

MICROSAR Communication Manager

Technical Reference

Version 8.00.00

Authors Michael Schligerski

Status Released

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 2
based on template version 5.2.0

Document Information

History

Author Date Version Remarks

Michael Schligerski 2012-08-07 1.00.00 Initial creation

Michael Schligerski 2013-01-31 1.01.00 > Updated AUTOSAR Architecture, chapter 2.1

> Updated description of
ComM_CurrentChannelRequest, chapter 6.1.3.1

Michael Schligerski 2013-05-15 1.02.00 > Added configuration variant Post-Build Loadable,
chapter 3.1.2.2 (ESCAN00064954)

> Information from chapter ‘AUTOSAR Standard
Compliance’ is moved to chapter ‘Features’

> Updated chapter ‘Critical Sections’

> Removed chapter ‘Compiler Abstraction and
Memory Mapping’

> Updated chapter ‘Partial Network States’

Michael Schligerski 2013-09-27 2.00.00 > Updated chapter ‘Partial Network States’
(ESCAN00069988)

> Updated chapters ‘Mode Limitation’,
‘ComM_PreventWakeUp’,
‘ComM_LimitChannelToNoComMode’,
‘ComM_LimitECUToNoComMode’
(ESCAN00068896 , ESCAN00068902)

> Support EthSM as lower layer of COMM, see
chapters 3.3 and 5.3 (ESCAN00069043)

> Updated description of Sender Receiver
Interface ‘ComM_CurrentMode’
(ESCAN00070321).

> Added notes for usage of LIN NM and J1939 NM
in chapters 3.5.1 and 3.5.3 (ESCAN00071341).

> Updated Include Structure to reflect Post Build
Loadable (ESCAN00064954).

> Added a Caution box to chapter 3.4 regarding
Partial Network TX EIRA signals
(ESCAN00071527).

Michael Schligerski 2014-02-07 2.01.00 > ESCAN00072763 Added DET error
COMM_E_DIAGNOSTIC_NOT_SUPPORTED in
chapters 3.6.1, 5.4.4 and 5.4.5

> ESCAN00074243 Table 3-5 sorted by ID,
description of the Port Interface
ComM_CurrentMode moved to chapter 6.1.2
‘Mode Switch Interface’.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 3
based on template version 5.2.0

Michael Schligerski 2014-06-04 3.00.00 > Improved description of
ComM_CurrentChannelRequest
(ESCAN00075361).

> Improved description of
ComMPncPrepareSleepTimer in chapter 3.4
(ESCAN00075422).

> Added chapter 3.1.3.2 (ESCAN00076076).

> Adapted chapter 6.1.1.1.3 (ESCAN00074321).

Michael Schligerski 2014-10-02 3.01.00 > Added support of Bus Type INTERNAL, refer to
chapter 3.5 (ESCAN00076859)

> Added Timer-based shutdown synchronization
via Silent state, refer to chapter 3.1.2.3 and
Figure 3-1 COMM channel state machine
(ESCAN00076774)

> Updated include structure in 4.2
(ESCAN00078688)

> Extended Partial Network Cluster ID support,
refer to chapter 3.1.2 (ESCAN00076852)

> NvM support made optional, refer to chapter
3.1.2 (ESCAN000772069)

> Added internal function service IDs
(ESCAN00076325)

Michael Schligerski 2015-03-25 4.00.00 > Support of channel-specific Minimum Full Com
Mode timer, chapters 3.1.2.4 and 3.3
(ESCAN00082062)

Michael Schligerski 2015-08-12 5.00.00 > ‘Post-Build Loadable’ is used as standard
MICROSAR feature name, chapter 3.1.2.2

> Service Port names do not contain ComM user
and channel identifiers anymore, see chapter 6
(ESCAN00084462)

> Added Pnc to Channel Routing Limitation, see
chapter 3.1.2.5 (ESCAN00083603)

Michael Schligerski 2016-01-12 6.00.00 > Improved description of 3.1.1 Deviations
(ESCAN00087416)

Michael Schligerski 2016-02-26 7.00.00 > Added support of Extended RAM Check, see
chapter 3.1.2.6 (ESCAN00089104)

> Improved description of 4.3 Critical Sections
(ESCAN00088182)

Michael Schligerski 2016-05-24 7.00.01 > Added API description of
ComM_Nm_StateChangeNotification and
ComM_ComCbk_<SignalName>
(ESCAN00090164)

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 4
based on template version 5.2.0

Michael Schligerski 2016-08-15 7.01.00 > Added APIs ComM_GetDcmRequestStatus and
ComM_GetMinFullComModeTimerStatus
(ESCAN00091481)

> Provided more details on Nm Variant PASSIVE
in chapters 3.1.2 and 3.5.1

Michael Schligerski 2016-11-09 8.00.00 > Added Reset after Forcing NO_COM
functionality in chapter 3.5.2.1

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 5
based on template version 5.2.0

