

MICROSAR CAN Network Management

Technical Reference

Nm_Asr4NmCan

Version 6.02.00

Authors Markus Schuster

Status Released

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 2
based on template version 5.2.0

Document Information

History

Author Date Version Remarks

Markus Schuster 2012-08-08 1.00.00 ESCAN00058396 Creation

Markus Drescher 2013-05-10 1.01.00 ESCAN00063144 Updated Architecture
Overview

ESCAN00064972 Support of Variant Post-
Build-Loadable

ESCAN00065301 Improved send behavior
descriptions in chapter 3.6.3 and
Immediate Nm Transmission feature
descriptions in chapters 3.15 and 3.16

ESCAN00065574 Extended chapter 3.13

ESCAN00067271 Merged chapter
‘AUTOSAR Standard Compliance’ with
chapter 3, removed ‘Compiler Abstraction
and Memory Mapping’ chapter, various
improvements

ESCAN00067277 Adapted chapter 5.3.1.1

ESCAN00067278 Replaced
Nm_PrepareBusSleep by
Nm_PrepareBusSleepMode

Markus Drescher 2013-10-01 2.00.00 ESCAN00067700 Added Runtime
Measurement Support to ‘Features Beyond
the AUTOSAR Standard’

ESCAN00070810 Updated Architecture
Overview

Markus Drescher 2014-02-24 2.01.00 ESCAN00072375 Adapted condition for
usage of CanSM_TxTimeoutException in
chapter 5.4

ESCAN00073874 Updated Architecture
Overview

Markus Schuster 2014-05-12 3.00.00 ESCAN00075248 Add description of
dependency of Bus Load Reduction and
Partial Networking feature on the same
channel in chapter 3.6.4

Markus Schuster 2014-10-09 4.00.00 ESCAN00076763 Added description in
chapter 1, 3.1.2 and 5.3.1.1. Removed
chapter 5.2 ‘Type Definitions’

ESCAN00078817 Added description in
chapter 3.1.1

Markus Schuster 2015-06-03 5.00.00 ESCAN00082408 Updated Table 3-1 and
Table 3-3, Table 3-7

Markus Schuster 2016-03-02 6.00.00 ESCAN00086897 Adapted chapter 3.4

ESCAN00087953 Adapted chapter 3.8

ESCAN00087415 Adapted chapter 3.1.1

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 3
based on template version 5.2.0

Markus Schuster 2016-05-09 6.01.00 ESCAN00089821 Adapted chapter 3.1

ESCAN00090105 Adapted chapter 3.18.3

ESCAN00090927 Added chapter 3.5.2.1

Markus Schuster 2016-11-17 6.02.00 FEATC-58 Adapted chapter 3.11

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SRS_NetworkManagement.pdf 3.0.0

[2] AUTOSAR AUTOSAR_SWS_CANInterface.pdf 5.0.0

[3] AUTOSAR AUTOSAR_SWS_CANNetworkManagement.pdf 3.3.0

[4] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf 4.2.0

[5] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[6] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[7] AUTOSAR AUTOSAR_SWS_RTE.pdf 3.2.0

[8] Vector Technical Reference MICROSAR PDU Router See
delivery

Table 1-1 Reference Documents

Scope of the Document

This technical reference describes the specific use of the CAN Network Management
basic software.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 4
based on template version 5.2.0

Contents

1. Component History .. 10

2. Introduction .. 11

2.1 Naming Conventions .. 11

2.2 Architecture Overview .. 12

2.2.1 Architecture of AUTOSAR Network Management .. 12

3. Functional Description .. 14

3.1 Features ... 14

3.1.1 Deviations Against AUTOSAR ... 15

3.1.1.1 RAM Initialization .. 15

3.1.1.2 Additional Configuration Dependencies .. 15

3.1.1.3 Variant Post-Build ... 15

3.1.2 Additions/ Extensions .. 15

3.1.2.1 Single Channel Optimization .. 16

3.1.2.2 Memory Initialization ... 16

3.1.2.3 Disable Transmission Error Reporting .. 16

3.1.2.4 Calling CanNm_PassiveStartUp in Prepare Bus Sleep 16

3.1.2.5 Additional Development Error Codes .. 16

3.1.2.6 Variable DLC Support ... 16

3.1.2.7 Changeability of Additional Parameters During the Post-Build Phase 17

3.1.3 Limitations ... 17

3.1.3.1 Ranges of Timers ... 17

3.1.3.2 Effects of CanNm_DisableCommunication ... 17

3.1.3.3 CANNM_E_NET_START_IND Development Error 17

3.2 Network Management Mechanism ... 17

3.3 Initialization .. 19

3.4 Passive Mode ... 19

3.5 Operation Modes and States .. 19

3.5.1 Network Mode ... 20

3.5.1.1 Repeat Message State ... 21

3.5.1.2 Normal Operation State .. 21

3.5.1.3 Ready Sleep State ... 21

3.5.2 Prepare Bus-Sleep Mode .. 21

3.5.2.1 Wait Bus Sleep Extensions ... 22

3.5.3 Bus-Sleep Mode .. 23

3.5.4 Wake-up Registration .. 23

3.5.5 User Data Handling ... 23

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 5
based on template version 5.2.0

3.6 Network Management Message Transmission and Reception 24

3.6.1 AUTOSAR CAN Interface.. 24

3.6.2 PDU Message Layout ... 24

3.6.3 Message Transmissions .. 25

3.6.4 Bus Load Reduction .. 26

3.6.5 Support for RX PDUs with Different Lengths ... 26

3.7 Node Detection .. 27

3.8 NM PDU Receive Indication ... 28

3.9 Communication Control .. 28

3.10 Gateway Functionality .. 28

3.10.1 Remote Sleep Indication and Cancellation .. 28

3.10.2 Bus Synchronization ... 29

3.11 Coordinator Synchronization Support ... 29

3.12 Error Handling .. 29

3.12.1 Development Error Detection .. 29

3.12.1.1 Det_ReportError ... 30

3.12.1.2 Parameter Checking ... 31

3.12.2 Production Code Error Reporting .. 32

3.13 Com User Data Support ... 32

3.13.1 Configuration Preconditions in an AUTOSAR ECU Configuration 33

3.14 Active Wake-up Handling ... 34

3.15 Immediate Nm Transmissions .. 34

3.16 Immediate Restart Enabled .. 36

3.17 Car Wake-up .. 37

3.17.1 Rx-Path ... 37

3.17.2 Tx-Path ... 37

3.18 Partial Networking .. 37

3.18.1 Availability of Partial Network Request Information 38

3.18.2 Transmission of the CRI Bit in the NM User Data .. 38

3.18.3 Filter Algorithm for Received NM Messages .. 38

3.18.4 Aggregation of Requested Partial Networks .. 38

3.18.5 Spontaneous Sending of NM Messages.. 39

3.18.5.1 Using Com Transmission on Change Mechanism 39

3.18.5.2 Using NM Request and Immediate Nm Transmission 39

4. Integration .. 40

4.1 Scope of Delivery ... 40

4.1.1 Static Files .. 40

4.1.2 Dynamic Files ... 40

4.2 Include Structure .. 41

4.3 Main Functions ... 42

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 6
based on template version 5.2.0

4.4 Critical Sections ... 42

4.5 Critical Section Codes .. 42

5. API Description .. 44

5.1 Data Types ... 44

5.2 Global Constants .. 44

5.2.1 AUTOSAR Specification Version ... 44

5.2.2 Component Versions ... 44

5.2.3 Vendor and Module ID ... 44

5.3 Services Provided by CANNM .. 46

5.3.1 Administrative Functions ... 46

5.3.1.1 CanNm_Init: Initialization of CAN NM ... 46

5.3.1.2 CanNm_MainFunction: Main Function for All Channel Instances 46

5.3.1.3 CanNm_InitMemory: Memory Initialization ... 47

5.3.2 Service Functions .. 47

5.3.2.1 CanNm_GetVersionInfo: Version Information API 47

5.3.2.2 CanNm_GetState: Get the State of the Network Management 48

5.3.2.3 CanNm_PassiveStartUp: Wake up the Network Management................ 49

5.3.2.4 Wake-up Registration ... 49

5.3.2.4.1 CanNm_NetworkRequest: Request the Network 49

5.3.2.4.2 CanNm_NetworkRelease: Release the Network 50

5.3.2.5 User Data Handling .. 50

5.3.2.5.1 CanNm_SetUserData: Set User Data .. 50

5.3.2.5.2 CanNm_GetUserData: Get User Data ... 51

5.3.2.5.3 CanNm_GetPduData: Get NM PDU Data .. 51

5.3.2.6 Node Detection... 52

5.3.2.6.1 CanNm_RepeatMessageRequest: Set Repeat Message
Request Bit .. 52

5.3.2.6.2 CanNm_GetNodeIdentifier: Get Node Identifier 53

5.3.2.6.3 CanNm_GetLocalNodeIdentifier: Get Local Node Identifier 53

5.3.2.7 Bus Synchronization ... 54

5.3.2.7.1 CanNm_RequestBusSynchronization: Synchronization of
Networks ... 54

5.3.2.8 Remote Sleep Indication .. 54

5.3.2.8.1 CanNm_CheckRemoteSleepIndication: Check for Remote
Sleep Indication ... 54

5.3.2.9 NM Message Transmission Request .. 55

5.3.2.9.1 CanNm_Transmit: Spontaneous NM Message Transmission 55

5.3.2.10 Communication Control Service ... 56

5.3.2.10.1 CanNm_DisableCommunication: Disable NM Message
Transmission ... 56

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 7
based on template version 5.2.0

5.3.2.10.2 CanNm_EnableCommunication: Enabled NM Message
Transmission ... 56

5.3.2.11 Coordinator Synchronization Support ... 57

5.3.2.11.1 CanNm_SetSleepReadyBit: Set Sleep Ready Bit in the CBV 57

5.4 Services Used by CANNM ... 58

5.5 Callback Functions ... 59

5.5.1 Callback Functions from CAN Interface ... 59

5.5.1.1 CanNm_TxConfirmation: NM Message Confirmation Function 59

5.5.1.2 CanNm_RxIndication: NM Message Indication 59

5.5.2 Callback Function from CAN State Manager ... 60

5.5.2.1 CanNm_ConfirmPnAvailability: Notification for Activating the PN Filter
Functionality ... 60

6. Glossary and Abbreviations .. 61

6.1 Glossary ... 61

6.2 Abbreviations ... 61

7. Contact.. 63

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 8
based on template version 5.2.0

Illustrations

Figure 2-1 AUTOSAR 4.x Architecture Overview ... 12
Figure 2-2 Interfaces to adjacent modules of the CANNM ... 13
Figure 3-1 State Diagram of CAN NM from SWS CAN NM [3] 18
Figure 3-2 Usual Behavior of NM Transmissions when Repeat Message is entered .. 25
Figure 3-3 Immediate Transmission due to Signal Change inside User Data I-PDU .. 33
Figure 3-4 Immediate Nm Transmissions ... 35
Figure 3-5 Behavior for NM Transmissions if Immediate Restart Enabled is ON 36
Figure 4-1 Include structure ... 41

