1 Inter ECU communication ... 16

1.2.1.8.2 Intra ECU communication ... 16

1.2.1.9 Watchdog services ... 17

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 3 / 103

1.2.1.9.1 Program flow monitoring ... 17

1.2.1.9.2 Alive monitoring ... 17

1.2.1.9.3 Deadline monitoring .. 17

1.2.1.10 Peripheral in- and output .. 17

1.2.1.10.1 Peripheral input ... 17

1.2.1.10.2 Peripheral output ... 17

1.2.2 Environment ... 18

1.2.2.1 Safety Concept ... 18

1.2.2.2 Use of MICROSAR Safe Components .. 20

1.2.2.3 Partitioning ... 21

1.2.2.4 Resources .. 22

1.2.3 Process .. 22

2 Safety Manual BswM ... 25

2.1 Safety features .. 25

2.2 Configuration constraints ... 25

2.3 Additional Verification measures .. 25

2.4 Safety features required from other components ... 25

2.5 Dependencies to hardware .. 25

3 Safety Manual CanIf .. 26

3.1 Safety features .. 26

3.2 Configuration constraints ... 26

3.3 Additional verification measures .. 26

3.4 Safety features required from other components ... 28

3.5 Dependencies to hardware .. 28

4 Safety Manual CanNm .. 29

4.1 Safety features .. 29

4.2 Configuration constraints ... 29

4.3 Additional verification measures .. 29

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 4 / 103

4.4 Safety features required from other components ... 29

4.5 Dependencies to hardware .. 29

5 Safety Manual CanSM ... 30

5.1 Safety features .. 30

5.2 Configuration constraints ... 30

5.3 Additional verification measures .. 30

5.4 Safety features required from other components ... 30

5.5 Dependencies to hardware .. 30

6 Safety Manual CanTp .. 31

6.1 Safety features .. 31

6.2 Configuration constraints ... 31

6.3 Additional verification measures .. 31

6.4 Safety features required from other components ... 31

6.5 Dependencies to hardware .. 31

7 Safety Manual Com ... 32

7.1 Safety features .. 32

7.2 Configuration constraints ... 32

7.3 Additional verification measures .. 32

7.4 Safety features required from other components ... 33

7.5 Dependencies to hardware .. 33

8 Safety Manual ComM .. 34

8.1 Safety features .. 34

8.2 Configuration constraints ... 34

8.3 Additional Verification measures .. 34

8.4 Safety features required from other components ... 35

8.5 Dependencies to hardware .. 35

9 Safety Manual Crc ... 36

9.1 Safety features .. 36

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 5 / 103

9.2 Configuration constraints ... 36

9.3 Additional verification measures .. 36

9.4 Dependencies to other components .. 36

9.4.1 Safety features required from other components .. 36

9.4.2 Coexistence with other components ... 36

9.5 Dependencies to hardware .. 36

10 Safety Manual Csm ... 37

10.1 Safety Features ... 37

10.2 Configuration constraints ... 37

10.3 Additional verification measures .. 37

10.4 Dependencies to other components .. 37

10.4.1 Safety features required from other components .. 37

10.5 Dependencies to hardware .. 38

11 Safety Manual Det ... 39

11.1 Safety features... 39

11.2 Configuration constraints ... 39

11.3 Additional Verification measures .. 39

11.4 Safety features required from other components ... 39

11.5 Dependencies to hardware .. 39

12 Safety Manual EcuM ... 40

12.1 Safety features .. 40

12.2 Configuration constraints ... 42

12.3 Additional verification measures .. 42

12.4 Safety features required from other components ... 43

12.5 Dependencies to hardware .. 44

13 Safety Manual Fee ... 45

13.1 Safety features .. 45

13.2 Configuration constraints ... 45

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 6 / 103

13.3 Additional Verification measures .. 45

13.4 Safety features required from other components ... 45

13.5 Dependencies to hardware .. 45

14 Safety Manual MemIf ... 46

14.1 Safety features .. 46

14.2 Configuration constraints ... 46

14.3 Additional verification measures .. 46

14.4 Dependencies to other components .. 46

14.4.1 Safety features required from other components .. 46

14.4.2 Coexistence with other components ... 46

14.5 Dependencies to hardware .. 46

15 Safety Manual Nm ... 47

15.1 Safety features .. 47

15.2 Configuration constraints ... 47

15.3 Additional Verification measures .. 47

15.4 Dependencies to other components .. 47

15.4.1 Safety features required from other components .. 47

15.4.2 Coexistence with other components ... 47

15.5 Dependencies to hardware .. 47

16 Safety Manual NvM ... 48

16.1 Safety features .. 48

16.2 Configuration constraints ... 48

16.3 Additional verification measures .. 49

16.4 Safety features required from other components ... 49

16.5 Dependencies to hardware .. 49

17 Safety Manual OS .. 50

17.1 Safety features .. 50

17.2 Configuration constraints ... 55

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 7 / 103

17.3 Additional verification measures .. 56

17.3.1 Interrupt handling ... 56

17.3.2 Memory mapping and linking ... 60

17.3.3 Stack .. 61

17.3.4 Multicore systems with mixed diagnostic coverage capability 62

17.3.5 (Non-)Trusted Functions .. 63

17.3.6 Miscellaneous .. 63

17.3.7 Tracing ... 65

17.4 Safety features required from other components ... 65

17.5 Dependencies to hardware .. 66

18 Safety Manual OS (RH850) ... 67

18.1 Safety features .. 67

18.2 Configuration constraints ... 67

18.3 Additional verification measures .. 67

18.4 Safety features required from other components ... 68

18.5 Dependencies to hardware .. 68

19 Safety Manual PduR .. 69

19.1 Safety features .. 69

19.2 Configuration constraints ... 69

19.3 Additional verification measures .. 69

19.4 Safety features required from other components ... 69

19.5 Dependencies to hardware .. 69

20 Safety Manual Rte ... 70

20.1 Safety features .. 70

20.2 Configuration constraints ... 72

20.3 Additional verification measures .. 72

20.3.1 Guided integration testing .. 73

20.3.1.1 BSW configuration .. 73

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 8 / 103

20.3.1.2 Executable Entity Scheduling ... 74

20.3.1.3 SWC Communication ... 76

20.3.1.4 Usage of RTE Headers ... 78

20.3.1.5 Usage of RTE APIs ... 79

20.3.1.6 Configuration of RTE APIs .. 80

20.4 Safety features required from other components ... 82

20.5 Dependencies to hardware .. 83

21 Safety Manual WdgIf ... 84

21.1 Safety features .. 84

21.2 Configuration constraints ... 84

21.3 Additional verification measures .. 84

21.4 Safety features required from other components ... 88

21.5 Dependencies to hardware .. 89

22 Safety Manual WdgM .. 90

22.1 Safety features .. 90

22.2 Configuration constraints ... 90

22.3 Additional verification measures .. 91

22.3.1 Additional verification using WdgM Verifier ... 92

22.3.2 Additional verification of generator execution ... 95

22.4 Safety features required from other components ... 98

22.5 Dependencies to hardware .. 98

23 Safety Manual XCP.. 99

23.1 Safety features .. 99

23.2 Configuration constraints ... 99

23.3 Additional verification measures .. 100

23.4 Safety features required from other components ... 100

23.5 Dependencies to hardware .. 100

24 Glossary and Abbreviations ... 101

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 9 / 103

24.1 Glossary .. 101

24.2 Abbreviations ... 101

25 Contact .. 103

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 10 / 103

Safety Manual

Version Date Author Remarks

1.00.00 2015-11-
13

Jonas Wolf Initial creation

1.01.00 2015-12-
18

Jonas Wolf Information about ASIL added.

1.02.00 2016-01-
29

Jonas Wolf Improvements in formulation.

1.03.00 2016-02-
25

Jonas Wolf Improvements in formulation.

1.03.01 2016-03-
30

Jonas Wolf Review findings incorporated.

1.03.02 2016-05-
13

Jonas Wolf Added hint on hardware-software integration (SMI-4).

1.03.03 2016-07-
20

Hartmut
Hoerner

Added SMI related to interrupt handling.

1.04.00 2016-09-
02

Jonas Wolf Added TSR-101876 for data consistency.

1.04.01 2016-09-
19

Jonas Wolf Clarifications on SMI-100 and SMI-19.

1.04.02 2016-12-
02

Jonas Wolf Version of referenced document fixed.

1.05.00 2017-02-
24

Jonas Wolf Modified SMI-18: checks need to be enabled per
component as well.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 11 / 103

1 General Part

1.1 Introduction
1.1.1 Purpose

This document describes the assumptions made by Vector during the development of
MICROSAR Safe as Software Safety Element out of Context (SEooC). This document
provides information on how to integrate MICROSAR Safe into your safety-related project.

This document is intended for the user of MICROSAR Safe. It shall be read by project
managers, safety managers, and engineers to allow proper integration of MICROSAR
Safe.

1.1.2 Scope

This document adds additional information to the components that are marked with an
ASIL in the delivery description provided by Vector. Neither QM Vector components, nor
components by other vendors are in the scope of this document.

Vector assumes that hardware and compiler manuals are correct and complete.
Vector uses the hardware reference manuals and compiler manuals for the development
of MICROSAR Safe. Vector has no means to verify correctness or completeness of the
hardware and compiler manuals.
Example information that may be critical from these manuals is the register assignment by
compiler. This information is used to built up the context that is saved and restored by the
operating system.
The compiler manual from the compiler version specified for the project is considered. The
considered hardware manuals are documented in the Technical Reference of the
hardware-specific component.

A general description of Vector's approach to ISO 26262 is described in [2]. This document
is available on request.

1.1.3 Definitions

The words shall, shall not, should, can in this document are to be interpreted as described
here:

1. Shall means that the definition is an absolute requirement of the specification.

2. Shall not means that the definition is an absolute prohibition of the specification.

3. Should means that there may exist valid reasons in particular circumstances to ignore
a particular definition, but the full implications must be understood and carefully
weighed before choosing a different course.

4. Can means that a definition is truly optional.

%5b2

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 12 / 103

The user of MICROSAR Safe can deviate from all constraints and requirements in this
Safety Manual in the responsibility of the user of MICROSAR Safe, if equivalent measures
are used.
If a measure is equivalent can be decided in the responsibility of the user of MICROSAR
Safe.

1.1.4 References

No. Source Title Version

[1] ISO ISO 26262 Road vehicles — Functional safety (all parts) 2011/2012

[2] Vector ISO 26262 Compliance Document 1.2.1

[3] Vector MICROSAR Safe Product Information 1.4.0

[4] Vector MICROSAR Safe Silence Verifier Technical Reference 1.4

1.1.5 Overview

This document is automatically generated. The content of this document depends on the
components and microcontroller of your delivery. This document is thus valid only for the
delivery from Vector that it is included in.

The structure of this document comprises:

o a general section that covers all assumptions and constraints that are always
applicable, and

o a microcontroller specific section that covers all aspects of the selected
microcontroller (only if microcontroller specific components are part of the delivery),
and

o a section for each component that covers its constraints and necessary verification
steps.

Vector's assumptions on the environment of the MICROSAR Safe components as well as
the integration process are described.

Vector developed MICROSAR Safe as Safety Element out of Context for projects
demanding ASIL D software. All requirements in this document apply independently from
the actual highest ASIL of the project.

1.2 Concept

MICROSAR Safe comprises a set of components developed according to ISO 26262.
These components can be combined - together with other measures - to build a safe
system according to ISO 26262.

Please read the Product Information MICROSAR Safe [3] first.

%5b1
%5b2
%5b3
%5b4
%5b3

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 13 / 103

1.2.1 Technical Safety Requirements

These are the assumed technical safety requirements on the Safety Element out of
Context MICROSAR Safe. These requirements are expected to match the requirements in
the actual item development.

All technical safety requirements are assigned an ASIL D to service as many projects as
possible.

No fault tolerant time intervals are given. Timing depends on the used hardware and its
configuration. It is assumed that the user configures MICROSAR Safe adequately for the
intended use.

No safe state is defined since MICROSAR Safe allows the user to define the desired
behavior in case of a detected fault.

1.2.1.1 Initialization

TSR-1 The system shall initialize the CPU, MPU, watchdog, and operating system.
Rationale: Initialization of the hardware, e.g. clocks, memory protection, scheduling etc. is
necessary to enable the other safety requirements.
MICROSAR Safe Feature: The ECU State Manager (EcuM) is responsible for performing
the configured driver initialization. After initialization the EcuM starts the operating system.
The EcuM distributes the post-built loadable configuration information within the ECU.
The documentation of the operating system describes which parts of the CPU it initializes.
The startup code and main function is in the responsibility of the user of MICROSAR Safe.

1.2.1.2 Self-test

TSR-2 The system shall perform self-tests based on the requirements of the system.
Rationale: It may be necessary to periodically test individual components of the system to
detect latent faults.
MICROSAR Safe Feature :The operating system provides a function to self-test the
effectiveness of the MPU settings.
The ECU State Manager services callouts to user code that can check RAM consistency
after wakeup.
Other hardware self-tests are usually performed by MCAL components not developed by
Vector.
End-to-end protection of communication provides its own fault detection mechanisms.

1.2.1.3 Reset of ECU

TSR-3 The system shall reset itself in case of a detected fault.
Rationale: Resetting the CPU of the ECU is in most cases an appropriate measure to
achieve a safe state.
It is assumed that the reset state of a microcontroller leads to the safe state of the ECU
and system, since a reset may occur at any time due to e.g. EMC.
MICROSAR Safe Feature: MICROSAR Safe does not reset the ECU on its own (there
may be exceptions for the operating system).

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 14 / 103

Functionality from ECU State Manager (setting the shutdown target) can be used to reset
the ECU instead, if this is the intended fault reaction.

1.2.1.4 Data consistency

TSR-101876 The system shall provide functions to ensure data consistency.
Rationale: Concurrent access, e.g. from task or interrupt level, must not lead to data
inconsistencies.
MICROSAR Safe Feature: MICROSAR Safe provides functions to enable or disable
interrupts, spin-locks, resources or abstractions (i.e. exclusive areas) to enable the user of
MICROSAR Safe to ensure data consistency. This functionality is also used within
MICROSAR Safe to ensure data consistency.

1.2.1.5 Non-volatile memory

The system must be designed in a way that in case of the absence of non‑volatile data it

is still safe (e.g. safe state or degradation).
It cannot be assured that data is saved completely or at all because a reset or loss of
energy might happen at any time, e.g. brown-out, black-out.
This also implies that it is in general impossible to guarantee that the latest information is
available in the non-volatile memory, e.g. the system is reset before memory stack is even
notified to write data to non-volatile memory.
Thus, safety-related functionality may not rely on the availability of data in non-volatile
memory.
Since the availability of data in non-volatile memory cannot be guaranteed in any case, the
only sensible use-case is reading safety-related calibration data.
Writing of data into non-volatile memory must be verified to assure that the information is
available in non-volatile memory. Verification can only be done manually in a protected
environment, e.g. at end of line, in a workshop, etc.
ECU software cannot verify if data was written, since at any time a reset could occur and
the information that had to be written is lost immediately.
Reading of data does not modify data stored in non-volatile memory. Thus, reading can be
used by safety-related functionality. The memory stack has to assure that the read data is
identical to the data stored in non-volatile memory.
The absence of data still has to be handled by the application.
The availability may be increased by e.g. redundant storage.

1.2.1.5.1 Saving data

TSR-4 The system shall save information in non-volatile memory.
Rationale: see text above.
MICROSAR Safe Feature: The intended block is written with the information provided by
the application.

1.2.1.5.2 Loading data

TSR-5 The system shall retrieve the last stored information from non-volatile
memory.
Rationale: see text in above.
MICROSAR Safe Feature: The intended block is read and the information is provided to

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 15 / 103

the application.
The last or any previous completely stored block in non-volatile memory is returned by
memory stack.
If CRC or ECC protections do not match block data an error is returned.
If data is stored redundantly, the redundant information is returned.
If no completely stored block is found, an error is returned.

1.2.1.6 Scheduling

1.2.1.6.1 Deterministic, hard real-time scheduling

TSR-6 The system shall execute the specified functions within their respective hard
timing limits.
Rationale: Hard real-time scheduling may be used for scheduling safety mechanisms
implemented in software.
This requirement is even more important for fail-operational systems, where one function
may have to work, while another blocks the processor.
MICROSAR Safe Feature: The immediate priority ceiling protocol specified by AUTOSAR
is capable of performing this task. The schedule tables specified by AUTOSAR may also
be used on top of the scheduling algorithm.
The operating system of MICROSAR Safe implements the scheduling algorithm according
to the methods for ASIL D required by ISO 26262.

1.2.1.7 Partitioning

1.2.1.7.1 Memory partitioning

TSR-7 The system shall protect software applications from unspecified memory
access.
Rationale: Partitioning in software is often introduced because of different quality levels of
software and different responsibilities of software development on one ECU.
Memory partitioning relies on the available MPU in hardware for the effectiveness of the
mechanism.
MICROSAR Safe Feature: Memory partitioning and context switching using AUTOSAR
Operating Feature System SC3 mechanisms is implemented according to the methods for
ASIL D required by ISO 26262.
Adequate configuration of the memory partitions is in the responsibility of the user of
MICROSAR Safe.

1.2.1.7.2 Time partitioning

1.2.1.7.2.1 Timing protection

TSR-8 The system shall detect timing faults in the software.
Rationale: Relying on a watchdog for timing protection is sometimes not sufficiently robust
or efficient.
MICROSAR Safe Feature: The operating system of MICROSAR Safe implements the
timing protection functionality of SC4 according to the methods for ASIL D required by ISO
26262.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 16 / 103

1.2.1.7.2.2 Killing of applications

TSR-9 The system shall terminate software applications.
Rationale: In combination with the timing protection this allows the software to continue
operation in case of a software fault.
MICROSAR Safe Feature: The operating system of MICROSAR Safe implements the
termination of applications according to the methods for ASIL D required by ISO 26262.

1.2.1.8 Communication protection

1.2.1.8.1 Inter ECU communication

1.2.1.8.1.1 End-to-end protection

TSR-10 The system shall protect communication between its elements.
Rationale: Communication has to be protected against corruption, unintended replay and
masquerading. The loss of a message must be detected.
This can be achieved using the end-to-end (E2E) protection
mechanism defined by AUTOSAR.
MICROSAR Safe Feature: MICROSAR Safe implements the E2E functionality according
to
ISO 26262. This also includes the CRC library functionality.

1.2.1.8.1.2 Protection by cryptographic algorithms

TSR-11 The system shall protect communication between its elements using
cryptographic hash algorithms to detect accidental corruption of the
communication.
Rationale: Cyclic redundancy codes (CRC) provide a specified hamming distance given a
polynomial and data block size.
Cryptographic hash functions provide a probabilistic statement on data corruption
detection depending on the hash function, data block size and hash value size.
MICROSAR Safe Feature: The Cryptographic Service Manager of MICROSAR Safe is
implemented according to the methods for ASIL D required by ISO 26262.
The Cryptographic Service Manager services the main function and functions to calculate
a cryptographic hash function according to AUTOSAR specification.