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_COMManager.pdf V4.0.0

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf V3.2.0

[3] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.6.0

[4] AUTOSAR AUTOSAR_SWS_EthernetStateManager V2.0.0

[5] AUTOSAR AUTOSAR_SWS_UDPNetworkManagement V3.0.0

[6] Vector TechnicalReference_LinNm.pdf see delivery

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 6
based on template version 5.2.0

Contents

1 Component History .. 11

2 Introduction .. 12

2.1 Architecture Overview .. 13

3 Functional Description .. 15

3.1 Features ... 15

3.1.1 Deviations ... 16

3.1.1.1 Variant Post-Build ... 16

3.1.2 Additions/ Extensions .. 16

3.1.2.1 Memory Initialization ... 17

3.1.2.2 Post-Build Loadable ... 17

3.1.2.3 Timer-based Shutdown Synchronization via Silent State 17

3.1.2.4 Channel-specific Minimum Full Com Mode Timer 17

3.1.2.5 Pnc to Channel Routing Limitation.. 18

3.1.2.6 Extended RAM Check .. 20

3.1.3 Limitations ... 21

3.1.3.1 Non-volatile Data Handling ... 21

3.1.3.2 Assignment of Users to Channels and PNCs ... 21

3.2 Initialization .. 21

3.3 States ... 21

3.4 Partial Network States .. 25

3.5 Main Functions ... 28

3.5.1 Communication Control Handling .. 28

3.5.2 Mode Limitation ... 29

3.5.2.1 Mode Limitation to NO_COM .. 29

3.5.2.2 Prevent Wake-Up ... 30

3.5.3 Synchronous Wake-Up.. 30

3.6 Error Handling .. 31

3.6.1 Development Error Reporting .. 31

3.6.1.1 Parameter Checking ... 32

3.6.2 Production Code Error Reporting .. 34

4 Integration .. 35

4.1 Scope of Delivery ... 35

4.1.1 Static Files .. 35

4.1.2 Dynamic Files ... 35

4.2 Include Structure .. 36

4.3 Critical Sections ... 37

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 7
based on template version 5.2.0

4.4 Handling of non-volatile Data ... 37

5 API Description .. 39

5.1 Type Definitions .. 39

5.2 Services provided by COMM .. 41

5.2.1 ComM_InitMemory .. 41

5.2.2 ComM_Init ... 41

5.2.3 ComM_DeInit .. 42

5.2.4 ComM_GetStatus .. 42

5.2.5 ComM_GetInhibitionStatus ... 43

5.2.6 ComM_RequestComMode .. 44

5.2.7 ComM_GetMaxComMode ... 44

5.2.8 ComM_GetRequestedComMode .. 45

5.2.9 ComM_GetCurrentComMode .. 45

5.2.10 ComM_PreventWakeUp .. 46

5.2.11 ComM_LimitChannelToNoComMode .. 47

5.2.12 ComM_LimitECUToNoComMode .. 48

5.2.13 ComM_ReadInhibitCounter ... 48

5.2.14 ComM_ResetInhibitCounter .. 49

5.2.15 ComM_SetECUGroupClassification .. 49

5.2.16 ComM_GetVersionInfo .. 50

5.2.17 ComM_MainFunction .. 50

5.2.18 ComM_GetState ... 51

5.2.19 ComM_LimitPncToChannelRouting ... 52

5.2.20 ComM_GetDcmRequestStatus ... 52

5.2.21 ComM_GetMinFullComModeTimerStatus ... 53

5.3 Services used by COMM .. 54

5.4 Callback Functions ... 54

5.4.1 ComM_CommunicationAllowed .. 54

5.4.2 ComM_EcuM_WakeUpIndication .. 55

5.4.3 ComM_BusSM_ModeIndication .. 56

5.4.4 ComM_DCM_ActiveDiagnostic ... 56

5.4.5 ComM_DCM_InactiveDiagnostic ... 57

5.4.6 ComM_Nm_NetworkStartIndication .. 57

5.4.7 ComM_Nm_NetworkMode .. 58

5.4.8 ComM_Nm_PrepareBusSleep .. 58

5.4.9 ComM_Nm_BusSleepMode .. 59

5.4.10 ComM_Nm_RestartIndication ... 60

5.4.11 ComM_Nm_StateChangeNotification .. 60

5.4.12 ComM_ComCbk_<SignalName> .. 61

5.5 Configurable Interfaces .. 61

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 8
based on template version 5.2.0