Tables

Table 1-1 Reference Documents .. 3
Table 1-1 Component history.. 10
Table 2-1 Naming Conventions .. 11
Table 3-1 Supported AUTOSAR standard conform features 15
Table 3-2 Not supported AUTOSAR standard conform features 15
Table 3-3 Features provided beyond the AUTOSAR standard 16
Table 3-4 PDU NM Message Layout .. 24
Table 3-5 Control Bit Vector .. 25
Table 3-6 Service IDs ... 30
Table 3-7 Errors reported to DET ... 31
Table 3-8 Development Error Reporting: Assignment of checks to services 32
Table 3-9 Errors reported to DEM ... 32
Table 3-10 Configuration Precondition Overview for AUTOSAR ECU Configurations . 34
Table 4-1 Static files ... 40
Table 4-2 Generated files ... 40
Table 4-3 Critical Section Codes .. 43
Table 5-1 Specification Version API Data ... 44
Table 5-2 Component Version API Data ... 44
Table 5-3 Vendor/Module ID ... 45
Table 5-4 CanNm_Init .. 46
Table 5-5 CanNm_MainFunction .. 47
Table 5-6 CanNm_InitMemory .. 47
Table 5-7 CanNm_GetVersionInfo .. 48
Table 5-8 CanNm_GetState ... 48
Table 5-9 CanNm_PassiveStartUp ... 49
Table 5-10 CanNm_NetworkRequest ... 50
Table 5-11 CanNm_NetworkRelease ... 50
Table 5-12 CanNm_SetUserData ... 51
Table 5-13 CanNm_GetUserData ... 51
Table 5-14 CanNm_GetPduData .. 52
Table 5-15 CanNm_RepeatMessageRequest .. 52
Table 5-16 CanNm_GetNodeIdentifier.. 53
Table 5-17 CanNm_GetLocalNodeIdentifier ... 54
Table 5-18 CanNm_RequestBusSynchronization ... 54
Table 5-19 CanNm_CheckRemoteSleepIndication ... 55
Table 5-20 CanNm_Transmit .. 56
Table 5-21 CanNm_DisableCommunication ... 56
Table 5-22 CanNm_EnableCommunication .. 57
Table 5-23 CanNm_SetSleepReadyBit ... 57
Table 5-24 Services used by the CANNM .. 58

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 9
based on template version 5.2.0

Table 5-25 CanNm_TxConfirmation ... 59
Table 5-26 CanNm_RxIndication .. 60
Table 5-27 CanNm_ConfirmPnAvailability .. 60
Table 6-1 Glossary ... 61
Table 6-2 Abbreviations .. 62

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 10
based on template version 5.2.0

1. Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Adaption to AUTOSAR Release 4

1.02.00 Support Variant Post-Build-Loadable

2.00.00 Added Runtime Measurement Support

3.00.00 Support Variant Post-Build-Selectable

Table 1-1 Component history

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 11
based on template version 5.2.0

2. Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CANNM as specified in [1] and [3]. Also the integration of the Network
Management into the AUTOSAR stack is covered by this document.

The FlexRay Network Management, LIN Network Management and the UDP Network
Management are not covered by this document.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. the Communication Manager
(ComM). Therefore, Application refers to any of the software components using the CAN
NM.

For further information please also refer to the AUTOSAR SWS specifications, referenced
at the beginning of this document in Table: ‘Reference Documents’.

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile, post-build-loadable, post-build-selectable

Vendor ID: CANNM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANNM_MODULE_ID 31 decimal

(According to ref.[6])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

2.1 Naming Conventions

The names of the service functions provided by the NM Interface and CAN NM always
start with a prefix that denominates the module where the service is located. E.g. a service

that starts with ‘CanNm_’ is implemented within the CAN NM.

Naming conventions

Nm_ Services of NM Interface.

CanNm_ Services of CAN NM.

Det_ Services of Development Error Tracer.

Dem_ Services of Diagnostic Event Manager.

Table 2-1 Naming Conventions

Nodes which are configured to be passive will be also referred to as passive nodes.
Accordingly nodes that are not passive will be termed as active nodes.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 12
based on template version 5.2.0

2.2 Architecture Overview

The following figure shows where the CANNM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.x Architecture Overview

2.2.1 Architecture of AUTOSAR Network Management

In the current AUTOSAR Release the standard AUTOSAR Network Management may
consist of up to five modules:

> NM Interface1

> CAN NM

> FlexRay NM1

> LIN NM1

> UDP NM1

The NM Interface schedules function calls from the application to the respective module
for each channel, e.g. for a CAN channel the corresponding CAN NM function will be
called. CAN NM exclusively interacts with the NM Interface.

The communication bus specific functionality is incorporated in the corresponding bus-
specific NM. The CAN-specific part implements the network management algorithm and is

1
 Not covered by this document.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 13
based on template version 5.2.0

responsible for the transmission of NM messages on the communication bus by interacting
with the AUTOSAR CAN Interface.

The next figure shows the interfaces to adjacent modules of the CAN NM. These
interfaces are described in chapter 5 ‘API Description’.

Figure 2-2 Interfaces to adjacent modules of the CANNM

Applications do not access the services of the BSW modules directly. They use the service
ports provided by the BSW modules via the RTE. Since the CAN NM has no service ports,
the CAN NM cannot be accessed via RTE by the application.

 cmp Interfaces

CanNm::CanNm

Nm::Nm

Det::Det

PduR::PduR

CanIf::CanIf

CanSM::CanSM

SchM::SchM

C
a

n
N

m
_

C
b

k

C
a

n
N

m

C
a

n
If

P
d

u
R

_
C

a
n

N
m

N
m

_
C

b
k

Det_ReportError

CanNm_ConfirmPnAvailabil ity

SchM_CanNm

CanSM_TxTimeoutException

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 14
based on template version 5.2.0

3. Functional Description

3.1 Features

The Network Management is a network comprehensive protocol that provides services for
the organization of the network. It is a decentralized and direct network management. That
means that every ECU transmits a special network management message, which is
reserved for the network management only.

The features listed in the following tables cover the complete functionality specified for the
CanNm.

The AUTOSAR standard functionality is specified in [3], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further CanNm functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [3] are supported:

Supported AUTOSAR Standard Conform Features

Controlled transition of all ECU’s to bus-sleep mode and vice versa.

User Data Handling

Node Detection

Remote Sleep Indication

Coordinator Synchronization Support

Bus Synchronization

Bus Load Reduction

Immediate Tx Confirmation

Passive Mode Support

Immediate Restart

Pdu Rx Indication

State Change Indication

Repeat Message Indication

Com User Data Support

Active Wake-up Bit

Immediate Nm Transmissions

Car Wake-up

Partial Networking

Post-Build Loadable

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 15
based on template version 5.2.0

Supported AUTOSAR Standard Conform Features

MICROSAR Identity Manager using Post-Build Selectable

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations Against AUTOSAR

The following features specified in [3] are not supported:

Category Description ASR
Version

Functional Communication Scheduling ch. 7.6: The CanNmMsgCycleOffset is
not applied when all NM messages have been transmitted with
CanNmImmediateNmCycleTime.[CANNM335]

4.0.3

Functional Initialization ch. 7.4. A call of CanNm_PassiveStartUp() in
PrepareBusSleep leads to a transition to Repeat Message state.
[CANNM147]

4.0.3

Functional/Co
nfig

Error Notification ch. 7.16. CANNM_E_NETWORK_TIMEOUT is
only reported if configuration switch
CANNM_DISABLE_TX_ERROR_REPORT is
enabled[CANNM193][CANNM194]

>4.0.3

Functional Debugging Concept ch. 7.18.3 Debugging is supported in
MICROSAR, but not as described in this chapter.[CANNM287]-
[CANNM290]

4.0.3

Table 3-2 Not supported AUTOSAR standard conform features

3.1.1.1 RAM Initialization

If RAM is not implicitly initialized at start-up, the function CanNm_InitMemory has to be

called.

3.1.1.2 Additional Configuration Dependencies

Following additional dependencies between configuration parameters are added to avoid
bad configurations:

> Com Control Enabled must be disabled for passive nodes.

> Node Detection Enabled must be disabled for passive nodes.

3.1.1.3 Variant Post-Build

Instead of the Configuration Variant Post-Build, the Variant Post-Build-Loadable is
supported.

3.1.2 Additions/ Extensions

The following extensions of the CAN NM software specifications ([3]) are available within
the Network Management embedded software components. If required, the extensions
have to be enabled during configuration.

Features Provided Beyond The AUTOSAR Standard

Single Channel Optimization

Memory Initialization

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 16
based on template version 5.2.0

Features Provided Beyond The AUTOSAR Standard

Disable Transmission Error Reporting

Calling CanNm_PassiveStartUp in Prepare Bus Sleep

Additional Development Error Codes

Variable DLC Support

Changeability of Additional Parameters During the Post-Build Phase

Runtime Measurement Support

Table 3-3 Features provided beyond the AUTOSAR standard

Note
Some additional non-AUTOSAR features are only available if they are explicitly
ordered by the customer.

3.1.2.1 Single Channel Optimization

For single channel systems it is possible to optimize the source code for saving precious
resources (ROM, RAM and CPU load). This optimization is only possible when source
code is available.

Please note that single channel optimization can only be enabled in pre-compile
configurations.

3.1.2.2 Memory Initialization

AUTOSAR expects the startup code to automatically initialize RAM. Not every startup
code of embedded targets reinitializes all variables correctly it is possible that the state of
a variable may not be initialized, as expected. To avoid this problem the Vector AUTOSAR
NM provides additional functions to initialize the relevant variables of the CAN NM.

Refer also to chapter 5.3.1.3 ‘CanNm_InitMemory’.

3.1.2.3 Disable Transmission Error Reporting

The error reporting for the following transmission errors can be disabled:

> CANNM_E_DEV_NETWORK_TIMEOUT

3.1.2.4 Calling CanNm_PassiveStartUp in Prepare Bus Sleep

Calling CanNm_PassiveStartUp in Prepare Bus Sleep Mode has the same effects as if it
was called in Bus Sleep Mode. This has been done to support the Synchronous Wake-up
Feature in ComM.

3.1.2.5 Additional Development Error Codes

There are additional Development Error Codes provided as Vector extension. Refer to
chapter 3.12.1.1 for details.

3.1.2.6 Variable DLC Support

CanNm supports multiple DLCs for CAN NM messages. Refer to chapter 3.6.5 for details.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 17
based on template version 5.2.0

3.1.2.7 Changeability of Additional Parameters During the Post-Build Phase

In the Variant Post-Build-Loadable, the configuration parameters ‘Node Id’, ‘Rx Pdu Ref’,
‘Tx User Data Pdu Ref’, ‘Pn Filter Mask Byte Index’ and ‘Pn Filter Mask Byte Value’ are
also changeable during the post-build phase as addition to the post-build-changeable
parameters according to [3].

3.1.3 Limitations

3.1.3.1 Ranges of Timers

The range for the following timer is limited concerning the specified range:

> Remote Sleep Indication Timer: 0.001..65.535 s (if remote sleep indication is enabled)

All timers should be multiples of the main functions cycle time.

3.1.3.2 Effects of CanNm_DisableCommunication

If CanNm_DisableCommunication was called, CanNm_NetworkRelease has the same

effects as if CanNm_DisableCommunication was not called (contradicts to CANNM294

of [3]). This was done to provide a more robust implementation.

3.1.3.3 CANNM_E_NET_START_IND Development Error

The CANNM_E_NET_START_IND development error code (CANNM336 of [3]) is not

reported to the Det if an NM message has been received in Bus Sleep Mode.

The following provides a detailed description of the functional scope.

3.2 Network Management Mechanism

As described above the AUTOSAR NM is a decentralized direct network management.
This means that every network node has the same functionality and performs state and
operation mode changes self-sufficient depending on the internal state and whether
network management messages are still received.

The network management mechanism is quite simple:

> Every network node transmits its NM messages only as long as it needs to
communicate with other network nodes. Normally bus-communication is required as
long as clamp15 (ignition is turned on) is set or during follow-up.

> If there is no more network node in the whole network that need to communicate with
other network nodes, any node transmits no more NM messages.

> Each network node performs a transition to bus-sleep mode a certain time after the
last NM message has been transmitted by any node. Therefore all nodes will go to
bus-sleep mode together.

> If any network node requires bus-communication at any time it can wake up the whole
network by transmitting NM messages.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 18
based on template version 5.2.0

Caution
The transmission of application messages, e.g. transmitted by the Com, does not stop
immediately after the last NM message has been transmitted.

FAQ
The application is in charge of the decision whether the bus communication is required
or not.

The following figure shows the state diagram of the CAN NM. The events are calls of CAN
NM functions by the application or data link layer or the timeout of internal timers.

