

MICROSAR BswM

Technical Reference

Version 7.00.00

Authors Leticia Garcia Herrera, Thomas Kuhl, Philipp Ritter,
Jochen Vorreiter

Status Released

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 2
based on template version 4.11.3

Document Information

History

Author Date Version Remarks

Leticia Garcia, Thomas Kuhl 2012-08-02 1.00.00 Creation of document.

Leticia Garcia, Thomas Kuhl 2012-09-27 1.01.00 Addition of feature, support of
EthSM . Chapters 3.1, 4.1,
5.2and 6.3.

Leticia Garcia, Thomas Kuhl 2013-01-31 1.02.00 Addition of feature, support of
NvM. Chapter 3.1, 4.1, 5.2
and 5.3.

Leticia Garcia, Thomas Kuhl 2012-03-26 1.03.00 Support of Post-build variant.
Chapters 4.1, 4.2, 5.1and 5.2.

Deviation from AUTOSAR.
Header included:
Com_Types.h. Chapter 6.1

Leticia Garcia 2013-10-21 2.00.00 Addition of extension in
chapter 6.2.

Deletion of limitations in
chapter 6.3.

DET errors added in chapter
3.6.1.

Dynamic files added in
chapter 4.1.2.

Chapter 4.2 was changed.
Chapter 4.3 was added.

Leticia Garcia 2013-12-04 2.00.01 Chapter 3.3 was extended.

Chapter 3.4.2 was added.

Chapter 3.6.1 error code
added.

Chapter 4.5 was extended

Chapter 6.2 was extended.

Leticia Garcia 2013-02-18 2.01.00 Extended chapters: 3.1, 3.1.2,
3.6.1, 4.1.1, 5.2.15, 5.2.16,
5.2.33, 5.2.34, 5.2.35, 5.2.36
5.3 and 6.2.1.

Added chapters: 4.3.3, 5.6,
and 6.2.2. Removed deviation
about
Com_IpduGroupControl
usage.

Philipp Ritter 2014-06-13 3.00.00 Extended chapters: 3.1.2, 3.5,
5.6.1, 6.2.1, 6.2.8

Added chapters: 5.2.37,
6.2.10, 6.2.11

Updated Figures: Figure 3-2,

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 3
based on template version 4.11.3

Figure 3-3

Philipp Ritter 2014-10-22 4.00.00 Extended Chapters: 3.1,
3.6.1, 4.1.1, 4.3.3, 5.2.4

Added chapters: 5.2.38

Philipp Ritter 2015-02-02 5.00.00 Extended chapters: 3.6.1,
4.3.3, 6.3.3, 6.3.4

Added chapters: 5.2.19

Removed: Limitation for
multiple configurations

Philipp Ritter 2015-07-29 6.00.00 Extended chapters: 3.1, 3.1.2,
3.6.1, 4.3.3, 5.3

Added chapters: 4.3.4,
5.2.23, 5.2.27, 5.2.28, 5.2.29,
5.2.30, 5.2.31, 5.2.32

Philipp Ritter 2015-12-10 6.00.01 Updated Figure 4-6

Jochen Vorreiter 2016-11-15 7.00.00 Added chapters: 5.2.8 and
5.2.12

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_BSWModeManager.pdf 1.4.0

[2] AUTOSAR AUTOSAR_EXP_ModemanagementGuide 2.1.0

[3] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[4] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[5] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf 4.2.0

[6] Vector TechnicalReference_Rte.pdf see delivery

[7] Vector TechnicalReference_PostBuildLoadable.pdf see delivery

[8] Vector TechnicalReference_Com.pdf see delivery

[9] Vector TechnicalReference_IdentityManager.pdf see delivery

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 4
based on template version 4.11.3

Scope of the Document

This technical reference describes the general use of the AUTOSAR Basic Software
module BSW Mode Manager (BswM).

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 5
based on template version 4.11.3

Contents

1 Component History .. 10

2 Introduction... 11

2.1 Architecture Overview .. 11

3 Functional Description ... 13

3.1 Features .. 13

3.1.1 Deviations .. 14

3.1.2 Additions/ Extensions ... 14

3.2 Initialization .. 14

3.3 States .. 14

3.4 Mode Management .. 16

3.4.1 Immediate Mode Handling ... 17

3.4.2 Forced Immediate Mode Handling ... 17

3.4.3 Deferred Mode Handling .. 17

3.5 Execution of Action Lists .. 20

3.6 Error Handling .. 20

3.6.1 Development Error Reporting ... 20

3.6.2 Production Code Error Reporting ... 22

4 Integration ... 23

4.1 Scope of Delivery ... 23

4.1.1 Static Files ... 23

4.1.2 Dynamic Files .. 24

4.2 Initialization of Other Software Modules ... 24

4.2.1 Using the Basic Editor .. 24

4.2.2 Using the Comfort View.. 26

4.3 Support of Preconfigured State Machines (Auto-Configuration) 26

4.3.1 Initialization .. 27

4.3.2 ECU State Handling ... 29

4.3.3 Communication Control .. 31

4.3.4 Service Discovery Control .. 33

4.4 Critical Sections ... 33

4.5 Cyclic Task ... 33

4.6 NvM – BswM configuration .. 33

5 API Description ... 34

5.1 Type Definitions ... 34

5.2 Services Provided by BswM ... 35

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 6
based on template version 4.11.3

5.2.1 BswM_InitMemory ... 35

5.2.2 BswM_Init .. 35

5.2.3 BswM_Deinit .. 36

5.2.4 BswM_GetVersionInfo .. 36

5.2.5 BswM_RequestMode ... 37

5.2.6 BswM_ComM_CurrentMode .. 37

5.2.7 BswM_ComM_CurrentPNCMode ... 38

5.2.8 BswM_ComM_InitiateReset ... 38

5.2.9 BswM_Dcm_ApplicationUpdated ... 39

5.2.10 BswM_Dcm_CommunicationMode_CurrentState 39

5.2.11 BswM_CanSM_CurrentState ... 40

5.2.12 BswM_EthIf_PortGroupLinkStateChg .. 40

5.2.13 BswM_EthSM_CurrentState .. 41

5.2.14 BswM_FrSM_CurrentState .. 41

5.2.15 BswM_J1939DcmBroadcastStatus .. 42

5.2.16 BswM_J1939Nm_StateChangeNotification 42

5.2.17 BswM_LinSM_CurrentState ... 43

5.2.18 BswM_LinSM_CurrentSchedule... 43

5.2.19 BswM_LinSM_ScheduleEndNotification... 44

5.2.20 BswM_LinTp_RequestMode .. 44

5.2.21 BswM_EcuM_CurrentState .. 45

5.2.22 BswM_EcuM_CurrentWakeup ... 45

5.2.23 BswM_EcuM_RequestedState ... 46

5.2.24 BswM_MainFunction .. 46

5.2.25 BswM_NvM_CurrentBlockMode... 47

5.2.26 BswM_NvM_CurrentJobMode ... 47

5.2.27 BswM_PduR_RxIndication ... 48

5.2.28 BswM_PduR_TpRxIndication ... 48

5.2.29 BswM_PduR_TpStartOfReception ... 49

5.2.30 BswM_PduR_TpTxConfirmation .. 49

5.2.31 BswM_PduR_Transmit ... 50

5.2.32 BswM_PduR_TxConfirmation .. 50

5.2.33 BswM_Sd_EventHandlerCurrentState ... 51

5.2.34 BswM_Sd_ClientServiceCurrentState .. 51

5.2.35 BswM_Sd_ConsumedEventGroupCurrentState 52

5.2.36 BswM_Nm_StateChangeNotification ... 53

5.2.37 BswM_RuleControl .. 54

5.2.38 BswM_WdgM_RequestPartitionReset ... 54

5.3 Services Used by BswM .. 55

5.4 Callback Functions ... 56

5.5 Configurable Interfaces .. 56

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 7
based on template version 4.11.3

5.5.1 Callout Functions ... 56

5.6 Service Ports ... 57

5.6.1 BswMSwcModeRequest (R-Port) ... 57

5.6.2 BswMSwcModeNotification (R- Port) ... 57

5.6.3 BswMSwitchPort (P- Port) .. 58

5.6.4 BswMRteModeRequestPort (P-Ports) .. 58

5.6.5 BswMModeDeclaration .. 58

6 AUTOSAR Standard Compliance... 59

6.1 Deviations .. 59

6.1.1 Inclusion of the header Com_Types.h .. 59

6.1.2 Port Names .. 59

6.2 Additions/ Extensions ... 59

6.2.1 Optional Interfaces ... 59

6.2.2 Nm Indication ... 60

6.2.3 User Condition Functions ... 60

6.2.4 Creation of Mode Declarations ... 61

6.2.5 Timers .. 61

6.2.6 Generic Symbolic Values ... 61

6.2.7 Generic Actions .. 61

6.2.8 Immediate request in BswM_Init() .. 61

6.2.9 Mode Handling Forced Immediate ... 61

6.2.10 Rule Control ... 61

6.2.11 Support of Com ASR3 IPduGroup APIs.. 62

6.3 Limitations.. 62

6.3.1 Configurable interfaces that are not supported 62

6.3.1.1 EcuM Indication for EcuM Flex 62

6.3.2 Optional Interfaces ... 62

6.3.3 Configuration Variants .. 63

6.3.4 BSW Modules .. 63

7 Glossary and Abbreviations .. 64

7.1 Glossary .. 64

7.2 Abbreviations ... 64

8 Contact .. 66

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 8
based on template version 4.11.3

Illustrations

Figure 2-1 AUTOSAR Architecture... 11
Figure 2-2 Interfaces to adjacent modules of the BswM ... 12
Figure 3-1 States of the BswM ... 16
Figure 3-2 Sequence Immediate Processing ... 18
Figure 3-3 Sequence Deferred Mode ... 19
Figure 4-1 Auto-configured state machines.. 27
Figure 4-2 Configure module initialization .. 28
Figure 4-3 Edit initialization order ... 29
Figure 4-4 Restore default sequence ... 29
Figure 4-5 Configuration of the features for ECU State Handling 30
Figure 4-6 State Machine of the ECU State Handling .. 31
Figure 5-1 Existing callout functions .. 56
Figure 5-2 Generate prototype of callout functions... 56