5.5.1 Notifications .. 61

5.5.1.1 Dcm_ComM_FullComModeEntered ... 61

5.5.1.2 Dcm_ComM_SilentComModeEntered .. 62

5.5.1.3 Dcm_ComM_NoComModeEntered .. 62

5.5.1.4 BswM_ComM_CurrentMode .. 63

5.5.1.5 BswM_ComM_CurrentPNCMode ... 63

5.5.1.6 BswM_ComM_InitiateReset ... 64

5.5.1.7 Rte_Switch_ComM_<UserName>_currentMode 64

6 Service Ports .. 65

6.1.1 Client Server Interface ... 65

6.1.1.1 Provide Ports on COMM Side ... 65

6.1.1.1.1 ComM_UserRequest ... 65

6.1.1.1.2 ComM_ECUModeLimitation .. 65

6.1.1.1.3 ComM_ChannelWakeUp ... 65

6.1.1.1.4 ComM_ChannelLimitation ... 66

6.1.1.2 Require Ports on COMM Side .. 66

6.1.2 Mode Switch Interface ... 66

6.1.2.1 ComM_CurrentMode .. 66

6.1.3 Sender Receiver Interface ... 67

6.1.3.1 ComM_CurrentChannelRequest .. 67

7 Abbreviations ... 69

7.1 Abbreviations ... 69

8 Contact.. 70

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 9
based on template version 5.2.0

Illustrations

Figure 2-1 AUTOSAR 4.x Architecture Overview ... 13
Figure 2-2 Interfaces to adjacent modules of the COMM ... 14
Figure 3-1 COMM channel state machine .. 22
Figure 3-2 COMM Partial Network Cluster state machine .. 25
Figure 4-1 Include structure ... 36

Tables

Table 1-1 Component history.. 11
Table 3-1 Supported AUTOSAR standard conform features 15
Table 3-2 Not supported AUTOSAR standard conform features 16
Table 3-3 Features provided beyond the AUTOSAR standard 16
Table 3-4 States of Routing Limitation on a channel ... 18
Table 3-5 Service IDs ... 32
Table 3-6 Errors reported to DET ... 32
Table 3-7 Development Error Reporting: Assignment of checks to services 34
Table 4-1 Static files ... 35
Table 4-2 Generated files ... 36
Table 5-1 Type definitions ... 40
Table 5-2 ComM_InhibitionType ... 40
Table 5-3 ComM_UserHandleArrayType .. 41
Table 5-4 ComM_InitMemory ... 41
Table 5-5 ComM_Init .. 42
Table 5-6 ComM_DeInit .. 42
Table 5-7 ComM_GetStatus ... 43
Table 5-8 ComM_GetInhibitionStatus ... 43
Table 5-9 ComM_RequestComMode ... 44
Table 5-10 ComM_GetMaxComMode .. 45
Table 5-11 ComM_GetRequestedComMode .. 45
Table 5-12 ComM_GetCurrentComMode ... 46
Table 5-13 ComM_PreventWakeUp ... 47
Table 5-14 ComM_LimitChannelToNoComMode .. 47
Table 5-15 ComM_LimitECUToNoComMode ... 48
Table 5-16 ComM_ReadInhibitCounter .. 49
Table 5-17 ComM_ResetInhibitCounter .. 49
Table 5-18 ComM_SetECUGroupClassification ... 50
Table 5-19 ComM_GetVersionInfo ... 50
Table 5-20 ComM_MainFunction .. 51
Table 5-21 ComM_GetState ... 51
Table 5-22 ComM_LimitPncToChannelRouting .. 52
Table 5-23 ComM_GetDcmRequestStatus ... 53
Table 5-24 ComM_GetMinFullComModeTimerStatus ... 54
Table 5-25 Services used by the COMM .. 54
Table 5-26 ComM_CommunicationAllowed .. 55
Table 5-27 ComM_EcuM_WakeUpIndication ... 55
Table 5-28 ComM_BusSM_ModeIndication.. 56
Table 5-29 ComM_DCM_ActiveDiagnostic ... 57
Table 5-30 ComM_DCM_InactiveDiagnostic .. 57
Table 5-31 ComM_Nm_NetworkStartIndication .. 58
Table 5-32 ComM_Nm_NetworkMode .. 58
Table 5-33 ComM_Nm_PrepareBusSleep .. 59

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 10
based on template version 5.2.0

Table 5-34 ComM_Nm_BusSleepMode ... 59
Table 5-35 ComM_Nm_RestartIndication ... 60
Table 5-36 ComM_Nm_StateChangeNotification ... 61
Table 5-37 ComM_ComCbk_<SignalName> .. 61
Table 5-38 Dcm_ComM_FullComModeEntered ... 62
Table 5-39 Dcm_ComM_SilentComModeEntered .. 62
Table 5-40 Dcm_ComM_NoComModeEntered .. 63
Table 5-41 BswM_ComM_CurrentMode ... 63
Table 5-42 BswM_ComM_CurrentPNCMode ... 63
Table 5-43 BswM_ComM_InitiateReset .. 64
Table 5-44 Rte_Switch_ComM_<UserName>_currentMode 64
Table 6-1 ComM_UserRequest .. 65
Table 6-2 ComM_ECUModeLimitation ... 65
Table 6-3 ComM_ChannelWakeUp .. 65
Table 6-4 ComM_ChannelLimitation... 66
Table 6-5 ComM_CurrentMode .. 66
Table 6-6 ComM_CurrentChannelRequest ... 67
Table 7-1 Abbreviations .. 69

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 11
based on template version 5.2.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Implementation according to AUTOSAR release 4.0.3

1.03.00 Support of Post-Build Loadable

2.00.00 Support of Bus Type Ethernet, support of J1939 NM

3.01.00 MICROSAR Identity Manager using Post-Build Selectable, support of Bus
Type INTERNAL

4.00.00 Support of channel-specific Minimum Full Com Mode timer

5.00.00 Pnc to Channel Routing Limitation

7.00.00 Extended RAM Check

8.00.00 Reset after Forcing NO_COM functionality

Table 1-1 Component history

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 12
based on template version 5.2.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module COMM as specified in [1].