1.2.1.8.2 Intra ECU communication

1.2.1.8.2.1 Intra OS application communication

TSR-16 The microcontroller software shall communicate within its applications.
Rationale: Software components need to communicate.
Protection of the memory against random hardware faults is expected by the system (e.g.
via ECC RAM and lock-step mode).
MICROSAR Safe Feature: The RTE provides services to allow communication of software
components within OS applications (intra-partition communication).

1.2.1.8.2.2 Inter OS application communication

TSR-12 The microcontroller software shall communicate between its applications.
Rationale: Multi-core systems may need to exchange safety-related information between

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 17 / 103

applications.
Protection of the memory against random hardware faults is expected by the system (e.g.
via ECC RAM and lock-step mode).
MICROSAR Safe Feature: The operating system of MICROSAR Safe implements the
inter-OS application (IOS) functionality according to the methods for ASIL D required by
ISO 26262.
The RTE provides services to allow communication between OS applications (inter-
partition communication).

1.2.1.9 Watchdog services

1.2.1.9.1 Program flow monitoring

TSR-13 The system shall provide a mechanism to detect faults in program flow.
Rationale. Program flow can be corrupted by random hardware faults or software faults.
MICROSAR Safe Feature: MICROSAR Safe watchdog stack implements program flow
monitoring functionality according to the methods for ASIL D required by ISO 26262.

1.2.1.9.2 Alive monitoring

TSR-14 The system shall provide a mechanism to detect stuck software.
Rationale: Alive monitoring is used to reset the software or controller in case it is
unresponsive.
MICROSAR Safe Feature: MICROSAR Safe watchdog stack implements alive monitoring
functionality according to the methods for ASIL D required by ISO 26262.

1.2.1.9.3 Deadline monitoring

TSR-15 The system shall provide a mechanism to detect deadline violations.
Rationale: Deadline monitoring using the watchdog stack can be used to implement timing
monitoring.
MICROSAR Safe Feature: MICROSAR Safe watchdog stack implements deadline
monitoring functionality according to the methods for ASIL D required by ISO 26262.

1.2.1.10 Peripheral in- and output

1.2.1.10.1 Peripheral input

TSR-17 The system shall read input values from peripheral devices.
Rationale: In- and output is the most common use case for safety mechanisms.
Some MCAL manufacturers call this feature safe acquisition.
MICROSAR Safe Feature: MCAL components used for peripheral access are usually not
developed by Vector. DIO and SPI drivers provided by Vector support the input as safety
feature.

1.2.1.10.2 Peripheral output

TSR-18 The system shall write output values to peripheral devices.
Rationale: In- and output is the most common use case for safety mechanisms.
Some MCAL manufacturers call this feature safe actuation.
MICROSAR Safe Feature: MCAL components used for peripheral access are usually not

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 18 / 103

developed by Vector. DIO and SPI drivers provided by Vector support the output as safety
feature (to trigger external watchdogs or switch actuation paths).

1.2.2 Environment

1.2.2.1 Safety Concept

SMI-14
The user of MICROSAR Safe shall be responsible for the functional safety concept.

The overall functional safety concept is in the responsibility of the user of MICROSAR
Safe. MICROSAR Safe can only provide parts that can be used to implement the
functional safety concept of the item.
It is also the responsibility of the user of MICROSAR Safe to configure MICROSAR Safe
as intended by the user's safety concept.
The safety concept shall only rely on safety features explicitly described in this safety
manual. If a component from MICROSAR Safe does not explicitly describe safety features
in this safety manual, this component has been developed according to the methods for
ASIL D to provide coexistence with other ASIL components.

o Example: NvM provides safety features for writing and reading of data, the lower
layers, i.e. MemIf, Ea, Fee and drivers, only provide the ASIL for coexistence.

The safety concept shall not rely on functionality that is not explicitly described as safety
feature in this safety manual. This functionality may fail silently in case of a detected fault.

o Example: If a potential out-of-bounds memory access, e.g. due to invalid input or
misconfiguration, is detected the requested function will not be performed. An error
via DET is only reported if error reporting is enabled.

SMI-1
The user of MICROSAR Safe shall adequately address hardware faults.

The components of MICROSAR Safe can support in the detection and handling of some
hardware faults (e.g. using watchdog).
MICROSAR Safe does not provide redundant data storage.
The user of MICROSAR Safe especially has to address faults in volatile random access
memory, non-volatile memory, e.g. flash or EEPROM, and the CPU.
MICROSAR Safe relies on the adequate detection of faults in memory and the CPU by
other means, e.g. hardware. Thus, Vector recommends using lock-step CPUs together
with ECC memory.
See also SMI-14.

SMI-10
The user of MICROSAR Safe shall ensure that the reset or powerless state is a safe
state of the system.

This assumption is added to this Safety Manual, because it is used in Vector's safety
analyses and development process.

SMI-20

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 19 / 103

The user of MICROSAR Safe shall implement a timing monitoring using e.g. a
watchdog.

The components of MICROSAR Safe do not provide mechanisms to monitor their own
timing behavior.
The watchdog stack that is part of MICROSAR Safe can be used to fulfill this assumption.
If the functional safety concept also requires a logic monitoring, The watchdog stack that is
part of MICROSAR Safe can be used to implement it.
The watchdog is one way to perform timing monitoring. Today the watchdog is the most
common approach. In future there may be different approaches e.g. by monitoring using a
different ECU.
See also SMI-14.

SMI-98
The user of MICROSAR Safe shall ensure an end-to-end protection for safety-related
communication between ECUs.

The communication components of MICROSAR Safe do not assume sending or receiving
as a safety requirement, because considered faults can only be detected using additional
information like a cycle counter. Vector always assumes that an end-to-end protection or
equivalent mechanism is implemented on application level.
Considered faults in communication are:

o Failure of communication peer

o Message masquerading

o Message corruption

o Unintended message repetition

o Insertion of messages

o Re-sequencing

o Message loss

o Message delay

This requirement can be fulfilled by e.g. using the end-to-end protection wrapper for safety
related communication.

SMI-11
The user of MICROSAR Safe shall ensure data consistency for its application.

Data consistency is not automatically provided when using MICROSAR Safe. MICROSAR
Safe only provides services to support enforcement of data consistency. Their application
is in the responsibility of the user of MICROSAR Safe.
To ensure data consistency in an application, critical sections need to be identified and
protected.
To identify critical sections in the code, e.g. review or static code analysis can be used.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 20 / 103

To protect critical sections, e.g. the services to disable and enable interrupts provided by
the MICROSAR Safe operating system can be used.
To verify correctly implemented protection, e.g. stress testing or review can be used.
Note the AUTOSAR specification with respect to nesting and sequence of calls to interrupt
enabling and disabling functions.
See also TSR-101876.

1.2.2.2 Use of MICROSAR Safe Components

SMI-2
The user of MICROSAR Safe shall adequately select the type definitions to reflect
the hardware platform and compiler environment.

The user of MICROSAR Safe is responsible for selecting the correct platform types
(PlatformTypes.h) and compiler abstraction (Compiler.h). Especially the size of the
predefined types must match the target environment.
Example: A uint32 must be mapped to an unsigned integer type with a size of 32 bits.
The user of MICROSAR Safe can use the platform types provided by Vector. Vector has
created and verified the platform types mapping according to the information provided by
the user of MICROSAR Safe.

SMI-12
The user of MICROSAR Safe shall initialize all components of MICROSAR Safe prior
to using them.

This constraint is required by AUTOSAR anyway. It is added to this Safety Manual,
because Vector assumes initialized components in its safety analyses and development
process.
Correct initialization can be verified, e.g. during integration testing.

SMI-16
The user of MICROSAR Safe shall only pass valid pointers at all interfaces to
MICROSAR Safe components.

Plausibility checks on pointers are performed by MICROSAR Safe (see also SMI-18), but
they are limited. MICROSAR Safe components potentially use provided pointers to write to
the location in memory.
Also the length and pointer of a buffer provided to a MICROSAR Safe component need to
be consistent.
This assumption also applies to QM as well as ASIL components.
This can e.g. be verified using static code analysis tools, reviews and integration testing.

SMI-18
The user of MICROSAR Safe shall enable plausibility checks for the MICROSAR
Safe components.

This setting is necessary to introduce defensive programming and increase robustness at
the interfaces as required by ISO 26262.
This setting has to be configured at /MICROSAR/EcuC/EcucGeneral/EcuCSafeBswChecks and

<Component-specific path>/<Ma>SafeBswChecks for all components that are intended to

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 21 / 103

be ASIL.
Ma is the Module Abbreviation.
This setting is enforced by an MSSV plug-in.
This setting does not enable error reporting to the DET component.

SMI-1725
The user of MICROSAR Safe shall configure and use the interrupt system correctly.

The user of MICROSAR Safe is responsible for a correct and consistent configuration and
usage of the interrupt system.
Especially the following topics shall be verified:

o Consistent configuration of interrupt category, level and priority in OS and MCAL
modules

o Correct assignment of logical channels/instances to interrupt vectors in case of
MCAL modules with multiple channels/instances

o The interrupt controller is configured in a mode which processes interrupts of the
same level sequentially to avoid unbounded interrupt nesting

1.2.2.3 Partitioning

SMI-9
The user of MICROSAR Safe shall ensure that for one AUTOSAR functional cluster
(e.g. System Services, Operating System, CAN, COM, etc.) only components from
Vector are used.

This assumption is required because of dependencies within the development process of
Vector.
This assumption does not apply to the MCAL or the EXT cluster.
Vector may have requirements on MCAL or EXT components depending on the upper
layers that are used and provided by Vector. For example, the watchdog driver is
considered to have safety requirements allocated to its initialization and triggering
services. Details are described in the component specific parts of this safety manual.
This assumption does not apply to components that are not provided by Vector.
In case the partitioning solution is used, this assumption only partially applies to the
System Services cluster. Only the Watchdog Manager and Watchdog Interface need to be
used from Vector then, because the Watchdog Manager and Watchdog Interface will be
placed in separate memory partitions apart from the other System Services components.

SMI-32
The user of MICROSAR Safe shall provide an argument for coexistence for software
that resides in the same partition as components from MICROSAR Safe.

Vector considers an ISO 26262-compliant development process for the software as an
argument for coexistence (see [1] Part 9 Clause 6). Vector assumes that especially
freedom from interference with respect to memory is provided by an ISO 26262-compliant
development process.
Redundant data storage as the only measure by the other software is not considered a

%5b1

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 22 / 103

sufficient measure.
If ASIL components provided by Vector are used, this requirement is fulfilled.
In general Vector components do not implement methods to interface with other software
(e.g. components, hooks, callouts) in other partitions. They assume that all interfacing
components reside in the same partition. Interfacing components are described in the
respective technical reference.
If an argument for coexistence cannot be provided, other means of separation have to be
implemented (e.g. trusted or non-trusted function calls).

SMI-99
The user of MICROSAR Safe shall verify that the memory mapping is consistent
with the partitioning concept.
The volatile data of every component shall be placed in the associated memory partition.
This can be verified e.g. by review of the linker map file.
The memory sections for each component placed in RAM can be identified
<MIP>_START_SEC_VAR[_<xxx>], where <MIP> is the Module Implementation Prefix of
the component.

1.2.2.4 Resources

SMI-33
The user of MICROSAR Safe shall provide sufficient resources in RAM, ROM, stack
and CPU runtime for MICROSAR Safe.

Selection of the microcontroller and memory capacities as well as dimensioning of the
stacks is in the responsibility of the user of MICROSAR Safe.
If MICROSAR Safe components have specific requirements, these are documented in the
respective Technical Reference document.

1.2.3 Process

SMI-15
The user of MICROSAR Safe shall follow the instructions of the corresponding
Technical Reference of the components.

Especially deviations from AUTOSAR specifications are described in the Technical
References.
If there are constraints for the implementation of an exclusive area, these are described in
the Technical References.

SMI-5
The user of MICROSAR Safe shall verify all code that is modified during integration
of MICROSAR Safe.

Code that is typically modified by the user of MICROSAR Safe during integration
comprises generated templates, hooks, callouts, or similar.
This assumption also applies if interfaces between components are looped through user-
defined functions.
Vector assumes that this verification also covers ISO 26262:6-9. Vector assumes that
modified code that belongs to a Vector component, e.g. EcuM callouts or OS trace hooks

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 23 / 103

can at least coexist with this component, because no separation in memory or time is
implemented.
Example: Callouts of the EcuM are executed in the context of the EcuM.
Non-trusted functions provided by the Vector operating system can be used to implement
a separation in memory in code modified by the user of MICROSAR Safe.
Support by Vector can be requested on a per-project basis.

SMI-30
The user of MICROSAR Safe shall only modify source code of MICRSAR Safe that is
explicitly allowed to be changed.

Usually no source code of MICROSAR Safe is allowed to be changed by the user of
MICROSAR Safe.
The user of MICROSAR Safe can check if the source code was modified by e.g,
comparing it to the original delivery.

SMI-8
The user of MICROSAR Safe shall verify generated functions according to ISO
26262:6-9.

Generated functions can be identified when searching through the generated code.
Support by Vector can be requested on a per-project basis.
An example of generated functions is the configured rules of the Basic Software Manager
(BSWM). Their correctness can only be verified by the user of MICROSAR Safe. Please
note, however, that BSWM does not provide safety features.
This requirement does not apply to MICROSAR SafeRTE.

SMI-19
The user of MICROSAR Safe shall execute the MICROSAR Safe Silence Verifier
(MSSV).

MSSV is used to detect potential out-of-bounds accesses by Vector's basic software based
on inconsistent configuration.
Details on the required command line arguments and integration into the tool chain can be
found in [4].
If the report shows “Overall Check Result: Fail", please contact the Safety Manager at
Vector. See the Product Information MICROSAR Safe for contact details.

SMI-4
The user of MICROSAR Safe shall perform the integration (ISO 26262:6-10) and
verification (ISO 26262:6-11) processes as required by ISO 26262.

Especially the safety mechanisms must be verified in the final target ECU.
Vector assumes that by performing the integration and verification processes as required
by ISO 26262 the generated configuration data, e.g. data tables, task priorities or PDU
handles, are sufficiently checked. An additional review of the configuration data is then
considered not necessary.
Integration does not apply to a MICROSAR Safe component that consists of several
subcomponents. This integration is already performed by Vector. The integration of
subcomponents is validated during creation of the safety case by Vector based on the

%5b4

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 24 / 103

configuration handed in by the user of MICROSAR Safe.
However, integration of all MICROSAR Safe components in the specific use-case of the
user of MICROSAR Safe is the responsibility of the user of MICROSAR Safe. This also
includes the hardware-software integration in the context of the target ECU.
Support by Vector can be requested on a per-project basis.

SMI-100
The user of MICROSAR Safe shall ensure that a consistent set of generated
configuration is used for verification and production.
Make sure that the same generated files are used for testing and production code, i.e. be
aware that configuration can be changed without generating the code again.
Make sure that all generated files have the same configuration basis, i.e. always generate
the MICROSAR Safe configuration for all components for a relevant release of the ECU
software.
The use of post build loadable is supported but not recommended by Vector.

SMI-176
The user of MICROSAR Safe shall verify the integrity of the delivery by Vector.
Run the SIPModificationChecker.exe and verify that the source code, BSWMD and safety
manual files are unchanged.

SMI-31
The user of MICROSAR Safe shall verify the consistency of the binary downloaded
into the ECU's flash memory.

This also includes re-programming of flash memory via a diagnostics service. The
consistency of the downloaded binary can be checked by the bootloader or the application.
MICROSAR Safe assumes a correct program image.

SMI-3
The user of MICROSAR Safe shall evaluate all tools (incl. compiler) that are used by
the user of MICROSAR Safe according to ISO 26262:8-11.

Evaluation especially has to be performed for the compiler, linker, debugging and test
tools.
Vector provides a guideline for the evaluation of the Tool Confidence Level (TCL) for the
tools provided by Vector (e.g. DaVinci Configurator).
Vector has evaluated the tools exclusively used by Vector during the development of
MICROSAR Safe.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 25 / 103

2 Safety Manual BswM

2.1 Safety features

This component does not provide safety features.

2.2 Configuration constraints

SMI-3528
The user of MICROSAR Safe shall configure the following attribute:

o Set /MICROSAR/BswM/BswMGeneral/BswMEthIfEnabled to FALSE.

This setting is enforced by an MSSV plugin.

SMI-3529
The user of MICROSAR Safe shall assert the following preprocessor define:

o BSWM_CC_POWER_SOURCES is not defined in BswM_Cfg.h.

This setting is enforced by an MSSV plugin.

2.3 Additional Verification measures

This component does not require additional verification measures.

2.4 Safety features required from other components

This component does not require safety features from other components.

2.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 26 / 103

3 Safety Manual CanIf

3.1 Safety features

This component does not provide safety features.

3.2 Configuration constraints

SMI-348
The user of MICROSAR Safe shall configure the following attributes:

o Set /MICROSAR/CanIf/CanIfPrivateCfg/CanIfOptimizeOneController to FALSE.

o Set /MICROSAR/CanIf/CanIfPublicCfg/CanIfJ1939DynAddrSupport to DISABLED.

These settings are enforced by a MSSV plugin.

3.3 Additional verification measures

SMI-349
The user of MICROSAR Safe shall verify for each entry of table
CanIf_RxIndicationFctList that the signature of the function referred by member

RxIndicationFct matches the expected signature that is selected the value of the member

RxIndicationLayout.

The table CanIf_RxIndicationFctList can be found in CanIf_Lcfg.c.

The following table lists the expected signatures. The placeholder <name> represents the

function's name:

Value of RxIndicationLayout Signature of the function referred by
RxIndicationFct

CanIf_SimpleRxIndicationLayout void <name>(PduIdType CanRxPduId, const

uint8* CanSduPtr)

CanIf_AdvancedRxIndicationLayout void <name>(PduIdType CanRxPduId, const

PduInfoType* PduInfoPtr)

CanIf_NmOsekRxIndicationLayout void <name>(PduIdType CanRxPduId, const

uint8* CanSduPtr, Can_IdType CanId)

SMI-350
The user of MICROSAR Safe shall verify for each entry of table
CanIf_TxConfirmationFctList that function referred by member TxConfirmationFctList

has the following signature (the placeholder <name> represents the function's name):

void <name>(PduIdType CanTxPduId)

The table CanIf_TxConfirmationList can be found in CanIf_Lcfg.c.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 27 / 103

SMI-746
The user of MICROSAR Safe shall verify for each callback function listed in the following
table that the signature of the function matches the expected signature.

All callback functions can be found in file CanIf_Lcfg.c. Please note that depending on
configuration you must verify only the provided ones.

Callback function Expected signature of the function

CanIf_BusOffNotificationFctPtr void <name> (uint8

ControllerId)

CanIf_CtrlModeIndicationFctPtr void <name> (uint8

ControllerId,

CanIf_ControllerModeType

ControllerMode)

CanIf_TrcvModeIndicationFctPtr void <name> (uint8

TransceiverId,

CanTrcv_TrcvModeType

TransceiverMode)

CanIf_ConfirmPnAvailabilityFctPtr void <name> (uint8

TransceiverId)

CanIf_ClearTrcvWufFlagIndicationFctPtr void <name> (uint8

TransceiverId)

CanIf_CheckTrcvWakeFlagIndicationFctPtr void <name> (uint8

TransceiverId)

CanIf_WakeUpValidationFctPtr void <name>

(EcuM_WakeupSourceType

CanWakeupEvents)

CanIf_RamCheckCorruptControllerIndFctPtr void <name> (uint8

ControllerId)

CanIf_RamCheckCorruptMailboxIndFctPtr void <name> (uint8

ControllerId,

CanIf_HwHandleType HwHandle)

CanIf_DataChecksumRxErrFctPtr void <name> (PduIdType

CanIfRxPduId)

SMI-25089
The user of MICROSAR Safe shall ensure that any write access within the callout
CanIf_TransmitSubDataChecksumTxAppend to the array referenced by parameter

txPduDataWidthChecksumPtr is within its valid range.