Tables

Table 1-1 Component history.. 10
Table 3-1 Supported AUTOSAR Standard Conform Features 13
Table 3-2 Not Supported AUTOSAR Standard Conform Features 14
Table 3-3 Features Provided Beyond the AUTOSAR Standard 14
Table 3-4 Service IDs ... 21
Table 3-5 Errors reported to DET ... 22
Table 4-1 Static Files .. 24
Table 4-2 Dynamic Files ... 24
Table 5-1 Type definitions ... 34
Table 5-2 BswM_InitMemory .. 35
Table 5-3 BswM_Init ... 35
Table 5-4 BswM_Deinit... 36
Table 5-5 BswM_GetVersionInfo .. 36
Table 5-6 BswM_RequestMode .. 37
Table 5-7 BswM_ComM_CurrentMode ... 37
Table 5-8 BswM_ComM_CurrentPNCMode ... 38
Table 5-9 BswM_ComM_InitiateReset .. 38
Table 5-10 BswM_Dcm_ApplicationUpdated .. 39
Table 5-11 BswM_Dcm_CommunicationMode_CurrentState 39
Table 5-12 BswM_CanSM_CurrentState .. 40
Table 5-13 BswM_EthIf_PortGroupLinkStateChg ... 40
Table 5-14 BswM_EthSM_CurrentState ... 41
Table 5-15 BswM_FrSM_CurrentState ... 41
Table 5-16 BswM_J1939DcmBroadcastStatus ... 42
Table 5-17 BswM_J1939Nm_StateChangeNotification .. 42
Table 5-18 BswM_LinSM_CurrentState .. 43
Table 5-19 BswM_LinSM_CurrentSchedule ... 43
Table 5-20 BswM_LinSM_ScheduleEndNotification ... 44
Table 5-21 BswM_LinTp_RequestMode ... 44
Table 5-22 BswM_EcuM_CurrentState ... 45
Table 5-23 BswM_EcuM_CurrentWakeup .. 45
Table 5-24 BswM_EcuM_RequestedState ... 46
Table 5-25 BswM_MainFunction .. 46
Table 5-26 BswM_NvM_CurrentBlockMode ... 47
Table 5-27 BswM_NvM_CurrentJobMode .. 48

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 9
based on template version 4.11.3

Table 5-28 BswM_PduR_RxIndication ... 48
Table 5-29 BswM_PduR_TpRxIndication ... 48
Table 5-30 BswM_PduR_TpStartOfReception .. 49
Table 5-31 BswM_PduR_TpTxConfirmation ... 50
Table 5-32 BswM_PduR_Transmit ... 50
Table 5-33 BswM_PduR_TxConfirmation ... 50
Table 5-34 BswM_Sd_EventHandlerCurrentState .. 51
Table 5-35 BswM_Sd_ClientServiceCurrentState .. 52
Table 5-36 BswM_Sd_ConsumedEventGroupCurrentState 52
Table 5-37 BswM_Nm_StateChangeNotification .. 53
Table 5-38 BswM_RuleControl ... 54
Table 5-39 BswM_WdgM_RequestPartitionReset .. 54
Table 5-40 Services used by the BswM .. 55
Table 5-41 User Callout .. 57
Table 7-1 Abbreviations .. 65

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 10
based on template version 4.11.3

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Creation

1.01.00 Support of Ethernet components was added

1.02.00 Support to NvM.

1.03.00 Post-Build loadable support. SWC mode requests support

2.00.00 Support of timers and user conditions as request ports

Generic modes handling extended.

Initialization automation and preconfigured state machine to emulate the
behavior of EcuM in ASR 3.

2.00.01 Forced Immediate mode handling was added.

2.01.00 Support for NM, J1939Nm, J1939Dcm and Service Discovery (Sd), R

Request Port of type SwcModeRequest, SwcModeNotification support
immediate request processing and Support of P-Ports
(BswMRteModeRequestPort).

3.00.00 Mode Arbitration algorithm changed (first arbitrate all rules, execute action
lists afterwards), disabling of rules (Rule Control), support of Com ASR3
IPduGroup APIs, prioritization of action list execution order.

4.00.00 Support for Post-Build selectable and WdgMPartitionReset.

5.00.00 Support of LinScheduleEndNotification

6.00.00 Support of BswM_EcuM_RequestedState, BswM_PduR_RxIndication,
BswM_PduR_TpRxIndication, BswM_PduR_TpStartOfReception,
BswM_PduR_TpTxConfirmation, BswM_PduR_Transmit,
BswM_PduR_TxConfirmation

7.00.00 Support of BswM_ComM_InitiateReset and
BswM_EthIf_PortGroupLinkStateChg

Table 1-1 Component history

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 11
based on template version 4.11.3

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module BswM as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile, post-build, post-build-selectable

Vendor ID: BSWM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: BSWM_MODULE_ID 42 decimal

(according to ref.[4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The BSW Mode Manager is the module that implements the part of the Vehicle Mode
Management and Application Mode Management concept that resides in the BSW.

Its responsibility is to arbitrate mode requests from application layer SW-Cs or other

BSW modules based on simple rules, and perform actions based on the arbitration result.

2.1 Architecture Overview

The following figure shows where the BswM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR Architecture

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 12
based on template version 4.11.3

The next figure shows the interfaces to adjacent modules of the BswM. These interfaces
are described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the BswM

 class Architecture

CanSM

Com

EcuM

FrSm

Nm

ComM

LinSm

BswM

SchM

Det

Dcm

Application

LinIfEthSm

PduR

Dem

RTE

Nv M

J1939Dcm

J1939Nm

Sd

J1939Rm

EthIf

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 13
based on template version 4.11.3

3 Functional Description

This chapter describes the general function of the BswM.

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
BswM.

The AUTOSAR standard functionality is specified in [1]. The corresponding features are
listed in the tables:

> Table 3-1 Supported AUTOSAR Standard Conform Features

> Table 3-2 Not Supported AUTOSAR Standard Conform Features

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

CanSM mode arbitration

ComM mode arbitration

Dcm mode arbitration

EcuM mode arbitration

EthSM mode arbitration

FrSM mode arbitration

J1939Dcm mode arbitration

J1939Nm mode arbitration

LinSM mode arbitration

LinTp mode arbitration

NvM mode arbitration

Sd mode arbitration

Application mode arbitration

I-PDU Group handling (activation/deactivation/deadline monitoring)

Action to handle PduR routing path groups

Nested rule execution

Rte Mode Notification and Switches

Rte Mode Request Interfaces and Ports

Watchdog Manager

Post-Build Loadable

MICROSAR Identity Manager using Post-Build Selectable [9]

Table 3-1 Supported AUTOSAR Standard Conform Features

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 14
based on template version 4.11.3

3.1.1 Deviations

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Available Action: BswM_TriggerStartUpPhase2

Available Actions: BswM_TriggerSlaveRTEStop

Table 3-2 Not Supported AUTOSAR Standard Conform Features

See Chapter 6.1 for detailed information about other deviations.

3.1.2 Additions/ Extensions

Features Provided Beyond the AUTOSAR Standard

Timers as mode request ports

Nm as mode request port

User conditions as mode request ports

Generic mode switch as available action

Timer control as available action

Creation of user callouts in BswM_Callout_Stubs.c

Preconfigured State Machines (Communication, Initialization, Service Discovery and ECU State
Handling)

Arbitration of rules on initialization values of immediate mode request ports

Rule Control (deactivation of rules during runtime)

Prioritization of Action List Execution Order

Support of ASR3 IPduGroup APIS

PduR mode request ports

EthIf mode arbitration

Table 3-3 Features Provided Beyond the AUTOSAR Standard

3.2 Initialization

The BswM is initialized via the service function BswM_Init (refer to chapter 5.2.2).On

platforms in which the Random Access Memory (RAM) is not initialized to zero by the

start-up code the function BswM_InitMemory has to be called first and then a call to

BswM_Init can be realized. All available modes are set to the configured initialization

state, which can either be undefined or set to a specific value. If the initialization state is
undefined the mode is not arbitrated until the mode request/indication function occurs for
the first time.

3.3 States

The state machine diagram in Figure 3-1 shows the general handling of the BswM. Each
state is described as follows:

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 15
based on template version 4.11.3

> BSWM_INIT

The BswM is initialized and ready for immediate mode arbitration requests. Deferred mode

arbitration is done within the cyclically called function BswM_MainFunction.

> BSWM_WAIT_IMMEDIATE_REQUEST

In this state the BswM waits for a mode arbitration request. The state is left if immediate

mode arbitration is requested or when BswM_MainFunction is called.

> BSWM_MAIN_FUNCTION

This state is entered when the BswM_MainFunction is called. Within

BswM_MainFunction the deferred mode arbitration is done. Immediate mode arbitration

requests which occur during the execution of BswM_MainFunction are queued and will

be executed at the end of BswM_MainFunction, when all deferred mode arbitration and

control is finished. Mode arbitration requests of type “forced immediate” are not queued
and interrupt the deferred mode arbitration.

> BSWM_MODE_ARBITRATION_AND_CONTROL

In this state the configured mode rule arbitration is done and the true-/false-action lists are
executed. New mode arbitration requests of type “immediate” are queued, arbitration
requests of type “forced immediate” are arbitrated immediately.

> BSWM_EMPTY_QUEUE

In this state the queued mode arbitration requests are executed.

> BSWM_DEINIT

This state is entered when the function BswM_Deinit is called. No mode arbitration

requests are accepted and no mode processing is done. This state can only be left when

function BswM_Init is called.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 16
based on template version 4.11.3

Figure 3-1 States of the BswM

3.4 Mode Management

The BswM manages user defined modes, whose behavior is completely defined by its
configuration. A mode consists of the following parts:

stm State_Machine

Initial

BSWM_INIT
EntryPoint

BSWM_WAIT_IMMEDIATE_REQUEST

BSWM_DEINIT

BSWM_MAIN_FUNCTION

BSWM_MODE_ARBITRATION_AND_CONTROL
BSWM_EMPTY_QUEUE

[BswM_Deinit]

/stop any mode request arbitration

[Deferred Request]

[deferred finished]

[Immediate request]

/queue request

[immediate request]

[queue is empty]

[queued immediate request]
[BswM_MainFunction]

[immediate request] /ignore

[BswM_Init]

[Immediate Request]

/queue request

[immediate request]

/queue request

[MainFunctionEnd]

[Immediate finished]

[BswM_MainFunction]

/no deferred mode request arbitration

[queued main fct call]

[BswM_Init]

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 17
based on template version 4.11.3

> Mode Source: this is the trigger for the mode arbitration, a trigger can either be an
application indication/request function or a BSW indication/request function or the

BswM_MainFunction().