Supported AUTOSAR Release: 4

Supported Configuration Variants: pre-compile, post-build-loadable

Vendor ID: COMM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: COMM_MODULE_ID 12 decimal

(according to ref. [3])

The Communication Manager is a resource manager, which encapsulates the control of
the underlying communication services.

The purpose of the COMM module is:

> Coordinating different wake-up events independent of the used bus system.

> Providing the concept of user to request Communication Modes. Coordinating
requests of multiple independent users.

> Controlling of more than one communication bus channel of an ECU by implementing
a channel state machine for every channel.

> Simplifying the resource management by allocating all resources which are necessary
to start or shutdown communication.

> Simplifying the handling of the underlying communication stack (e.g. network
management handling).

> Providing mode inhibition functionality to limit the communication capabilities of the
ECU.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 13
based on template version 5.2.0

2.1 Architecture Overview

The following figure shows where the COMM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.x Architecture Overview

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 14
based on template version 5.2.0

The next figure shows the interfaces to adjacent modules of the COMM. These interfaces
are described in chapter 4.

Figure 2-2 Interfaces to adjacent modules of the COMM

Applications do not access the services of the BSW modules directly. They use the service
ports provided by the BSW modules via the RTE. The service ports provided by the
COMM are listed in chapter 6 and are defined in [1].

class Architecture

LinSm

BswM

FrSm

Rte

CanSM

Com

EthSm

Nv M

Dcm

EcuM

Det

Nm

ComM

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 15
based on template version 5.2.0

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
COMM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

Refer to the chapter 3.1.1 for further information on not supported features.

Vector Informatik provides further COMM functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Communication Control Handling

Synchronous wake up of channels

NM Variant Handling: FULL

NM Variant Handling: LIGHT

NM Variant Handling: NONE

NM Variant Handling: PASSIVE

Mode Limitation No Communication

Bus Wake-up Inhibition

Service Port: ComM_UserRequest

Service Port: ComM_ECUModeLimitation

Service Port: ComM_ChannelWakeUp

Service Port: ComM_ChannelLimitation

Service Port: ComM_CurrentMode

Service Port: ComM_CurrentChannelRequest

Storage of non-volatile values

Partial Network Cluster Management

Detection and notification of development errors to DET

COMM bus type INTERNAL

Reset after Forcing NO_COM functionality, see chapter 3.5.2.1

Table 3-1 Supported AUTOSAR standard conform features

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 16
based on template version 5.2.0

3.1.1 Deviations

The following features specified in [1] are not supported:

Category Description ASR
Version

Config ComMDirectUserMapping 4.0.3

Config ComMUserEcucPartitionRef 4.0.3

Config ComMUserPerPnc (COMM does not support PNCs without user assigned
to it)

4.0.3

Functional Version checking (COMM does not perform Inter Module version checks) 4.0.3

< 4.1.2

Table 3-2 Not supported AUTOSAR standard conform features

3.1.1.1 Variant Post-Build

Instead of the Configuration Variant Post-Build, the Variant Post-Build-Loadable is
supported.

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Enabling or disabling of User Mode Notification per COMM user (ComMUserModeNotification)

Optional inclusion of a user configuration file (ComMUserConfigurationFile)

Development Error Reporting is extended by COMM_E_NOSUPPORTED_MODECHANGE,
COMM_E_ERROR_IN_PROV_SERVICE, COMM_E_DIAGNOSTIC_NOT_SUPPORTED

Memory Initialization

Post-Build Loadable, see chapter 3.1.2.2

As a compatibility feature, the Client-Server-Interface ComM_ChannelWakeUp can omit the
operation GetInhibitionStatus, see chapter 6.1.1.1.3

Possibility to assign COMM users to COMM channels with Nm variant PASSIVE. Communication
Requests of such users will be ignored. A possible use case is triggering a runnable via RTE
mode switch interface ComM_CurrentMode.

Timer-based shutdown synchronization via Silent state, see chapter 3.1.2.3

Partial Network Cluster ID counting is supported accordingly to Autosar version 4.0.x and 4.1.x
as well. Refer to the description of parameter ‘Pnc Id Counting’ for more information.

NvM support is optional when using Mode Limitation. Refer to the description of parameter
‘Global NvM Block Descriptor’ for more information.