This measure is only applicable if attribute
/MICROSAR/CanIf/CanIfPrivateCfg/CanIfDataChecksumTxSupport is configured to TRUE.

The size of the array is defined by CANIF_CFG_MAXTXDLC_PLUS_DATACHECKSUM which can be

found in file CanIf_Cfg.h.

This requirement is fulfilled if the implementation of
CanIf_TransmitSubDataChecksumTxAppend is provided by Vector.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 28 / 103

3.4 Safety features required from other components

This component does not require safety features from other components.

3.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 29 / 103

4 Safety Manual CanNm

4.1 Safety features

This component does not provide safety features.

4.2 Configuration constraints

This component does not have configuration constraints.

4.3 Additional verification measures

SMI-326
The user of MICROSAR Safe shall verify that the pointer (nmUserDataPtr) passed to the
function CanNm_GetUserData references a valid memory location and that the size of the
array referenced by parameter nmUserDataPtr is greater or equal to
CanNm_GetRxMessageData_UserDataLengthOfPbChannelConfig(channel).

This function is called by the application via the Nm_GetUserData function of the Nm. This
interface only passes a pointer without a length. The length is statically configured in the
CanNm for each channel.

SMI-327
The user of MICROSAR Safe shall verify that the pointer (nmPduDataPtr) passed to the
function CanNm_GetPduData references a valid memory location and that the size of the
array referenced by parameter nmPduDataPtr is greater or equal to
CanNm_GetRxMessageDataLengthOfPbChannelConfig(channel).

This function is called by the application via the Nm_GetPduData function of the Nm. This
interface only passes a pointer without a length. The length is statically configured in the
CanNm for each channel.

4.4 Safety features required from other components

This component does not require safety features from other components.

4.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 30 / 103

5 Safety Manual CanSM

5.1 Safety features

This component does not provide safety features.

5.2 Configuration constraints

This component does not have configuration constraints.

5.3 Additional verification measures

SMI-389
The user of MICROSAR Safe shall verify that only existing functions with the correct
prototype are referred by the following function pointers.

o The following function pointer is generated only if the attribute
/MICROSAR/CanSM/CanSMGeneral/CanSMBusOffBegin is configured to an non-
empty value:
- CanSM_BusOffBeginIndicationFctPtr

o The following function pointer is generated only if
/MICROSAR/CanSM/CanSMGeneral/CanSMBusOffEnd is configured to an non-
empty value:
- CanSM_BusOffEndIndicationFctPtr

o The following function pointer is generated only if
/MICROSAR/CanSM/CanSMGeneral/CanSMTxTimeoutEnd is configured to an
non-empty value:
- CanSM_TxTimeoutExceptionEndIndicationFctPtr

The function pointers shall especially not contain NULL pointers nor numeric values of
memory addresses.

All function pointers can be found in CanSM_Lcfg.c. The function prototypes can be found
in CanSM_Cfg.h.

5.4 Safety features required from other components

This component does not require safety features from other components.

5.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 31 / 103

6 Safety Manual CanTp

6.1 Safety features

This component does not provide safety features.

6.2 Configuration constraints

SMI-2119
The user of MICROSAR Safe shall configure the following:

o Set /MICROSAR/CanTp/CanTpGeneral/CanTpOptimizeSingleRxBuffer to FALSE.

o At least one /MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu
container

o At least one /MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu
container

These settings are enforced by an MSSV plugin.

6.3 Additional verification measures

This component does not require additional verification measures.

6.4 Safety features required from other components

This component does not require safety features from other components.

6.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 32 / 103

7 Safety Manual Com

7.1 Safety features

This component does not provide safety features.

7.2 Configuration constraints

SMI-314
The user of MICROSAR Safe shall configure the following parameters:

o Set /MICROSAR/Com/ComGeneral/ComReceiveSignalMacroAPI to FALSE.

o Set /MICROSAR/Com/ComGeneral/ComMetaDataSupport to FALSE.

o Set /MICROSAR/Com/ComGeneral/ComDescriptionRoutingCodeGeneration to
FALSE.

This setting is enforced by a MSSV plugin.

SMI-315
The user of MICROSAR Safe shall configure the following:
A container in /MICROSAR/PduR/PduRBswModules with a reference
(/MICROSAR/PduR/PduRBswModules/PduRBswModuleRef) to /ActiveEcuC/Com and
shall set the following parameters:

o /MICROSAR/PduR/PduRBswModules/PduRCommunicationInterface to TRUE

o /MICROSAR/PduR/PduRBswModules/PduRTransportProtocol to FALSE

o /MICROSAR/PduR/PduRBswModules/PduRCancelTransmit to FALSE

This setting is enforced by a MSSV plugin.

7.3 Additional verification measures

SMI-1104
The user of MICROSAR Safe shall verify that the SignalDataPtr passed to

Com_ReceiveSignal and Com_ReceiveShadowSignal points to a valid buffer which matches

the configured /MICROSAR/Com/ComConfig/ComSignal/ComSignalType or
/MICROSAR/Com/ComConfig/ComGroupSignal/ComSignalType. In case of the
ComSignalType UINT8_N the caller must ensure that the array size matches to the
configured /MICROSAR/Com/ComConfig/ComSignal/ComSignalLength or
/MICROSAR/Com/ComConfig/ComGroupSignal/ComSignalLength.

This can be verified by comparing the type of the pointer passed to SignalDataPtr to the

ApplType returned by Com_GetApplTypeOfRxAccessInfo(Index).

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 33 / 103

If the ApplType is set to COM_UINT8_N_APPLTYPEOFRXACCESSINFO additionally verify that the

value of Com_GetRxSigBufferArrayBasedBufferLengthOfRxAccessInfo(Index) is less or

equal to the size (in bytes) of the array passed to SignalDataPtr.

The parameter of the macros Com_GetApplTypeOfRxAccessInfo(Index) and

Com_GetRxSigBufferArrayBasedBufferLengthOfRxAccessInfo(Index) is the SignalId and

can be found in the generated header files.

7.4 Safety features required from other components

This component does not require safety features from other components.

7.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 34 / 103

8 Safety Manual ComM

8.1 Safety features

This component does not provide safety features.

8.2 Configuration constraints

This component does not have configuration constraints.

8.3 Additional Verification measures

SMI-94
The user of MICROSAR Safe shall verify that the array size generated by ComM matches
to the array size in the type definition of RTE. The following procedure shall be applied to
each channel that has activated the ComM parameter 'Full Comm Request Notification
Enabled'.

1. ComM_Cfg.h contains array size definition in the format
COMM_MAX_CR_<ShortNameOfChannel>

2. rte_type.h contains the definition of the corresponding structure type in the format
ComM_UserHandleArrayType_<ShortNameOfChannel>

3. Verify that the structure member 'handleArray' has the same size as the corresponding
define value of ComM in 1).

4. Verify the content of the generated functions ComM_CurrentChannelRequestInit and
ComM_CurrentChannelRequestNotification to ensure that the proper define
COMM_MAX_CR_<ShortNameOfChannel> is used to limit the array index when
writing to ComM_UserHandleArrayType_<ShortNameOfChannel>.handleArray[].

SMI-95
The user of MICROSAR Safe shall verify that the value of ComSignalLength (byte) in Com
module is smaller or equal to the value of COMM_PNC_SIGNAL_LENGTH (can be found
in ComM_Cfg.h).
This shall be verified for each ComPncSignal referenced by Partial Network Clusters and
having ComMPncComSignalDirection = RX.

SMI-1046
The user of MICROSAR Safe shall verify that each element of table
ComM_UserModeNotiFunc refers either a NULL_PTR or a function that has the following

signature (the placeholder <name> represents the function's name):

Std_ReturnType <name>(uint8 nextMode)

The table ComM_UserModeNotiFunc can be found in ComM_Lcfg.c. This measure is only

needed if at least one ComM user has enabled the parameter 'User Mode Notification'.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 35 / 103

8.4 Safety features required from other components

This component does not require safety features from other components.

8.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 36 / 103

9 Safety Manual Crc

9.1 Safety features

SMI-344
Crc provides the following safety features:

ID Safety feature

CREQ-858 Crc shall provide a service to calculate 8-bit SAE-J1850 CRC.

CREQ-859 Crc shall provide a service to calculate 8-bit 0x2F CRC.

CREQ-860 Crc shall provide a service to calculate 16-bit CCITT CRC.

CREQ-861 Crc shall provide a service to calculate 32-bit IEEE-802.3 CRC.

CREQ-862 Crc shall provide a service to calculate 32-bit E2E Profile 4 CRC.

CREQ-117997 Crc shall provide a service to calculate 64-bit ECMA CRC.

9.2 Configuration constraints

This component has no configuration constraints.

9.3 Additional verification measures

SMI-49
The user of MICROSAR Safe shall verify that the CRC is calculated for the intended data.

This includes the intended buffer and its size (see also SMI-16), start value and if it is the
first call to the service.
Verification can be performed by the "magic check" (see AUTOSAR SWS Crc).

If Crc is used by a MICROSAR Safe component (e.g. E2E, NvM), this requirement is
fulfilled for the MICROSAR Safe component.

9.4 Dependencies to other components
9.4.1 Safety features required from other components

This component does not require safety features from other components.

9.4.2 Coexistence with other components

This component does not require coexistence with other components.

It is assumed that the user of Crc has the adequate ASIL.

9.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 37 / 103

10 Safety Manual Csm

10.1 Safety Features

SMI-47
Csm provides the following safety features:

ID Safety feature

CREQ-330 Csm shall provide services to compute hash functions.

CREQ-331 Csm shall provide services to compute MAC functions.

CREQ-1252 Csm shall provide services to verify MAC functions.

Note: It is assumed that cryptographic algorithms yield different results for different input
parameters.

10.2 Configuration constraints

This component does not have configuration constraints.

10.3 Additional verification measures

SMI-46
The user of MICROSAR Safe shall verify that the intended callback functions is called
during integration testing.

This requirement only applies if callback functions are configured.

This requirement only applies if TSR-11 is considered a safety requirement.

SMI-45
The user of MICROSAR Safe shall verify that the intended Cry service is called during
integration testing.

This requirement only applies if TSR-11 is considered a safety requirement.

10.4 Dependencies to other components

This component does not require safety features from other components.

10.4.1 Safety features required from other components

SMI-44
The used Cry shall provide the services to compute hash functions, to compute MAC
functions, to verify MAC functions and to compute checksums over data as safety feature.

This requirement only applies if TSR-11 is considered a safety requirement.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 38 / 103

10.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 39 / 103

11 Safety Manual Det

11.1 Safety features

This component does not provide safety features.

11.2 Configuration constraints

This component does not have configuration constraints.

SMI-60
If the DET is used in series production the extended debug features shall be switched off,
because they are only relevant if a debugger is attached.

The user of MICROSAR Safe shall configure and verify the following attribute:

o /MICROSAR/Det/DetGeneral/DetExtDebugSupport = False

11.3 Additional Verification measures

SMI-4671
The user of MICROSAR Safe shall verify that the enter and exit functions of the
DET’s exclusive area do not produce DET errors.

Verification can e.g. be performed by review. If these functions are mapped to OS services
it has to be checked that from the ErrorHook of the OS no DET error reporting functions
are called if the ErrorHook has been called due to an error in the OS service used for the
DET's exclusive area.

11.4 Safety features required from other components

This component does not require safety features from other components.

11.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 40 / 103

12 Safety Manual EcuM

12.1 Safety features

SMI-34
EcuM Flex provides the following safety features:

ID Safety feature

CREQ-
470

EcuM shall provide a service to initialize the ECU management.

CREQ-
454

EcuM shall provide ECU initialization on multiple cores.

CREQ-
543

EcuM shall perform validation of all postbuild configurable BSW module configuration
parameters.

CREQ-
375

EcuM shall provide a callout to set programmable interrupts during the startup phase.

CREQ-
525

EcuM shall provide a callout to initialize driver prior the start of the OS.

CREQ-
488

EcuM shall provide a callout to determine the Postbuild configuration data.

CREQ-
505

EcuM shall provide a callout to initialize drivers prior Postbuild data is available.

CREQ-
391

EcuM shall provide a callout to reset the ECU.

CREQ-
381

EcuM shall provide a callout to generate a RAM Hash.

CREQ-
440

EcuM shall provide a callout to check the RAM Hash.

CREQ-
509

EcuM shall provide a callout to re-initialize drivers during a restart.

CREQ-
445

EcuM shall provide a service to set the current shutdown target of the ECU.

CREQ-
483

EcuM shall provide a service to get the shutdown target of the ECU.

CREQ-
372

EcuM shall provide a service to initiate the ECU shutdown depending on the
shutdown target.

CREQ-
431

EcuM shall provide a callout to notify Errors from the ECU management.

CREQ-
421

EcuM shall provide a service to complete the ECU shutdown process.

CREQ-
535

EcuM shall provide a service to initiate an ECU shutdown.

CREQ-
699

EcuM shall indicate mode changes to the RTE.

CREQ- EcuM shall provide a service to request the run state.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 41 / 103

691

CREQ-
692

EcuM shall provide a service to release the run state.

CREQ-
693

EcuM shall provide a service to release the post run state.

CREQ-
690

EcuM shall provide a service to request the post run state.

Note: RAM Hash generation and checking callouts are only available when sleep modes
are configured.

SMI-286
EcuM Fix provides the following safety features:

ID Safety feature

CREQ-
470

EcuM shall provide a service to initialize the ECU management.

CREQ-
454

EcuM shall provide ECU initialization on multiple cores.

CREQ-
543

EcuM shall perform validation of all postbuild configurable BSW module configuration
parameters.

CREQ-
375

EcuM shall provide a callout to set programmable interrupts during the startup phase.

CREQ-
525

EcuM shall provide a callout to initialize driver prior the start of the OS.

CREQ-
488

EcuM shall provide a callout to determine the Postbuild configuration data.

CREQ-
505

EcuM shall provide a callout to initialize drivers prior Postbuild data is available.

CREQ-
391

EcuM shall provide a callout to reset the ECU.

CREQ-
381

EcuM shall provide a callout to generate a RAM Hash.

CREQ-
440

EcuM shall provide a callout to check the RAM Hash.

CREQ-
509

EcuM shall provide a callout to re-initialize drivers during a restart.

CREQ-
445

EcuM shall provide a service to set the current shutdown target of the ECU.

CREQ-
372

EcuM shall provide a service to initiate the ECU shutdown depending on the
shutdown target.

CREQ-
431

EcuM shall provide a callout to notify Errors from the ECU management.

CREQ-
421

EcuM shall provide a service to complete the ECU shutdown process.

CREQ-
699

EcuM shall indicate mode changes to the RTE.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 42 / 103

CREQ-
703

EcuM shall provide the ECU state machine.

CREQ-
707

EcuM shall trigger the NvM write job in shutdown path.

CREQ-
668

EcuM shall provide a callback which is called by the NvM to notify the end of the write
all job.

CREQ-
691

EcuM shall provide a service to request the run state.

CREQ-
692

EcuM shall provide a service to release the run state.

CREQ-
693

EcuM shall provide a service to release the post run state.

CREQ-
690

EcuM shall provide a service to request the post run state.

CREQ-
694

EcuM shall provide a service to kill all post run requests.

CREQ-
695

EcuM shall provide a service to kill all run requests.

Note: RAM Hash generation and checking callouts are only available when sleep modes
are configured.

SMI-38
If EcuM service to complete the shutdown process is called prior to initiate the shutdown
process, no shutdown will be performed.

12.2 Configuration constraints

SMI-36
The user of MICROSAR Safe shall configure the following attribute:

o Set /MICROSAR/EcuM/EcuMFlexGeneral/EcuMEnableDefBehaviour to FALSE.

o Do not configure any reference in
/MICROSAR/EcuM/EcuMConfiguration/EcuMCommonConfiguration/EcuMWakeup
Source/EcuMComMPNCRef to a PNC for a wakeup source

These settings are enforced by MSSV plugins.

12.3 Additional verification measures

SMI-39
The user of MICROSAR Safe shall verify the intended initialization procedure during
integration testing.

The user of MICROSAR Safe can verify the intended initialization procedure by performing
the following tests:

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 43 / 103

o Start the ECU and verify that the intended initalization routines are called. This
needs to be verified for each Postbuild-selectable configuration.

o Corrupt the Postbuild data (but not corresponding CRC) in non-volatile memory and
start the ECU. Then verify that the corruption is detected by EcuM.

o Start the ECU and verify that the intended Postbuild-selectable configuration is
used by the EcuM. This needs to be verified for each Postbuild-selectable
configuration.

A start of the ECU includes a "cold-start", reset as well as wake-up from sleep if
applicable.

This requirement only applies if TSR-1 is considered a safety requirement.

SMI-35
The user of MICROSAR Safe shall verify the intended shutdown procedure during
integration testing.

The user of MICROSAR Safe can verify the intended shutdown procedure by shutting
down the ECU with all configured shutdown paths. A shutdown path is a call to the service
that sets the current shutdown target with a relevant (e.g. combination used to achieve
safe state) combination of its parameters. For each shutdown path the intended final state
of the ECU (e.g. sleep, shutdown, reset) and the method of reset (e.g. using MCU or
Watchdog) is used.

The user of MICROSAR Safe shall also consider the service to initiate the ECU shutdown
depending on the shutdown target as a possible shutdown path.

The user of MICROSAR Safe shall also verify the default shutdown target.

This requirement only applies if TSR-3 is considered as a safety requirement.

SMI-40
The user of MICROSAR Safe shall verify that the memory region used for RAM hash
generation and verification is as intended.

Verification can be e.g. performed by review.

12.4 Safety features required from other components

SMI-42
The used operating system shall provide the service to get the core ID as safety feature.

If the operating system from MICROSAR Safe is used, this dependency is fulfilled.

This requirement only applies if TSR-1 is considered a safety requirement.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 44 / 103

12.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 45 / 103

13 Safety Manual Fee

13.1 Safety features

This component does not provide safety features.

13.2 Configuration constraints

This component does not have configuration constraints.

13.3 Additional Verification measures

SMI-1292
The user of MICROSAR Safe shall verify that valid notification routines are provided to
FEE via configuration.
'FeeNvmJobEndNotification' and 'FeeNvmJobErrorNotification' callbacks are called by
FEE using a function pointer.

13.4 Safety features required from other components

This component does not require safety features from other components.

SMI-1643
This component requires coexistence with MemIf, NvM, FlsDrv and Det components if the
interface for those components is configured.

13.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 46 / 103

14 Safety Manual MemIf

14.1 Safety features

This component does not provide safety features.

14.2 Configuration constraints

This component does not have configuration constraints.

14.3 Additional verification measures

This component does not require additional verification measures.