> Mode Arbitration: when the mode source trigger occurs the BswM will arbitrate a
mode specific rule either immediately or deferred within the

BswM_MainFunction(). The mode arbitration types are described in detail in

chapters 3.4.1 and 3.4.3.

> Mode Rule: a rule is a logical Boolean expression which consists of specific
conditions which use different operators. The rule is arbitrated by the BswM to be
either true or false. Dependent on the evaluation result the BswM executes the
configured mode action(s) (true-action(s) or false-action(s)).

> Mode Actions: these are either BSW service function calls, user callout function
calls or calls to nested rules or action lists which are executed by the BswM after
the Mode Arbitration.

3.4.1 Immediate Mode Handling

The immediate mode arbitration is done directly upon the mode request/indication
function. If another mode request/indication occurs during mode arbitration the BswM
queues this mode arbitration request. The mode request queue is emptied when the
current mode arbitration is finished. The sequence diagram in Figure 3-2 shows this
procedure.

3.4.2 Forced Immediate Mode Handling

The forced immediate mode arbitration is done directly upon the mode request/indication
function. The forced immediate request triggers immediate mode arbitration, interrupting
any other immediate mode arbitration or deferred rule processing in the main function.
This type of mode handling is not queued.

3.4.3 Deferred Mode Handling

The deferred mode arbitration is done cyclically within the execution of the

BswM_MainFunction(). If another mode request/indication occurs during mode

arbitration the BswM queues this mode arbitration request. The mode request queue is

emptied at the end of the BswM_MainFunction(). The sequence diagram in Figure 3-3

shows this procedure.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 18
based on template version 4.11.3

Figure 3-2 Sequence Immediate Processing

Module

BswM

Module

BSW/SWC

loop ov er all rules which depend on the requested mode

loop ov er marked actionlists

opt

loop ov er all actions of action list

loop as long as queued request present

After locking semaphore, all new

immediate requests will be queued

After unlocking semaphore, new

immediate requests will be processed in

mode request context

alt

[deferred request]

[immediate request and locked semaphore]

[unlocked sempahore or forced immediate]

Reentrant mode request call - Will be processed in same way

opt

[sempahore was locked above]

Nothing to do for deferred request. Depending rules will be

arbitrated in BswM_MainFunction

Mode Request()

Store Mode Value()

Queue Request()

Lock Semaphore()

Aribtrate rule and mark resulting action list for execution()

Execute Action Lists()

Call Action()

Mode Request()

Process Queued Request()

Unlock Semaphore()

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 19
based on template version 4.11.3

Figure 3-3 Sequence Deferred Mode

Module

BswM

Module

BSW/SWC

Module

SchM

loop ov er all rules which depend on a deferred request port

loop ov er marked actionlists

opt

loop ov er all actions of action list

loop as long as queued request present

After locking semaphore, all new

immediate requests wil l be queued

After unlocking semaphore, new

immediate requests wil l be processed in

mode request context

 Deferred Request wil l be arbitrated in next BswM_MainFunction

 Immediate Request wil l be queued

 Forced Immediate Request wil l be processed immediately

opt

[sempahore was locked above]

BswM_MainFunction()

Lock Semaphore()

Aribtrate rule and mark resulting action l ist for execution()

Execute Action Lists()

Call Action()

Mode Request()

Process Queued Request()

Unlock Semaphore()

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 20
based on template version 4.11.3

3.5 Execution of Action Lists

The execution of actions is done after the rule arbitration phase. Whether an action list
shall be executed depends on the arbitration result (true or false). There are two ways to
execute an action list based on evaluation of rules: either it is executed every time the rule
is evaluated with the corresponding result (so called conditional execution), or only when
the evaluation result has changed from the previous evaluation (so called triggered
execution). This execution type is defined via configuration. If arbitration of a rule leads to
the execution of an action list, this action list is marked for execution. All marked action
lists are executed by their prioritization after the rules have been arbitrated.

3.6 Error Handling

3.6.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [3], if development error reporting is enabled (i.e.

pre-compile parameter BSWM_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported BswM ID is 42.

The reported service IDs identify the services which are described in chapter 5.2. Table
3-4 presents the service IDs and the related services.

Service ID Service

BSWM_INITMEMORY_ID (0x80) BswM_InitMemory()

BSWM_INIT_ID (0x00) BswM_Init()

BSWM_GETVERSIONINFO_ID (0x01) BswM_GetVersionInfo()

BSWM_REQUESTMODE_ID (0x02) BswM_RequestMode()

BSWM_MAINFUNCTION_ID (0x03) BswM_MainFunction()

BSWM_DEINIT_ID (0x04) BswM_Deinit()

BSWM_CANSM_CURRENTSTATE_ID (0x05) BswM_CanSM_CurrentState()

BSWM_DCM_COMMUNICATION_STATE_ID (0x06) BswM_Dcm_CommunicationMode_CurrentState()

BSWM_LINSM_CURRENTSTATE_ID (0x09) BswM_LinSM_CurrentState()

BSWM_LINSM_CURRENTSCHEDULE_ID (0x0A) BswM_LinSM_CurrentSchedule()

BSWM_LINTP_REQUESTMODE_ID (0x0B) BswM_LinTp_RequestMode()

BSWM_FRSM_CURRENTSTATE_ID (0x0C) BswM_FrSM_CurrentState()

BSWM_ETHSM_CURRENTMODE_ID (0x0D) BswM_EthSM_CurrentState()

BSWM_COMM_CURRENTMODE_ID (0x0E) BswM_ComM_CurrentMode()

BSWM_ECUM_CURRENTSTATE_ID (0x0F) BswM_EcuM_CurrentState()

BSWM_ECUM_CURRENTWAKEUP_ID (0x10) BswM_EcuM_CurrentWakeup()

BSWM_WDGM_REQUESTPARTITIONRESET_ID

 (0x11)
BswM_WdgM_RequestPartitionReset()

BSWM_DCM_APPLICATION_UPDATED_ID (0x14) BswM_Dcm_ApplicationUpdated()

BSWM_COMM_PNC_CURRENTMODE_ID (0x15) BswM_ComM_CurrentPNCMode()

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 21
based on template version 4.11.3

Service ID Service

BSWM_NVM_CURRENTBLOCKMODE_ID (0x16) BswM_NvM_CurrentBlockMode()

BSWM_NVM_CURRENTJOBMODE_ID (0x17) BswM_NvM_CurrentJobMode()

BSWM_J1939NM_STATE_ID (0x18) BswM_J1939Nm_StateChangeNotification()

BSWM_J1939DCM_BROADCASTSTATUS_ID (0x1b) BswM_J1939DcmBroadcastStatus()

BSWM_SD_CLIENTSERVICE_CURRENT_ID (0x1f) BswM_Sd_ClientServiceCurrentState()

BSWM_SD_EVENTHANDLER_CURRENT_ID (0x20) BswM_Sd_EventHandlerCurrentState()

BSWM_SD_CONSUMEDEVENTGROUP_ID (0x21) BswM_Sd_ConsumedEventGroupCurrentState()

BSWM_COMM_INITIATERESET_ID (0x22) BswM_ComM_InitiateReset()

BSWM_ECUM_REQUESTEDSTATE_ID (0x23) BswM_EcuM_RequestedState()

BSWM_NM_STATE_CHANGE_ID (0x81) BswM_Nm_StateChangeNotification()

BSWM_SWCNOTIFICATION_ID (0x82) BswM_Notification_<SWC Notification Name>

BSWM_SWCREQUESTMODE_ID (0x83) BswM_Read_<SWC Mode Request Name>

BSWM_SETRULESTATE_ID (0x84) BswM_RuleControl()

BSWM_LINSM_SCHEDULEENDNOTIFICATION_ID
 (0x85)

BswM_LinSM_ScheduleEndNotification()

BSWM_PDUR_RXINDICATION_ID (0x86) BswM_PduR_RxIndication()

BSWM_PDUR_TPRXINDICATION_ID (0x87) BswM_PduR_TpRxIndication()

BSWM_PDUR_TPSTARTOFRECEPTION_ID (0x88) BswM_PduR_TpStartOfReception()

BSWM_PDUR_TPTXCONFIRMATION_ID (0x89) BswM_PduR_TpTxConfirmation()

BSWM_PDUR_TRANSMIT_ID (0x8A) BswM_PduR_Transmit()

BSWM_PDUR_TXCONFIRMATION_ID (0x8B) BswM_PduR_TxConfirmation()

BSWM_ETHIF_PORTGROUPLINKSTATECHANGE_ID
 (0x8C)

BswM_EthIf_PortGroupLinkStateChg()

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 BSWM_E_NO_INIT Service function is called while BswM is not initialized.

0x02 BSWM_E_NULL_POINTER Service function is called with a null pointer as an
argument.

0x03 BSWM_E_PARAM_INVALID The given parameter is invalid.

0x04 BSWM_E_REQ_USER_OUT_OF_RANGE A requesting user is out of range.

0x05 BSWM_E_REQ_MODE_OUT_OF_RANGE A requested mode is out of range.

0x06 BSWM_E_PARAM_CONFIG The provided configuration is inconsistent.

0xA0 BSWM_E_ALREADY_QUEUED An immediate request was made before the last
request of the same port was processed.

In most cases this error occurs due to an incorrect
configuration, i.e. port shall be arbitrated on its
initialization value of port but initialization value of rule
is incorrect. If configuration is correct and loss of the
earlier mode request is acceptable, this error can be
ignored for this port. Otherwise, processing of port

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 22
based on template version 4.11.3

Error Code Description

can be changed to BSWM_FORCED_IMMEDIATE.

Table 3-5 Errors reported to DET

3.6.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service

Dem_ReportErrorStatus() as specified in [5].

The module BswM does not report any DEM error itself. However, it can be configured that
an action member of an action list reports a DEM error when it fails.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 23
based on template version 4.11.3

4 Integration

This chapter gives necessary information for the integration of the MICROSAR BswM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the BswM contains the files which are described in chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

BswM.c



This is the source file of the BswM. It contains the
initialization function, the deinitialization function, the
cyclic main function and all the BSW mode indication
functions.