MICROSAR Identity Manager using Post-Build Selectable

Support of channel-specific Minimum Full Com Mode timer, see chapter 3.1.2.4

Pnc to Channel Routing Limitation

Extended RAM Check, see chapter 3.1.2.6

Table 3-3 Features provided beyond the AUTOSAR standard

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 17
based on template version 5.2.0

3.1.2.1 Memory Initialization

Not every start-up code of embedded targets and neither CANoe provide initialized RAM.
It thus may happen that the state of a variable that needs initialized RAM may not be set to
the expected initial value. Therefore an explicit initialization of such variables has to be

provided at start-up by calling the additional function ComM_InitMemory.

For more information refer to chapter 3.2 ‘Initialization’.

3.1.2.2 Post-Build Loadable

In the Variant Post-Build-Loadable, the configuration parameters ‘ComMChannelPerPnc’
and ‘ComMUserPerPnc’ are also changeable during the post-build phase as addition to
the post-build-changeable parameter ComMPncEnabled required by [1].

The following use cases are supported in post-build phase in addition to [1]:

> Assign a non-coordinated PNC to another channel on an ECU with multiple channels.

> Assign a coordinated PNC to other channels.

> Remove or add one or more users to a PNC. It is allowed that a user is not assigned
to any PNC anymore.

There are following limitations to be taken into account:

> Coordination type of PNCs cannot be changed in post-build phase. If a PNC was
coordinated in pre-compile phase it shall remain coordinated in post-build phase and
vice versa.

> If changing the assignment of PNC to channels, the PNC signal configuration made in
pre-compile phase (parameter ‘ComMPncComSignal’) must reference the channels,
which are added in post-build phase.

> PNCs cannot be added or removed in post-build phase.

> Each PNC shall be assigned to at least one channel and to at least one user.

> If a COMM user was assigned to one or more channels in pre-compile phase, it cannot
be assigned to PNCs in post-build phase and vice versa.

> COMM users cannot be created or deleted in post-build phase.

3.1.2.3 Timer-based Shutdown Synchronization via Silent State

‘Nm Light Silent Timeout’ timer specifies the time duration spent in the state
COMM_SILENT_COMMUNICATION after leaving COMM_FULL_COM_READY_SLEEP
state and before entering COMM_NO_COMMUNICATION state. This is similar to the
Prepare Bus Sleep Phase when Network Management is used. This timer is only available
for channels with Bus Type CAN and Nm Variant LIGHT.

3.1.2.4 Channel-specific Minimum Full Com Mode Timer

The optional channel-specific parameter ‘TMin Full Com Mode Duration Of Channel’ is
used to initialize the Minimum Full Com Mode timer of a channel. It specifies the minimum
time duration, spent in the COMM_FULL_COMMUNICATION sub-state
COMM_FULL_COM_NETWORK_REQUESTED. The parameter is only available for
channels with Nm Variants LIGHT and FULL.

If the channel has Nm Variant LIGHT:

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 18
based on template version 5.2.0

> This parameter is used instead of the global ‘TMin Full Com Mode Duration’.

> The Minimum Full Com Mode timer is started when entering the state
COMM_FULL_COMMUNICATION.

> The Minimum Full Com Mode timer is cancelled if a user or Dcm requests
communication.

If the channel has Nm Variant FULL:

> It is recommended to use this parameter if the corresponding BusNm does not support
the Repeat Message Time functionality (e.g. NmOsek).

> It is not recommended to use this parameter if the corresponding BusNm supports the
Repeat Message Time functionality (e.g. CanNm, FrNm or UdpNm).

> The Minimum Full Com Mode timer is started when entering the state
COMM_FULL_COMMUNICATION.

> The Minimum Full Com Mode timer cannot be cancelled.

3.1.2.5 Pnc to Channel Routing Limitation

This feature allows a selective limitation of Partial Network Routing at runtime.

The feature is de-activated per default. In this case ComM will route Partial Network
requests to all channels mapped to the Partial Network according to AUTOSAR
specification [1].

If the feature is activated, it is possible to limit the routing of Partial Network requests on
particular channels using the API ComM_LimitPncToChannelRouting(). The Routing
Limitation can be applied to channels with both active and passive gateway (coordination)
types. There are three states of Routing Limitation on a channel that are described in the
Table 3-4.

State of Partial Network Routing Limitation
on the channel

GW routes
PNC requests
to the channel

GW keeps
the channel
awake

Disabled in one of the following cases:

> Disabled temporarily as long as a ComM user mapped to the
channel (not to PNC) requests FULL_COM or

> Disabled temporarily as long as ERA signal containing a PNC
request is received on the channel or

> A PNC is requested by a ComM user or by another ECU and
the routing of this PNC to the channel is not limited.

 

Partly disabled if

> None of above applies and

> As long as Network Management is in state ‘Repeat Message’
on the channel (e.g. after receiving Nm message in state
‘Prepare Bus Sleep’).



Enabled if none of the above applies.