14.4 Dependencies to other components
14.4.1 Safety features required from other components

This component does not require safety features from other components.

14.4.2 Coexistence with other components

SMI-311
This component requires coexistence with NvM, Det, Fee, and Ea components if the
interface for those components is configured.

14.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 47 / 103

15 Safety Manual Nm

15.1 Safety features

This component does not provide safety features.

15.2 Configuration constraints

This component does not have configuration constraints.

15.3 Additional Verification measures

This component does not require additional verification measures.

15.4 Dependencies to other components
15.4.1 Safety features required from other components

This component does not require safety features from other components.

15.4.2 Coexistence with other components

SMI-149
This component requires coexistence with ComM, Com, BswM, Det, SchM/Rte, Rtm and
bus network manager components if the interface for those components is configured.

15.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 48 / 103

16 Safety Manual NvM

16.1 Safety features

SMI-21
This component provides the following safety features:

ID Safety feature

CREQ-724 NvM shall provide a service to read a single NvM block from NVRAM.

CREQ-725 NvM shall provide a service to write a single NvM block to NVRAM.

CREQ-730 NvM shall provide a service to read all possbile NvM blocks from NVRAM.

CREQ-731 NvM shall provide a service to write all possible NvM blocks to NVRAM.

CREQ-746 NvM shall provide configurable callbacks to synchronize block data.

NvM can detect missing, corruption and masquerading (lower layers provide the wrong
block) of NvM blocks.

SMI-29
The user of MICROSAR Safe must design the system in a way that in case of the absence

of non‑volatile data it is still safe (e.g. safe state or degradation). It cannot be assured by

the memory stack that data is saved completely or at all because a reset or loss of energy
might happen at any time, e.g. brown-out, black-out.
This also implies that it is in general impossible to guarantee that the latest information is
available in the non-volatile memory, e.g. the system is reset before memory stack is even
notified to write data to non-volatile memory.
Thus, safety-related functionality may not rely on the availability of data in non-volatile
memory.
Since the availability of data in non-volatile memory cannot be guaranteed in any case, the
only sensible use-case is reading safety-related calibration data.
Writing of data into non-volatile memory must be verified to assure that the information is
available in non-volatile memory. Verification can only be done manually in a protected
environment, e.g. at end of line, in a workshop, etc.
ECU software cannot verify if data was written, since at any time a reset could occur and
the information that had to be written is lost immediately.
Reading of data does not modify data stored in non-volatile memory. Thus, reading can be
used by safety-related functionality. The memory stack assures that the read data is
identical to the data stored in non-volatile memory.
The availability may be increased by e.g. redundant storage.

16.2 Configuration constraints

SMI-25
The user of MICROSAR Safe shall configure and verify the following attributes for each
NvM block that contains safety-related data:

o Set /MICROSAR/NvM/NvMBlockDescriptor/NvMBlockUseCrc to TRUE.

o Set /MICROSAR/NvM/NvMBlockDescriptor/NvMBlockCrcType to NVM_CRC32.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 49 / 103

SMI-26
The user of MICROSAR Safe shall configure and verify the following attribute:

o Set /MICROSAR/NvM/NvMCommon/NvMUseBlockIdCheck to TRUE.

16.3 Additional verification measures

SMI-22
The user of MICROSAR Safe shall pass the intended block ID for reading and writing of a
single NvM block. NvM cannot detect if an unintended block that is configured is provided
by the user.
Verification can be performed during integration testing.

SMI-23
The user of MICROSAR Safe shall verify that the buffer passed for reading and writing of a
single NvM block is valid and sufficiently large for the passed block ID.
Verification can be performed by a review of the generated configuration and the code
passing the pointer and block ID to the NvM.

SMI-48
The user of MICROSAR Safe shall verify the size of the internal NvM buffer.

The buffer has the symbol name NvM_InternalBuffer_au8.
The buffer is generated when at least one of the following features is used:

o at least one block with explicit synchronization is configured

o repair of redundant blocks is enabled

o NvM internal CRC buffer is enabled

The buffer size shall be at least the size of the largest NVM block plus the size of the
configured CRC value.

Verification can be performed e.g. by review.

16.4 Safety features required from other components

SMI-28
The used Crc library shall provide the CRC calculation routines as safety feature.
If the Crc library from MICROSAR Safe is used, this dependency is fulfilled.

16.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 50 / 103

17 Safety Manual OS

17.1 Safety features

SMI-1259
This component provides the following safety features:

ID Safety feature

CREQ-63 OS shall provide a service to start the OS.

CREQ-162 OS shall provide a service to initialize itself.

CREQ-51 OS shall automatically start a subset of alarms for an application mode.

CREQ-146 OS shall automatically start a subset of tasks for an application mode.

CREQ-72 OS shall automatically start a subset of schedule tables for an application mode.

CREQ-117 OS shall provide a service to get the current application mode.

CREQ-45 OS shall provide a global callback during OS startup.

CREQ-299 Os shall synchronize the startup in multicore systems.

CREQ-153 OS shall provide a service to shutdown the OS.

CREQ-95 OS shall provide a service to shutdown all cores synchronously.

CREQ-161 OS shall provide a global callback upon shutdown.

CREQ-71 OS shall provide a global callback directly before a task starts its execution.

CREQ-165 OS shall provide a global callback directly before a task finishes its execution.

CREQ-42 OS shall provide a service to activate a task.

CREQ-28 OS shall handle multiple activations of basic tasks.

CREQ-101 OS shall provide a service to terminate the calling task.

CREQ-121 OS shall provide a service to define the next activated task.

CREQ-126 OS shall provide a service to explicitly invoke the scheduler.

CREQ-80 OS shall provide a service to get the ID of the current task

CREQ-74 OS shall provide a service to get the state of a given task.

CREQ-135 OS shall provide a service to declare a task.

CREQ-115 OS shall provide a service to execute a callback in category 2 ISRs.

CREQ-16 OS shall provide a service to get the ID of the currently executing category 2 ISR.

CREQ-24 OS shall handle unconfigured interrupt sources.

CREQ-78 OS shall provide a service to determine the interrupt source of a non-configured
interrupt upon handling of such interrupt.

CREQ-154 OS shall provide a nestable service to disable all interrupts.

CREQ-98 OS shall provide a nestable service to enable all interrupts.

CREQ-151 OS shall provide a nestable service to disable all category 2 interrupts.

CREQ-82 OS shall provide a nestable service to enable all category 2 interrupts.

CREQ-111 OS shall provide a non nestable service to disable all interrupts.

CREQ-43 OS shall provide a non nestable service to enable all interrupts.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 51 / 103

CREQ-
1257

OS shall provide a non nestable service to disable all interrupts callable from kernel
mode

CREQ-
1259

OS shall provide a non nestable service to enable all interrupts callable from kernel
mode

CREQ-
1256

OS shall provide a non nestable service to disable all interrupts callable from user
mode

CREQ-
1258

OS shall provide a non nestable service to enable all interrupts callable from user
mode

CREQ-
108741

OS shall provide a non nestable service to disable all interrupts callable from any
mode.

CREQ-
108742

OS shall provide a non nestable service to enable all interrupts callable from any
mode.

CREQ-
108744

OS shall provide a non nestable service to disable all category 2 interrupts callable
from kernel mode.

CREQ-
108747

OS shall provide a non nestable service to enable all category 2 interrupts callable
from kernel mode.

CREQ-
108743

OS shall provide a non nestable service to disable all category 2 interrupts callable
from user mode.

CREQ-
108748

OS shall provide a non nestable service to enable all category 2 interrupts callable
from user mode.

CREQ-
108745

OS shall provide a non nestable service to disable all category 2 interrupts callable
from any mode.

CREQ-
108746

OS shall provide a non nestable service to enable all category 2 interrupts callable
from any mode.

CREQ-
106181

OS shall provide a service to disable a specific interrupt source.

CREQ-
106182

OS shall provide a service to enable a specific interrupt source.

CREQ-
106183

OS shall provide a service to clear pending interrupts

CREQ-
114872

OS shall provide a service to check whether or not the source of the given ISR is
enabled

CREQ-
114873

OS shall provide a service to check whether or not the given ISR has been requested

CREQ-68 OS shall provide a service to wait for the occurrence of events.

CREQ-155 OS shall provide a service to signal the occurrence of events to a task.

CREQ-53 OS shall provide a service to acknowledge the occurrence of events.

CREQ-129 OS shall provide a service to get the event states of a given task.

CREQ-133 OS shall provide a service to declare an event.

CREQ-22 OS shall provide a service to increment a counter.

CREQ-156 OS shall provide a service to get the current value of a counter.

CREQ-39 OS shall provide a service to get the difference between a given and the current
counter value.

CREQ-44 OS shall provide a service for each hardware counter to translate a given period of

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 52 / 103

time into number of ticks.

CREQ-297 OS shall provide a service for each hardware counter to translate number of counter
ticks into a period of time.

CREQ-
1260

OS shall provide a service to get the maximum possible value of a counter

CREQ-
1261

OS shall provide a service to get the number of underlying driver ticks required to
reach a specific unit

CREQ-
1262

OS shall provide a service to get the minumum allowed number of ticks for a cyclic
alarm of a counter

CREQ-116 OS shall provide a service to set a relative alarm.

CREQ-29 OS shall provide a service to set an absolute alarm.

CREQ-93 OS shall provide a service to get an alarm.

CREQ-164 OS shall provide a service to cancel an alarm.

CREQ-19 OS shall provide a service to get the alarm base.

CREQ-142 OS shall provide alarm callbacks.

CREQ-32 OS shall provide a service to declare an alarm.

CREQ-61 OS shall provide a service to start a schedule table at a relative value.

CREQ-136 OS shall provide a service to start a schedule table at an absolute value.

CREQ-96 OS shall provide a service to stop the processing of a schedule table.

CREQ-112 OS shall provide a service to switch the processing between different schedule
tables.

CREQ-100 OS shall provide a service to start an explicitly synchronized schedule table
synchronously.

CREQ-152 OS shall provide a service to synchronize a schedule table with a synchronization
counter.

CREQ-25 OS shall provide a service to stop synchronization of a schedule table.

CREQ-108 OS shall provide a service to query the state of a schedule table.

CREQ-36 OS shall provide a mechanism to coordinate concurrent access to shared resources.

CREQ-56 OS shall provide a service to acquire a resource.

CREQ-107 OS shall provide a service to release a resource.

CREQ-163 OS shall provide a service to declare a resource.

CREQ-17 OS shall provide a service to acquire a spinlock.

CREQ-139 OS shall provide a service to asynchronously acquire a spinlock.

CREQ-167 OS shall provide a service to release a spinlock.

CREQ-172 OS shall provide a service to determine the application ID to which the current
execution context was configured.

CREQ-60 OS shall provide a service to determine the application ID in which the current
execution context is executed.

CREQ-114 OS shall provide a service to make an application accessible.

CREQ-109 OS shall provide a service to identify accessibility of OS objects .

CREQ-18 OS shall provide a service to identify object ownership.

CREQ-110 OS shall provide a service to terminate an application.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 53 / 103

CREQ-170 OS shall provide restart tasks.

CREQ-104 OS shall provide a service to get the state of a given application.

CREQ-34 OS shall provide a service to call exported services from trusted applications.

CREQ-
115372

OS shall allow usage of exported services from trusted applications before start of
the OS.

CREQ-
105586

OS shall provide a service to call exported services from non-trusted applications.

CREQ-
105587

OS shall allow usage of exported services from non-trusted applications before start
of the OS.

CREQ-48 OS shall provide an application specific callback during OS startup.

CREQ-76 OS shall provide an application specific callback during OS shutdown.

CREQ-54 OS shall provide an application specific callback if an error occurs.

CREQ-73 OS shall provide a service to return the access rights of a memory access of a task.

CREQ-13 OS shall provide a service to return the access rights of a memory access of a
category 2 ISR.

CREQ-49 OS shall provide execution time protection.

CREQ-85 OS shall provide inter-arrival time protection.

CREQ-31 OS shall provide locking time protection.

CREQ-845 OS shall monitor execution times.

CREQ-846 OS shall monitor inter arrival time frames.

CREQ-847 OS shall monitor locking times.

CREQ-35 OS shall provide a service to modify a value in a peripheral region.

CREQ-79 OS shall provide a service to read a value from a peripheral region.

CREQ-145 OS shall provide a service to write a value in a peripheral region.

CREQ-
115373

OS shall allow usage of services for peripheral regions before start of the OS.

CREQ-26 OS shall be able to call a global callback function if an error occurs.

CREQ-38 OS shall be able to call a global callback function if a fatal error occurs

CREQ-97 OS shall provide a service to all configured error callbacks, which return the
parameters of the system service which triggered error handling.

CREQ-23 OS shall provide a service to all configured error callbacks, which returns the service
identifier where the error has been risen.

CREQ-102 OS shall provide information to determine the service and the cause of a reported
error.

CREQ-
129663

OS shall provide a service, which writes the context of the thread to which the
system returns after error handling.

CREQ-
129664

OS shall provide a service, which returns the context of the thread which triggered a
fatal error.

CREQ-70 OS shall provide a service to forcibly terminate a task.

CREQ-21 OS shall provide a service to forcibly terminate a category 2 ISR.

CREQ-168 OS shall provide a service to select the idle mode action.

CREQ-150 OS shall provide a service to write data to an unqueued IOC channel.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 54 / 103

CREQ-55 OS shall provide a service to read data from a unqueued IOC channel.

CREQ-91 OS shall provide a service to send data to a queued IOC channel.

CREQ-160 OS shall provide a service to receive data from a queued IOC channel.

CREQ-90 OS shall provide a service to write multiple data to an unqueued IOC channel.

CREQ-147 OS shall provide a service to read multiple data from an unqueued IOC channel.

CREQ-119 OS shall provide a service to send multiple data to a queued IOC channel.

CREQ-113 OS shall service a method to receive multiple data from a queued IOC channel.

CREQ-128 OS shall provide a service to clear all data from a queued IOC channel.

CREQ-141 OS shall be able to call a callback function upon IOC data reception.

CREQ-149 OS shall provide a service to identify the local core.

CREQ-148 OS shall provide a service to get the number of cores controlled by OS.

CREQ-37 OS shall provide a service to start a core for usage of AUTOSAR OS software.

CREQ-120 OS shall provide a service to start a core for usage of non AUTOSAR OS software.

CREQ-
115996

OS shall be able to initialize itself and the hareware on any of the available cores.

CREQ-
115010

OS shall provide a callback for signalling a task activation.

CREQ-
115028

OS shall provide a callback for signalling the setting of an event.

CREQ-
115029

OS shall provide a callback for signalling a thread switch.

CREQ-
115030

OS shall provide a callback for signalling forcible termination of a thread.

CREQ-
115031

OS shall provide a callback for signalling the acquirement of a resource.

CREQ-
115032

OS shall provide a callback for signalling the release of a resource.

CREQ-
115033

OS shall provide a callback for signalling the attempt to acquire a spinlock.

CREQ-
115034

OS shall provide a callback for signalling the acquirement of a spinlock

CREQ-
115035

OS shall provide a callback for signalling the release of a spinlock.

CREQ-
115036

OS shall provide a callback for signalling the attempt to internally acquire a spinlock.

CREQ-
115037

OS shall provide a callback for signalling the internal acquirement of a spinlock

CREQ-
115038

OS shall provide a callback for signalling the internal release of a spinlock.

CREQ-
115039

OS shall provide a callback for signalling the locking of interrupts.

CREQ-
115040

OS shall provide a callback for signalling the release of an interrupt lock.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 55 / 103

CREQ-
140268

OS shall provide a callback for signalling failed task activation because the number
of activations exceeds the limit.

CREQ-
140269

OS shall provide a callback for signalling that event is already set when WaitEvent is
called.

17.2 Configuration constraints

SMI-378
The user of MICROSAR Safe shall configure and verify the extended OS status of APIs.

The attribute /MICROSAR/Os_Core/Os/OsOs/OsStatus shall equal to EXTENDED.

The OS safety measures rely on the validity checks defined for EXTENDED status of OS
API calls. Without these checks invalid calls might destroy the system integrity and violate
safety requirements. Ensuring the validity of API calls and arguments in STANDARD
status for any caller (which e.g. might be QM software) is considered to be infeasible.

SMI-377
The user of MICROSAR Safe shall configure and verify the service protection.

The attribute /MICROSAR/Os_Core/Os/OsOs/OsServiceProtection shall equal to TRUE.

The OS safety measures rely on the validity checks defined for OsServiceProtection
enabled. Without these checks API invalid calls might destroy the system integrity and
violate safety requirements. Ensuring the validity of API calls with
OsServiceProtectiondisabled for any caller (which e.g. might be QM software) is
considered to be infeasible.

SMI-379
The user of MICROSAR Safe shall configure and verify the scalability class 3 or 4.

The attribute /MICROSAR/Os_Core/Os/OsOs/OsScalabilityClass shall equal to SC3 or
SC4.

The OS safety measures rely on memory protection and service protection provided by the
scalability classes SC3 and SC4. Without memory protection, all software parts (even QM
parts) would have to ensure freedom from interference regarding memory (including
absence of stack overflow). Without service protection, all software parts (even QM parts)
would have to ensure only calls with valid access rights.

SMI-385
The user of MICROSAR Safe shall not use ISRs of category 1 if timing protection is
configured.

If a thread is killed because of timing protection, ISRs of category 1 might be aborted.

A possible workaround is using ISRs of category 2 instead of category 1.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 56 / 103

17.3 Additional verification measures

SMI-380
The user of MICROSAR Safe shall ensure the correct usage of the OS regarding program
flow. The correct program flow is ensured only if all OS API functions are correctly used
according to the AUTOSAR OS specification, according to the technical reference and
according to the requirements of the user application.

SMI-3732
The user of MICROSAR Safe shall ensure the correct usage of the hardware.
It is assumed that user software uses the microcontroller exactly as specified in the
vendors hardware documentation.

SMI-383
The user of MICROSAR Safe shall not call OS hook functions. The OS hook functions
shall be called by the OS only. This applies to the following hook functions:

o StartupHook

o ShutdownHook

o ProtectionHook

o PreTaskHook

o PostTaskHook

o ErrorHook

The OS makes assumptions which are valid if these hook functions are called by the OS
(e.g. set a hook context). These assumptions might be violated if the hook functions are
called directly by the user. As a hook may expect, that it is called within a specific context,
hooks shall not be called from directly from user code.

SMI-1047
The user of MICROSAR Safe shall ensure that the context definition as described in the
Technical Reference is complete for his application. Only this context is preserved on
context switches.

SMI-100816
The user of MICROSAR Safe shall verify that the processor state bits controlled by the
user are correctly set. This especially applies in case of forcible termination.

17.3.1 Interrupt handling

SMI-381
The user of MICROSAR Safe shall ensure the correct usage of the OS regarding interrupt
disabling. Unintended disabling of interrupts may lead to timing inconsistency because
pending interrupts might be delayed.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 57 / 103

The following interrupt disabling API functions shall be used correct according to the
AUTOSAR OS specification and according to the requirements of the user application,
otherwise the correct functionality is not ensured:

o DisableAllInterrupts

o SuspendAllInterrupts

o SuspendOSInterrupts

o DisableLevel

SMI-382
The user of MICROSAR Safe shall ensure the correct usage of the OS regarding interrupt
enabling. Unintended enabling of interrupts may lead to timing inconsistency (because
interrupts might occur which should be disabled) and data inconsistency (see also SMI-
11). The user shall ensure that timing inconsistencies are detected or avoided.