Figure 3-1 State Diagram of CAN NM from SWS CAN NM [3]

 stm State Machine

Network Mode

Bus-Sleep Mode Prepare-Bus-Sleep Mode

Repeat Message

Ready Sleep

Normal Operation

Power On

Power Off

Repeat Message Timer

expires [Network requested]

NM Timeout Timer expires

/Start NM Timeout Timer

Notify NetworkTimeout

Network released

/Stop

Transmission of

NM

Repeat Message Request or

Repeat Msg Bit Indication

/Start Transmission of NM

Network requested

/Start

Transmission of

NM

Repeat Message Request or

Repeat Msg Bit Indication

/Start Transmission of NM

/Initialize NM

NM Timeout Timer expires

/Start NM Timeout Timer

Notify NetworkTimeout

Nm Message received or transmitted

/Restart NM Timeout Timer

Repeat Message Timer expires [Network released]

/Stop Transmission of NM

Wait Bus Sleep Timer expires

/Notify Nm_BusSleep Mode

Network requested/PassiveStartUp/Rx Nm Msg

/Start NM Timeout Timer

Notify NetworkMode

Start Transmission of NM messages

Can_TriggerTransmission (immediate restart +

Nw Req only)

Nm Msg received

/Notify NetworkStart

Indication

Network requested or

PassiveStartUp

/Start NM Timeout Timer

Notify NetworkMode

Start Transmission of NM

messages

NM Timeout Timer

expires

/Notify

PrepareBus-SleepMode

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 19
based on template version 5.2.0

3.3 Initialization

Before the CAN NM can be used it has to be initialized by the application. The initialization
has to be carried out before any other functionality of the CAN NM is executed. It shall
take place after initialization of the CAN Interface and prior to initialization of the NM
Interface.

Also refer to chapter 5.3.1.1 ‘CanNm_Init: Initialization of CAN NM’.

Caution
The CAN NM assumes that some variables are initialized with zero at start-up. If the
embedded target does not initialize RAM within the start-up code the function
‘CanNm_InitMemory’ has to be called during start-up and before the initialization is
performed. Refer also to chapter 3.1.2.2 ‘Memory Initialization’.

Note
In an AUTOSAR environment where the ECU Manager Fixed is used, the initialization
is performed within the ECU Manager. If the ECU Manager Flex is used, the
initialization is usually carried out by the BswM.

3.4 Passive Mode

Nodes in passive mode cannot transmit NM messages and therefore they do not actively
participate in the network. Due to that, passive nodes cannot request the network.

This mode can be used for nodes that do not need to keep the bus awake to save
resources.

By setting 'Repeat Message Time' to a value equal to 0, the Repeat Message state is
skipped. The state does not make sense for passive nodes, since the node is only able to
receive NM messages, not to send any. Usually, there is another node that sends NM
messages in Repeat Message so there is no need for 'Repeat Message Time' being
greater than 0 for passive nodes.

Nevertheless, if 'Repeat Message Time' is configured to a value greater than 0 and
‘Timeout Time’ is greater than ‘Repeat Message Time’ and if 'Passive Mode Enabled' is
turned ON, the transition from Repeat Message to Prepare Bus Sleep only depends on the
reception of NM messages. If there is no recently received NM message, the transition to
Prepare Bus Sleep occurs after Timeout Time has elapsed.

In case ‘Repeat Message Time’ is greater than ‘Timeout Time’ and no NM message is
received a DET error will occur at least once when the Timeout Timer elapses within
Repeat Message State. The transition to Prepare Bus Sleep occurs ‘Timeout Time’ after
the last DET error call.

3.5 Operation Modes and States

The AUTOSAR NM consists of three operation modes:

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 20
based on template version 5.2.0

> Network Mode

> Prepare Bus-Sleep Mode

> Bus-Sleep Mode

The NM Interface is notified about changes of the operation mode by calling the following
functions:

Entering Bus-Sleep Mode:

Nm_BusSleepMode() (5.4)

Entering Network Mode:

Nm_NetworkMode() (5.4)

Leaving Network Mode:

Nm_PrepareBusSleepMode() (5.4)

Information about the current state and the current mode is provided by the service call

CanNm_GetState (chapter 5.3.2.2).

The CAN NM notifies changes of the current state to the NM Interface by calling the
optional function

Nm_StateChangeNotification() (5.4)

3.5.1 Network Mode

The Network Mode comprises three states:

> Repeat Message

> Normal Operation

> Ready Sleep

This is the mode in that the ECU is ‘online’ and participates in the network. The
participation in the network is active or passive depending on the state:

> Active participation: a node keeps the network awake (Repeat message State and
Normal Operation State).

> Passive participation: a node is ready for sleep (Ready Sleep State) and any other
node keeps the network alive.

The application is notified about entering the Network Mode by a call of the function:

Nm_NetworkMode() (5.4)

The NM Interface notifies leaving the Network Mode to the application by a call of the
function:

Nm_PrepareBusSleepMode() (5.4)

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 21
based on template version 5.2.0

Info
The Com is active during Network Mode. It is started upon entry and stopped upon exit
of Network Mode. I.e. application messages are transmitted and received within Network
Mode!

3.5.1.1 Repeat Message State

The Repeat Message State is entered:

> If a NM message has been received in Prepare Bus-Sleep Mode.

> If the network has been requested by a call of CanNm_NetworkRequest() in Bus-

Sleep or Prepare Bus-Sleep Mode.

> If the network is woken up from Bus-Sleep Mode or from Prepare Bus-Sleep Mode by

a call of CanNm_PassiveStartUp().

> If any network node (including itself) has requested node detection in Ready Sleep or
Normal Operation State.

In Repeat Message State the NM messages are transmitted cyclically regardless whether
bus load reduction is enabled or disabled.

The Repeat Message State is left after a certain customizable time.

Depending on the bus-communication need of the application Normal Operation State or
Ready Sleep State is entered upon exit of Repeat Message State.

3.5.1.2 Normal Operation State

The network management stays in Normal Operation State until the bus-communication is
released. The local bus-communication request of the application is distributed in the
network by the transmission of NM messages.

3.5.1.3 Ready Sleep State

The network management stays in Ready Sleep State as long as the application does not
request bus-communication and the application of any other node still requests bus-
communication (by transmitting NM messages).

A certain customizable time after the last network node has released bus-communication a
transition to Prepare Bus-Sleep Mode is performed (i.e. Network Mode is left).

3.5.2 Prepare Bus-Sleep Mode

The transmission of application messages is stopped when entering Prepare Bus-Sleep
Mode. The bus activity is calmed down (pending message are still transmitted) in this
mode and finally there is no more activity on the bus.

After the ‘wait bus sleep time’ the drop out of Prepare Bus-Sleep Mode to Bus-Sleep Mode
the NM Interface is notified by the service call:

Nm_BusSleepMode() (5.4)

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 22
based on template version 5.2.0

Caution
When entering Bus-Sleep Mode the physical bus interface has to be put into sleep
mode.

On CAN channels the transceiver and the CAN-Controller have to be put in sleep
mode. This information is forwarded by this callback to the ComM.

Note
If both NmOsek and CanNm are used on the same channel, CanNm is aware of the
prolonged shutdown of the NmOsek in case of a Limphome condition if the Wait Bus
Sleep Extensions feature is turned ON. For details see the following chapter 3.5.2.1.

The Prepare Bus-Sleep Mode is left to Network Mode upon successful reception of a NM

message or if the network has been requested by a call of CanNm_NetworkRequest()

or if the network has been woken up by a call of CanNm_PassiveStartUp().

3.5.2.1 Wait Bus Sleep Extensions

If both NmOsek and CanNm are coordinated on the same channel, the internal state of
NmOsek influences the shutdown behavior of the CanNm.

> NmOsek transitions from state NmNormal to NmWaitBusSleep

In this case the CanNm applies its normal shutdown time by using the CanNm’s “wait bus
sleep time”.

> NmOsek transitions from state NmLimpHome to NmWaitBusSleep

In this case the CanNm applies a longer shutdown time by using “TErrorWaitBusSleep”
configured in NmOsek.

Note
This feature is automatically enabled when NmOsek and CanNm are configured
on the same channel and “Wait Bus Sleep Extensions” feature is enabled in
NmOsek.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 23
based on template version 5.2.0

3.5.3 Bus-Sleep Mode

All network nodes perform a transition to bus-sleep mode at almost the same time, if no
NM message is lost and there hasn’t been a wake-up by any node.

The bus-sleep mode is left (wake-up) by a call of

CanNm_PassiveStartUp() (5.3.2.3)

or if the network has been requested by a call of

CanNm_NetworkRequest() (5.3.2.4.1)

In both cases Repeat Message State will be entered (see Chapter 3.5.1.1 ‘Repeat
Message State’).

If a NM message is received in Bus-Sleep Mode the service

Nm_NetworkStartIndication() (5.4)

is called by CAN NM.

3.5.4 Wake-up Registration

The network management needs to know whether the application requires bus
communication. Per default the network management does not actively participate in the
network. The active participation in the network is requested by the service

CanNm_NetworkRequest() (5.3.2.4.1)

Calling this function in Bus-Sleep Mode starts the network and leads to a transition to
Repeat Message State (see Chapter 3.5.3 ‘Bus-Sleep Mode’).

If bus communication is not required anymore it can be released with the service

CanNm_NetworkRelease() (5.3.2.4.2)

Caution
When the communication control service is used the bus-communication shall not be
released as long as the NM message transmission ability is disabled.

Note that a bus-communication request is handled within the next task. Nevertheless it is
ensured that a communication request always leads to start-up even if the communication
is released before the next task is executed. Within Network Mode a fast toggling (i.e.
without task execution in between) of the communication status does not lead to any
action.

3.5.5 User Data Handling

The user data for the NM message transmitted next on the bus can be set by the service:

CanNm_SetUserData() (5.3.2.5.1)

The service

CanNm_GetUserData() (5.3.2.5.2)

allows reading the user data of the last received message on the bus.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 24
based on template version 5.2.0

As the NM PDU layout is completely configurable, the user data placement depends on
the given configuration.
The PDU layout and the content of the user data itself are OEM specific and therefore
provided by the OEM.

Note that for setting of NM user data a second possibility can be configured. Refer to
chapter 3.13 ‘Com User Data Support’ for more information. If the feature ‘Com User Data

Support’ is used the API CanNm_SetUserData() is not available.

3.6 Network Management Message Transmission and Reception

3.6.1 AUTOSAR CAN Interface

The network management requests the transmission of NM messages by calling the

service CanIf_Transmit [2]. The application has to take care of the user data. For

details refer to chapter 3.5.5 ‘User Data Handling’.

The successful transmission of every network management message is confirmed by the
CAN Interface with the service

CanNm_TxConfirmation() (5.5.1.1)

The CAN Interface indicates the reception of NM message by calling the service

CanNm_RxIndication() (5.5.1.2)

3.6.2 PDU Message Layout

The default PDU Message Layout is described in the following table:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 7 User data 5

Byte 6 User data 4

Byte 5 User data 3

Byte 4 User data 2

Byte 3 User data 1

Byte 2 User data 0

Byte 1 Control Bit Vector

Byte 0 Source Node Identifier

Table 3-4 PDU NM Message Layout

The number of User Data Bytes as well as the positions of the Control Bit Vector and
Source Node Identifier can be configured arbitrarily but depend on the availability of the
corresponding features (User Data Support / Node Detection Enabled / Node Identifier).

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 25
based on template version 5.2.0

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 1
(default)

Reserved Cluster
Request
Information
Bit

2

Reserved Active
Wake-up
Bit

NM
Coordina
tor Sleep
Ready

Reserved Reserved Repeat
Message
Request

Table 3-5 Control Bit Vector

The Repeat Message Request Bit is only used if the ‘Node Detection’ feature is active.
Refer to chapter 3.7 for more information.

The NM Coordinator Sleep Ready Bit is only used if the ‘Coordinator Synchronization
Support’ is active. See chapter 3.11 for more details.

The Active Wake-up Bit is used for the ‘Active Wake-up Handling’ (chapter 3.14).