Table 3-4 States of Routing Limitation on a channel

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 19
based on template version 5.2.0

The states of Routing Limitation determine whether the GW routes PNC requests to a
particular channel and whether the GW keeps the channel awake by sending its own Nm
message. The basic rule is that the PNC requests are to be routed to a channel if the GW
sends its Nm message on it.

The Routing Limitation states are exclusive and have the following meaning:

> If Routing Limitation is disabled on a channel, ComM will keep the channel awake and
route the request to it. Nm will set the corresponding bits to 1 within PNC vector in the
Nm message sent by the GW.

> Otherwise if Routing Limitation is partly disabled on a channel, ComM will not keep
the channel awake but will route the request to it. Nm will set the corresponding bits to
1 within PNC vector in the Nm message sent by the GW.

> Otherwise if Routing Limitation is enabled on a channel, ComM will not keep the
channel awake and there is no Nm messages sent by the GW.

The feature introduces an additional condition for a PNC to enter the state
PNC_REQUESTED. If a ComM user mapped to the PNC requests FULL_COM, the PNC
is allowed to enter PNC_REQUESTED if at least one channel mapped to the PNC has the
Routing Limitation disabled or partly disabled. If all channels have the Routing Limitation
enabled, the request is stored but inhibited.

The following use cases are aimed to illustrate the rules described above:

> PNC user requests FULL_COM, but Routing Limitation is enabled on all channels
mapped to the PNC. The request is stored but not granted.

> PNC user requests FULL_COM and there is at least one channel mapped to the PNC
having Routing Limitation disabled or partly disabled. ComM will execute the request
and PNC will enter PNC_REQUESTED state. ComM will notify BswM.

> Requests via ERA=1 are always granted because Routing Limitation is disabled
temporarily on the channel where ERA was received as long as the value of ERA is 1.

> Routing Limitation on a channel can be disabled or partly disabled while the channel
is mapped to a PNC which is in state PNC_REQUESTED. Nm will set corresponding
bits to 1 within PNC vector of the Nm message sent by the GW.

> Routing Limitation on a channel can be enabled while the channel is mapped to a
PNC which is in state PNC_REQUESTED. GW will stop sending the Nm message on
the channel. Other ECU’s on the channel will release the PNC due to timeout of ‘Pn
Reset Time’ in Nm.

> If a PNC is in state PNC_REQUESTED because a user requests FULL_COM and
Routing Limitation is enabled on all channels, the PNC will enter
PNC_READY_SLEEP state.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 20
based on template version 5.2.0

Caution
It is ensured that the content of PNC vector is consistent among all Nm messages that
GW sends on particular channels. The content of PNC vector considers the mapping of
Partial Networks to channels defined in the configuration. Therefore the content of PNC
vector can differ on channels if there are PNCs that are not mapped to all channels.

Caution
The State Change Indication callback must be configured within Nm Interface and the
related BusNm modules:

> ‘State Change Ind Enabled’ functionality must be activated in each related BusNm.

> ‘Callbacks Prototype Header’ of Nm Interface must be set to ‘ComM_Nm.h’.

> ‘State Change Indication Callback’ of Nm Interface must be set to
ComM_Nm_StateChangeNotification.

3.1.2.6 Extended RAM Check

ComM supports Extended RAM check of the CAN registers and Message Boxes. If the
feature is activated, ComM evaluates RAM Check status before starting communication on
a CAN channel. If Extended RAM Check fails on a CAN channel communication is not
started.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 21
based on template version 5.2.0

3.1.3 Limitations

3.1.3.1 Non-volatile Data Handling

COMM uses only the NVM global block descriptor to handle the COMM non-volatile data.

3.1.3.2 Assignment of Users to Channels and PNCs

COMM does not support assigning a COMM user to Channel(s) and PNC(s) at the same
time. Instead, it is recommended to create two COMM users in this case, assigning the
first one to Channel(s) and the second one to PNC(s).

3.2 Initialization

Before calling any other functionality of the COMM module the initialization function

ComM_Init() has to be called by the application. The initialization call shall take place

after initializing the BusSM and Nm modules.

For API details refer to chapter 5.2.2 ‘ComM_Init’.

The COMM module assumes that some variables are initialized with certain values at
start-up. As not all embedded targets support the initialization of RAM within the start-up

code the COMM module provides the function ComM_InitMemory(). This function has to

be called during start-up and before ComM_Init() is called. Refer also to chapter 3.1.2.1.

For API details refer to chapter 5.2.1 ‘ComM_InitMemory’’.

3.3 States

Figure 3-1 shows the COMM state machine, which consists of three main states
representing abstracted status of communication capabilities per channel. These states
correspond to the Communication Modes, which are in focus of the users’ interests:

> COMM_NO_COMMUNICATION,

> COMM_SILENT_COMMUNICATION,

> COMM_FULL_COMMUNICATION.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 22
based on template version 5.2.0

Figure 3-1 COMM channel state machine

The sub-states described below represent intermediate states, which perform activities to
support a synchronized transition with external partners and managing protocols (e.g.
Nm). The state machine is implemented for each communication channel independently.