The following interrupt enabling API functions shall be used correct according to the
AUTOSAR OS specification and according to the requirements of the user application,
otherwise the correct functionality is not ensured:

o EnableAllInterrupts

o ResumeAllInterrupts

o ResumeOSInterrupts

o EnableLevel

SMI-482
The user of MICROSAR Safe shall verify that API functions DisableLevel, EnableLevel,
DisableGlobal and EnableGlobal are never called in the following cases:

o if interrupts are disabled

o within critical sections

o nested within other interrupt APIs

o within interrupt resources

o within interrupt locking spinlocks

o within ISRs, Hook functions, non-trusted functions, trusted functions and alarm
callbacks

SMI-488
The user of MICROSAR Safe shall verify that the following API functions are called from
privileged mode only:

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 58 / 103

o DisableLevelKM

o EnableLevelKM

o DisableGlobalKM

o EnableGlobalKM

SMI-489
The user of MICROSAR Safe shall verify that the API function EnableGlobal is called only
if interrupts are disabled before by call of DisableGlobal.

SMI-490
The user of MICROSAR Safe shall verify that the API function EnableLevel is called only if
interrupts are disabled before by call of DisableLevel.

SMI-44677
The user of MICROSAR Safe shall verify that all APIs called in ISRs of category 0 are
allowed to be called in this context by the AUTOSAR specification or technical reference.

ISRs of category 0 are transparent to the OS. Therefore the call context „inside category 0
ISR“ cannot be checked by the API functions. Erroneous calls are not detected.

SMI-590
The user of MICROSAR Safe shall verify that all APIs called in ISRs of category 1 are
allowed to be called in this context by the AUTOSAR specification or technical reference.

ISRs of category 1 are transparent to the OS. Therefore the call context „inside category 1
ISR“ cannot be checked by the API functions. Erroneous calls are not detected.

SMI-44676
The user of MICROSAR Safe shall verify that all ISRs of category 0 are implemented
transparent with respect to the processor state (including bits controlled by the user) for
the interrupted code. This includes core registers, MPU settings and the current interrupt
priority.

SMI-541
The user of MICROSAR Safe shall verify that all ISRs of category 1 are implemented
transparent with respect to the processor state (including bits controlled by the user) for
the interrupted code. This includes core registers, MPU settings and the current interrupt
priority.

SMI-491
The user of MICROSAR Safe shall verify the functionality of each configured ISR.

This includes the correct call of the ISR handler with the correct priority (level) as well as
enabling, disabling, reading the enable state, reading the pending state and clearing of the
pending information of the corresponding ISR sources.

SMI-44675

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 59 / 103

The user of MICROSAR Safe shall be aware that category 0 ISRs can be interrupted by
the OS in case of ECC violations.
In case that ECC violations are handled by the MICROSAR OS, the ProtectionHook is
called for ECC violations.
The protection handling can be interrupted by a category 0 ISR. This also applies if the
protection handling was triggerd by the same category 0 ISR.
If the protection reaction is terminate Task, ISR or Application the category 0 ISR will be
terminated by the OS, as well.

SMI-44678
The user of MICROSAR Safe shall be aware that category 1 ISRs can be interrupted by
the OS in case of ECC violations.
In case that ECC violations are handled by the MICROSAR OS, the ProtectionHook is
called for ECC violations.
If the protection reaction is terminate Task, ISR or Application the category 1 ISR will be
terminated by the OS, as well.

SMI-44680
The user of MICROSAR Safe shall be aware that category 0 ISRs can be interrupted by
the OS in case of exceptions.
In case that unhandled or handled exceptions are managed by the MICROSAR OS, the
ProtectionHook is called.
The protection handling can be interrupted by a category 0 ISR. This also applies if the
protection handling was triggerd by the same category 0 ISR.
If the protection reaction is terminate Task, ISR or Application the category 0 ISR will be
terminated by the OS, as well.

SMI-44681
The user of MICROSAR Safe shall be aware that category 0 ISRs cannot be disabled or
suspended by the OS interrupt APIs.
The following APIs have no effect on category 0 ISRs:

o DisableAllInterrupts

o EnableAllInterrupts

o SuspendAllInterrupts

o ResumeAllInterrupts

o SuspendOSInterrupts

o ResumeOSInterrupts

o Os_DisableLevelAM

o Os_EnableLevelAM

o Os_DisableLevelKM

o Os_EnableLevelKM

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 60 / 103

o Os_DisableLevelUM

o Os_EnableLevelUM

o Os_DisableGlobalAM

o Os_EnableGlobalAM

o Os_DisableGlobalKM

o Os_EnableGlobalKM

o Os_DisableGlobalUM

o Os_EnableGlobalUM

17.3.2 Memory mapping and linking

SMI-340
The user of MICROSAR Safe shall verify that the complete range specified by each
Os_PeripheralConfigType object in Os_Peripheral_Lcfg.c is either part of the writable
address space or that there are no write accesses to that region via the Peripheral API.
The first writable address is denoted as AddressStart and the last writable address is
denoted as AddressEnd.

If the addresses do not fit the intended/configured addresses, illegal write accesses would
be possible.

SMI-494
The user of MICROSAR Safe shall verify for IOC functions that the configured access
rights and linker configuration allow only valid callers to write the corresponding IOC data.

SMI-495
The user of MICROSAR Safe shall ensure by linkage for each optimized spinlock that only
intended tasks and ISRs have write access to the corresponding spinlock data (or at least
only tasks and ISRs of partitions with the same ASIL levels).

The user of MICROSAR Safe shall verify that no unintended task or ISR has access to
data of optimized spinlocks.

SMI-539
The user of MICROSAR Safe shall verify that none of the configured MPU regions allows
write access to OS variables from non-trusted software.

SMI-549
The user of MICROSAR Safe shall verify the linkage of stack sections and MPU
configuration that none of the configured MPU regions grants write access to any OS
stack.

The MPU setting for stacks is internally done by the OS and granting write access might
prevent from memory protection of stacks.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 61 / 103

SMI-1044
The user of MICROSAR Safe shall verify that additional configured MPU regions shall
never overlap with any OS stack sections.

Overlapping MPU regions might provide illegal write access to OS stack sections. By using
an OS generated linker command file (see technical reference) it is assured that the OS
stacks are linked consecutively into the RAM.

SMI-1045
The user of MICROSAR Safe shall verify that the linkage scheme includes a stack safety
gap linked adjacent to the stack section (in dependency of the stack growth direction, see
technical reference). No software parts shall have write access to the stack safety gap.

This measure enables to detect stack overflows by MPU even if the owner of the stack has
also write access to data linked adjacent to the stack section.

SMI-562
The user of MICROSAR Safe shall verify that all user data are linked into the intended
sections.

SMI-564
The user of MICROSAR Safe shall verify the configuration of access rights to sections.
Software with lower diagnostic coverage shall not be able to destroy data of software with
higher diagnostic coverage. This applies to memory access within one core as well as
memory access across cores.

See Technical Reference, chapter "Memory Protection" for details.

Note that OSApplications do not need access to other OS Applications memory.

SMI-109809
The user of MICROSAR Safe shall ensure that the whole OS code is linked within OS start
and end code labels.

17.3.3 Stack

SMI-565
The user of MICROSAR Safe shall ensure that sufficient stack is available for
call/execution of StartOS.

StartOS performs some initializations before switching to an internal stack and enabling
the memory protection. The active stack at call of StartOS shall provide sufficient space to
execute this code. Because the stack consumtion is depending on compiler and compiler
options it is recommended to switch to a stack provided by the OS before calling StartOS
and to use the stack usage measurement API of the OS to determine the necessary stack
size.

SMI-4452
If the attribute /MICROSAR/Os/OsOS/OsGenerateMemMap is equal to
USERCODE_AND_STACKS_GROUPED_PER_CORE, the user of MICROSAR Safe shall

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 62 / 103

ensure that all configured stack sizes match the MPU granularity and alignment. Otherwise
stack protection cannot be ensured.

17.3.4 Multicore systems with mixed diagnostic coverage capability

SMI-592
The user of MICROSAR Safe shall verify that software with higher diagnostic coverage
does not rely on the results of APIs with lower diagnostic coverage.

Note that only APIs listed in section "Safety Features" provide functionality on ASIL level.

SMI-483
The user of MICROSAR Safe shall ensure that cross core API calls with high frequency
from cores with lower diagnostic coverage to cores with higher diagnostic coverage do not
interfere with the requirements. Excessive runtime consumption of cores with lower
diagnostic coverage shall not prevent cores with higher diagnostic coverage form keeping
the timing constraints.

One possible measure is using timing protection.

SMI-484
The user of MICROSAR Safe shall ensure that synchronous cross core API calls from a
core with higher diagnostic coverage to a core with lower diagnostic coverage do not
violate the safety goals if the API calls never return.

Synchronous calls block the caller until the return result is received. If for any reason a
core with lower diagnostic coverage does not return the result or does not return the result
in time, the caller has to deal with this situation.

SMI-485
The user of MICROSAR Safe shall call ShutdownAllCores only on cores with the highest
diagnostic coverage.

SMI-486
The user of MICROSAR Safe shall note that the ShutdownHook might not be called on
Shutdown for multicore systems with mixed diagnostic coverage capability.

Errors caused by cores of lower diagnostic coverage (data overwrite) might prevent the
call of ShutdownHook by cores with higher diagnostic coverage.

SMI-487
The user of MICROSAR Safe shall configure and verify that the core with the highest
diagnostic coverage initializes the peripheral moduls used by the OS (e.g. MPU, Interrupt
Controller).
The attribute /MICROSAR/Os/OsOS/OsHardwareInitCore shall be set to the core
reference with the highest diagnostic coverage.
The user of MICROSAR Safe shall ensure that if a core with lower diagnostic coverage
initializes peripherals or hardware components (like e.g. a system MPU), the core with
higher diagnostic coverage does not rely on this initialization.

SMI-493

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 63 / 103

The user of MICROSAR Safe shall verify that the configuration of cross core API calls
prevents cores with lower diagnostic coverage from shutdown of cores with higher
diagnostic coverage.

SMI-25766
The user of MICROSAR Safe shall ensure that receiver core of cross core API calls is able
to handle unintended calls of APIs. This applies only to APIs which are allowed to be called
between two cores by configuration.

17.3.5 (Non-)Trusted Functions

SMI-497
The user of MICROSAR Safe shall verify that if a trusted or non-trusted function uses the
passed argument, the trusted function validates these data before usage to prevent from
any violation of safety goals. The caller of CallTrustedFunction or
Os_CallNonTrustedFunction and therefore the passed data might be non-trusted.

SMI-542
The user of MICROSAR Safe shall verify that each caller of a trusted or non-trusted
function is allowed to call the function, or the function validates the caller before performing
its functionality to prevent from any violation of safety goals.

SMI-95699
The user of MICROSAR Safe shall verify that the caller Task/ISR of each trusted or non-
trusted function which is using FPU, is configured to use the FPU context.

17.3.6 Miscellaneous

SMI-480
The user of MICROSAR Safe shall not rely on the error parameter macros (starting with
Os_ErrorGetParameter_...).
They are not assumed as safety features by Vector.

SMI-481
The user of MICROSAR Safe shall notify that the PanicHook might not be called if the
active thread is not allowed to modify the interrupt enable/disable state.

Before calling the PanicHook the OS disables all interrupts. If this fails, the ProtectionHook
might be called, caused by the illegal access (depending on hardware platform).

SMI-492
The user of MICROSAR Safe shall verify for cross core API calls that for each pair of
sender/receiver cores at least one API call is tested and verified across these cores.

SMI-496
The user of MICROSAR Safe shall verify that calls of the optimized spinlock API don’t
violate any of the spinlock API constraints (e.g. the order of locking). The optimized
spinlock API skips any checks and therefore does not prevent from wrong calls.

SMI-538

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 64 / 103

The user of MICROSAR Safe shall verify that the context described in the Hardware
Software Interface (HSI) of the used platform is sufficient for the requirements his
application.

SMI-591
The user of MICROSAR Safe shall verify the correct usage of IOC API functions. Some of
these functions don’t call the ErrorHook if the called function does not return a valid result.
It is recommended to check the return code of these functions:

o IocSend/IocWrite

o IocSendGroup/IocWriteGroup

o IocReceive/IocRead

o IocReceiveGroup/IocReadGroup

SMI-109842
The user of MICROSAR Safe shall be aware that if spinlocks are used by an IOC channel,
they are not released if the communicating task or ISR is terminated via protection hook.
The operating system does not guarantee that calls to the IOC API for channels that have
blocked spinlocks will return.
Spinlocks in IOC APIs are used e.g. if

o An IOC channel is non-queued or

o Multiple senders are configured for the same queued channel

SMI-540
The user of MICROSAR Safe shall verify that the user software does not contain system
call instructions.

Any system call instruction will result in an OS API or in an OS Error. If the user code
directly uses a system call instruction it is likely that the triggered OS API does not work as
expected. Instead, system calls shall only be used by using calls to OS APIs.

A possible verification method might be reviewing the code for (inline) assembler
statements, pragmas or intrinsic functions containing system call instructions.

SMI-2900
The user of MICROSAR Safe shall verify that the array OsCfg_CorePhysicalRefs contains
all physical cores.
For each existing physical hardware core identifier there shall be one corresponding entry
inside the array which is indexed by the physical hardware core identifier provided directly
by the hardware registers.

SMI-39288
The user of MICROSAR Safe shall verify that the array
OsCfg_Hal_Context_ExceptionContextRef contains all physical cores.
For each existing physical hardware core identifier, which is also an Autosar core, there

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 65 / 103

shall be one corresponding entry (not NULL_PTR) inside the array which is indexed by the
physical hardware core identifier provided directly by the hardware registers.

SMI-44342
The user of MICROSAR Safe shall verify that peripheral APIs

o Os_ReadPeripheral8Legacy

o Os_ReadPeripheral16Legacy

o Os_ReadPeripheral32Legacy

o Os_WritePeripheral8Legacy

o Os_WritePeripheral16Legacy

o Os_WritePeripheral32Legacy

o Os_ModifyPeripheral8Legacy

o Os_ModifyPeripheral16Legacy

o Os_ModifyPeripheral32Legacy

are not used on platforms with address width greater than 32 bits.

SMI-44679
The user shall ensure real time behavior of the system, even in case of delayed calls of
ProtectionHook.
ProtectionHook may be delayed by the execution of Cat 0 ISRs.

SMI-109810
The user of MICROSAR Safe shall be aware that in case that MICROSAR OS detects a
potentially internal inconsistency, MICROSAR OS enters the PanicHook.

17.3.7 Tracing

SMI-69754
The user of MICROSAR Safe shall be aware that user timing hook implementation
influences runtime behaviour of the system.

SMI-69755
The user of MICROSAR Safe shall not use any OS API within TimingHooks.

17.4 Safety features required from other components

This component does not require safety features from other components.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 66 / 103

17.5 Dependencies to hardware

The dependencies of this component to hardware is described in the platform specific part
of the Safety Manual.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 67 / 103

18 Safety Manual OS (RH850)

18.1 Safety features

No additional safety features are provided.

18.2 Configuration constraints

SMI-3167
The user of MICROSAR Safe shall enable software stack checks for RH850 derivatives
which are based on G3K core (e.g. RH850 F1L) in order to ensure stack protection also in
supervisor mode as monitoring by MPU in supervisor mode is not supported.

18.3 Additional verification measures

SMI-3310
The user of MICROSAR Safe shall verify the PIT timer configuration of type
Os_Hal_TimerPitConfigType in Os_Hal_Timer_Lcfg.c for its correctness.

If the OSTM unit <X> (0,1,2,3,5) is configured, the following attributes must be generated
as follows:
Timer Base Address = OS_HAL_TIMER_OSTM<X>_BASE
Timer Hardware Type = OS_HAL_TIMER_OSTM
Timer Channel Index = OS_HAL_TIMER_CH0

If the TAUJ unit <X> (0,1,2,3) channel <Y> (0,1,2,3) is configured, the following attributes
must be generated as follows:
Timer Base Address = OS_HAL_TIMER_TAUJ<X>_BASE
Timer Hardware Type = OS_HAL_TIMER_TAUJ
Timer Channel Index = OS_HAL_TIMER_CH<Y>

SMI-3311
The user of MICROSAR Safe shall verify the FRT timer configuration of type
Os_Hal_TimerFrtConfigType in Os_Hal_Timer_Lcfg.c for its correctness.

If the OSTM unit <X> (0,1,2,3,5) is configured, the following attributes must be generated
as follows:
Timer Base Address = OS_HAL_TIMER_OSTM<X>_BASE
Timer Hardware Type = OS_HAL_TIMER_OSTM
Timer Channel Index = OS_HAL_TIMER_CH0
Timer Unit Index = OS_HAL_TIMER_OSTM<X>

If the STM unit <X> (0,1) channel <Y> (1,2,3) is configured, the following attributes must
be generated as follows:
Timer Base Address = OS_HAL_TIMER_STM<X>_BASE
Timer Hardware Type = OS_HAL_TIMER_STM
Timer Channel Index = OS_HAL_TIMER_CH<Y>
Timer Unit Index = OS_HAL_TIMER_STM<X>

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 68 / 103

18.4 Safety features required from other components

No additional safety features are required from other components.

18.5 Dependencies to hardware

The following Safety Applications Notes (SAN) have been taken into consideration:

o RH850/P1M Safety Application Note R01AN2118EJ0300 Rev.3.00 Mar 29, 2017

o RH850/F1L Safety Application Note R01AN2152EJ0211 Rev.2.11 October 17, 2016

o RH850/F1H Safety Application Note R01AN2886EJ0110 Rev.1.10 July 27, 2016

o RH850/F1K Safety Application Note R01AN3578EJ0100 Rev.1.00 Dec 22, 2016

o RH850/D1L/D1M Safety Application Note LLWEB-10000950 Rev.2.00 Dec 1, 2016

This OS does not implement any recommended usage from safety application notes
except for the memory protecion unit (SAN-P1x-0405, SAN-F1L-2201, SAN-F1H-2201,
SAN-F1K2M-0190, SAN-D1x-1801). This implementation does not cover a software test
procedure at startup to confirm the operation of the MPU as described by SAN-F1L-2201,
SAN-F1H-2201, SAN-F1K2M-0190 and SAN-D1x-1801.
It is assumed that the recommended usage related to OS functionality are related to latent
faults only and ASIL D is still achievable without implementation of the recommended
usage by the OS. Such implementation would cause significant runtime overhead.

SMI-3168
The user of MICROSAR Safe has to consider DMA controller usage if the used RH850
derivative incorporates a DMA controller (DMAC).
The DMA controller has direct access to the data bus. Therefore DMA access to memory
is not controlled by MPU protection.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 69 / 103

19 Safety Manual PduR

19.1 Safety features

This component does not provide safety features.

19.2 Configuration constraints

The user of MICROSAR Safe shall configure the following parameters:

o /MICROSAR/PduR/PduRGeneral/PduR_QueueOverflowNotification to FALSE

This setting is enforced by a MSSV plugin.