BswM.h
 

This is the header file of the BswM. It contains the
interfaces to the BswM API functions.

BswM_CanSM.h
 

This header file contains the prototypes of the callback
functions of the CAN State Manager.

BswM_ComM.h
 

This header file contains the prototypes of the callback
functions of the Communication Manager.

BswM_Dcm.h
 

This header file contains the prototypes of the callback
functions of the Diagnostic Communication Manager.

BswM_EcuM.h
 

This header file contains the prototypes of the callback
functions of the Electronic Control Unit State Manager.

BswM_EthSm.h
 

This header file contains the prototypes of the callback
functions of the Ethernet State Manager.

BswM_FrSM.h
 

This header file contains the prototypes of the callback
functions of the FlexRay State Manager.

BswM_J1939Dc
m.h

 
This header file contains the prototypes of the callback
functions of the J1939Dcm module.

BswM_J1939Nm
.h

 
This header file contains the prototypes of the callback
functions of the J1939Nm module.

BswM_LinSM.h
 

This header file contains the prototypes of the callback
functions of the LIN State Manager.

BswM_LinTp.h
 

This header file contains the prototypes of the callback
functions of the LIN Transport Protocol.

BswM_Nm.h
 

This header file contains the prototypes of the callback
functions of the Network Manager.

BswM_NvM.h
  This header file contains the prototypes of the callback

functions of the Non Volatile Random-access memory

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 24
based on template version 4.11.3

File Name Source
Code
Delivery

Object
Code
Delivery

Description

Manager.

BswM_PduR.h
 

This header file contains the prototypes of the callback
functions of the Pdu Router module.

BswM_Sd.h
 

This header file contains the prototypes of the callback
functions of the Service Discovery module.

BswM_WdgM.h
 

This header file contains the prototypes of the callback
functions of the Watchdog Manager module.

Table 4-1 Static Files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool.

File Name Description

BswM_Lcfg.c This file contains the configuration parameters for pre-compile and for post-
build variant.

BswM_Cfg.h This header file contains general and configuration definitions for pre-compile
and post-build variant.

BswM_Private_
Cfg.h

This file contains the necessary includes and the declarations of libraries and
variables used by the BswM.

BswM_PBcfg.c This file contains the variables used for mode arbitration in post-build variant.

BswM_Callout_
Stubs.c

This file contains the definitions of the call back functions which were
configured to be created.

Table 4-2 Dynamic Files

4.2 Initialization of Other Software Modules

The BswM is able to initialize software components through User Callout functions. The
BswM can realize the initialization after the EcuM has finished its “post OS sequence”, in
which it initializes the operating system, the Schedule Manager and the BswM.

4.2.1 Using the Basic Editor

In order to configure the BswM to initialize other modules:

 Create “Actions” of type “User Callout” which contain the initialization functions.

 Create an “Action List” which contains the before mentioned “User Callout” actions.

 Click on the container “BswMModeControl”, to make the “Init Action List Reference”
visible.

 Add a reference to the action list that contains the initialization callouts of the other
modules.

 These actions will be called at the end of BswM_Init.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 25
based on template version 4.11.3

Caution
It is important that the execution of the initialization is not interrupted by any
other main function. The initialization of all the configured modules should be
concluded before any other function is called.

Illustratively, a list of initialization functions is listed below, as exemplified in the Guide to
Mode Management [2] (This guide can be also consulted for further Mode management
information). Note that this list is not complete and depends on the BSW modules you
have in your delivery.

Initialization of basic drivers to access the NVRAM:

 Spi_Init(NULL_PTR);

 Eep_Init(NULL_PTR);

 Fls_Init(NULL_PTR);

 NvM_Init(NULL_PTR);

 NvM_ReadAll();

After the NvM_ReadAll() job is finished the initialization of the remaining modules can

continue:

 Can_Init(NULL_PTR);

 CanIf_Init(NULL_PTR);

 CanSM_Init(NULL_PTR);

 CanTp_Init(NULL_PTR);

 Lin_Init(NULL_PTR);

 LinIf_Init(NULL_PTR);

 LinSM_Init(NULL_PTR);

 LinTp_Init(NULL_PTR);

 Fr_Init(NULL_PTR);

 FrIf_Init(NULL_PTR);

 FrSm_Init(NULL_PTR);

 FrTp_Init(NULL_PTR);

 StbM_Init();

 PduR_Init(NULL_PTR);

 CanNm_Init(NULL_PTR);

 LinNM_Init(NULL_PTR);

 FrNm_Init(NULL_PTR);

 Nm_Init(NULL_PTR);

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 26
based on template version 4.11.3

 IpduM_Init(NULL_PTR);

 Com_Init(NULL_PTR);

 ComM_Init(NULL_PTR);

 Dcm_Init(NULL_PTR);

 Dem_Init(NULL_PTR);

 RteStart();

Note that when in Post-Build variant, the previous initialization functions could contain
post-build specific parameters. For detailed information see document [7], chapter: BSW
Module Initialization, which summarizes the steps required to initialize post-build loadable
BSW modules.

Caution
Note that the parameters of the initialization functions used in the example may differ
from the actual expected parameters of the corresponding modules depending on the
configuration. Please refer to the Technical Reference of each module for the proper
initialization call.

4.2.2 Using the Comfort View

In order to facilitate the configuration of the initialization of other modules, the “Auto
Configuration: Module Initialization” can be used. For further information see chapters 4.3
and 4.3.1.

4.3 Support of Preconfigured State Machines (Auto-Configuration)

The BswM supports preconfigured state machines. The content of these state machines is
based on the currrent configuration. The state machines can be activated and modified by
the user. They can be found in the “Mode Management” view of the DaVinci Configurator 5
Pro. To make use of the auto configured state machines:

1. In the configuration editor click on “Mode Management”.

2. Open “BSW Management” window.

3. Click on “Auto Configuration: <Name of the State Machine>”.

4. Click on the link “Configure Module Initialization” to start configuring.

Caution
Created Rules, Actions, Conditions, etc. are only an advice and may be edited by the
integrator.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 27
based on template version 4.11.3

Figure 4-1 Auto-configured state machines

4.3.1 Initialization

The BswM has knowledge of how to initialize several modules: which function to call, with
which parameters and which header to include. These modules are listed in the “known
modules” list. However, the preconfigured initialization functions and include headers can
be changed/adapted by the integrator.

The “foreign modules” list contains modules unknown to the BswM. An initialization
function and an include header are suggested, but it is necessary to assure the
correctness of the preconfigured parameters and adapt them in case it is necessary. The
foreign modules will be initialized after the known modules by default.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 28
based on template version 4.11.3

Figure 4-2 Configure module initialization

The list of modules shows them in alphabetical order. But the initialization function calls
are generated according to the internal logic of the generator. In order to see the actual
order in which the functions will be generated, click on Auto Configuration: Module
Initialization -> Action Lists-> INIT_AL_Initialize.

A list of items is shown in the order in which they are generated. The order of the items
can be changed manually.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 29
based on template version 4.11.3

Figure 4-3 Edit initialization order

If the module initialization is edited with the configuration window again, the default order
of the items will be restored and the changes previously made in the action list items order
will be lost.

To avoid changing the already edited action list items order, it is necessary to clear the
“Restore Default Sequence” checkbox when configuring again.

Figure 4-4 Restore default sequence

4.3.2 ECU State Handling

The BswM is able to create rules and actions which take care of starting and shutting
down the ECU. This behavior is similar to EcuM in ASR 3.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 30
based on template version 4.11.3

Figure 4-5 Configuration of the features for ECU State Handling

The following features can be activated: DEM initialization and shut-down generation,
enabling and disabling of ComM communication, activation of NvM handling, notifications
of the RTE about mode changes and transition call outs are enabled.

Furthermore, the number of users that request run request and post-run request and the
period of time that the state machine spends in the run mode state can be configured.

The state machine of the ECU state Handling is illustrated in Figure 4-6 State Machine of
the ECU State Handling. The rectangular states are notified to the RTE if synchronisation
is enabled.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 31
based on template version 4.11.3

Figure 4-6 State Machine of the ECU State Handling

4.3.3 Communication Control

The BswM is able to create rules and actions which take care of starting and stopping the
communication of an ECU.

The features supported by the auto configuration of the Communication Control are:

WAKEUP

SHUTDOWN

POSTRUN

RUNSTARTUP

Initial

Init Run

PostRun

Prepare Shutdown

Wait for NvMSleep - "Virtual"

Shutdown "virtual"

WakeUp

[No Nv M indication pending or

the Nv M_WriteAllTimer is

expired]

/EcuM_GoPoll

EcuM_GoHalt

[No run request and no

communication in all channels]

/Disallow Communication

EcuM_ClearValidatedWakeupEv ent

[Run requested or v alid

wake-up ev ent or

pending communication

request]

/Allow communication

[No Nv M indication pending,

Nv M_CancelWriteAllTimer is expired]

/Allow communication

Dem_Init

Start Self Run Request Timer

[postrun request == released]

/Dem_Shutdown()

[Valid wakeup ev ent]

/Stop WriteAllTimer

Start CancelWriteAllTimer

Nv M_CancelWriteAll [RTE mode notification]

/Nv M write All

Start Nv M_WriteAllTimer

[No Nv M indication pending or the Nv M_WriteAllTimer is expired]

/WriteAllTimer_Stop

EcuM_GoDown

[NO Wakeup was v alid]

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 32
based on template version 4.11.3

> Configuration I-PDU groups switching of CAN, ETH, LIN, FR and J1939 as long as
the I-PDUs belong to only one channel.

 In case the I-PDU Group has I-PDUs from different channels, it will be listed
as “Not available” and the configuration has to be realized manually.

> Reinitialization of transmission (TX) and reception (RX) I-PDUs is possible.

 In case of CAN, the reinitialization will only be performed in the Bus State
transition from NO_COM to FULL _COM, in case of BUS_OFF or SILENT no
reinitialization will be performed.

> Enabling and disabling of the NM for CAN, ETH and FlexRay bus, if NM is present
in that channel.

> Consideration of the DCM Modes when switching I-PDU Groups that belong to
CAN, ETH or to FlexRay bus.

> Consideration of selected Nm States when switching TX I-PDU Groups that belong
to a CAN bus.

> Configuration of Partial Networking (PNC) is supported for CAN, ETH and FlexRay
bus.