The Cluster Request Information Bit is used for ‘Partial Networking’ (chapter 3.18).

All bits inside the Control Bit Vector are optionally used and depend on the setting of these
features. If the feature is not used, the bit value is 0.

3.6.3 Message Transmissions

A standard sequence for NM message transmissions when Repeat Message is entered is
depicted in Figure 3-2.

Figure 3-2 Usual Behavior of NM Transmissions when Repeat Message is entered

The first NM message is transmitted when ‘Msg Cycle Offset’ ms has been elapsed after
Repeat Message has been entered. The next NM message will be transmitted after Msg
Cycle Time has been elapsed. The configuration settings that influence this behavior are:

> ‘Msg Cycle Offset’: time before the transmission of the first NM message

> ‘Msg Cycle Time’: time between each message transmission

> ‘Immediate Restart Enabled’: if enabled, an additional NM message will be sent
immediately upon an active request (CanNm_NetworkRequest was called) from
Prepare Bus Sleep to Repeat Message (see also chapter 3.16) in case ‘Msg Cycle
Offset’ is greater than zero

2
 This bit is also called ‘Partial Network Information Bit’

tBus Sleep or

Prepare Bus Sleep

Msg Cycle Offset Msg Cycle Time Msg Cycle Time

...

NM Message Transmissions

Usual behavior without immediate transmissions

0

Repeat Message

CanNm_PassiveStartUp or

CanNm_NetworkRequest

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 26
based on template version 5.2.0

> ‘Immediate Nm Transmissions’: if this setting is greater than zero, an immediate NM
message will be sent when Repeat Message is entered due to an active request. The
interval between NM messages will be different for the next (‘Immediate Nm
Transmissions’ - 1) NM messages to be sent. Refer to chapter 3.15 for more details.

> ‘Repeat Message Time’: this setting determines for how long CanNm shall keep the
Repeat Message state. If the node has been requested passively, the next state will be
Ready Sleep.

Note that the NM message is sent as long as the NM state is ‘Repeat Message’ or ‘Normal
Operation’. For details about these states, see also chapter 3.5.1.

Note
The lower layer (e.g. CAN Interface) may reject the send request if Network Mode has
just been entered.

CanNm usually does not retry to issue the send request of the NM message. There are
features, which may enable retries in certain conditions:

If ‘Immediate Nm Transmissions’ are greater than zero, the rejected send request is not
considered as ‘Immediate Transmission’ (see chapter 3.15).

3.6.4 Bus Load Reduction

The bus load reduction is started automatically if enabled and when Normal Operation
state is entered. When Normal Operation state is left, bus load reduction algorithm is
stopped. For more information refer to chapter 7.7 of [3].

Note
Bus Load Reduction cannot be used on the channel if Partial Networking is used on the
same channel and vice versa. However setups like Bus Load Reduction is active on
the one channel and Partial Networking is active on the other channel is allowed.

3.6.5 Support for RX PDUs with Different Lengths

The CAN NM supports messages with different lengths (DLCs). This support can be
enabled by disabling the ‘CanIf Range Config DLC Check’ setting in the module
configuration.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 27
based on template version 5.2.0

Note
The setting is enabled, if a macro definition of
CANNM_CANIF_RANGE_CONFIG_DLC_CHECK can be found in CanNm_Cfg.h.

In case the ‘CanIf Range Config DLC Check’ setting is disabled, it is assumed that the
CanIf module accepts NM messages with different DLCs. The minimum DLC for NM
messages may be configured in the CanIf module, messages with a DLC less than the
configured value for the DLC check will be discarded. Messages with the same DLC or
greater DLC will be received and forwarded to CanNm.

However, the maximum number of bytes that is evaluated from the received message is
equal to the ‘Pdu Length’ setting of the corresponding channel. For messages with a
length n smaller than ‘Pdu Length’, the bytes n … (‘Pdu Length’ - 1) are considered as
being zero.

Examples:

The length of a received message is 8, ‘Pdu Length’ is configured to 6. In this case, the
last two user data bytes are not further processed by CanNm (e.g. CanNm_GetUserData
does not return data for these two bytes).

The length of a received message is 4, ‘Pdu Length’ is configured to 6. In this case, bytes
4 and 5 are considered as being zero (e.g. CanNm_GetUserData returns 0 for these
bytes).

The minimum required number of bytes for a received NM message that should be
processed by CanNm may be configured by using the CanIf DLC Check feature [2].

If the ‘CanIf Range Config DLC Check’ setting is enabled, either the CanIf DLC feature
must be enabled to accept only NM messages with a DLC greater than or equal to the
‘Pdu Length’ setting or there must not be any ECU that sends NM messages with a DLC
less than the ‘Pdu Length’ setting. Otherwise, the behavior of the CanNm will be arbitrary.

3.7 Node Detection

In order to detect which nodes are currently present within the network, this mechanism
can be used. If a network node requests node detection, the requesting node performs a
transition to Repeat Message State and sets the Repeat Message Bit within the NM PDU.
Upon reception of the Repeat Message Bit all network nodes perform a transition to
Repeat Message State. This allows the requesting node to collect all source node
identifiers from active nodes.

The local source node identifier can be retrieved by the service

CanNm_GetLocalNodeIdentifier() (5.3.2.6.3)

The source node identifier from the last received message can be retrieved by the service

CanNm_GetNodeIdentifier() (5.3.2.6.2)

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 28
based on template version 5.2.0

3.8 NM PDU Receive Indication

The NM Interface is notified about the reception of an NM message by the optional
function

Nm_PduRxIndication() (5.4)

In case more than one BusNm is configured on the same channel, a BusNm specific
reception notification is called.

Nm_CanNm_PduRxIndication() (5.4)

The CAN NM notifies the callback directly to the NM Interface in context of the function

CanNm_RxIndication (see chapter 5.5.1.2).

3.9 Communication Control

In order to support ISO 14229 Communication Control Service $28 the network
management has a message transmission control status, which allows disabling the
transmission of NM messages while bus-communication is requested. Therefore the
function

CanNm_DisableCommunication() (5.3.2.10.1)

can be called. The transmission of NM messages will be stopped within the next CAN NM
main function call.

The NM PDU transmission ability is enabled again by the service

CanNm_EnableCommunication() (5.3.2.10.2)

Caution
An ECU shall not shut down if the NM PDU transmission ability is disabled.

3.10 Gateway Functionality

3.10.1 Remote Sleep Indication and Cancellation

In order to synchronize networks it might be necessary to get an indication whether no
more network nodes require bus-communication. This is the so-called ‘Remote Sleep
Indication’. The start of the remote sleep indication is indicated by

Nm_RemoteSleepIndication() (5.4)

If any NM message is received during Normal Operation State or Ready Sleep State after
the remote sleep indication the service ‘Remote Sleep Cancellation’ is called:

Nm_RemoteSleepCancellation() (5.4)

It is also possible to retrieve the current remote sleep state by calling the service:

CanNm_CheckRemoteSleepIndication() (5.3.2.8.1)

Remote sleep indication can only be checked in Ready Sleep state and Normal Operation
state.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 29
based on template version 5.2.0

3.10.2 Bus Synchronization

In order to synchronize networks for a synchronized shutdown it might be necessary to
transmit an asynchronous NM message to reset the network timers. This can be done by
calling the service:

CanNm_RequestBusSynchronization() (5.3.2.7.1)

However this service shall only be called within Network Mode.

3.11 Coordinator Synchronization Support

For supporting the NM Interface Coordinator Synchronization with more than one
coordinator connected to the same channel it is necessary to provide one additional bit in
the CBV. Therefore the service call

CanNm_SetSleepReadyBit() (5.3.2.11.1)

allows to set and clear the Nm Coordinator Sleep Ready Bit (see chapter 3.6.2 for further
information). Each call of this API triggers the immediate transmission of an NM message
can be sent according to the current state in the CanNm State Machine (see Figure 3-1) in
order to propagate the change of the Sleep Ready Bit as soon as possible.

Caution
The ‘Coordinator Synchronization Support’ requires the Control Bit Vector.

Therefore this feature has to be enabled if the Coordination Synchronization Support is
used.

3.12 Error Handling

3.12.1 Development Error Detection

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [5], if development error reporting is enabled (i.e.

pre-compile parameter CANNM_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported CANNM ID is 31.

The reported service IDs identify the services which are described in 5.3 and 5.5. The
following table presents the service IDs and the related services:

Service ID Service

0x00 CanNm_Init

0x01 CanNm_PassiveStartUp

0x02 CanNm_NetworkRequest

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 30
based on template version 5.2.0

Service ID Service

0x03 CanNm_NetworkRelease

0x04 CanNm_SetUserData

0x05 CanNm_GetUserData

0x06 CanNm_GetNodeIdentifier

0x07 CanNm_GetLocalNodeIdentifier

0x08 CanNm_RepeatMessageRequest

0x0A CanNm_GetPduData

0x0B CanNm_GetState

0x0C CanNm_DisableCommunication

0x0D CanNm_EnableCommunication

0x13 CanNm_MainFunction

0x14 CanNm_Transmit

0x16 CanNm_ConfirmPnAvailability

0x17 CanNm_SetSleepReadyBit

0x40 CanNm_TxConfirmation

0x42 CanNm_RxIndication

0xC0 CanNm_RequestBusSynchronization

0xD0 CanNm_CheckRemoteSleepIndication

0xF1 CanNm_GetVersionInfo

Table 3-6 Service IDs

3.12.1.1 Det_ReportError

Development errors are reported by the service

Det_ReportError() (5.4)

Please refer to the documentation of the development error tracer [5] for further
information and a detailed description of the API. The module Id, API Ids and error Ids can
be found within the software components’ header file.

The errors reported to DET are described in the following table:

Error Code Description

0x01 CANNM_E_NO_INIT API service used without module initialization.

0x02 CANNM_E_INVALID_CHANNEL API service used with wrong channel handle.

0x03 CANNM_E_INVALID_PDUID API service used with wrong PDU ID

0x04 CANNM_E_NET_START_IND Reception of NM Message in Bus Sleep Mode

0x05 CANNM_E_INIT_FAILED CAN NM initialization has failed.

0x11 CANNM_E_NETWORK_TIMEOUT NM-Timeout Timer has abnormally expired
outside of the Ready Sleep State.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 31
based on template version 5.2.0

Error Code Description

0x12 CANNM_E_PARAM_POINTER
3
 Null pointer has been passed as an argument.

0x20 CANNM_E_RXINDICATION_DLC_ERROR
4
 DLC of received NM message does not match

with configured PDU Length.

0x21 CANNM_E_PDUR_TRIGGERTX_ERROR
4
 Call of function PduR_TriggerTransmit failed.

0x22 CANNM_E_ALREADY_INITIALIZED CAN NM initialization done more than once.

0x33 CANNM_E_INVALID_GENDATA Invalid write access due to wrong
configuration data.

Table 3-7 Errors reported to DET

3.12.1.2 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. The checks in
Table 3-8 are internal parameter checks of the API functions. These checks are for

development error reporting. The error reporting of CANNM_E_NETWORK_TIMEOUT can be

en-/disabled separately by the configuration switch ‘Disable Tx Err Report’. The Parameter

CANNM_DEV_ERROR_DETECT dis-/ enables the call of Det_ReportError() for all checks

globally.