19.3 Additional verification measures

This component does not require additional verification measures.

19.4 Safety features required from other components

This component does not require safety features from other components.

19.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 70 / 103

20 Safety Manual Rte

20.1 Safety features

SMI-323
This component provides the following safety features:

ID Safety feature

CREQ-
1024

Rte shall provide a service to initiate the transmission of data elements with last-is-best
semantic for explicit S/R communication.

CREQ-
1021

Rte shall provide a service to copy the received data element to a buffer with last-is-
best semantic for explicit S/R communication.

CREQ-
1022

Rte shall provide a service to get the value of the received data element with last-is-
best semantic for explicit S/R communication.

CREQ-
1031

Rte shall provide a service to read a data element for implicit S/R communication.

CREQ-
1029

Rte shall provide a service to write a data element for implicit S/R communication.

CREQ-
1041

Rte shall provide a service to get the reference of a data element to be written for
implicit S/R communication.

CREQ-
1037

Rte shall provide a service to get the status of a data element for implicit S/R
communication.

CREQ-
1033

Rte shall provide a service to access the update flag for a data element for explicit S/R
communication.

CREQ-
1036

Rte shall provide a "Never-received" status of a data element for S/R communication.

CREQ-
1023

Rte shall provide a service to initiate the transmission of a data element with queued
semantic for explicit S/R communication.

CREQ-
1025

Rte shall provide a service to initiate the reception of a data element with queued
semantic for explicit S/R communication.

CREQ-
1042

Rte shall provide a service to initiate a client-server communication.

CREQ-
1043

Rte shall provide a service to get the result of an asynchronous client-server call.

CREQ-
1109

Rte shall provide mode management.

CREQ-
1055

Rte shall provide a service to get the currently active mode.

CREQ-
1052

Rte shall provide a service to get the currently active, previous and next mode.

CREQ-
1053

Rte shall provide a service to initiate a mode switch.

CREQ-
1299

Rte shall provide Nv data communication.

CREQ- Rte shall provide a callback to copy data from a NVM buffer to RTE.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 71 / 103

1150

CREQ-
1148

Rte shall provide a callback to copy data from RTE to a NVM buffer.

CREQ-
1144

Rte shall provide a callback to get notified about a finished NVM job.

CREQ-
1147

Rte shall provide a callback to get notified about a requested mirror initialization.

CREQ-
1046

Rte shall provide a service to read Inter-Runnable Variables with explicit behavior.

CREQ-
1048

Rte shall provide a service to write Inter-Runnable Variables with explicit behavior.

CREQ-
1047

Rte shall provide a service to read Inter-Runnable Variables with implicit behavior.

CREQ-
1044

Rte shall provide a service to write Inter-Runnable Variables with implicit behavior.

CREQ-
1045

Rte shall provide a service to access per-instance memory.

CREQ-
1051

Rte shall provide a service to enter an exclusive area.

CREQ-
1050

Rte shall provide a service to leave an exclusive area.

CREQ-
1056

Rte's Basic Software Scheduler shall provide a service to enter an exclusive area of a
BSW Module.

CREQ-
1049

Rte's Basic Software Scheduler shall provide a service to leave an exclusive area of a
BSW Module.

CREQ-
1068

Rte shall provide a service to access internal calibration parameters.

CREQ-
1075

Rte shall provide a service to access calibration parameters accessible via ports.

CREQ-
1059

Rte shall provide a service to initialize itself.

CREQ-
1073

Rte's Basic Software Scheduler shall provide a service to initialize itself.

CREQ-
1161

Rte shall provide a service to trigger executable entities.

CREQ-
1165

Rte shall use schedule points to invoke the scheduler of the OS.

CREQ-
1129

Rte shall provide the event handling of TimingEvents to trigger a runnable.

CREQ-
1112

Rte shall provide the event handling of SwcModeSwitchEvents to trigger a runnable.

CREQ-
1124

Rte shall provide the event handling of AsynchronousServerCallReturnsEvents to
trigger a runnable.

CREQ-
1126

Rte shall provide the event handling of OperationInvokedEvents to trigger a runnable.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 72 / 103

CREQ-
1118

Rte shall provide the event handling of DataReceivedEvents to trigger a runnable.

CREQ-
1132

Rte shall provide the event handling of ModeSwitchedAckEvents to trigger a runnable.

CREQ-
1114

Rte shall provide the event handling of the InitEvents to trigger a runnable.

CREQ-
1295

Rte shall provide the event handling of TimingEvents to trigger a schedulable entity.

CREQ-
1152

Rte shall provide a "RTE_AND_SCHM_UNINIT" state.

CREQ-
1164

Rte shall provide a "RTE_UNINT_SCHM_INIT" state.

CREQ-
1166

Rte shall provide a "INIT" state.

20.2 Configuration constraints

SMI-2066
The user of MICROSAR Safe shall disable online calibration and measurement
during series production.

The RTE can be generated with online calibration and measurement enabled for series
production, but they shall be made inoperable for normal operation. Vector's XCP can e.g.
be disabled safely during runtime by ASIL software.

20.3 Additional verification measures

Please note that the RTE Generator and RTE Analyzer only implement measures to detect
systematic faults by the software. No measures are implemented to detect or mitigate
random faults on the computer used for generation.

SMI-322
The user of MICROSAR Safe shall execute the RTE Analyzer.

The RTE Analyzer performs checks to identify faults in the generated RTE. Especially out-
of-bounds accesses within the RTE are detected. If RTE Analyzer reports a fault, the
generated RTE cannot be used. Moreover it provides the user of MICROSAR Safe with
feedback what was generated. This feedback shall be reviewed during integration testing
against the intended software design and its configuration.

Please see the Technical Reference of the RTE Analyzer how to execute it.

SMI-36067
The user of MICROSAR Safe shall ensure that the RTE Analyzer does not report
unsupported templates.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 73 / 103

The generated RTE code is based on templates. The templates are instantiated by the
RTE Generator in different variants. The RTE Analyzer verifies that the analyzed template
variants have been tested during the development of the RTE Generator according to ISO
26262.

The last section of the RTE Analyzer configuration feedback report provides the
information about the template variants.
The report must show that no unsupported templates have been found.

20.3.1 Guided integration testing

Residual faults in the RTE Generator can only be found during integration testing. Vector
assumes that the user of MICROSAR Safe performs an integration testing and verification
of software safety requirements according to ISO 26262 Part 6 Clauses 10 and 11 (see
also SMI-4). To support this integration testing the RTE Analyzer produces a configuration
feedback report.

Please refer to the Technical Reference of the RTE Analyzer for a description of the
configuration feedback report.

The following subsections describe the requirements that must be fulfilled during
integration testing and verification of software safety requirements.

Each Safety Manual Item (SMI) is structured in the following way:

o The requirement that must be fulfilled

o Explanation of the requirement and a rationale

o Recommended configuration constraints (optional)

o Recommended means of complying with the requirement (optional)

o Details on the information provided by the RTE Analyzer supporting this
requirement

20.3.1.1 BSW configuration

SMI-2124
The user of MICROSAR Safe shall ensure that the RTE and the operating system
assume the same scheduling properties.

The scheduling properties of the RTE tasks depend on the configuration of the operating
system. The scheduling properties are e.g. preemptability, core assignment or task priority.

The RTE Analyzer lists the scheduling properties in the configuration feedback report to
assist in this integration step. The scheduling properties listed in the feedback report shall
be verified.

SMI-2129

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 74 / 103

The user of MICROSAR Safe shall ensure that the assumptions of the operating
system and the RTE are the same with regards to the locking behavior of the
spinlocks.

The RTE generator uses spinlocks from the operating system to protect inter-core
communication. Spinlocks must not be called concurrently on the same core. The
operating system optionally provides spinlocks that can prevent these concurrent
accesses on the same core. If this protection by the operating system is not used, the RTE
generator has to prevent concurrent calls to the spinlock APIs on the same core.

Verification can e.g. be performed by review of the configuration feedback report.

The RTE Analyzer lists spinlocks that are not protected by the RTE to assist in this
integration step.

SMI-684
The user of MICROSAR Safe shall ensure that the configuration of COM and RTE are
consistent.

The interfaces to the COM that are used for signal reception use void pointers as
parameter. Inconsistencies between the configuration of the COM and the RTE might lead
to memory corruption by the COM. During integration the size assumptions between the
COM and the RTE shall be compared.

Verification can be performed by review of the generated configuration and/or static code
analysis.

The RTE Analyzer lists relevant calls to assist in this integration step.
The RTE Analyzer listing includes the number of written bytes for MICROSAR COM.

SMI-685
The user of MICROSAR Safe shall ensure that the configuration of NVM and RTE are
consistent.

The interfaces to the NVM that are used to handle NV Block SWCs use void pointers as
parameters. Inconsistencies between the configuration of the NVM and the RTE might
lead to memory corruption by the RTE. During integration the size assumptions between
the NVM and the RTE shall be compared.

Verification can be performed by review of the generated configuration and/or static code
analysis.

The RTE Analyzer lists relevant calls to assist in this integration step.

20.3.1.2 Executable Entity Scheduling

SMI-2063
The user of MICROSAR Safe shall ensure that all safety-related executable entities
are triggered with their correct conditions.

These conditions are:

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 75 / 103

o cylic triggers with cycle time and offset

o init triggers

o background triggers

o triggers fired by RTE APIs

If triggers have a dependency on modes, the scheduling has to be verified for all modes.
Modes can be switched with the Rte_Switch API.
Triggers can be decoupled by the minimum start interval functionality and the data
reception filter functionality.
The scheduling of the executable entities also depends on the configuration of the
operating system, the used controller, other running tasks and interrupt service routines
and the resource usage of the entities that are implemented by the user.

Vector recommends not using the minimum start interval and the data reception filter
functionality for safety-related runnables.
Vector recommends not using background triggers for safety-related functionality.
Vector recommends using cyclic scheduling without mode dependencies and using of a
watchdog as safety mechanism for safety-related entities where possible.

Cyclic triggers are e.g. scheduled deterministically. Thus, an integration test verifying that
safety-related functionality is scheduled at the expected times may be sufficient.

The RTE Analyzer lists the executable entities of SWCs and the tasks in which they are
executed to assist in this integration step.

SMI-2128
The user of MICROSAR Safe shall ensure that reentrant runnables are reentrant.

Runnables can be called reentrantly from multiple tasks. Their implementation needs to
support this use case.

Verification can e.g. be performed by review, static code analysis and/or integration
testing.

The RTE Analyzer lists all runnables of SWCs that are called from concurrent tasks to
assist in this integration step.
Implicit exclusive areas and nonpreemptive tasks can be configured to prevent concurrent
execution.

SMI-2064
The user of MICROSAR Safe shall ensure that the timeouts configured for blocking
APIs that are used in safety-related executable entities are adequately addressed.

If a timeout for a blocking API is used as a safety mechanism (E.g. no checkpoint with
deadline monitoring in the task), the user of MICROSAR Safe shall also ensure that the
timeout value is adequate.

Relevant timeouts are:

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 76 / 103

o timeouts of Rte_Call APIs

o timeouts of Rte_Result APIs

o timeouts of Rte_Receive APIs

o timeouts of Rte_Feedback APIs

o timeouts of Rte_SwitchAck APIs

The timeouts also depend on the configuration of the operating system, the used
controller, other running tasks and interrupt service routines and the resource usage of
entities that are implemented by the user.

Vector recommends not using blocking APIs in safety-related entities except for cross
partition client-/server communication.
Vector strongly recommends not using blocking APIs without timeout.

A review may be sufficient to verify that timeout handling is implemented properly by the
SWC.
If no other safety mechanism is in place, a test that the timeout is notified at the expected
time by the RTE can be used as means of verification.

The RTE Analyzer lists the blocking APIs of SWCs to assist in this integration step.

SMI-2122
The user of MICROSAR Safe shall ensure that the correct implementation method
has been chosen for every exclusive area.

Exclusive areas can be used to ensure data consistency (see SMI-11).
The implementation depends on the requirements of the application and on other factors
like the expected duration of the exclusive area. Interrupt locks are typically faster than
resources but can only be used for short sequences due to the blocking of interrupts.
Operating system interrupts only block the interrupts of the operating system whereas all
interrupts blocks all interrupts.

Verification can e.g. be performed by review, static code analysis and/or integration
testing.

The RTE Analyzer lists the exclusive areas and their implementation method to assist in
this integration step.

20.3.1.3 SWC Communication

SMI-41492
The user of MICROSAR SafeBRE shall provide the RTE APIs for systems without
RTE.

MICROSAR Basic Runtime Environment (BRE) only provides the BSW scheduler
functionality of the RTE and does not support application SWCs. The implementation of
the interface from the application to BSW modules must be developed according to ISO

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 77 / 103

26262. The Technical References of the BSW modules as well as the AUTOSAR standard
define the semantics and APIs that will have to be implemented while integrating the BRE.

The RTE Analyzer does not assist in this integration step.

SMI-324, SMI-2065 and SMI-2123 do not apply to MICROSAR SafeBRE.

SMI-324
The user of MICROSAR Safe shall ensure that the connections between SWCs are
as intended.

Many types of faults can lead to a mix of connections between SWCs. These are unlikely
and usually already addressed by straight forward integration testing.
The list of senders needs to be correct for every receiver and the subset of the received
data needs to be correct.

Vector recommends the following RTE subset for safety-related SWCs:

o use only 1:1 or 1:N connections.

o use the same datatype on both sides of a connection

o avoid data conversion

Information that is used from non-safety-related SWCs has to be checked for plausibility. If
such a data path is found during integration this is an indicator that your safety analysis
has to be reconsidered. Please note that also other code in the same partition as the non-
safety-related SWCs can corrupt the communication if freedom from interference with
regards to memory is not ensured.

Verification can be performed by review and/or an integration test testing the normal
operation.

The RTE Analyzer list the connections between SWCs to assist in this integration step.

SMI-2065
The user of MICROSAR Safe shall ensure that inter-ECU sender-/receiver and inter-
ECU client-/server communication work as expected.

This requires verification of:

o data needs to be routed to the correct ECU by the underlying communication stack.
This includes 1:1, 1:N, N:1 and reception of partial signal data.

o both ECUs need to use the same data representation (datatypes, endianness,
serialization)

Vector requires using E2E protection for safety-related signals.
Vector recommends using 1:1 connections.
Vector recommends always sending and receiving complete data elements.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 78 / 103

Integration testing on vehicle network level using fault-injection can be used. Vector
assumes that this is normally done to verify the effectiveness of the E2E protection.

The RTE Analyzer lists the APIs of SWCs with inter-ECU communication to assist in this
integration step.

SMI-2123
The user of MICROSAR Safe shall ensure that all connected SWCs expect the same
converted data.

The RTE offers conversions that can be applied to specific connections.

Vector recommends not using data conversion for safety-related connections.

Verification can e.g. be performed by review or integration testing of all data conversions.

The RTE Analyzer lists all APIs of SWCs that perform data conversion to assist in this
integration step.

20.3.1.4 Usage of RTE Headers

SMI-2067
The user of MICROSAR Safe shall ensure that the defines and typedefs that are
generated by the RTE match the expectations of the SWCs that use them.

Inconsistencies may lead to e.g, memory corruption when a runnable uses an RTE array
datatype within its implementation and writes beyond the bounds of this array.
Moreover, different SWCs may have different assumptions with regards to the meaning of
communicated values, e.g. if one SWC uses the symbolic name, another SWC the integral
value of an enumerated type.

The following code is provided:

o Configured Application Error Defines for Client-/Server Communication

o Configured AUTOSAR Datatypes

o Configured Upper and Lower Limit Defines for Primitive Application Data Types

o Configured Init Value Defines for Sender-/Receiver Communication

o Configured InvalidValue Defines for Sender-/Receiver Communication

o Configured Enumeration Defines for CompuMethods

o Configured Mask Defines for CompuMethods

o Configured Mode Defines for Mode Communication

o Configured ActivationReasons

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 79 / 103

The defines and typedefs are part of the Rte_Type.h, Rte_<SWC>.h and
Rte_<SWC>_Type.h headers.

Vector recommends using the headers generated by the RTE when a static code analysis
is performed on the application code.
Vector recommends only using the defines instead of the defined values in the code.
Vector recommends using the defines only when needed (Mode, Application Error
Defines).
Vector recommends reviewing the used defines for safety-related SWCs.
Vector recommends not using union types in the SWCs.

Verification for correct usage of datatypes may be performed by review and/or static code
analysis. Consistent usage of defines can be verified by review and/or integration testing
with all used values.

The RTE Analyzer verifies that all accesses within the RTE do not lead to memory
corruption.

SMI-2071
The user of MICROSAR Safe shall ensure that the indirect API is used consistently.

Indirect API functionality consists of the APIs:

o Rte_Port

o Rte_Ports

o Rte_NPorts

The indirect API makes it possible to call different APIs through an array access. The
indirect API functionality can be enabled individually per port.
A wrong configuration switch can easily lead to a call outside of the array returned by the
Rte_Ports API.

Vector recommends not using the indirect API.

Verification can e.g. be performed by review that the intended APIs are returned.

The RTE Analyzer does not assist in this integration step.

20.3.1.5 Usage of RTE APIs

SMI-2072
The user of MICROSAR Safe shall ensure that the RTE and all of its users have the
same assumptions with regards to the sizes of the datatypes.

The RTE supports the configuration of custom datatypes for its APIs. The RTE
specification mandates that arrays are passed as pointer to the array base type.
The RTE does not enforce that both sides of a connection use arrays of the same size.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 80 / 103

No NULL pointers or invalid pointers shall be passed to RTE APIs.
The object to which the pointer points needs to have at least the size of the pointer base
type.

Vector recommends using the headers generated by the RTE when static code analysis is
performed on the application code.
Vector recommends using the same datatypes on both sides of a connection.
Arrays and void pointers on interfaces where the called function writes to them are
considered especially relevant.

Verification can e.g. be performed by review and/or static code analysis.

The RTE Analyzer lists APIs and runnables that use such parameters to assist in this
integration step.

SMI-2073
The user of MICROSAR Safe shall ensure that RTE APIs are only called from their
configured contexts.

Fast response times are crucial in embedded systems. Therefore, the RTE generator
analyzes the call contexts of all APIs in order to optimize away unneeded interrupt locks.
When the application calls the APIs from a different context than the RTE assumes, data
consistency problems may arise.

In systems with ASIL partitions, the RTE generator uses a conservative locking strategy.
Locks are only optimized away if all accesses are done within the same task.

Verification can e.g. be performed by review and/or static code analysis.

The RTE Analyzer lists the optimized APIs of SWCs to assist in this integration step.
The RTE Analyzer lists APIs that must not be called by the application because they are
considered unreachable due to the RTE configuration.

20.3.1.6 Configuration of RTE APIs

SMI-2074
The user of MICROSAR Safe shall ensure that the receivers can handle the initial
value provided by the RTE if no write or calibration occurred.

For implicit accesses the user of MICROSAR Safe shall assure that the correct initial value
is sent when Rte_IWrite or Rte_IWriteRef were not called in the runnable.

Initial values can be configured for:

o non-queued sender-/receiver communication

o inter-runnable variables

o mode ports

o calibration parameters

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 81 / 103

The initial value is returned when no sending API was called before the first read or no
calibration was performed before the first read. The initial values depend on the connected
components.