 If a I-PDU Group can be assigned to a PNC, the I-PDU Group is listed as a
sub feature of the corresponding PNC and it is switched on or off depending
on the PNC Status.

 Consider that the PCN can only be determined if there are PNC-Mapping
entries in the System-Description.

> Configuration of the J1939 module.

 Standard rules will be configured which consider the state of the J1939Nm
for the rule condition. As action lists the states of the modules J1939Dcm and
J1939Rm are set.

 The I-PDU Groups which contains only I-PDUs of the same Node will be
switched on or off depending on the Node status.

 The I-PDU Groups which are determined as broadcast groups will be
switched on or off depending on the Dcm broadcast status.

 Enabling and disabling of Routing-Pathes in PduR depending on the channel
and node state.

> Switching of LIN I-PDU groups.

 The I-PDU Groups which contains only I-PDUs of the same Schedule will be
switched on or off depending on the schedule status.

 Setting a start schedule table.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 33
based on template version 4.11.3

4.3.4 Service Discovery Control

The BswM is able to create the necessary ports to control the Service Discovery by
application.

The auto configuration, which is only available if the Sd module is in the current
configuration, supports the following features:

> Creation of a BswMSwitchPort (P- Port) for each selected SdClientService,
SdEventHandler or SdConsumedEventGroup to provide its state to the application.

> Creation of a BswMSwcModeRequest (R-Port) for each selected SdClientService,
SdServerService or SdConsumedEventGroup to catch the request from application
and forward it to the Sd.

4.4 Critical Sections

The BswM has code sections which must not be interrupted by incoming mode requests.
Therefore the BswM uses one exclusive area which requires a global interrupt lock:

BSWM_EXCLUSIVE_AREA_0

The main functions of the BSW modules that use BswM to provide mode indications
should not interrupt each other.

4.5 Cyclic Task

The BswM has one cyclic main function BswM_MainFunction() which must be called

cyclically if either a deferred mode request port exists, a timer is used or a RTE mode
switch action is configured. The cyclic time is up to the user but must be considered for
deferred mode handling.

4.6 NvM – BswM configuration

When configuring NvM request ports in BswM it is necessary that the general configuration
of the NvM has the necessary boxes checked.

In NvMCommon check the box: “Multiblock Job status Information”

In NVMConfigBlock check the box “Block status information”

Note
Refer to [6] for details about exclusive areas.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 34
based on template version 4.11.3

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the BswM are described in this chapter.

Type Name C-Type Description Value Range

BswM_ConfigType struct

Used for the pointers of
post-build configurations
during the initialization of
the BswM.

In pre-compile, it is not
used.

BswM_ModeType uint16 Data type that identifies
the modes that can be
requested by BswM
Users

0 … 65535

Used if the total number of
modes is greater than 255.

BswM_UserType uint16 Data type that identifies a
BswM User that makes
mode requests to the
BswM.

0 … 65535

Used if the total number of
users is greater than 255.

BswM_HandleType uint8 / uint16 Data type which is used
for action list and rule IDs.

0 … 65535

Depends on number of action
lists and rules.

Table 5-1 Type definitions

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 35
based on template version 4.11.3

5.2 Services Provided by BswM

5.2.1 BswM_InitMemory

Prototype

void BswM_InitMemory (void)

Parameter

None -

Return code

void -

Functional Description

Initializes the BSW Mode Manager module variables in case an initializing startup code is not used. This
function sets the BswM into an uninitialized state.

Particularities and Limitations

> If this function is used it shall be called before any other BSWM function after startup.

> This function is synchronous.

> This function is non-reentrant.

Call Context

> This function can be called from task context.

Table 5-2 BswM_InitMemory

5.2.2 BswM_Init

Prototype

void BswM_Init (const BswM_ConfigType *ConfigPtr)

Parameter

ConfigPtr Pointer to post-build configuration data. For the pre-compile case a NULL
pointer shall be used.

Return code

void -

Functional Description

Initializes the BSW Mode Manager.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

Call Context

> This function can be called from task context.

Table 5-3 BswM_Init

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 36
based on template version 4.11.3

5.2.3 BswM_Deinit

Prototype

void BswM_Deinit (void)

Parameter

None -

Return code

void -

Functional Description

Deinitializes the BSW Mode Manager. All pending requests are cleared and no further mode requests are
accepted by the BswM. This state can only be left by calling the function BswM_Init().

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

Call Context

> This function can be called from task context.

Table 5-4 BswM_Deinit

5.2.4 BswM_GetVersionInfo

Prototype

void BswM_GetVersionInfo (Std_VersionInfoType *VersionInfo)

Parameter

VersionInfo Pointer to address where the version information shall be copied to.

Return code

void None

Functional Description

Returns the version information of this module.

The versions are BCD-coded.

Particularities and Limitations

> The caller must ensure to allocate a variable of the type Std_VersionInfoType before the function call.

> This function is synchronous.

> This function is reentrant.

Call Context

> This function can be called from task and interrupt context.

Table 5-5 BswM_GetVersionInfo

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 37
based on template version 4.11.3

5.2.5 BswM_RequestMode

Prototype

void BswM_RequestMode (BswM_UserType requesting_user,

 BswM_ModeType requested_mode)

Parameter

requesting_user The user that requests the mode.

requested_mode The requested mode.

Return code

void -

Functional Description

Generic function call to request modes. This function shall only be used by other BSW modules that do not
have a specific mode request interface and/or for generic mode requests.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different users.

> This function is only allowed to be used by applications for generic mode requests. Otherwise,
applications must not use this function.

Call Context

> This function can be called from task and interrupt context.

Table 5-6 BswM_RequestMode

5.2.6 BswM_ComM_CurrentMode

Prototype

void BswM_ComM_CurrentMode (NetworkHandleType Network,

 ComM_ModeType RequestedMode)

Parameter

Network The ComM communication channel that the indicated state corresponds to.

RequestedMode The current state of the ComM communication channel

Return code

void -

Functional Description

Function called by ComM to indicate the current communication mode of a ComM channel.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> Must only be called by the ComM.

Call Context

> This function can be called from task and interrupt context.

Table 5-7 BswM_ComM_CurrentMode

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 38
based on template version 4.11.3

5.2.7 BswM_ComM_CurrentPNCMode

Prototype

void BswM_ComM_CurrentPNCMode (PNCHandleType PNC,

 ComM_PncModeType RequestedMode)

Parameter

PNC The handle of the PNC for which the current state is reported.

RequestedMode The current mode of the PNC.

Return code

void -

Functional Description

Function called by ComM to indicate the current mode of the PNC.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different PNCs.

> Must only be called by the ComM.

Call Context

> This function can be called from task and interrupt context.

Table 5-8 BswM_ComM_CurrentPNCMode

5.2.8 BswM_ComM_InitiateReset

Prototype

void BswM_ComM_InitiateReset (void)

Parameter

void -

Return code

void -

Functional Description

Function called by ComM to request a ECU reset.

Particularities and Limitations

> This function is synchronous.

> Must only be called by the ComM.

Call Context

> This function can be called from task and interrupt context.

Table 5-9 BswM_ComM_InitiateReset

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 39
based on template version 4.11.3

5.2.9 BswM_Dcm_ApplicationUpdated

Prototype

void BswM_Dcm_ApplicationUpdated (void)

Parameter

None -

Return code

void -

Functional Description

Function called by DCM to inform the BswM that the application has being updated.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant.

> Must only be called by the Dcm.

Call Context

> This function can be called from task and interrupt context.

Table 5-10 BswM_Dcm_ApplicationUpdated

5.2.10 BswM_Dcm_CommunicationMode_CurrentState

Prototype

void BswM_Dcm_CommunicationMode_CurrentState

(NetworkHandleType Network, Dcm_CommunicationModeType RequestedMode)

Parameter

Network The communication channel that the diagnostic mode corresponds to.

RequestedMode The requested diagnostic communication mode.

Return code

void -

Functional Description

Function called by DCM to inform the BswM about the current state of the communication mode.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> Must only be called by the Dcm.

Call Context

> This function can be called from task and interrupt context.

Table 5-11 BswM_Dcm_CommunicationMode_CurrentState

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 40
based on template version 4.11.3

5.2.11 BswM_CanSM_CurrentState

Prototype

void BswM_CanSM_CurrentState (NetworkHandleType Network,

 CanSM_BswMCurrentStateType CurrentState)

Parameter

Network The CAN channel that the indicated state corresponds to.

CurrentState The current state of the CAN channel.

Return code

void -

Functional Description

Function called by CanSM to indicate its current state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> Must only be called by the CanSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-12 BswM_CanSM_CurrentState

5.2.12 BswM_EthIf_PortGroupLinkStateChg

Prototype

void BswM_EthIf_PortGroupLinkStateChg (EthIf_SwitchPortGroupIdxType

PortGroupIdx,

EthTrcv_LinkStateType PortGroupState)

Parameter

PortGroupIdx The port group index in the context of the Ethernet Interface.

PortGroupState The current state of the port group.

Return code

void -

Functional Description

Function called by EthIf to indicate the link state change of a certain ethernet switch port group.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different ethernet port groups.

> Must only be called by the EthIf.

Call Context

> This function can be called from task and interrupt context.

Table 5-13 BswM_EthIf_PortGroupLinkStateChg

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 41
based on template version 4.11.3

5.2.13 BswM_EthSM_CurrentState

Prototype

void BswM_EthSM_CurrentState (NetworkHandleType Network,

 EthSM_NetworkModeStateType CurrentState)

Parameter

Network The Ethernet channel that the indicated state corresponds to.

CurrentState The current state of the Ethernet channel.

Return code

void -

Functional Description

Function called by EthSM to indicate its current state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> Must only be called by the EthSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-14 BswM_EthSM_CurrentState

5.2.14 BswM_FrSM_CurrentState

Prototype

void BswM_FrSM_CurrentState (NetworkHandleType Network,

 FrSM_BswM_StateType CurrentState)

Parameter

Network The FlexRay cluster that the indicated state corresponds to.

CurrentState The current state of the FlexRay cluster.

Return code

void -

Functional Description

Function called by FrSM to indicate its current state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by the FrSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-15 BswM_FrSM_CurrentState

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 42
based on template version 4.11.3

5.2.15 BswM_J1939DcmBroadcastStatus

Prototype

void BswM_J1939DcmBroadcastStatus (uint16 NetworkMask)

Parameter

NetworkMask Mask containing one bit for each available network. 1:Network enabled
0: Network disabled.