The following table shows which parameter checks are performed on which services:

Check

Service

C
A
N
N
M
_
E
_
N
O
_
I
N
I
T

C
A
N
N
M
_
E
_
I
N
V
A
L
I
D
_
C
H
A
N
N
E
L

C
A
N
N
M
_
E
_
N
U
L
L
_
P
O
I
N
T
E
R

C
A
N
N
M
_
E
_
I
N
V
A
L
I
D
_
P
D
U
I
D

C
A
N
N
M
_
E
_
N
E
T
_
S
T
A
R
T
_
I
N
D

C
A
N
N
M
_
E
_
I
N
I
T
_
F
A
I
L
E
D

C
A
N
N
M
_
E
_
N
E
T
W
O
R
K
_
T
I
M
E
O
U
T

C
A
N
N
M
_
E
_
R
X
I
N
D
I
C
A
T
I
O
N
_
D
L
C
_

E
R
R
O
R

C
A
N
N
M
_
E
_
P
D
U
R
_
T
R
I
G
G
E
R
T
X
_
E
R

R
O
R

CanNm_Init
5

CanNm_PassiveStartUp
6

CanNm_NetworkRequest
6,7

CanNm_NetworkRelease
6,7

CanNm_SetUserData
7

6,7

7

CanNm_GetUserData
6,7

CanNm_GetPduData
6,7

CanNm_RepeatMessageRequest
5,7

6,7

CanNm_GetNodeIdentifier
6,7

CanNm_GetLocalNodeIdentifier
6,7

3
 Error does not apply to the function CanNm_Init.

4
 Vector extension

5
 Only checked if CANNM_DEV_ERROR_DETECT is STD_ON

6
 Only checked if CANNM_OPTIMIZE_CHANNEL_ENABLED is not defined (‘Api Optimization’ is OFF)

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 32
based on template version 5.2.0

Check

Service

C
A
N
N
M
_
E
_
N
O
_
I
N
I
T

C
A
N
N
M
_
E
_
I
N
V
A
L
I
D
_
C
H
A
N
N
E
L

C
A
N
N
M
_
E
_
N
U
L
L
_
P
O
I
N
T
E
R

C
A
N
N
M
_
E
_
I
N
V
A
L
I
D
_
P
D
U
I
D

C
A
N
N
M
_
E
_
N
E
T
_
S
T
A
R
T
_
I
N
D

C
A
N
N
M
_
E
_
I
N
I
T
_
F
A
I
L
E
D

C
A
N
N
M
_
E
_
N
E
T
W
O
R
K
_
T
I
M
E
O
U
T

C
A
N
N
M
_
E
_
R
X
I
N
D
I
C
A
T
I
O
N
_
D
L
C
_

E
R
R
O
R

C
A
N
N
M
_
E
_
P
D
U
R
_
T
R
I
G
G
E
R
T
X
_
E
R

R
O
R

CanNm_RequestBusSynchronization
7

6,7

CanNm_CheckRemoteSleepIndication
7

6,7

7

CanNm_GetState
6,7

CanNm_GetVersionInfo
5

CanNm_Transmit
7

7

5,7

CanNm_EnableCommunication
7

6,7,7

CanNm_DisableCommunication
7

6,7

CanNm_ConfirmPnAvailability
6,7

CanNm_SetSleepReadyBit
6,7

CanNm_RxIndication
5

5

CanNm_MainFunction
6,7

5

5

CanNm_TxConfirmation
7

5,7

Table 3-8 Development Error Reporting: Assignment of checks to services

3.12.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service

Dem_ReportErrorStatus() as specified in [4], if production error reporting is enabled.

If another module is used for production code error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Dem_ReportErrorStatus().

The errors reported to DEM are described in the following table:

Error Code Description

N/A Currently no DEM errors are specified

Table 3-9 Errors reported to DEM

3.13 Com User Data Support

The CAN NM supports the possibility to write the NM user data via Com signals. Therefore
the signals have to be provided within an additional I-PDU in the configuration. The CAN

7
 Only checked if CANNM_PASSIVE_MODE_ENABLED is STD_OFF

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 33
based on template version 5.2.0

NM updates its transmission buffer each time before sending a NM message with the
current data. Therefore it calls the function:

PduR_CanNmTriggerTransmit() (5.4)

When the NM message has been successfully transmitted the confirmation is forwarded to
PduR by calling the function:

PduR_CanNmTxConfirmation() (5.4)

Depending on the signal and I-PDU configuration a signal change can lead to a request for
an immediate NM message transmission by calling the function

CanNm_Transmit() (5.3.2.9.1)

The CAN NM then transmits the changed data in the next main function when the
transmission of NM messages is allowed. Afterwards the message cycle timer is restarted,
i.e. the cyclic message transmission raster changes.

The spontaneous transmission through CanNm_Transmit is allowed in the NM states
Repeat Message and Normal Operation if and only if

> ‘Pn Enabled’ is ON and ‘Pn Handle Multiple Network Requests’ is OFF AND/OR

> ‘Car Wake Up Rx Enabled’ is ON.

Figure 3-3 Immediate Transmission due to Signal Change inside User Data I-PDU

The following chapters describe more detailed the configuration preconditions of this
feature.

Note that some additional configuration for this feature has to be done in the PDU Router.
Refer to [10] for details.

3.13.1 Configuration Preconditions in an AUTOSAR ECU Configuration

For using the feature ‘Com User Data Support’ some additional configuration content
within the AUTOSAR system description / ECU Extract is necessary. The following table
provides an overview of the items that have to be added to the system description.

Configuration Element Description

Signal I-PDU For each NM message one signal I-PDU must be configured. An
appropriate signal mapping to the I-Signals has to be defined here. I-
PDUs are defined in the ECU-specific part.

t

Msg Cycle Offset Msg Cycle Time Msg Cycle Time

...

NM Message Transmissions

Behavior with CanNm_Transmit usage

0

Repeat Message Normal Operation...

CanNm_Transmit

Msg Cycle Time

CanNm_Transmit

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 34
based on template version 5.2.0

Configuration Element Description

I-Signal Multiple system signals can be defined for each NM message. At
least one signal is required. I-Signals are defined in the ECU-specific
part and refer to a system signal.

System Signal For each I-Signal a corresponding system signal is necessary which
defines length, data type and init value.

I-PDU Port For each I-PDU an I-PDU port with the communication direction
‘OUT’ is required.

Signal Port For each signal a signal port with the communication direction ‘OUT’
is required.

I-PDU Triggering For each I-PDU an I-PDU triggering is required that references to the
corresponding I-PDU port and the signal I-PDU.

Signal Triggering For each I-Signal a signal triggering is required that references to the
corresponding signal port and I-Signal.

Table 3-10 Configuration Precondition Overview for AUTOSAR ECU Configurations

Additionally, a reference from the NM PDU to the related I-PDU with the signals must be
established by adding ‘ISignalToIPduMappings’ to the NM PDU. The following example
demonstrates how this should be done:

<NM-PDU>

 <SHORT-NAME>NM_PDU</SHORT-NAME>

 <LENGTH>8</LENGTH>

 <I-SIGNAL-TO-I-PDU-MAPPINGS>

 <I-SIGNAL-TO-I-PDU-MAPPING>

 <SHORT-NAME>NM_USR_DT </SHORT-NAME>

 <I-SIGNAL-REF DEST="I-

SIGNAL">/ISignal/NM_USR_DT_SIGNAL</I-SIGNAL-REF>

 <PACKING-BYTE-ORDER>MOST-SIGNIFICANT-BYTE-LAST</PACKING-

BYTE-ORDER>

 <START-POSITION>32</START-POSITION>

 </I-SIGNAL-TO-I-PDU-MAPPING>

 </I-SIGNAL-TO-I-PDU-MAPPINGS>

</NM-PDU>

3.14 Active Wake-up Handling

The mode change from Bus-Sleep Mode or Prepare Bus-Sleep Mode to Network Mode
triggered by CanNm_NetworkRequest() is specified as “Active Wake-up”. Upon an Active
Wake-up the CAN NM sets the active wake-up bit within the Control Bit Vector at bit
position 4.

This feature is optional and has to be configured.

3.15 Immediate Nm Transmissions

If an Active Wake-up occurs the CAN NM transmits the first NM message immediately (the
NM message offset time is ignored) when entering Repeat Message State. For the next

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 35
based on template version 5.2.0

NM messages CAN NM uses a faster NM message cycle time. Afterwards it uses the
normal NM message cycle time. This behavior is illustrated in Figure 3-4.

Figure 3-4 Immediate Nm Transmissions

The number of ‘Immediate Nm Transmissions’ is the number that is configured for this
parameter. As it can be seen in Figure 3-4, after the first Immediate Nm Transmission the
interval between the NM messages is ‘Immediate Nm CycleTime’ for (n-1) times. Then, the
usual interval ‘Msg Cycle Time’ is used again.

Note that “Any state except Repeat Message” in Figure 3-4 refers to ‘Bus Sleep’ and
‘Prepare Bus Sleep’. If the setting ‘Pn Handle Multiple Network Requests’ is ON, it also
refers to ‘Ready Sleep’ and ‘Normal Operation’.

This feature is optional and has to be enabled in the configuration. The amount of
messages that are transmitted faster (‘Immediate Nm Transmissions’) and the fast
message cycle time (‘Immediate Nm Cycle Time’) can also be configured.

tAny state except

Repeat Message

Immediate Nm

CycleTime

Immediate Nm

CycleTime

Immediate Nm

CycleTime

...

NM Message Transmissions

Behavior with n := Immediate Nm Transmissions > 0

0

Repeat Message

CanNm_NetworkRequest

1st 2nd 3rd (n-1)th nth

Msg Cycle Time

...

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 36
based on template version 5.2.0

Note
This feature should not be confused with the possibility for an immediate transmission if
the ‘Com User Data Support’ feature is on (chapter 3.13) and should also not be
confused with the ‘Immediate Restart Enabled’ feature described in the following
chapter.

Note
If the send request of an ‘immediate transmission’ is rejected by the lower layer (e.g.
CanIf), the rejected send request is not considered as ‘immediate transmission’. That
means that the counter that counts the number of ‘immediate transmissions’
ImmediateNmMsgCount is not decremented.

Example: Let ‘Immediate Nm Transmissions’ := 2. The initial counter value of
ImmediateNmMsgCount is 1.

1. When Repeat Message has just been entered, the first transmission request
TReqA is rejected. ImmediateNmMsgCount is not decremented.

2. CanNm waits ‘Immediate Msg CycleTime’ (first interval tint1st).

3. CanNm sends the NM message successfully. ImmediateNmMsgCount is
decremented to 0.

4. CanNm waits ‘Immediate Msg CycleTime’ again (second interval tint2nd).

5. CanNm sends the next NM message successfully.

6. Then ‘Msg Cycle Time’ is waited until the next NM message is sent because
ImmediateNmMsgCount is already 0.

If the first NM transmission request TReqA was successful (step 1), the second interval
time tint2nd would be ‘Msg Cycle Time’ instead of ‘Immediate Msg CycleTime’.

3.16 Immediate Restart Enabled

This feature enables the possibility to send an additional NM message upon the transition
from Prepare Bus Sleep to Repeat Message if and only if the network is requested actively
(e.g. there is a request for Full Communication in ComM).

Figure 3-5 Behavior for NM Transmissions if Immediate Restart Enabled is ON

tPrepare Bus Sleep

Msg Cycle Offset Msg Cycle Time Msg Cycle Time

...

NM Message Transmissions

Behavior with Immediate Restart Enabled

0

Repeat Message

CanNm_NetworkRequest

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 37
based on template version 5.2.0

This behavior is depicted in Figure 3-5. Note that the only difference to the standard
transmission behavior (i.e. ‘Immediate Restart Enabled’ would be OFF, for the behavior
see also chapter 3.6.3) is the additional NM message right after Repeat Message has
been entered.

Note
The additional NM message is only sent if the ‘Msg Cycle Offset’ setting is greater than
0 and if ‘Immediate Nm Transmissions’ = 0 (refer to chapter 3.15 for details).

3.17 Car Wake-up

Every ECU shall be able to wake up all other ECUs of the car. This wake-up request
information is contained in the NM message user data of an ECU. The central gateway
ECU evaluates the Car Wake-up request information and wakes up all connected
communication channels.

This feature is optional and has to be configured.

3.17.1 Rx-Path

If the CAN NM receives a NM message it evaluates the user data content. If the Car
Wake-up Bit is set and the Node ID passes a filter (if Node ID filter is enabled) the CAN
NM notifies the NM via the following callback function:

Nm_CarWakeUpIndication() (5.4)

3.17.2 Tx-Path

For the transmission of the Car Wake-up Bit it has to be set at the corresponding location
within the NM user data. If the feature ‘Com User Data Support’ is used and the
corresponding signal and I-PDU are configured for directly transmitting a changed signal
the information is sent immediately. Refer also to chapter 3.13 ‘Com User Data Support’.