Vector recommends using the same initial value on all port data elements that are
connected with each other.

The RTE Analyzer lists all APIs of SWCs that may provide an initial value to assist in this
integration step. If possible, the RTE Analyzer reports the initial value generated by the
RTE into the configuration feedback report.

SMI-2075
The user of MICROSAR Safe shall ensure that the alive timeout by the COM is not
used for safety-related inter-ECU sender/receiver communication.

Safety-related communication must be protected by E2E protection. The decision if new
data is available (alive) can only be made by the E2E mechanism. Data is not interpreted
by the COM. For example the sending ECU might repeat old data. This is only detected by
the cycle counter that is part of the E2E protection.

The RTE Analyzer lists the reading APIs that provide the alive timeout status to assist in
this integration step.

SMI-2126
The user of MICROSAR Safe shall ensure that SWCs handle the RTE_E_INVALID
return code properly.

The RTE offers a functionality to invalidate signals.

Vector requires using end-to-end protection for safety-related inter-ECU communication.
Relying on the invalidation mechanism for safety-related signals is not an option. The user
of MICROSAR Safe shall not use invalidation for inter-ECU communication.

Verification can e.g. be performed by review and/or integration testing.

The RTE Analyzer lists RTE APIs that return the RTE_E_INVALID return code to assist in
this integration step.

SMI-2127
The user of MICROSAR Safe shall ensure that SWCs handle the
RTE_E_NEVER_RECEIVED return code properly.

The RTE offers a functionality to report if a signals was received after the ECU was
started.

Vector requires using end-to-end protection for safety-related signals. Relying on the never
received mechanism for safety-related signals is not an option. Especially, when using the
E2E transformer, its return value shall be evaluated.

Verification can e.g. be performed by review or integration testing.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 82 / 103

The RTE Analyzer lists RTE APIs that return the RTE_E_NEVER_RECEIVED return code
to assist in this integration step.

SMI-2125
The user of MICROSAR Safe shall ensure that the queue sizes that were chosen
during the configuration are sufficient for the integrated system.

The RTE uses queues for mode communication, sender-/receiver communication and
mapped client-/server communication. The queue sizes depend on the scheduling of
entities and the call sequences of the APIs.

Vector recommends not using APIs with queues for safety-related functionality.

Verification can e.g. be performed by stress testing.

The RTE Analyzer lists the queue sizes to assist in this integration step.

SMI-36068
The user of MICROSAR Safe shall ensure that all connections with end-to-end (E2E)
protection are generated.

The RTE Analyzer lists RTE APIs that read or write end-to-end protected data (see SMI-
98).

20.4 Safety features required from other components

SMI-2121
RTE requires the following functionality as safety feature from the operating system:

o Interrupt enabling/disabling

o Resource handling

o Inter OS Application Communicator (IOC) sending and receiving functionality

o Spin-lock functionality

o Alarm handling

o Schedule table handling

o Activation of tasks

o Event handling

This requirement is fulfilled if an ASIL operating system by Vector is used.

SMI-2978
RTE requires the following functionality as safety feature from the NvM:

o Reading blocks

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 83 / 103

o Writing blocks

This requirement is fulfilled if an ASIL NvM by Vector is used.

20.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 84 / 103

21 Safety Manual WdgIf

21.1 Safety features

SMI-519
This component provides the following safety features:

ID Safety feature

CREQ-
107414

WdgIf shall provide a service to set the mode of a watchdog device

CREQ-
107415

WdgIf shall provide a service to set the trigger condition for a watchdog device

CREQ-
107416

WdgIf shall support a mechanism to combine statuses of different cores and handle
one watchdog for different cores

21.2 Configuration constraints

SMI-522
If a state combiner is used, the user of MICROSAR Safe shall configure

o WdgIfStateCombinerSpinlockID and

o WdgIfStateCombinerStartUpSyncCycles

for each core that is used by the state combiner.

SMI-523
If a state combiner is used and WdgIfStateCombinerStartUpSyncCycles is set to a value s,
the user of MICROSAR Safe shall consider that for the first s SupervisionCycles of the
master, the master does not monitor the slave triggers.
However, reset requests from a slave within the first s SupervisionCycles, are escalated by
the master with the next call of the master’s WdgM_MainFunction().

21.3 Additional verification measures

SMI-525
The user of MICROSAR Safe shall verify that the output path of the generator is empty
before the generator is started.
The output path can be defined by the command line argument OUTPUT-DIRECTORY.

SMI-526
The user of MICROSAR Safe shall inspect the messages of the generator execution.
If the generator aborts the generation process with an error message, the (partially)
generated output files shall not be used in the system.
If the generator detects an error, a message starting with "ERROR" is displayed on the
standard output.
If the generator shows a warning message starting with "WARNING", the user of

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 85 / 103

MICROSAR Safe shall ensure that the cause of the warning does not invalidate the
generated output files.

SMI-527
The user of MICROSAR Safe shall verify that the following preprocessor directives are
defined with the correct value independent from whether a state combiner is configured or
not:

Preprocessor Directive Value

WDGIF_VERSION_INFO_API STD_ON if WdgIfVersionInfoApi is TRUE, otherwise
STD_OFF.

WDGIF_USE_AUTOSAR_DRV_API STD_ON

WDGIF_DEV_ERROR_DETECT STD_ON if WdgIfDevErrorDetect is TRUE, otherwise
STD_OFF.

WDGIF_INTERNAL_TICK_COUNTER STD_OFF

WDGIF_USE_STATECOMBINER STD_ON if WdgIfUseStateCombiner is TRUE, otherwise
STD_OFF.

The defines can be found in WdgIf_Cfg_Features.h.

SMI-528
The user of MICROSAR Safe shall verify that the following preprocessor directives are
defined with the correct value only if a state combiner is configured:

Preprocessor Directive Value

WDGIF_STATECOMBINER_USE_OS_SPIN_LOCK STD_ON if
WdgIfStateCombinerUseOsSpinlock is
TRUE, otherwise STD_OFF.

WDGIF_STATECOMBINER_MANUAL_MODE STD_ON if
WdgIfStateCombinerUseManualMode is
TRUE, otherwise STD_OFF.

The defines can be found in WdgIf_Cfg_Features.h.

SMI-529
The user of MICROSAR Safe shall verify that the following preprocessor directives are
defined with the correct value independent from whether a state combiner is configured or
not:

Preprocessor Directive Value

WDGIF_NUMBER_OF_WDGIFDEVICES The number of configured WD Interface Devices.

The define can be found in WdgIf_LCfg.h.

SMI-530
The user of MICROSAR Safe shall verify that the following preprocessor directives are
defined with the correct value only if a state combiner is configured:

Preprocessor Directive Value

WDGIF_NUMBER_OF_SLAVES The configured number of slave cores. Cores that are not
attached to a State Combiner (i.e. they run independent from

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 86 / 103

other cores) do not count as slave.

The define can be found in WdgIf_LCfg.h.

SMI-531
The user of MICROSAR Safe shall verify that the C-struct const WdgIf_InterfaceType
WdgIf_Interface is defined in WdgIf_LCfg.c.

WdgIf_Interface shall contain the following fields:

Field Value Description

1st WDGIF_NUMBER_OF_WDGIFDEVICES The number of WD Interface Devices.

2nd WdgIf_FunctionsPerWdg A reference to the list of WD Interface Devices.

If a state combiner is configured, WdgIf_Interface shall also contain the following fields:

Field Value Description

3rd &wdgif_statecombiner_common_config A reference to the state combiner data structure.

4th wdgif_statecombiner_manual_config In case of manual mode.

SMI-532
The user of MICROSAR Safe shall verify that the array static const
WdgIf_InterfaceFunctionsPerWdgDeviceType WdgIf_FunctionsPerWdg
[WDGIF_NUMBER_OF_WDGIFDEVICES] is defined in WdgIf_LCfg.c.
WdgIf_FunctionsPerWdg shall refer all – and only - the WD Interface Devices that are
configured in the EDF.
WdgIf_FunctionsPerWdg[i] shall refer the underlying WD Interface Device in the EDF with
WdgIfDeviceIndex = i.
The fields in an array element in WdgIf_FunctionsPerWdg shall be set as follows:

Field Value Description

1st &device_functions If the underlying WD Interface Device is directly linked to a WD driver
for device, then the field refers to the C-struct device_functions.

1st NULL_PTR If the underlying WD Interface Device shares the WD driver with other
WD Interface Devices using a state combiner, then the linked WD
device is referred in wdgif_statecombiner_common_config.

If a state combiner is configured, an array element in WdgIf_FunctionsPerWdg shall also
contain the following field:

Field Value Description

2nd WdgInstance A number that uniquely identifies the WD Interface Device instance for the
underlying platform. All instances on the same platform are numbered
consecutively starting with 0. Example: One platform has instances A and B,
another platform has instances C and D. Then A, B, C, and D have
WdgInstance set (in this order) as: 0,1,0,1.

SMI-533

%5bWDGIF_NUMBER_OF_WDGIFDEVICES
i

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 87 / 103

If a state combiner is configured, the user of MICROSAR Safe shall verify that the array
static const WdgIf_StateCombinerCommonConfigType
wdgif_statecombiner_common_config is defined in WdgIf_LCfg.c.
The fields in wdgif_statecombiner_common_config shall be set as follows:

Field Value Description

1st WDGIF_NUMBER_OF_SLAVES The number of configured slaves.

2nd WdgIfStateCombinerSpinlockID The value of field
WdgIfStateCombinerSpinlockID in the EDF.

3rd WdgIfStateCombinerStartUpSyncCycles The value of field
WdgIfStateCombinerStartUpSyncCycles in the
EDF.

4th &device_functions A reference to the WD driver API functions for
device.

5th wdgif_statecombiner_shared_memory A reference to the shared memory for the state
combiners of the Watchdog Interfaces.

SMI-534
If a state combiner is configured, the user of MICROSAR Safe shall verify that the array
WdgIf_StateCombinerSharedMemory wdgif_statecombiner_shared_memory
[WDGIF_NUMBER_OF_SLAVES] is defined in WdgIf_LCfg.c.
The WdgIf writes to this array, hence it is not const.
wdgif_statecombiner_shared_memory shall contain one array element for each configured
slave and the fields in the element shall be set as shown in the following table:

Field Value Description

1st 0u Initial value for the slave’s WindowStart.

2nd (uint16)~0u Inverse initial value for the slave’s WindowStart.

3rd 0u Initial value for the slave’s Timeout.

4th (uint16)~0u Inverse initial value for the slave’s Timeout.

5th 0u Initial value for the slave’s counter.

6th (uint16)~0u Inverse initial value for the slave’s counter.

SMI-535
If the state combiner is configured in manual mode, the user of MICROSAR Safe shall
verify that the array static const WdgIf_StateCombinerManualConfigType*
wdgif_statecombiner_manual_config [WDGIF_NUMBER_OF_SLAVES] is defined in
WdgIf_LCfg.c.
wdgif_statecombiner_manual_config shall list the references to all configured slaves.
wdgif_statecombiner_manual_config[i] = &wdgif_statecombiner_config_slave<ID>, where
ID is the slave’s consecutive number starting with 1.

SMI-536
If the state combiner is configured in manual mode, the user of MICROSAR Safe shall
verify that for a configured slave with ID the C-struct static const

%5bWDGIF_NUMBER_OF_SLAVES
%5bWDGIF_NUMBER_OF_SLAVES
i

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 88 / 103

WdgIf_StateCombinerManualConfigType wdgif_statecombiner_config_slave<ID> is
defined in WdgIf_LCfg.c.
wdgif_statecombiner_config_slave<ID> shall be set as follows:

Field Value Description

1st WdgIfStateCombinerReferenceCycle The value of field
WdgIfStateCombinerReferenceCycle in the
EDF.

2nd WdgIfStateCombinerSlaveIncrementsMin The value of field
WdgIfStateCombinerSlaveIncrementsMin in
the EDF.

3rd WdgIfStateCombinerSlaveIncrementsMax The value of field
WdgIfStateCombinerSlaveIncrementsMax in
the EDF.

SMI-537
The user of MICROSAR Safe shall verify that for each configured platform the C-struct
static const WdgIf_InterfaceFunctionsType <platform>_functions is defined in
WdgIf_LCfg.c.
The fields for each C-struct <platform>_functions shall be set as follows:

Field Value Description

1st Wdg_<infix>_SetMode_ A reference to the WD driver’s API
function to set the mode of the device
referred to by infix.

2nd Wdg_<infix>_SetTriggerWindow_ and
Wdg_<infix>_SetTriggerCondition_

A reference to the WD driver’s API
function to set the trigger window of the
device referred to by infix.

21.4 Safety features required from other components

SMI-520
This component requires the triggering of the watchdog and setting the triggering mode as
a safety feature from the watchdog driver.
This requirement is fulfilled if a watchdog driver by Vector is used.

SMI-3085
The WdgIf shall be used in order to call the services of underlying Watchdog driver(/s) to
set the mode and the trigger condition as expected by the drivers.
The user of MICROSAR Safe shall verify that the WdgIf services are only called by the
WdgM.
This requirement is fulfilled for all components of MICROSAR (if Vector's WdgM is used).
If e.g. the trigger condition is called by another component, this may lead to unintended
triggering of the watchdog.
If the watchdog stack is not properly set up, it may not provide the expected protection.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 89 / 103

21.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 90 / 103

22 Safety Manual WdgM

22.1 Safety features

SMI-373
This component provides the following safety features:

ID Safety feature

CREQ-
102746

WdgM shall provide a mechanism for Alive Supervision.

CREQ-
102745

WdgM shall provide a mechanism for Deadline Supervision.

CREQ-
102744

WdgM shall provide a mechanism for Logical Supervision.

CREQ-
102749

WdgM shall provide a service to trigger a checkpoint.

CREQ-
102752

WdgM shall provide a service to initiate a reset triggered by the hardware
watchdog.

CREQ-
102754

WdgM shall provide a service to activate the supervision of a Supervised Entity.

CREQ-
102755

WdgM shall provide a service to deactivate the supervision of a Supervised Entity.

CREQ-
102763

WdgM shall provide a service to cyclically update the global supervision status.

CREQ-
102758

WdgM shall provide a service to set a new trigger mode.

The watchdog manager is able to detect program flow violations, alive counter violations
and deadline violations.
The following types of faults can be detected:

o omission of an operation (program flow, alive counter),

o unrequested execution of an operation (program flow, alive counter),

o operation executed too early (alive counter, deadline),

o operation executed too late (alive counter, deadline), and

o operations executed in the wrong sequence (program flow).

22.2 Configuration constraints

SMI-501
The user of MICROSAR Safe shall use the WdgM only on 32-bit microcontroller platforms.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 91 / 103

SMI-499
The user of MICROSAR Safe shall configure and verify alive supervision for a supervised
entity.
If no alive supervision is configured for a supervised entity, WdgM cannot detect if the
corresponding checkpoint is reached at least once.
Please note that for non-periodic supervised entities alive supervision is not possible.

A value of a pre-compile configuration parameter is valid for every core. A different value
cannot be set for the same pre-compile parameter and different cores.

SMI-498
The user of MICROSAR Safe shall set the value of WdgMTimebaseSource according to
the required source of time ticks:

WdgMTimebaseSource Description

WDGM_INTERNAL_SOFTWARE_TICK An internal time source for Deadline Monitoring is
selected. The tick counter is incremented each time the
WdgM_MainFunction() is invoked.

WDGM_OS_COUNTER_TICK An OsCounter is selected for Deadline Monitoring as
timebase. The user of MICROSAR Safe is responsible
for configuring the OsCounter accurately.

WDGM_EXTERNAL_TICK An external time source for Deadline Monitoring is
selected. The tick counter is incremented each time the
WdgM_UpdateTickCount() function is invoked. The
function is implemented in the WdgM. The user of
MICROSAR Safe is responsible for calling
WdgM_UpdateTickCount() accurately.

SMI-560
The user of MICROSAR Safe shall use the functions WdgM_ActivateSupervisionEntity()
and WdgM_DeactivateSupervisionEntity() to activate and deactivate the supervision of
supervised entities.

Activation and deactivation shall only be performed by a software component that is
developed according to the highest ASIL that is allocated to the ECU.

The functions are only available if WdgMEntityDeactivationEnabled is set to TRUE.
Vector recommends setting WdgMEntityDeactivationEnabled to FALSE to prevent that
faults are not detected.

22.3 Additional verification measures

SMI-3072
The user of MICROSAR Safe shall verify that the WdgM is initialized only at intended
points in time, e.g. during initialization.
Unintended re-initialization may lead to a incorrect monitoring.

SMI-502

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 92 / 103

The user of MICROSAR Safe shall verify that the output path of the generator is empty
before the generator is started.
The output path can be defined by the command line argument OUTPUT-DIRECTORY.

SMI-524
The user of MICROSAR Safe shall inspect the messages of the generator execution.
If the generator aborts the generation process with an error message, the (partially)
generated output files shall not be used in the system.
If the generator detects an error, a message starting with "ERROR" is displayed on the
standard output.
If the generator shows a warning message starting with "WARNING", the user of
MICROSAR Safe shall ensure that the cause of the warning does not invalidate the
generated output files.

22.3.1 Additional verification using WdgM Verifier

SMI-503
The user of MICROSAR Safe shall execute the supplied WdgM Verifier.
Instructions can be found in the technical reference of WdgM on how to run the WdgM
Verifier.

SMI-504
The user of MICROSAR Safe shall verify that the report of the WdgM Verifier

o comprises "All tests passed" in the last line. and

o that all tests in the Summary of the report are marked with PASSED.

SMI-1578
If an AUTOSAR OS with a version higher than 4.0 is used the verification test with id '109'
is marked as "NOT PASSED".

The user of MICROSAR Safe shall verify whether the assigned core id to a WdgMMode is
generated correctly if an AUTOSAR OS with a version higher than 4.0 is used. The WdgM
Verifier cannot not verify this step due to an incompatible change of the Os's description
file.

SMI-512
The user of MICROSAR Safe shall verify the generated local transitions in
wdgm_verifier_info.c.

Generated local transitions are defined by the C-struct array with the name
local_transitions.
The array holds all local transitions of all supervised entities.
Each local transition lt contains the names of:

o the source entity (SE) of lt,

o the source checkpoint of lt,

o the destination entity (SE) of lt and

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 93 / 103

o the destination checkpoint of lt.

Verification shall include that

o each local transition is defined as stated in the System Specification, and

o no local transition in the System Specification is missing.

SMI-513
The user of MICROSAR Safe shall verify the generated global transitions in
wdgm_verifier_info.c.

Generated global transitions are defined by the C-struct array with the name
global_transitions.
The array holds all global transitions of all supervised entities.
Each global transition gt contains the names of:

o the source entity (SE) of gt,

o the source checkpoint of gt,

o the destination entity (SE) of gt, and

o the destination checkpoint of gt.

Verification shall include that

o each global transition is defined as stated in the System Specification, and

o no global transition in the System Specification is missing.

SMI-514
The user of MICROSAR Safe shall verify the checkpoints in wdgm_verifier_info.c.

Supervised entities named se are defined by a C-struct array with the name
se_<se>_cp_list_.
The array se_<se>_cp_list_ holds information about all checkpoints configured for se.
Each array item contains information about one checkpoint cp of the supervised entity se:

o the supervised entity's ID (for this cp of se),

o the checkpoint's ID (for this cp of se),

o the supervised entity name (for this cp of se), and

o the checkpoint name (for this cp of se).