Return code

void -

Functional Description

This API tells the BswM the desired communication status of the available networks. The status will
typically be activated via COM I-PDU group switches.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function must only be called by the J1939Dcm.

Call Context

> This function can be called from task and interrupt context.

Table 5-16 BswM_J1939DcmBroadcastStatus

5.2.16 BswM_J1939Nm_StateChangeNotification

Prototype

void BswM_J1939Nm_StateChangeNotification (NetworkHandleType Network,

 uint8 Node, Nm_StateType NmState)

Parameter

Network Identification of the J1939 channel.

Node Identification of the J1939 node

NmState Current (new) state of the J1939 node

Return code

void -

Functional Description

Notification of current J1939Nm state after state changes.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different combinations of network and node.

> This function must only be called by the J1939Nm.

Call Context

> This function can be called from task and interrupt context.

Table 5-17 BswM_J1939Nm_StateChangeNotification

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 43
based on template version 4.11.3

5.2.17 BswM_LinSM_CurrentState

Prototype

void BswM_LinSM_CurrentState (NetworkHandleType Network,

 LinSM_ModeType CurrentState)

Parameter

Network The LIN channel that the indicated state corresponds to.

CurrentState The current state of the LIN channel.

Return code

void -

Functional Description

Function called by LinSM to indicate its current state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by the LinSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-18 BswM_LinSM_CurrentState

5.2.18 BswM_LinSM_CurrentSchedule

Prototype

void BswM_LinSM_CurrentSchedule (NetworkHandleType Network,

 LinIf_SchHandleType CurrentSchedule)

Parameter

Network The LIN channel that the indicated schedule corresponds to.

CurrentSchedule The currently active schedule table of the LIN channel.

Return code

void -

Functional Description

Function called by LinSM to indicate its current schedule.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by the LinSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-19 BswM_LinSM_CurrentSchedule

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 44
based on template version 4.11.3

5.2.19 BswM_LinSM_ScheduleEndNotification

Prototype

void BswM_LinSM_ScheduleEndNotification (NetworkHandleType Network,

 LinIf_SchHandleType Schedule)

Parameter

Network The LIN channel that the indicated schedule corresponds to.

Schedule The schedule table of the LIN channel wich has ended.

Return code

void -

Functional Description

Function called by LinSM to notify the end of a schedule.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by the LinSM.

Call Context

> This function can be called from task and interrupt context.

Table 5-20 BswM_LinSM_ScheduleEndNotification

5.2.20 BswM_LinTp_RequestMode

Prototype

void BswM_LinTp_RequestMode (NetworkHandleType Network,

 LinTp_Mode LinTpRequestedMode)

Parameter

Network The LIN channel that the LIN TP mode request corresponds to.

LinTpRequestedMode The requested LIN TP mode.

Return code

void -

Functional Description

Function called by LinTp to request a mode for the corresponding LIN channel. The LinTp_Mode mainly
correlates to the LIN schedule table that should be used.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by the LinTp.

Call Context

> This function can be called from task and interrupt context.

Table 5-21 BswM_LinTp_RequestMode

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 45
based on template version 4.11.3

5.2.21 BswM_EcuM_CurrentState

Prototype

void BswM_EcuM_CurrentState (EcuM_StateType CurrentState)

Parameter

CurrentState The requested ECU Operation Mode

Return code

void -

Functional Description

Function called by EcuM to indicate the current ECU Operation Mode.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> Must only be called by the EcuM.

Call Context

> This function can be called from task and interrupt context.

Table 5-22 BswM_EcuM_CurrentState

5.2.22 BswM_EcuM_CurrentWakeup

Prototype

void BswM_EcuM_CurrentWakeup (EcuM_WakeupSourceType source,

 EcuM_WakeupStateType state)

Parameter

source Wakeup source(s) that changed state.

state The new state of the wakeup source(s).

Return code

void -

Functional Description

Function called by EcuM to indicate the current state of a wakeup source.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different sources.

> Must only be called by the EcuM.

Call Context

> This function can be called from task and interrupt context.

Table 5-23 BswM_EcuM_CurrentWakeup

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 46
based on template version 4.11.3

5.2.23 BswM_EcuM_RequestedState

Prototype

void BswM_ EcuM_RequestedState (EcuM_StateType State,
 EcuM_RunStatusType CurrentStatus)

Parameter

State The requested state by EcuMFlex.

CurrentStatus The new result of the Run Request Protocol.

Return code

void -

Functional Description

Function called by EcuM to indicate the request of a run request protocol state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different states.

> Must only be called by the EcuM.

Call Context

> This function can be called from task and interrupt context.

Table 5-24 BswM_EcuM_RequestedState

5.2.24 BswM_MainFunction

Prototype

void BswM_MainFunction (void)

Parameter

None -

Return code

void -

Functional Description

Main function of the BswM.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function must be called with the configured cycle time by the SchM [6].

Call Context

> This function can be called from task context.

Table 5-25 BswM_MainFunction

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 47
based on template version 4.11.3

5.2.25 BswM_NvM_CurrentBlockMode

Prototype

void BswM_NvM_CurrentBlockMode(NvM_BlockIdType Block,

 NvM_RequestResultType CurrentBlockMode)

Parameter

Block The Block that the new NvM Mode corresponds to.

CurrentBlockMode The current block mode of the NvM block.

Return code

void -

Functional Description

Function called by NvM to indicate the current block mode of an NvM block.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different blocks.

> This function must only be called by NvM.

Call Context

> This function can be called from task and interrupt context.

Table 5-26 BswM_NvM_CurrentBlockMode

5.2.26 BswM_NvM_CurrentJobMode

Prototype

void BswM_NvM_CurrentJobMode(uint8 ServiceId,

 NvM_RequestResultType CurrentJobMode)

Parameter

ServiceId Indicates whether the callback refers to multi block services

NvM_ReadAll or NvM_WriteAll.

CurrentJobMode Current state of the multi block job indicated by parameter

ServiceId.

Return code

void -

Functional Description

Function called by NvM to inform the BswM about the current state of a multi block job.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different services.

> This function must only be called by NvM.

Call Context

> This function can be called from task and interrupt context.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 48
based on template version 4.11.3

Table 5-27 BswM_NvM_CurrentJobMode

5.2.27 BswM_PduR_RxIndication

Prototype

void BswM_PduR_RxIndication(PduIdType RxPduId,

 const PduInfoType *PduInfoPtr)

Parameter

RxPduId The PduR ID of received PDU.

PduInfoPtr Pointer which stores all informations about the PDU. Not used by current
implementation.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about a received PDU.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for a RxPduId which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Table 5-28 BswM_PduR_RxIndication

5.2.28 BswM_PduR_TpRxIndication

Prototype

void BswM_PduR_TpRxIndication(PduIdType id, Std_ReturnType result)

Parameter

id The PduR ID of received PDU.

result Result of the reception. Not used by current implementation.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about a received TP PDU.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for an id which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Table 5-29 BswM_PduR_TpRxIndication

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 49
based on template version 4.11.3

5.2.29 BswM_PduR_TpStartOfReception

Prototype

void BswM_PduR_TpStartOfReception (PduIdType id, PduInfoType *info,

 PduLengthType TpSduLength,PduLengthType *bufferSizePtr)

Parameter

id The PduR ID of received PDU.

info Pointer which stores all informations about the PDU. Not used by current
implementation.

TpSduLength Total length of the I-PDU to be received. Not used by current implementation.

bufferSizePtr Pointer to the receive buffer. Not used by current implementation.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about the start of TP PDU Reception.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for an id which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Table 5-30 BswM_PduR_TpStartOfReception

5.2.30 BswM_PduR_TpTxConfirmation

Prototype

void BswM_PduR_TpTxConfirmation(PduIdType id, Std_ReturnType result)

Parameter

id The PduR ID of sent TP PDU.

result Result of the transmission. Not used by current implementation.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about a sent TP PDU.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for an id which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 50
based on template version 4.11.3

Table 5-31 BswM_PduR_TpTxConfirmation

5.2.31 BswM_PduR_Transmit

Prototype

void BswM_PduR_Transmit(PduIdType id, const PduInfoType *PduInfoPtr)

Parameter

id The PduR ID of PDU to transmit.

PduInfoPtr Pointer which stores all informations about the PDU. Not used by current
implementation.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about a PDU Transmit Event

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for an id which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Table 5-32 BswM_PduR_Transmit

5.2.32 BswM_PduR_TxConfirmation

Prototype

void BswM_PduR_TxConfirmation(PduIdType TxPduId)

Parameter

TxPduId The PduR ID of sent PDU.

Return code

void -

Functional Description

Function called by PduR to inform the BswM about a sent PDU.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for a TxPduId which does not belong to the same configured port.

> This function must only be called by the PduR.

Call Context

> This function can be called from task and interrupt context.

Table 5-33 BswM_PduR_TxConfirmation

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 51
based on template version 4.11.3

5.2.33 BswM_Sd_EventHandlerCurrentState

Prototype

void BswM_Sd_EventHandlerCurrentState(uint16 SdEventHandlerHandleId,

 Sd_EventHandlerCurrentStateType EventHandlerStatus)

Parameter

SdEventHandlerHandleId HandleId to identify the EventHandler

EventHandlerStatus Status of the EventHandler

Return code

void -

Functional Description

Function called by Service Discovery to indicate current status of the EventHandler
(requested/released).

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different handles.

> This function must only be called by Sd.

Call Context

> This function can be called from task and interrupt context.

Table 5-34 BswM_Sd_EventHandlerCurrentState

5.2.34 BswM_Sd_ClientServiceCurrentState

Prototype

void BswM_Sd_ClientServiceCurrentState(uint16 SdClientServiceHandleId,

 Sd_ClientServiceCurrentStateType CurrentClientState)

Parameter

SdClientServiceHandleId HandleId to identify the ClientService.

CurrentClientState Current state of the ClientService.

Return code

void -

Functional Description

Function called by Service Discovery to indicate current state of the Client Service (available/down).

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different handles.

> This function must only be called by Sd.

Call Context

> This function can be called from task and interrupt context.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 52
based on template version 4.11.3

Table 5-35 BswM_Sd_ClientServiceCurrentState

5.2.35 BswM_Sd_ConsumedEventGroupCurrentState

Prototype

void BswM_Sd_ConsumedEventGroupCurrentState(

 uint16 SdConsumedEventGroupHandleId,

 Sd_ConsumedEventGroupCurrentStateType ConsumedEventGroupState)

Parameter

SdConsumedEventGroupHandleId HandleId to identify the Consumed Eventgroup.