Info
It is recommended to use the feature ‘Com User Data Support’ for the transmission
path.

3.18 Partial Networking

To reduce the power consumption of ECUs it shall be possible to switch off the
communication stack during active bus communication. To control the shutdown and
wake-up of such ECUs the CAN NM provides an additional algorithm. The NM message
user data contains the information which partial networks (PN) are requested. This
information is evaluated by the CAN NM and provided to the upper layer in an aggregated
form by updating the content of additional I-PDUs in the Com.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 38
based on template version 5.2.0

Algorithm details are described in the following sub-chapters.

This feature and all of its sub-features are optional and have to be configured

3.18.1 Availability of Partial Network Request Information

To distinguish between NM messages containing PN cluster request information (CRI) and
NM messages without CRI a special bit in the control bit vector (bit 6) is used. Only if this
bit is set the NM message contains PN information and will be processed by the algorithm.

3.18.2 Transmission of the CRI Bit in the NM User Data

The CAN NM sets the CRI Bit at bit position 6 in the Control Bit Vector to 1 for each
channel if the Partial Networking feature is enabled on the corresponding channel.

3.18.3 Filter Algorithm for Received NM Messages

NM messages that are not relevant for an ECU with PN must be dropped. Therefore the
content of received NM messages is evaluated after the filter algorithm described in this
section has been activated. Otherwise the usual way of receiving messages is being used.
The filter is disabled after the initialization of the CAN NM module. The message reception
filter is being activated after a call of CanNm_ConfirmPnAvailability (refer to chapter
5.5.2.1 ‘CanNm_ConfirmPnAvailability: Notification for Activating the PN Filter
Functionality’ for further details). The filter is disabled in case the channel is started again,
by either an internal or external event and ‘CanNm_ConfirmPnAvailability’ was not called.

The filter algorithm works as follows:

If the CRI bit is cleared the NM message is not relevant for the ECU.

If the CRI bit is set the CAN NM evaluates the CRI content of the NM message. The
location and the length of the CRI in the NM user data can be configured. Each bit within
the CRI content represents one cluster. The corresponding cluster is being requested if
and only if the bit that belongs to the cluster is set. Because not every cluster is relevant
for the ECU a configurable PN filter mask is applied to the CRI content. Irrelevant cluster
requests can be ignored by setting the corresponding bit in the filter to 0. If at least one bit
within the received PN information matches with a bit in the PN filter mask the NM
message is relevant for the ECU, otherwise the NM message is not relevant for the ECU.

If a NM message is not relevant and the configuration parameter ’All Nm Messages Keep
Awake’ is true the standard NM message reception handling is done, otherwise the NM
message is ignored.

If a NM message is relevant the CAN NM performs the standard NM message reception
and additionally the filtered PN content of this message is used for the further PN
algorithm.

3.18.4 Aggregation of Requested Partial Networks

The CAN NM aggregates requested PN information by two slightly different algorithms.
First the external (received) and internal (sent) PN requests are aggregated over all
networks (channels) to a combined state called External Internal Requests Aggregated
(EIRA). Second only the external (received) PN requests are aggregated for each network
to the so called External Requests Aggregated (ERA) state. Both algorithms can be
activated independently in the configuration.

For the EIRA algorithm every received or sent NM message on any network is evaluated
and the relevant PN information (according to the PN filter mask and the CRI bit) is

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 39
based on template version 5.2.0

combined to one aggregated state. Therefore this state contains the information which
partial networks are active on the whole ECU.

The ERA algorithm performs the evaluation of the received NM messages and storage of
the relevant PN information (according to the PN filter mask and the CRI bit) per network.
Therefore the ERA state contains for each network the information which partial networks
are requested by other ECUs and have to be active due to external needs.

Whenever a cluster is requested the first time (i.e. a bit is set the first time within this PN
information) the new request is stored and a timer is started. When the request is repeated
before the timer elapses the timer is restarted. When the timer elapses the request is
deleted.

Any change (storing or deleting a request) within the EIRA or ERA leads to an update of
the content of the EIRA or ERA I-PDU in the Com. Therefore the following function is
called with the corresponding EIRA or ERA PDU handle:

PduR_CanNmRxIndication() (5.4)

Note that one ERA I-PDU exists for each network.

3.18.5 Spontaneous Sending of NM Messages

When a new PN is internally requested the corresponding bit in the NM message user
data will be set. This request must be immediately visible on the bus by sending the
updated user data content as fast as possible. Therefore two mechanisms can be used.

3.18.5.1 Using Com Transmission on Change Mechanism

When the NM user data is set via Com the signals can be configured for immediate
transmission on change. This would lead to one additional NM message transmission
whenever the content of the signal changes. Refer also to chapter 3.13 ‘Com User Data
Support’.

To enable this behavior, the setting ‘Pn Handle Multiple Network Requests’ has to be
turned OFF.

3.18.5.2 Using NM Request and Immediate Nm Transmission

When CAN NM is in Network Mode and the upper layer requests network again by calling
the function ‘CanNm_NetworkRequest’ (see chapter 5.3.2.4.1‘CanNm_NetworkRequest:
Request the Network’ for details) the CAN NM performs a state transition to Repeat
Message. This leads to an immediate transmission of the NM message followed by
several transmissions with a faster cycle time.

Caution
Note that the feature ‘Immediate Nm Transmission’ (refer to chapter 3.15 ‘Immediate
Nm Transmissions’) must be enabled when using this mechanism for spontaneous
sending of NM messages.

Note that this mechanism will only be active if PN feature is enabled.

To enable this behavior, the setting ‘Pn Handle Multiple Network Requests’ has to be
turned ON.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 40
based on template version 5.2.0

4. Integration

This chapter gives necessary information for the integration of the MICROSAR CANNM
into an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the CANNM contains the files which are described in the chapters 4.1.1
and 4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

CanNm.c

Source code of CAN NM.
The user must not change this file!

CanNm.h

API of CAN NM.
The user must not change this file!

CanNm_Cbk.h

API of CAN NM callback functions.
The user must not change this file!

Table 4-1 Static files

Do not edit manually
The static files listed above must not be edited by the user!

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

CanNm_Cfg.c Pre-compile variant configuration source file.

The user must not change this file!

CanNm_Cfg.h Configuration header file for CAN NM.

The user must not change this file!

CanNm_Lcfg.c Link-time variant Configuration source file.

The user must not change this file!

CanNm_Pbcfg.c Post-build variant Configuration source file.

The user must not change this file!

Table 4-2 Generated files

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 41
based on template version 5.2.0

Do not edit manually
The dynamic files listed above must not be edited by the user! They should be
generated with the configuration tool to guarantee valid parameters.

4.2 Include Structure

Figure 4-1 Include structure

 class IncludeStructure

CanNm.c

CanNm.h

CanNm_Cfg.h

CanNm_Lcfg.c CanNm_PBcfg.c

CanNm_Cbk.hSchM_CanNm.hCanSM_TxTimeOutException.h

PduR_CanNm.h

Nm_Cbk.h

ComM_Nm.hComM_Types.h

CanIf.h

«include»

«include»

«include»

«include» «include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 42
based on template version 5.2.0

4.3 Main Functions

The CAN NM contains one main function that has to be called cyclically on task level. The
default timing value is 10 milliseconds. The call cycle time value for the main function has
to be set in the configuration settings (Setting: ‘Main Function Period’).

Note
In an AUTOSAR environment where the BSW Scheduler (SchM) is used the main
functions are called by the SchM and must not be called by the application.

4.4 Critical Sections

Critical Sections are handled by the RTE [7]. They are automatically configured by the
DaVinci Configurator. User interaction is only necessary by updating the internal behavior
using the solving action in DaVinci Configurator. It is signaled as a Warning in the
Validation tab.

The CAN NM calls the following function when entering a critical section:

SchM_Enter_CanNm_CANNM_EXCLUSIVE_AREA_i() (5.4)

When the critical section is left the following function is called by the CAN NM:

SchM_Enter_CanNm_CANNM_EXCLUSIVE_AREA_i() (5.4)

Details which section needs what kind of interrupt lock are provided in chapter 4.5 ‘Critical
Section Codes’.

4.5 Critical Section Codes

The CAN NM provides several critical section codes which must lead to corresponding
interrupt locks, described in the following table:

Critical Section Define Interrupt Lock

CANNM_EXCLUSIVE_AREA_0 No interruption by any interrupt is allowed. Therefore this section
must always lock global interrupts.

CANNM_EXCLUSIVE_AREA_1 No interruption of CanNm_MainFunction by CanNm_SetUserData
or CanNm_SetSleepReadyBit allowed.

This means that global interrupts have to be used for this section
only if CanNm_MainFunction can be interrupted by one of the
following functions:

> CanNm_SetUserData

> CanNm_SetSleepReadyBit

Otherwise no interrupt locks are necessary.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 43
based on template version 5.2.0

CANNM_EXCLUSIVE_AREA_2 No interruption of CanNm_SetUserData by CanNm_MainFunction
allowed.

This means that global interrupts must be locked if
CanNm_SetUserData can be interrupted by the following functions:

> CanNm_MainFunction

Otherwise no interrupt locks are necessary.

CANNM_EXCLUSIVE_AREA_3 No interruption of CanNm_SetSleepReadyBit by
CanNm_MainFunction allowed

This means that global interrupts must be locked if
CanNm_SetSleepReadyBit can be interrupted by the following
functions:

> CanNm_MainFunction

Otherwise no interrupt locks are necessary.

CANNM_EXCLUSIVE_AREA_4 No interruption of CanNm_RxIndication by CanNm_GetUserData or
CanNm_GetPduData allowed

This means that global interrupts must be locked if
CanNm_RxIndication can be interrupted by the following functions:

> CanNm_GetUserData

> CanNm_GetPduData

Otherwise no interrupt locks are necessary.

CANNM_EXCLUSIVE_AREA_5 No interruption of CanNm_GetUserData or CanNm_GetPduData by
CanNm_RxIndication allowed

This means that global interrupts must be locked if
CanNm_GetUserData or CanNm_GetPduData can be interrupted
by the following functions:

> CanNm_RxIndication

Otherwise no interrupt locks are necessary.

Table 4-3 Critical Section Codes

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 44
based on template version 5.2.0

5. API Description

For an interfaces overview please see Figure 2-2.

5.1 Data Types

The software module CAN NM uses the standard AUTOSAR data types that are defined

within Std_Types.h and the platform specific data types that are defined within

Platform_Types.h and the Communication Stack Types defined within

ComStack_Types.h. Furthermore the standard AUTOSAR NM Stack Types defined

within NmStack_Types.h are used.

CAN NM also uses the Communication Stack Types defined within ComStack_Types.h.

5.2 Global Constants

5.2.1 AUTOSAR Specification Version

The version of AUTOSAR specification on which the appropriate implementation is based
on is provided by three BCD coded defines:

Name Type Description

CANNM_AR_RELEASE_MAJOR_VERSION BCD Contains the major specification version
number.

CANNM_AR_RELEASE_MINOR_VERSION BCD Contains the minor specification version
number.

CANNM_AR_RELEASE_REVISION_VERSION BCD Contains the patch level specification
version number.

Table 5-1 Specification Version API Data

5.2.2 Component Versions

The source code versions of CAN NM are provided by three BCD coded macros (and
additionally as constants):

Name Type Description

CANNM_SW_MAJOR_VERSION

(CanNm_MainVersion)
BCD Contains the major component version number.

CANNM_SW_MINOR_VERSION

(CanNm_SubVersion)
BCD Contains the minor component version number.

CANNM_SW_PATCH_VERSION

(CanNm_ReleaseVersion)

BCD Contains the patch level component version number.

Table 5-2 Component Version API Data

These constants are declared as external and can be read by the application at any time.