COMM_UNINIT

Before the COMM is initialized it stays in this state. The COMM functionality cannot be
used.

COMM_NO_COMMUNICATION

The state COMM_NO_COMMUNICATION represents the lowest state of the COMM.
Inside this state no communication capability is available. The state consists of two sub-
states described below.

 stm ComM Main States

COMM_SILENT_COMMUNICATION

COMM_FULL_COMMUNICATION

COMM_NO_COMMUNICATION

COMM_UNINIT

Power Off

COMM_NO_COM_NO_PENDING_REQUESTCOMM_NO_COM_REQUEST_PENDING

COMM_FULL_COM_NETWORK_REQUESTED COMM_FULL_COM_READY_SLEEP

[CommunicationAllowed == FALSE]

Network mode

indication
Full Communication

requested

Nm Light Silent Timeout

expired [Nm Variant LIGHT]

Request NoCom

ComM_Init()

Start-up code or

ComM_InitMemory()

FullCom requested [Mode Limitation is deactivated]

Active Diagnostic Indication

Passive Wake-up indication

Bus Sleep Mode indication

[Nm Variant FULL or PASSIVE]

Pending FullCom request canceled

Active Diagnostic indication [Nm Variant LIGHT or FULL]

Inactive Diagnostic indication

Active

Diagnostic

Minimum FullCom Mode Timer expired [Nm Variant LIGHT]

Full Communication requested

[Nm Variant LIGHT]

/cancel Minimum FullCom

Mode Timer

Minimum FullCom Mode

Timer running [Nm

Variant LIGHT or FULL] No Communication requested and Minimum

FullCom Mode Timer expired [Nm Variant FULL]

Full Comunication requested [Nm Variant LIGHT or FULL]

Nm Light Timeout expired

[Nm Variant LIGHT]

Prepare Bus Sleep Mode

indication [Nm Variant

FULL or PASSIVE]

[CommunicationAllowed == TRUE]

No Communication requested [Nm Variant PASSIVE]

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 23
based on template version 5.2.0

COMM_NO_COM_NO_PENDING_REQUEST

This state is the default state after the initialization of the COMM.

The COMM resides in this state until the state COMM_FULL_COMMUNCIATION is
requested. There are different triggers to start communication:

> A user request COMM_FULL_COMMUNCIATION and no Mode Inhibition is active or

> DCM notification of an active diagnostic session or

> A Passive Wake-up indication from ECUM or NM. If Synchronous Wake-up is enabled,
the indication is propagated to all channels, which are not already in
COMM_FULL_COMMUNCIATION state.

COMM_NO_COM_REQUEST_PENDING

The COMM resides in this state until the communication will be allowed on the channel
with means of the ComM_CommunicationAllowed(TRUE) indication or the requests for
COMM_FULL_COMMUNCIATION are rejected, i.e. COMM user requests
COMM_NO_COMMUNICATION or DCM indicates an inactive diagnostic session.

COMM_SILENT_COMMUNICATION

The COMM uses this state to support the sleep process of the network management. The
state represents the prepare bus sleep phase of the network. The COMM changes into
this state if the network management triggers the sleep process and changes into the
prepare bus sleep mode.

Note

> Users cannot request this state directly.

> This state is available for Nm Variants FULL and PASSIVE with bus types
CAN and Ethernet only. For other bus types, it is skipped.

> This state is available for Nm Variant LIGHT and bus type CAN if Nm Light
Silent Timeout is configured.

> Note that Ethernet State Manager ignores requests for
COMM_SILENT_COMMUNICATION mode, see [4]. COMM requests it for
the sake of consistency when UDP Network Management indicates prepare
bus sleep mode, see [5].

The COMM resides in this state until:

> The Network Management indicates a restart after receiving a NM message or

> The Network Management indicates bus sleep mode or

> A user requests COMM_FULL_COMMUNICATION again or

> DCM indicates an active diagnostic session.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 24
based on template version 5.2.0

COMM_FULL_COMMUNICATION

The state COMM_FULL_COMMUNICATION represents the highest state of the COMM.
Inside this state the communication capability is available. The state consists of two sub-
states described below.

COMM_FULL_COM_NETWORK_REQUESTED

The activity in this state depends on the configured COMM NM Variant:

> NM Variant FULL

> The network management is set into the “Normal Operation” state.

> COMM resides in this state until the following conditions are fulfilled:

> All users request No Communication and DCM indicated no active diagnostic
session.

> The optional channel-specific Minimum Full Com Mode timer is expired, refer to
chapter 3.1.2.4.

> NM Variant PASSIVE

> COMM enters COMM_FULL_COM_READY_SLEEP state directly.

> NM Variant LIGHT

> Case 1: transition from COMM_NO_COM_REQUEST_PENDING to
COMM_FULL_COM_NETWORK_REQUESTED is triggered by a Passive Wake-up
event. All users request No Communication and DCM indicates no active session.