ConsumedEventGroupState Status of the Consumed Eventgroup.

Return code

void -

Functional Description

Function called by Service Discovery to indicate current status of the Consumed Eventgroup
(available/down).

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different handles.

> This function must only be called by Sd.

Call Context

> This function can be called from task and interrupt context.

Table 5-36 BswM_Sd_ConsumedEventGroupCurrentState

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 53
based on template version 4.11.3

5.2.36 BswM_Nm_StateChangeNotification

Prototype

void BswM_Nm_StateChangeNotification(NetworkHandleType nmNetworkHandle,

 Nm_StateType nmPreviousState,

 Nm_StateType nmCurrentState)

Parameter

nmNetworkHandle Identification of the NM-channel

nmPreviousState Previous state of the NM-channel (Parameter not used)

nmCurrentState Current (new) state of the NM-channel

Return code

void -

Functional Description

Function called by Nm to inform the BswM about its current state.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different networks.

> This function must only be called by Nm.

Call Context

> This function can be called from task and interrupt context.

Table 5-37 BswM_Nm_StateChangeNotification

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 54
based on template version 4.11.3

5.2.37 BswM_RuleControl

Prototype

void BswM_RuleControl (BswM_HandleType ruleId, uint8 state)

Parameter

ruleId The external ID of the rule which shall be changed. Symbolic Name Define
shall be used.

state The new rule state. Following values are valid:

Disable Rule: BSWM_DEACTIVATED

Enable Rule: BSWM_UNDEFINED, BSWM_TRUE or BSWM_FALSE

Return code

void -

Functional Description

Sets a new state to a given rule whereby rule can be enabled or disabled.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant for different rules.

> This function should be called by an action of BswM.

Call Context

> This function can be called from task and interrupt context.

Table 5-38 BswM_RuleControl

5.2.38 BswM_WdgM_RequestPartitionReset

Prototype

void BswM_WdgM_RequestPartitionReset (ApplicationType Application)

Parameter

Application The Block that the new NvM Mode corresponds to.

Return code

void -

Functional Description

Function called by WdgM to request a reset of the corresponding partition of given application.

Particularities and Limitations

> This function is synchronous.

> This function is reentrant.

> This function must only be called by WdgM.

Call Context

> This function can be called from task and interrupt context.

Table 5-39 BswM_WdgM_RequestPartitionReset

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 55
based on template version 4.11.3

5.3 Services Used by BswM

In the following table services provided by other components, which are used by the BswM
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

ComM ComM_CommunicationAllowed

ComM ComM_LimitChannelToNoComMode

ComM ComM_RequestComMode

Com Com_IpduGroupControl

Com Com_ReceptionDMControl

Com Com_SetIpduGroup

Com Com_SwitchIpduTxMode

Com Com_TriggerIPDUSend

DEM Dem_Init

DEM Dem_Shutdown

DET Det_ReportError

EcuM EcuM_GoDown

EcuM EcuM_GoHalt

EcuM EcuM_GoPoll

EcuM EcuM_SelectShutdownTarget

EcuM EcuM_SetState

EcuM EcuM_ClearValidatedWakeupEvent

J1939Dcm J1939Dcm_SetState

J1939Rm J1939Rm_SetState

LinSM LinSM_ScheduleRequest

Nm Nm_DisableCommunication

Nm Nm_EnableCommunication

NvM NvM_WriteAll

NvM NvM_CancelWriteAll

PduR PduR_EnableRouting

PduR PduR_DisableRouting

RTE Rte mode switch. The API name is configurable.

SchM SchM_Enter_BswM_BSWM_EXCLUSIVE_AREA_0

SchM SchM_Exit_BswM_BSWM_EXCLUSIVE_AREA_0

Sd Sd_ConsumedEventGroupSetState

Sd Sd_ClientServiceSetState

Sd Sd_ServerServiceSetState

Table 5-40 Services used by the BswM

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 56
based on template version 4.11.3

5.4 Callback Functions

There are no callback functions in the BswM.

5.5 Configurable Interfaces

5.5.1 Callout Functions

A User Callout Function can be used as an item of an Action List. If the declaration of the
callout function already exists, the integrator must provide an extern declaration of the
function via a user include file.

Figure 5-1 Existing callout functions

If the BswM is to generate the user callout prototype: the checkbox “Create Callout” should
be set and the parameter prototypes should be defined in the given field as list separated
with semicolons. The function prototype is generated in “BswM_Callout_Stubs.c”

Figure 5-2 Generate prototype of callout functions

The BswM callout function declaration is described in the following table:

Prototype

void [Callout Function Name] (<parameters>)

Parameter

- -

Return code

- -

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 57
based on template version 4.11.3

Functional Description

If a User Callout is configured as an item of an Action List the BswM calls this function in the context of the
appropriate rule.

Particularities and Limitations

-

Call context

> Interrupt or task context, depends on the mode/rule configuration in which the callout is used.

Table 5-41 User Callout

5.6 Service Ports

The BswM has a service component which depends on the following containers:

> BswMSwcModeRequest

> BswMSwcModeNotification

> BswMSwitchPort

> BswMModeDeclaration

These containers are described in the following chapters.

5.6.1 BswMSwcModeRequest (R-Port)

BswM is able to receive modes by Sender-Receiver mode ports (Require Port). This can
be done by using BswMSwcModeRequest.

The BswMSwcModeRequest has a reference to a Mode-Declaration-Group-Prototype and
an Instance-Reference to a VARIABLE-DATA-PROTOTYPE. If the reference to the Mode-
Declaration-Group-Prototype is configured, it is not possible to determine a relationship to
a Sender-Receiver-Interface. Therefore, it is necessary to create a new Sender-Receiver-
Interface. The given BswMModeRequestDataElementPrototypeName will be used as
DataElement name.

Sender-Receiver-Interfaces are named

> BswM_SRI_{ Mode-Switch-Interface Name}_{ Mode-Declaration-Group-Prototype
Name}

If the Instance-Reference to a VARIABLE-DATA-PROTOTYPE is used, BswM reuses the
existing Sender-Receiver interface.

In both cases, created Ports are named:

> Receive_{Name of BswMSwcModeRequest}

5.6.2 BswMSwcModeNotification (R- Port)

BswM is able to receive modes by Mode-Switch mode ports (Require Port). This can be
done by using BswMSwcModeNotification.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 58
based on template version 4.11.3

The BswM has a reference to a Mode-Declaration-Group-Prototype. From this prototype it
is possible to determine a Mode-Switch-Interface which will be reused for the created port.

Created ports are named:

> Notification_{ BswMSwcModeNotification Name }

5.6.3 BswMSwitchPort (P- Port)

BswM is able to switch modes by Mode-Switch mode ports (Provide Port). This can be
done by using a BswMSwitchPort. The BswM has a reference to a Mode Declaration
Group Prototype. From this prototype it is possible to determine a Mode-Switch-Interface
which will be reused for the created port.

Created ports are named:

> Switch_{ BswMSwitchPort Name }

5.6.4 BswMRteModeRequestPort (P-Ports)

BswM is able to send modes by Sender-Receiver mode ports (Require Port). This can be
done by using a port of type BswMRteModeRequestPort in a BswMRteModeRequest
action. The BswM uses an Instance-Reference to a VARIABLE-DATA-PROTOTYPE,
which represents the DataElement of an already existing Sender-Receiver-Interface. This
interface is used by the created P-Port.

Created ports are named:

> Provide_{ BswMRteModeRequestPort Name }

5.6.5 BswMModeDeclaration

To facilitate SWC ModeRequest Handling, the BswM is able to provide Mode-Declarations
by itself. To use this, a BswMModeDeclaration container with corresponding modes can be
created. The BswM SWC Validation creates automatically a Mode-Declaration, the
corresponding Implementation-Type and a Mode-Switch-Interface with a Mode-
Declaration-Group-Prototype.

The Mode-Switch-Interface is named:

> BswM_MSI_{Name of BswMModeDeclaration}

The corresponding Mode-Declaration-Group-Prototype is named:

> BswM_MDGP_{Name of BswmModeDeclaration}

The Implementation-Type is named:

> BswM_{Name of BswMModeDeclaration}

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 59
based on template version 4.11.3

6 AUTOSAR Standard Compliance

6.1 Deviations

6.1.1 Inclusion of the header Com_Types.h

A non-AUTOSAR header is used within the code. The source file BswM_Cfg.h includes
Com_Types.h. This header has been included because it defines the type
Com_IpduGroupIdType.

In case the project in use does not contain a MICROSAR Com module, it is necessary to
add a header file with the name “Com_Types.h”, which defines the type
“Com_IpduGroupIdType”.

6.1.2 Port Names

Notice that in the BswM AUTOSAR SWS the name of the ports is specified as:

modeNotificationPort_{Name}

modeRequestPort_{Name}

modeSwitchPort_{Name}

However, the structure of the name port is as follows:

Notification_{Name}

Request_{Name}

Switch_{Name}

Furthermore, BswMRteModeRequestPort are named:

Provide_{Name}

6.2 Additions/ Extensions

6.2.1 Optional Interfaces

The BswM supports the following “Optional Interfaces” defined in [1] [BswM0008]:

> ComM_LimitChannelToNoComMode

> ComM_RequestComMode

> Com_ClearIpduGroupVector

> Com_IpduGroupControl

> Com_ReceptionDMControl

> Com_SetIpduGroup

> Com_IpduGroupStart

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 60
based on template version 4.11.3

> Com_IpduGroupStop

> Com_EnableReceptionDM

> Com_DisableReceptionDM

> Com_SwitchIpduTxMode

> Det_ReportError

> EcuM_GoDown

> EcuM_GoHall

> EcuM_GoPoll

> EcuM_SelectShutdownTarget

> J1939Dcm_SetState

> J1939Rm_SetState

> LinSM_ScheduleRequest

> Nm_DisableCommunication

> Nm_EnableCommunication

> Sd_ClientServiceSetState

> Sd_ConsumedEventGroupSetState

> Sd_ServerServiceSetState

6.2.2 Nm Indication

BswM supports the NM indication by using the API “BswM_Nm_StateChangeNotification”.
The mode request source is of type “BswMNMIndication”. In order to use this feature the
Nm module must be configured as follows:

> NmStateChangeIndEnabled must be set to true

> NmStateChangeIndCallback must be set to “BswM_Nm_StateChangeNotification”

> NmCallbacksPrototypeHeader must be set to “BswM_Nm.h” (or any other header
which includes BswM_Nm.h)

6.2.3 User Condition Functions

A User Condition Function can be used in a Rule Condition. The integrator must provide
an extern declaration of the function via an application header file.