5.2.3 Vendor and Module ID

CAN NM provides the vendor identifier according to AUTOSAR as defines:

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 45
based on template version 5.2.0

Name Type Description Value

CANNM_VENDOR_ID - Vendor ID according to AUTOSAR. 30

CANNM_MODULE_ID - Module ID according to AUTOSAR. 31

Table 5-3 Vendor/Module ID

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 46
based on template version 5.2.0

5.3 Services Provided by CANNM

5.3.1 Administrative Functions

5.3.1.1 CanNm_Init: Initialization of CAN NM

Prototype

void CanNm_Init (const CanNm_ConfigType * const cannmConfigPtr)

Parameter

cannmConfigPtr Configuration structure for initializing the module

Return code

- -

Functional Description

Initialization of the CAN Network Management (CANNM041) and its internal state machine. By default the
NM starts in the Bus-Sleep Mode.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> The function CanNm_Init() has to be called before any other CanNm service function is called
(except CanNm_InitMemory()).

> During the execution of the function CanNm_Init(), it has to be ensured that the execution is
not interrupted by any other function of the CanNm module. This can for instance be
accomplished by

> global interrupt locks OR

> CAN interrupt locks.

> In Variant post-build-selectable and post-build-loadable a valid configuration pointer has to be
passed in the CanNm_Init function call.

> This function is non-reentrant.

> This function is synchronous.

Expected Caller Context

> Task level

Table 5-4 CanNm_Init

5.3.1.2 CanNm_MainFunction: Main Function for All Channel Instances

Prototype

void CanNm_MainFunction (void)

Parameter

- -

Return code

- -

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 47
based on template version 5.2.0

Functional Description

Main function of the CanNm which processes the NM algorithm. This function is responsible to handle all
CanNm instances. (CANNM234).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called by SchM.

Expected Caller Context

> Task level

Table 5-5 CanNm_MainFunction

5.3.1.3 CanNm_InitMemory: Memory Initialization

Prototype

void CanNm_InitMemory (void)

Parameter

- -

Return code

- -

Functional Description

Initialize Memory, so that expected start values are set.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called by the Application.

Expected Caller Context

> System startup

Table 5-6 CanNm_InitMemory

5.3.2 Service Functions

5.3.2.1 CanNm_GetVersionInfo: Version Information API

Prototype

void CanNm_GetVersionInfo (Std_VersionInfoType *versioninfo)

Parameter

versioninfo Pointer to where to store the version information of this module

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 48
based on template version 5.2.0

Return code

- -

Functional Description

CanNm_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the
component.

The versions are BCD-coded.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is available if CANNM_VERSION_INFO_API is STD_ON

Expected Caller Context

> Task level

Table 5-7 CanNm_GetVersionInfo

5.3.2.2 CanNm_GetState: Get the State of the Network Management

Prototype

Std_ReturnType CanNm_GetState (const NetworkHandleType nmChannelHandle,

 Nm_StateType * const nmStatePtr,

 Nm_ModeType * const nmModePtr)

Parameter

nmChannelHandle Index of the network channel

nmStatePtr Pointer where the state of the Network Management shall be copied to

nmModePtr Pointer where the mode of the Network Management shall be copied to

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Getting the NM state has failed

Functional Description

Return current state and mode of the network management (CANNM223).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called by NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-8 CanNm_GetState

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 49
based on template version 5.2.0

5.3.2.3 CanNm_PassiveStartUp: Wake up the Network Management

Prototype

Std_ReturnType CanNm_PassiveStartUp (const NetworkHandleType nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Start of network management has failed

Functional Description

Starts the NM from the Bus Sleep Mode and triggers a transition to the Network Mode (Repeat Message
State) (CANNM211). This service has no effect if the current state is not equal to Bus Sleep Mode or
Prepare Bus Sleep Mode. In that case E_NOT_OK is returned.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called by NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-9 CanNm_PassiveStartUp

5.3.2.4 Wake-up Registration

5.3.2.4.1 CanNm_NetworkRequest: Request the Network

Prototype

Std_ReturnType CanNm_NetworkRequest (const NetworkHandleType nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Requesting bus-communication has failed

Functional Description

Request the network, since ECU needs to communicate on the bus (CANNM213).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called by NM Interface.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 50
based on template version 5.2.0

Expected Caller Context

> Task and interrupt level

Table 5-10 CanNm_NetworkRequest

5.3.2.4.2 CanNm_NetworkRelease: Release the Network

Prototype

Std_ReturnType CanNm_NetworkRelease (const NetworkHandleType nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Releasing bus-communication has failed

Functional Description

Release the network, since ECU doesn't have to communicate on the bus (CANNM214).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called by NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-11 CanNm_NetworkRelease

5.3.2.5 User Data Handling

5.3.2.5.1 CanNm_SetUserData: Set User Data

Prototype

Std_ReturnType CanNm_SetUserData (const NetworkHandleType nmChannelHandle,

 const uint8 * const nmUserDataPtr)

Parameter

nmChannelHandle Index of the network channel

nmUserDataPtr Pointer to User data for the next transmitted NM message shall be copied
from

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Setting of user data has failed

Functional Description

Set user data for NM messages transmitted next on the bus (CANNM217).

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 51
based on template version 5.2.0

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called from NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-12 CanNm_SetUserData

5.3.2.5.2 CanNm_GetUserData: Get User Data

Prototype

Std_ReturnType CanNm_GetUserData (const NetworkHandleType nmChannelHandle,

 uint8 * const nmUserDataPtr)

Parameter

nmChannelHandle Index of the network channel

nmUserDataPtr Pointer where user data out of the last received NM message shall be copied
to

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Getting of user data has failed

Functional Description

Get user data out of the last NM messages received from the bus (CANNM218).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called from NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-13 CanNm_GetUserData

5.3.2.5.3 CanNm_GetPduData: Get NM PDU Data

Prototype

Std_ReturnType CanNm_GetPduData (const NetworkHandleType nmChannelHandle,

 uint8 * const nmPduDataPtr)

Parameter

nmChannelHandle Index of the network channel

nmPduDataPtr Pointer where PDU Data out of the most recently received NM message shall
be copied to

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 52
based on template version 5.2.0

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Getting the PDU data has failed

Functional Description

Get the whole PDU data out of the last NM message received from the bus (CANNM138).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called from NM Interface.

Expected Caller Context

> Task and interrupt level

Table 5-14 CanNm_GetPduData

5.3.2.6 Node Detection

5.3.2.6.1 CanNm_RepeatMessageRequest: Set Repeat Message Request Bit

Prototype

Std_ReturnType CanNm_RepeatMessageRequest (const NetworkHandleType

 nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Repeat Message Request has failed

Functional Description

Request state change to Repeat Message State (CANNM221).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-15 CanNm_RepeatMessageRequest

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 53
based on template version 5.2.0

5.3.2.6.2 CanNm_GetNodeIdentifier: Get Node Identifier

Prototype

Std_ReturnType CanNm_GetNodeIdentifier (const NetworkHandleType

 nmChannelHandle,

 uint8 * const nmNodeIdPtr)

Parameter

nmChannelHandle Index of the network channel

nmNodeIdPtr Pointer where node identifier from the last received NM message shall be
copied to

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Getting of node identifier has failed

Functional Description

Get node identifier of the last received NM message (CANNM219).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-16 CanNm_GetNodeIdentifier

5.3.2.6.3 CanNm_GetLocalNodeIdentifier: Get Local Node Identifier

Prototype

Std_ReturnType CanNm_GetLocalNodeIdentifier (const NetworkHandleType

 nmChannelHandle,

 uint8 * const nmNodeIdPtr)

Parameter

nmChannelHandle Index of the network channel

nmNodeIdPtr Pointer where node identifier of the local node shall be copied to

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Getting of local node identifier has failed

Functional Description

Get node identifier configured for the local node (CANNM220).

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 54
based on template version 5.2.0

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-17 CanNm_GetLocalNodeIdentifier

5.3.2.7 Bus Synchronization

5.3.2.7.1 CanNm_RequestBusSynchronization: Synchronization of Networks

Prototype

Std_ReturnType CanNm_RequestBusSynchronization (const NetworkHandleType

 nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Requesting bus synchronization has failed

Functional Description

Request bus synchronization (CANNM226) (Transmission of an asynchronous NM message to support
coordination of coupled networks).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called from NM Interface

Expected Caller Context

> Task level

Table 5-18 CanNm_RequestBusSynchronization

5.3.2.8 Remote Sleep Indication

5.3.2.8.1 CanNm_CheckRemoteSleepIndication: Check for Remote Sleep
Indication

Prototype

Std_ReturnType CanNm_CheckRemoteSleepIndication (const NetworkHandleType

 nmChannelHandle,

 boolean * const

 nmRemoteSleepIndPtr)

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 55
based on template version 5.2.0

Parameter

nmChannelHandle Index of the network channel

nmRemoteSleepIndPtr Pointer where PDU Data out of the most recently received NM message shall
be copied to

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Checking remote sleep indication has failed

Functional Description

Check if remote sleep was indicated or not (CANNM227).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-19 CanNm_CheckRemoteSleepIndication

5.3.2.9 NM Message Transmission Request

5.3.2.9.1 CanNm_Transmit: Spontaneous NM Message Transmission

Prototype

Std_ReturnType CanNm_Transmit (PduIdType CanNmTxPduId,

 const PduInfoType *PduInfoPtr)

Parameter

CanNmTxPduId L-PDU handle of CAN L-PDU to be transmitted. This handle specifies the
corresponding CAN LPDU ID and implicitly the CAN Driver instance as well as
the corresponding CAN controller device.

PduInfoPtr Pointer to a structure with CAN L-PDU related data: DLC and pointer to CAN
L-SDU buffer.

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - transmit request has not been accepted due to wrong state

Functional Description

This function is used by the PduR to trigger a spontaneous transmission of an NM message with the
provided NM User Data (CANM331).

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 56
based on template version 5.2.0

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called from PduR

Expected Caller Context

> Task and interrupt level

Table 5-20 CanNm_Transmit

5.3.2.10 Communication Control Service

5.3.2.10.1 CanNm_DisableCommunication: Disable NM Message Transmission

Prototype

Std_ReturnType CanNm_DisableCommunication (const NetworkHandleType

 nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Disable NM Message transmission control status has failed

Functional Description

Disable NM message transmission control status (CANNM215).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-21 CanNm_DisableCommunication

5.3.2.10.2 CanNm_EnableCommunication: Enabled NM Message Transmission

Prototype

Std_ReturnType CanNm_EnableCommunication (const NetworkHandleType

 nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 57
based on template version 5.2.0

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Enabling NM Message transmission control status has failed

Functional Description

Enable NM message transmission control status (CANNM216).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called from NM Interface

Expected Caller Context

> Task and interrupt level

Table 5-22 CanNm_EnableCommunication

5.3.2.11 Coordinator Synchronization Support

5.3.2.11.1 CanNm_SetSleepReadyBit: Set Sleep Ready Bit in the CBV

Prototype

Std_ReturnType CanNm_SetSleepReadyBit (const NetworkHandleType

 nmChannelHandle,

 const boolean nmSleepReadyBit)

Parameter

nmChannelHandle Index of the network channel

nmSleepReadyBit Value written to Ready Sleep Bit in CBV

Return code

Std_ReturnType E_OK - No error

E_NOT_OK - Writing of Sleep Ready Bit has failed

Functional Description

Set the NM Coordinator Sleep Ready bit in the Control Bit Vector (CANNM338).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called from NM Interface

Expected Caller Context

> Task level

Table 5-23 CanNm_SetSleepReadyBit

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 58
based on template version 5.2.0

5.4 Services Used by CANNM

In the following table services provided by other components, which are used by the
CANNM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Component API