Verification shall include that

o each checkpoint is configured as stated in the System Specification, and

o no checkpoint for the actual supervised entity is missing.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 94 / 103

SMI-515
The user of MICROSAR Safe shall verify the supervised entities in wdgm_verifier_info.c.

Supervised entities named se are defined by a C-struct array with the name entities.
The array entities holds information about a onfigured supervised entity.
The fields in an array item for a supervised entity se shall have the following values (in this
order):

Value Source Line Comment

The entity ID (of se). enitity id

The entity name (of se). entity name

The number of checkpoints configured for se. number of checkpoints

A reference se_<se>_cp_list_, which refers to the list of CPs for se this entity's checkpoints

A reference to the callback function for se as configured in
WdgMLocalStateChangeCbk (or NULL_PTR if no callback function
is configured).

WdgMLocalStateChangeCbk

false autosar_3_1_x_compatibility

The application task for se as configured in field WdgMAppTaskRef WdgMAppTaskRef

Verification shall include that

o each supervised entity is configured as stated in the System Specification, and

o no supervised entity is missing.

SMI-516
The user of MICROSAR Safe shall verify the deadline supervisions in
wdgm_verifier_info.c.

Deadline supervisions are defined by a C-struct array with the name
deadline_supervisions.
The array deadline_supervisions holds information about all transitions with deadline
supervision.
Each deadline supervision dl contains the following values:

o the source entity name (SE) of dl,

o the source checkpoint name of dl,

o the destination entity name (SE) of dl,

o the destination checkpoint name of dl,

o the minimum deadline for dl (in seconds), and

o the maximum deadline of dl (in seconds).

Verification shall include that

o each deadline supervision is configured as stated in the System Specification, and

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 95 / 103

o no deadline supervision is missing.

SMI-517
The user of MICROSAR Safe shall verify the alive supervisions in wdgm_verifier_info.c.

Alive supervisions are defined by a C-struct array with the name alive_supervisions.
The array alive_supervisions holds information about all transitions with alive supervision.
Each alive supervision al contains the following values:

o the supervised entity name (SE) of al,

o the checkpoint name of that se of al,

o the number of expected alive indications per reference cycle of al,

o the minimum margin for alive indications of al,

o the maximum margin for alive indications of al, and

o the number of supervision reference cycle of al.

Verification shall include that

o each alive supervision is configured as stated in the System Specification, and

o no alive supervision is missing.

SMI-518
The user of MICROSAR Safe shall verify the configured cores in wdgm_verifier_info.c.

The configured cores are defined in the main() function.
For each configured core with ID, the following line shall be present:

result += verify (&WdgMConfig_Modem_core<ID>, &verifier_info);

where ID is the core ID and m is the ID of the WdgM mode.

Verification shall include that for each core there is a corresponding line in the file.

22.3.2 Additional verification of generator execution

SMI-506
The user of MICROSAR Safe shall verify that for the following arrays in WdgM_PBcfg.c,
the array length matches the number of items in the array:

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 96 / 103

o WdgMTransition

o WdgMGlobalTransition

o all arrays named StartsGlobalTransition<se>_<cp>_<i>_ (for a supervised entity se,
a checkpoint cp and an integer i)

o WdgMCheckPoint

o WdgMSupervisedEntity

o all arrays named WdgMTriggerMode_core<ID> (for each core with ID)

o WdgMWatchdogDevice<ID> (for each core with ID)

o WdgMAllowedCallers

Some of these arrays have preprocessor defines for their size, e.g. WdgMCheckPoint
[WDGM_NR_OF_CHECKPOINTS]. These defines can be found in WdgM_PBcfg.h.

SMI-507
The user of MICROSAR Safe shall verify that each item in the array
WdgMSupervisedEntity follows this rules:
1. WdgMCheckpointRef has a value of the form &WdgMCheckPoint[i] with i <
_WDGM_NR_OF_CHECKPOINTS, and
2. _WdgMCheckpointLocInitialId has a value of 0.
The array can be found in WdgM_PBcfg.c.

SMI-27923
The user of MICROSAR Safe shall verify that each WdgM_StatusReportToRte member of
struct WdgM_ConfigType and each WdgM_StatusReportToRte member of struct
WdgM_SupervisedEntityType has a valid entry if
WDGM_STATUS_REPORTING_MECHANISM is set to
WDGM_USE_MODE_SWITCH_PORTS.
The functions must be implemented by the Rte and must have the following signature:
Std_ReturnType (*WdgM_StatusReportToRte) (WdgMMode).
Both structs can be found in WdgM_PBcfg.c.

SMI-508
The user of MICROSAR Safe shall verify that for each core with ID
WDGM_NR_OF_WATCHDOGS_CORE<ID> matches the actual number of configured
WD devices.
The define can be found in WdgM_PBcfg.h.

SMI-509
The user of MICROSAR Safe shall verify that for each core with ID
WDGM_NR_OF_TRIGGER_MODES_CORE<ID> matches the actual number of
configured Watchdog Manager Trigger Modes.
The define can be found in WdgM_PBcfg.h.

SMI-510

%5bWDGM_NR_OF_CHECKPOINTS
i

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 97 / 103

The user of MICROSAR Safe shall verify that WDGM_NR_OF_ALLOWED_CALLERS
matches the number of modules that call function WdgM_SetMode().
The define can be found in WdgM_PBcfg.h.

SMI-511
The user of MICROSAR Safe shall verify that in WdgMConfig_Mode<m>_core<ID> (for
each core with ID and every mode m), the field WdgMCallersRef points to
WdgMAllowedCallers and WdgMAllowedCallers is an array of type WdgM_CallersType
with a length of WDGM_NR_OF_ALLOWED_CALLERS.
The variable can be found in WdgM_PBCfg.h.

SMI-550
The user of MICROSAR Safe shall verify the types used by WdgM.

If the configuration parameter WDGM_USE_RTE is set to STD_ON, the types from
Rte_Type.h are used:

Type Allowed Value

WdgM_SupervisedEntityIdType uint16

WdgM_CheckpointIdType uint16

WdgM_ModeType uint8

WdgM_LocalStatusType uint8

WdgM_GlobalStatusType uint8

The WdgM includes WdgM_Rte_Includes.h if and only if WDGM_USE_RTE is set to
STD_ON.

If the configuration parameter WDGM_USE_RTE is set to STD_OFF, the types from
WdgM are used:

Type Allowed Value

WdgM_SupervisedEntityIdType uint16

WdgM_CheckpointIdType uint16

WdgM_ModeType uint8

WdgM_LocalStatusType uint8

WdgM_GlobalStatusType uint8

SMI-551
The user of MICROSAR Safe shall verify the definitions used by WdgM.

If the configuration parameter WDGM_USE_RTE is set to STD_ON, the definitions from
Rte_WdgM_Type.h are used.
If the configuration parameter WDGM_USE_RTE is set to STD_OFF, the definitions from
WdgM are used.

Definition Value

WDGM_LOCAL_STATUS_OK 0

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 98 / 103

WDGM_LOCAL_STATUS_FAILED 1

WDGM_LOCAL_STATUS_EXPIRED 2

WDGM_LOCAL_STATUS_DEACTIVATED 4

WDGM_GLOBAL_STATUS_OK 0

WDGM_GLOBAL_STATUS_FAILED 1

WDGM_GLOBAL_STATUS_EXPIRED 2

WDGM_GLOBAL_STATUS_STOPPED 3

WDGM_GLOBAL_STATUS_DEACTIVATED 4

The WdgM includes Rte_WdgM_Type.h if and only if WDGM_USE_RTE is set to
STD_ON.

22.4 Safety features required from other components

SMI-372
This component requires setting a trigger condition and setting the triggering mode as
safety features from WdgIf.
This requirement is fulfilled if the WdgIf by Vector is used.

SMI-3414
The user of MICROSAR Safe shall call the service to set the mode as expected by the
Wdg stack.
If the watchdog is not properly set up, it may not provide the expected protection.

22.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 99 / 103

23 Safety Manual XCP

23.1 Safety features

This component does not provide safety features.

SMI-178
This component is only partly developed according to ASIL development process. This part
includes the disabling of the Xcp.

The main part of this component is developed according to a QM development process.
Thus, this component shall only be enabled in an operating mode that do not impose risk
for the health of persons.

23.2 Configuration constraints

SMI-3412
The user of MICROSAR Safe shall configure the following:

o Set /MICROSAR/Xcp/XcpGeneral/XcpControl to TRUE.

The user of MICROSAR Safe shall verify that the corresponding configuration switch is set
in the Xcp protocol layer and all used transport layers:

File Define STD_ON/STD_OFF

Xcp_Cfg.h XCP_CONTROL STD_ON

CanXcp_Cfg.h CANXCP_ENABLE_CONTROL STD_ON

FrXcp_Cfg.h FRXCP_ENABLE_CONTROL STD_ON

TcpIpXcp_Cfg.h TCPIPXCP_ENABLE_CONTROL STD_ON

SMI-179
The user of MICROSAR Safe shall use the macros XCP_ACTIVATE() and
XCP_DEACTIVATE() to activate and deactivate XCP protocol layer and transport layer
components.
Activation and deactivation shall only be performed by a software component that is
developed according to the highest ASIL that is allocated to the ECU.
XCP shall only be activated in an operating mode that does not impose risk for the health
of persons.
Note: XCP is active by default.

SMI-183
The user of MICROSAR Safe shall make the following memory sections read-only for the
XCP protocol layer and transport layer components as well as all other software with an
ASIL lower than the highest ASIL allocated to the ECU:

o XCP_START_SEC_VAR_INIT_UNSPECIFIED_SAFE

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 100 / 103

o CANXCP_START_SEC_VAR_INIT_UNSPECIFIED_SAFE

o FRXCP_START_SEC_VAR_INIT_UNSPECIFIED_SAFE

o TCPIPXCP_START_SEC_VAR_INIT_UNSPECIFIED_SAFE

23.3 Additional verification measures

SMI-184
The user of MICROSAR Safe shall verify during integration testing that XCP is disabled
during normal operation.

23.4 Safety features required from other components

SMI-177
This component requires an operating system with enabled memory partitioning.

23.5 Dependencies to hardware

This component does not use a direct hardware interface.

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 101 / 103

24 Glossary and Abbreviations

24.1 Glossary

Term Definition

User of
MICROSAR
Safe

Integrator and user of components from MICROSAR Safe provided by Vector.

MICROSAR
Safe

MICROSAR Safe comprises MICROSAR SafeBSW and MICROSAR SafeRTE
as Safety Element out of Context. MICROSAR SafeBSW is a set of components,
that are developed according to ISO 26262 [1], and are provided by Vector in the
context of this delivery. The list of MICROSAR Safe components in this delivery
can be taken from the documentation of the delivery.

Critical section A section of code that needs to be protected from concurrent access. A critical
section may be protected by using the AUTOSAR exclusive area concept.

Configuration
data

Data that is used to adapt the MICROSAR Safe component to the specific use-
case of the user of MICROSAR Safe. Configuration data typically comprises
among others: feature selection, routing tables, channel tables, task priorities,
memory block descriptions.

Generated
code

Source code that is generated as a result of the configuration in DaVinci
Configurator Pro

Partition A set of memory regions that is accessible by tasks and ISRs. Synonym to
OSApplication.

24.2 Abbreviations

Abbreviation Description

ASIL Automotive Safety Integrity Level

BSWMD Basic Software Module Description

CPU Central Processing Unit

CREQ Component Requirement

EEPROM Eletronically Ereasable and Programmable Read-only Memory

ECC Error Correcting Code

ECU Electronic Control Unit

EXT Driver for an external hardware unit

ISO International Standardization Organization

MCAL Microcontroller Abstraction

MIP Module Implementation Prefix

MSSV MICROSAR Safe Silence Verifier

OS Operating System

PDU Protocol Data Unit

QM Quality Management

%5b1

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 102 / 103

RAM Random Access Memory

SMI Safety Manual Item

TCL Tool Confidence Level

Safety Manual CBD1601056 D05

2018 Vector Informatik GmbH 1.0 103 / 103

25 Contact

Visit our website for more information on

o News

o Products

o Demo software

o Support

o Training data

o Addresses

www.vector.com

	Safety Manual
	1 General Part
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Scope
	1.1.3 Definitions
	1.1.4 References
	1.1.5 Overview

	1.2 Concept
	1.2.1 Technical Safety Requirements
	1.2.1.1 Initialization
	1.2.1.2 Self-test
	1.2.1.3 Reset of ECU
	1.2.1.4 Data consistency
	1.2.1.5 Non-volatile memory
	1.2.1.5.1 Saving data
	1.2.1.5.2 Loading data

	1.2.1.6 Scheduling
	1.2.1.6.1 Deterministic, hard real-time scheduling

	1.2.1.7 Partitioning
	1.2.1.7.1 Memory partitioning
	1.2.1.7.2 Time partitioning
	1.2.1.7.2.1 Timing protection
	1.2.1.7.2.2 Killing of applications

	1.2.1.8 Communication protection
	1.2.1.8.1 Inter ECU communication
	1.2.1.8.1.1 End-to-end protection
	1.2.1.8.1.2 Protection by cryptographic algorithms

	1.2.1.8.2 Intra ECU communication
	1.2.1.8.2.1 Intra OS application communication
	1.2.1.8.2.2 Inter OS application communication

	1.2.1.9 Watchdog services
	1.2.1.9.1 Program flow monitoring
	1.2.1.9.2 Alive monitoring
	1.2.1.9.3 Deadline monitoring

	1.2.1.10 Peripheral in- and output
	1.2.1.10.1 Peripheral input
	1.2.1.10.2 Peripheral output

	1.2.2 Environment
	1.2.2.1 Safety Concept
	1.2.2.2 Use of MICROSAR Safe Components
	1.2.2.3 Partitioning
	1.2.2.4 Resources

	1.2.3 Process

	2 Safety Manual BswM
	2.1 Safety features
	2.2 Configuration constraints
	2.3 Additional Verification measures
	2.4 Safety features required from other components
	2.5 Dependencies to hardware

	3 Safety Manual CanIf
	3.1 Safety features
	3.2 Configuration constraints
	3.3 Additional verification measures
	3.4 Safety features required from other components
	3.5 Dependencies to hardware

	4 Safety Manual CanNm
	4.1 Safety features
	4.2 Configuration constraints
	4.3 Additional verification measures
	4.4 Safety features required from other components
	4.5 Dependencies to hardware

	5 Safety Manual CanSM
	5.1 Safety features
	5.2 Configuration constraints
	5.3 Additional verification measures
	5.4 Safety features required from other components
	5.5 Dependencies to hardware

	6 Safety Manual CanTp
	6.1 Safety features
	6.2 Configuration constraints
	6.3 Additional verification measures
	6.4 Safety features required from other components
	6.5 Dependencies to hardware

	7 Safety Manual Com
	7.1 Safety features
	7.2 Configuration constraints
	7.3 Additional verification measures
	7.4 Safety features required from other components
	7.5 Dependencies to hardware

	8 Safety Manual ComM
	8.1 Safety features
	8.2 Configuration constraints
	8.3 Additional Verification measures
	8.4 Safety features required from other components
	8.5 Dependencies to hardware

	9 Safety Manual Crc
	9.1 Safety features
	9.2 Configuration constraints
	9.3 Additional verification measures
	9.4 Dependencies to other components
	9.4.1 Safety features required from other components
	9.4.2 Coexistence with other components

	9.5 Dependencies to hardware

	10 Safety Manual Csm
	10.1 Safety Features
	10.2 Configuration constraints
	10.3 Additional verification measures
	10.4 Dependencies to other components
	10.4.1 Safety features required from other components

	10.5 Dependencies to hardware

	11 Safety Manual Det
	11.1 Safety features
	11.2 Configuration constraints
	11.3 Additional Verification measures
	11.4 Safety features required from other components
	11.5 Dependencies to hardware

	12 Safety Manual EcuM
	12.1 Safety features
	12.2 Configuration constraints
	12.3 Additional verification measures
	12.4 Safety features required from other components
	12.5 Dependencies to hardware

	13 Safety Manual Fee
	13.1 Safety features
	13.2 Configuration constraints
	13.3 Additional Verification measures
	13.4 Safety features required from other components
	13.5 Dependencies to hardware

	14 Safety Manual MemIf
	14.1 Safety features
	14.2 Configuration constraints
	14.3 Additional verification measures
	14.4 Dependencies to other components
	14.4.1 Safety features required from other components
	14.4.2 Coexistence with other components

	14.5 Dependencies to hardware

	15 Safety Manual Nm
	15.1 Safety features
	15.2 Configuration constraints
	15.3 Additional Verification measures
	15.4 Dependencies to other components
	15.4.1 Safety features required from other components
	15.4.2 Coexistence with other components

	15.5 Dependencies to hardware

	16 Safety Manual NvM
	16.1 Safety features
	16.2 Configuration constraints
	16.3 Additional verification measures
	16.4 Safety features required from other components
	16.5 Dependencies to hardware

	17 Safety Manual OS
	17.1 Safety features
	17.2 Configuration constraints
	17.3 Additional verification measures
	17.3.1 Interrupt handling
	17.3.2 Memory mapping and linking
	17.3.3 Stack
	17.3.4 Multicore systems with mixed diagnostic coverage capability
	17.3.5 (Non-)Trusted Functions
	17.3.6 Miscellaneous
	17.3.7 Tracing

	17.4 Safety features required from other components
	17.5 Dependencies to hardware

	18 Safety Manual OS (RH850)
	18.1 Safety features
	18.2 Configuration constraints
	18.3 Additional verification measures
	18.4 Safety features required from other components
	18.5 Dependencies to hardware

	19 Safety Manual PduR
	19.1 Safety features
	19.2 Configuration constraints
	19.3 Additional verification measures
	19.4 Safety features required from other components
	19.5 Dependencies to hardware

	20 Safety Manual Rte
	20.1 Safety features
	20.2 Configuration constraints
	20.3 Additional verification measures
	20.3.1 Guided integration testing
	20.3.1.1 BSW configuration
	20.3.1.2 Executable Entity Scheduling
	20.3.1.3 SWC Communication
	20.3.1.4 Usage of RTE Headers
	20.3.1.5 Usage of RTE APIs
	20.3.1.6 Configuration of RTE APIs

	20.4 Safety features required from other components
	20.5 Dependencies to hardware

	21 Safety Manual WdgIf
	21.1 Safety features
	21.2 Configuration constraints
	21.3 Additional verification measures
	21.4 Safety features required from other components
	21.5 Dependencies to hardware

	22 Safety Manual WdgM
	22.1 Safety features
	22.2 Configuration constraints
	22.3 Additional verification measures
	22.3.1 Additional verification using WdgM Verifier
	22.3.2 Additional verification of generator execution

	22.4 Safety features required from other components
	22.5 Dependencies to hardware

	23 Safety Manual XCP
	23.1 Safety features
	23.2 Configuration constraints
	23.3 Additional verification measures
	23.4 Safety features required from other components
	23.5 Dependencies to hardware

	24 Glossary and Abbreviations
	24.1 Glossary
	24.2 Abbreviations

	25 Contact