In the same manner, with the request port of type “User Condition”, it is possible to
compare any variable.

The integrator must make sure that the return value of the function is compatible with the
value to compare with.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 61
based on template version 4.11.3

6.2.4 Creation of Mode Declarations

The BswM is able to provide Mode Declarations by itself in order to facilitate the SWC
Mode Request Handling. For further information see 5.6.5.

6.2.5 Timers

A Timer offers the possibility to execute action time dependently. Therefore, a Mode
Request Port of type BswMTimer must be created. This port represents a timer which can
be started and stopped by a BswMTimerControl Action. The value for the timer start can
be set in the TimerControlAction.

The timer should be a multiple of the BswMMainFunctionPeriod (timer is decreased in the
MainFunction). In case the timer is not multiple of the main function period, it will be
rounded up. The timer must be used in a condition to trigger the corresponding actions.
The state of a timer can be STARTED, STOPPED or EXPIRED.

6.2.6 Generic Symbolic Values

Generic ports offer the possibility to define Symbolic Values. In order to realize this, create
a BswMGenericRequestMode inside the BswMGenericRequest container. These Symbolic
Values are necessary for the Generic Actions (see chapter 6.2.7).

6.2.7 Generic Actions

BswM supports setting a generic mode by an action. In order to configure it, a
BswMGenericModeSwitch action must be created. Here, the generic mode and the
corresponding value can be chosen.

6.2.8 Immediate request in BswM_Init()

All configured immediate request are processed once within the function BswM_Init, in
order to arbitrate the initial states. This behavior can be changed for each port in the
configuration.

6.2.9 Mode Handling Forced Immediate

The additional mode handling type “Forced Immediate” allows mode requests to be
executed immediately interrupting other requests. For more information see chapter 3.4.2.

6.2.10 Rule Control

If Rule Control is used, rules can be activated or deactivated during runtime. Furthermore,

rules can be deactivated in configuration by using BSWM_DEACTIVATED as initialization

value. For further information see 5.2.37.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 62
based on template version 4.11.3

6.2.11 Support of Com ASR3 IPduGroup APIs

If Microsar Com is used and Com is configured to use ASR3 IPduGroup APIs, BswM will
use the following APIs in its IPduGroup actions instead of the ASR4 APIs:

> Com_IpduGroupStart

> Com_IpduGroupStop

> Com_EnableReceptionDM

> Com_DisableReceptionDM

For further information see [8].

6.3 Limitations

6.3.1 Configurable interfaces that are not supported

6.3.1.1 EcuM Indication for EcuM Flex

The ModeRequestPort of type EcuMIndication is not supported for MICROSAR EcuM Flex
without enabled ModeHandling. This is due to the fact, that BswM calls most of EcuM
Function itself. So, the notifications from EcuM to BswM will be done in the context of the
BswM and this leads to a queued processing of mode changes.

If EcuM notifies more than one mode change, previously notified mode changes get lost
and Rules which should be triggered to this mode will be skipped. As this is not the desired
behavior, the EcuM Indication is no longer supported during configuration of the module.

6.3.2 Optional Interfaces

Within the predefined actions, the BswM does not support the following “Optional
Interfaces” defined by [1] [BswM0008]:

> ComM_GetCurrentComMode

> ComM_GetInhibitionStatus

> ComM_GetMaxComMode

> ComM_GetRequestedComMode

> ComM_GetStatus

> ComM_GetVersionInfo

> ComM_LimitECUToNoComMode

> ComM_MainFunction_<Channel_Id>

> ComM_PreventWakeUp

> ComM_ReadInhibitCounter

> ComM_ResetInhibitCounter

> ComM_SetECUGroupClassification

> ControlIdle

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 63
based on template version 4.11.3

6.3.3 Configuration Variants

Configuration variant Link-Time is not supported.

6.3.4 BSW Modules

Only these BSW Modules are supported for mode indications and arbitrations: CanSM,
ComM, Dcm, EcuM, EthIf, EthSm, FrSM, J1939Dcm, J1939Nm, LinSM, LinTp, Nm, NvM ,
Sd, WdgM and RTE.

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 64
based on template version 4.11.3

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci Configurator Generation tool for MICROSAR components

7.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CAN Controller Area Network

Com Communication (AUTOSAR BSW)

ComM Communication Manager

CanSM CAN State Manager

DCM Diagnostic Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

ECUM ECU Manager

EthIf Ethernet Interface

EthSM Ethernet State Management

Fr FlexRay

FrSM FlexRay State Manager

HIS Hersteller Initiative Software

I-PDU Interaction Layer Protocol Data Unit

ISR Interrupt Service Routine

J1939Dcm J1939 Diagnostic Communication Manager

J1939Nm J1939 Network Manager

J1939Rm J1939 Request Manager

LIN Local Interconnect Network

LinIf LIN Interface

LinSM LIN State Manager

LinTp LIN Transport Protocol

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

Nm Network Manager

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 65
based on template version 4.11.3

NvM Non-Volatile RAM Manager

PduR Protocol Data Unit Router

PNC Partial Networking Cluster

RAM Random Access Memory

RTE Runtime Environment

Sd Service Discovery

SchM Schedule Manager

SWC Software Component

SWS Software Specification

Table 7-1 Abbreviations

Technical Reference Basic Software Mode Manager

© 2016 Vector Informatik GmbH Version 7.00.00 66
based on template version 4.11.3

8 Contact

Visit our website for more information on

 News

 Products

 Demo Software

 Support

 Training data

 Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions

	3.2 Initialization
	3.3 States
	3.4 Mode Management
	3.4.1 Immediate Mode Handling
	3.4.2 Forced Immediate Mode Handling
	3.4.3 Deferred Mode Handling

	3.5 Execution of Action Lists
	3.6 Error Handling
	3.6.1 Development Error Reporting
	3.6.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Initialization of Other Software Modules
	4.2.1 Using the Basic Editor
	4.2.2 Using the Comfort View

	4.3 Support of Preconfigured State Machines (Auto-Configuration)
	4.3.1 Initialization
	4.3.2 ECU State Handling
	4.3.3 Communication Control
	4.3.4 Service Discovery Control

	4.4 Critical Sections
	4.5 Cyclic Task
	4.6 NvM – BswM configuration

	5 API Description
	5.1 Type Definitions
	5.2 Services Provided by BswM
	5.2.1 BswM_InitMemory
	5.2.2 BswM_Init
	5.2.3 BswM_Deinit
	5.2.4 BswM_GetVersionInfo
	5.2.5 BswM_RequestMode
	5.2.6 BswM_ComM_CurrentMode
	1.1.1
	1.1.1
	5.2.7 BswM_ComM_CurrentPNCMode
	5.2.8 BswM_ComM_InitiateReset
	5.2.9 BswM_Dcm_ApplicationUpdated
	5.2.10 BswM_Dcm_CommunicationMode_CurrentState
	5.2.11 BswM_CanSM_CurrentState
	5.2.12 BswM_EthIf_PortGroupLinkStateChg
	5.2.13 BswM_EthSM_CurrentState
	5.2.14 BswM_FrSM_CurrentState
	5.2.15 BswM_J1939DcmBroadcastStatus
	5.2.16 BswM_J1939Nm_StateChangeNotification
	5.2.17 BswM_LinSM_CurrentState
	5.2.18 BswM_LinSM_CurrentSchedule
	5.2.19 BswM_LinSM_ScheduleEndNotification
	5.2.20 BswM_LinTp_RequestMode
	5.2.21 BswM_EcuM_CurrentState
	5.2.22 BswM_EcuM_CurrentWakeup
	5.2.23 BswM_EcuM_RequestedState
	5.2.24 BswM_MainFunction
	5.2.25 BswM_NvM_CurrentBlockMode
	5.2.26 BswM_NvM_CurrentJobMode
	5.2.27 BswM_PduR_RxIndication
	5.2.28 BswM_PduR_TpRxIndication
	5.2.29 BswM_PduR_TpStartOfReception
	5.2.30 BswM_PduR_TpTxConfirmation
	5.2.31 BswM_PduR_Transmit
	5.2.32 BswM_PduR_TxConfirmation
	5.2.33 BswM_Sd_EventHandlerCurrentState
	5.2.34 BswM_Sd_ClientServiceCurrentState
	5.2.35 BswM_Sd_ConsumedEventGroupCurrentState
	5.2.36 BswM_Nm_StateChangeNotification
	5.2.37 BswM_RuleControl
	5.2.38 BswM_WdgM_RequestPartitionReset

	5.3 Services Used by BswM
	5.4 Callback Functions
	5.5 Configurable Interfaces
	5.5.1 Callout Functions

	5.6 Service Ports
	5.6.1 BswMSwcModeRequest (R-Port)
	5.6.2 BswMSwcModeNotification (R- Port)
	5.6.3 BswMSwitchPort (P- Port)
	5.6.4 BswMRteModeRequestPort (P-Ports)
	5.6.5 BswMModeDeclaration

	6 AUTOSAR Standard Compliance
	6.1 Deviations
	6.1.1 Inclusion of the header Com_Types.h
	6.1.2 Port Names

	6.2 Additions/ Extensions
	6.2.1 Optional Interfaces
	6.2.2 Nm Indication
	6.2.3 User Condition Functions
	6.2.4 Creation of Mode Declarations
	6.2.5 Timers
	6.2.6 Generic Symbolic Values
	6.2.7 Generic Actions
	6.2.8 Immediate request in BswM_Init()
	6.2.9 Mode Handling Forced Immediate
	6.2.10 Rule Control
	6.2.11 Support of Com ASR3 IPduGroup APIs

	6.3 Limitations
	6.3.1 Configurable interfaces that are not supported
	6.3.1.1 EcuM Indication for EcuM Flex

	6.3.2 Optional Interfaces
	6.3.3 Configuration Variants
	6.3.4 BSW Modules

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