CanIf CanIf_Transmit8

CanSM CanSM_TxTimeoutException9

DET Det_ReportError10

NM Nm_CarWakeUpIndication11

Nm_BusSleepMode

Nm_CoordReadyToSleepIndication12

Nm_CoordReadyToSleepCancellation12

Nm_NetworkMode

Nm_NetworkStartIndication

Nm_PduRxIndication13

Nm_CanNm_PduRxIndication14

Nm_PrepareBusSleepMode

Nm_RemoteSleepCancellation15

Nm_RemoteSleepIndication15

Nm_RepeatMessageIndication16

Nm_StateChangeNotification17

Nm_TxTimeoutException8,18

PduR PduR_CanNmTriggerTransmit8,19

PduR_CanNmTxConfirmation8,19,20

PduR_CanNmRxIndication21

SchM SchM_Enter_CanNm_CANNM_EXCLUSIVE_AREA_i

SchM_Exit_CanNm_CANNM_EXCLUSIVE_AREA_i

for i=0,…,5

Table 5-24 Services used by the CANNM

8
 Service only used if the feature ‘Passive Mode’ is disabled

9
 Service only used if ‘Immediate Tx Conf Enabled’ is disabled and ‘Pn Enabled’ is enabled and if CanSM

provides this function
10

 Service only used if the feature ‘Dev Error Detect’ is enabled
11

 Service only used if the feature ‘Car Wake Up Rx Enabled’ is enabled.
12

 Service only used if the feature ‘Coordinator Sync Support’ is enabled.
13

 Service only used if the feature ‘Pdu Rx Indication Enabled’ is enabled.
14

 Service only used if the feature ‘Bus Nm Specific Pdu Rx Indication Enabled‘ is enabled in NmIf.
15

 Service only used if the feature ‘Remote Sleep Ind Enabled’ is enabled.
16

 Service only used if the feature ‘Repeat Msg Ind Enabled’ is enabled.
17

 Service only used if the feature ‘State Change Ind Enabled’ is enabled.
18

 Service only used if the feature ‘Immediate Tx Conf Enabled’ is enabled.
19

 Service only used if the feature ‘Com User Data Support’ is enabled.
20

 Service only used if the feature ‘Immediate Txconf Enabled’ is disabled.
21

 Service only used if the features ‘Pn Eira Calc Enabled’ or ‘Pn Era Calc Enabled’ is enabled.

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 59
based on template version 5.2.0

5.5 Callback Functions

5.5.1 Callback Functions from CAN Interface

5.5.1.1 CanNm_TxConfirmation: NM Message Confirmation Function

Prototype

void CanNm_TxConfirmation (PduIdType TxPduId)

Parameter

TxPduId ID of CAN NM PDU that has been transmitted

Return code

- -

Functional Description

This function is called by the CAN Interface after a CAN NM PDU has been successfully transmitted
(CANNM228).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is asynchronous.

> This function is called from data link layer

Expected Caller Context

> Task and interrupt level

Table 5-25 CanNm_TxConfirmation

5.5.1.2 CanNm_RxIndication: NM Message Indication

Prototype

void CanNm_RxIndication (PduIdType RxPduId, const PduInfoType *PduInfoPtr)

Parameter

RxPduId ID of CAN NM PDU that has been received

PduInfoPtr Pointer to a PduInfoType containing the received CAN NM SDU and its length

Return code

- -

Functional Description

This function is called by the CAN Interface after a CAN L-PDU has been received (CANNM231).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is non-reentrant.

> This function is synchronous.

> This function is called from data link layer

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 60
based on template version 5.2.0

Expected Caller Context

> Task and interrupt level

Table 5-26 CanNm_RxIndication

5.5.2 Callback Function from CAN State Manager

5.5.2.1 CanNm_ConfirmPnAvailability: Notification for Activating the PN Filter
Functionality

Prototype

void CanNm_ConfirmPnAvailability (const NetworkHandleType nmChannelHandle)

Parameter

nmChannelHandle Index of the network channel

Return code

- -

Functional Description

Enables the PN filter functionality on the indicated NM channel (CANM344).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is reentrant.

> This function is synchronous.

> This function is called by CanSM

Expected Caller Context

> Task and interrupt level

Table 5-27 CanNm_ConfirmPnAvailability

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 61
based on template version 5.2.0

6. Glossary and Abbreviations

6.1 Glossary

Term Description

Confirmation Notification by the data link layer on asynchronous successful
transmission of a CAN message

Identifier Identifies a CAN message

Indication Notification by the data link layer on asynchronous reception of a CAN
message

Message One or more signals are assigned to each message.

Signal Signals describe the significance of the individual data segments within a
message. Typically bits, bytes or words are used for data segments but
individual bit combinations are also possible. In the CAN database, each
data segment is assigned a symbolic name, a value range, a conversion
formula and a physical unit, as well as a list of receiving nodes.

Table 6-1 Glossary

6.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BswM Basic Software Mode Manager

CAN Controller Area Network

CanIf Can Interface

CCL Communication Control Layer

ComM Communication Manager

CRI Partial Network Cluster Request Information

DET Development Error Tracer

DEM Diagnostic Event Manager

DLC Data Length Code (Number of data bytes of a CAN message)

DLL Data link layer

ECU Electronic Control Unit

EIRA External Internal Requests Aggregated

ERA External Requests Aggregated

FIBEX Field Bus Exchange

ID Identifier (of a CAN message)

IL Interaction Layer

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 62
based on template version 5.2.0

I-PDU Interaction Layer Protocol Data Unit

ISR Interrupt Service Routine

LIN Local Interconnect Network

MISRA Motor Industry Software Reliability Association

NM Network Management

PDU Protocol Data Unit

PN Partial Network / Partial Networking

RAM Random Access Memory

RI Reference Implementation

(Reference Implementation of the CAN-Driver High Level part)

ROM Read Only Memory

SchM Schedule Manager (BSW Scheduler)

SRS System Requirements Specification (used for AUTOSAR documents)

SWS Software Specification (used for AUTOSAR documents)

UDP User Datagram Protocol

Table 6-2 Abbreviations

Technical Reference MICROSAR CAN Network Management

© 2016 Vector Informatik GmbH Version 6.02.00 63
based on template version 5.2.0

7. Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1. Component History
	2. Introduction
	2.1 Naming Conventions
	2.2 Architecture Overview
	2.2.1 Architecture of AUTOSAR Network Management

	3. Functional Description
	3.1 Features
	3.1.1 Deviations Against AUTOSAR
	3.1.1.1 RAM Initialization
	3.1.1.2 Additional Configuration Dependencies
	3.1.1.3 Variant Post-Build

	3.1.2 Additions/ Extensions
	3.1.2.1 Single Channel Optimization
	3.1.2.2 Memory Initialization
	3.1.2.3 Disable Transmission Error Reporting
	3.1.2.4 Calling CanNm_PassiveStartUp in Prepare Bus Sleep
	3.1.2.5 Additional Development Error Codes
	3.1.2.6 Variable DLC Support
	3.1.2.7 Changeability of Additional Parameters During the Post-Build Phase

	3.1.3 Limitations
	3.1.3.1 Ranges of Timers
	3.1.3.2 Effects of CanNm_DisableCommunication
	3.1.3.3 CANNM_E_NET_START_IND Development Error

	3.2 Network Management Mechanism
	3.3 Initialization
	3.4 Passive Mode
	3.5 Operation Modes and States
	3.5.1 Network Mode
	3.5.1.1 Repeat Message State
	3.5.1.2 Normal Operation State
	3.5.1.3 Ready Sleep State

	3.5.2 Prepare Bus-Sleep Mode
	3.5.2.1 Wait Bus Sleep Extensions

	3.5.3 Bus-Sleep Mode
	3.5.4 Wake-up Registration
	3.5.5 User Data Handling

	3.6 Network Management Message Transmission and Reception
	3.6.1 AUTOSAR CAN Interface
	3.6.2 PDU Message Layout
	3.6.3 Message Transmissions
	3.6.4 Bus Load Reduction
	3.6.5 Support for RX PDUs with Different Lengths

	3.7 Node Detection
	3.8 NM PDU Receive Indication
	3.9 Communication Control
	3.10 Gateway Functionality
	3.10.1 Remote Sleep Indication and Cancellation
	3.10.2 Bus Synchronization

	3.11 Coordinator Synchronization Support
	3.12 Error Handling
	3.12.1 Development Error Detection
	3.12.1.1 Det_ReportError
	3.12.1.2 Parameter Checking

	3.12.2 Production Code Error Reporting

	3.13 Com User Data Support
	3.13.1 Configuration Preconditions in an AUTOSAR ECU Configuration

	3.14 Active Wake-up Handling
	3.15 Immediate Nm Transmissions
	3.16 Immediate Restart Enabled
	3.17 Car Wake-up
	3.17.1 Rx-Path
	3.17.2 Tx-Path

	3.18 Partial Networking
	3.18.1 Availability of Partial Network Request Information
	3.18.2 Transmission of the CRI Bit in the NM User Data
	3.18.3 Filter Algorithm for Received NM Messages
	3.18.4 Aggregation of Requested Partial Networks
	3.18.5 Spontaneous Sending of NM Messages
	3.18.5.1 Using Com Transmission on Change Mechanism
	3.18.5.2 Using NM Request and Immediate Nm Transmission

	4. Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Main Functions
	4.4 Critical Sections
	4.5 Critical Section Codes

	5. API Description
	5.1 Data Types
	5.2 Global Constants
	5.2.1 AUTOSAR Specification Version
	5.2.2 Component Versions
	5.2.3 Vendor and Module ID

	5.3 Services Provided by CANNM
	5.3.1 Administrative Functions
	5.3.1.1 CanNm_Init: Initialization of CAN NM
	5.3.1.2 CanNm_MainFunction: Main Function for All Channel Instances
	5.3.1.3 CanNm_InitMemory: Memory Initialization

	5.3.2 Service Functions
	5.3.2.1 CanNm_GetVersionInfo: Version Information API
	5.3.2.2 CanNm_GetState: Get the State of the Network Management
	5.3.2.3 CanNm_PassiveStartUp: Wake up the Network Management
	5.3.2.4 Wake-up Registration
	5.3.2.4.1 CanNm_NetworkRequest: Request the Network
	5.3.2.4.2 CanNm_NetworkRelease: Release the Network

	5.3.2.5 User Data Handling
	5.3.2.5.1 CanNm_SetUserData: Set User Data
	5.3.2.5.2 CanNm_GetUserData: Get User Data
	5.3.2.5.3 CanNm_GetPduData: Get NM PDU Data

	5.3.2.6 Node Detection
	5.3.2.6.1 CanNm_RepeatMessageRequest: Set Repeat Message Request Bit
	5.3.2.6.2 CanNm_GetNodeIdentifier: Get Node Identifier
	5.3.2.6.3 CanNm_GetLocalNodeIdentifier: Get Local Node Identifier

	5.3.2.7 Bus Synchronization
	5.3.2.7.1 CanNm_RequestBusSynchronization: Synchronization of Networks

	5.3.2.8 Remote Sleep Indication
	5.3.2.8.1 CanNm_CheckRemoteSleepIndication: Check for Remote Sleep Indication

	5.3.2.9 NM Message Transmission Request
	5.3.2.9.1 CanNm_Transmit: Spontaneous NM Message Transmission

	5.3.2.10 Communication Control Service
	5.3.2.10.1 CanNm_DisableCommunication: Disable NM Message Transmission
	5.3.2.10.2 CanNm_EnableCommunication: Enabled NM Message Transmission

	5.3.2.11 Coordinator Synchronization Support
	5.3.2.11.1 CanNm_SetSleepReadyBit: Set Sleep Ready Bit in the CBV

	5.4 Services Used by CANNM
	5.5 Callback Functions
	5.5.1 Callback Functions from CAN Interface
	5.5.1.1 CanNm_TxConfirmation: NM Message Confirmation Function
	5.5.1.2 CanNm_RxIndication: NM Message Indication

	5.5.2 Callback Function from CAN State Manager
	5.5.2.1 CanNm_ConfirmPnAvailability: Notification for Activating the PN Filter Functionality

	6. Glossary and Abbreviations
	6.1 Glossary
	6.2 Abbreviations

	7. Contact