> COMM starts the “Minimum Full Communication Mode Timer”,

> COMM resides in this state until “Minimum Full Communication Mode Time” is
expired.

> Case 2: a user requests Full Communication or DCM indicates an active diagnostic
session

> COMM cancels the “Minimum Full Communication Mode Timer” if the timer is
started.

> COMM resides in this state until all users request No Communication and DCM
indicated no active diagnostic session.

> NM Variant NONE

> COMM resides in this state. Shutdown of communication is done by an ECU reset or
power off.

COMM_FULL_COM_READY_SLEEP

The activity inside this state depends on the configured COMM NM Variant:

> NM Variant FULL and PASSIVE

> The network management is set into the Ready Sleep state.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 25
based on template version 5.2.0

> COMM resides in this state until the NM triggers the sleep process or a user requests
Full Communication again or DCM indicates an active diagnostic session.

> NM Variant LIGHT

> COMM starts the Nm Light Timeout timer if the value configured is greater than 0s.

> It resides in this state until the Nm Light Timeout timer expires or a user requests Full
Communication or DCM indicates an active diagnostic session.

> If the optional Nm Light Silent Timeout is configured greater than 0s, COMM enters
COMM_SILENT_COMMUNICATION. Otherwise the next state is
COMM_NO_COM_NO_PENDING_REQUEST.

> If Nm Light Timeout timer is configured to 0s, COMM omits the state and enters the
next state directly.

> NM Variant NONE

> This state is not available for this NM variant.

3.4 Partial Network States

Figure 3-2 COMM Partial Network Cluster state machine

stm ComM PNC State Machine

PNC_FULL_COMMUNICATION

PNC_NO_COMMUNICATION

PowerOff

PNC_REQUESTED

PNC_READY_SLEEP PNC_PREPARE_SLEEP

ComM_RequestComMode() OR ComM_COMCbk()

[ComMUser = FullCom OR (PNC bit within ERAn = 1

AND ComMPncGatewayEnabled = TRUE)]

/BswM_ComM_CurrentPncState()

Com_SendSignal()

Channel Full Communication Request()

ComM_EcuM_WakeUpIndication()

[ComMSynchronousWakeUp = TRUE]

/BswM_ComM_CurrentPncState()

Start ComMPncPrepareSleepTimer

ComM_COMCbk() [PNC bit within EIRA = 1]

/BswM_ComM_CurrentPncState()

ComM_RequestComMode() OR ComM_COMCbk()

[ComMUser = NoCom AND (NOT (PNC bit within

ERAn = 1 AND ComMPncGatewayEnabled = TRUE))]

/BswM_ComM_CurrentPncState()

Com_SendSignal()

ComM_COMCbk() [PNC bit within EIRA = 0]

/BswM_ComM_CurrentPncState()

Start ComMPncPrepareSleepTimer

ComM_RequestComMode() OR ComM_COMCbk()

[ComMUser = FullCom OR (PNC bit within ERAn = 1

AND ComMPncGatewayEnabled = TRUE)]

/BswM_ComM_CurrentPncState()

Com_SendSignal()

Channel Full Communication Request()

ComMPncPrepareSleepTimer

[expired]

/BswM_ComM_CurrentPncState()

ComM_COMCbk() [PNC bit within EIRA = 1]

/BswM_ComM_CurrentPncState()

Stop ComMPncPrepareSleepTimer

ComM_RequestComMode() OR ComM_COMCbk()

[ComMUser = FullCom OR (PNC bit within ERAn = 1

AND ComMPncGatewayEnabled = TRUE)]

/BswM_ComM_CurrentPncState()

Com_SendSignal()

Channel Full Communication Request()

Stop ComMPncPrepareSleepTimer

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 26
based on template version 5.2.0

As shown in Figure 3-2 the COMM partial network state machine consists of two main
states representing the abstract status of the partial network cluster (PNC). The state
machine exists per partial network.

COMM uses two types of bit vector named EIRA and ERA to exchange PNC status
information with other ECUs. Note that ERA is only evaluated if PNC Gateway feature is
enabled and only for PNCs which are coordinated, i.e. assigned to more than one COMM
channel. Each PNC uses the same bit position within the bit vectors, which is defined by
the PNC ID. The status of a PNC within a bit vector (signal) can be

> active if the bit position of the PNC is 1 or

> inactive if the bit position of the PNC is 0.

PNC_NO_COMMUNICATION

This state is the default state after the initialization of the COMM.

The partial network leaves this state if one of the following events occurs:

> A user requests the state Full Communication for a partial network or

> EcuM or NM inform COMM about an external wake-up event and
ComMPncPrepareSleepTimer is configured with a value > 0 and ‘Synchronous Wake-
Up’ feature is enabled or

> COMM receives an EIRA or ERA signal which signalized the activation of the partial
network.

PNC_FULL_COMMUNICATION

The state consists of three sub-states described below.

PNC_REQUESTED

The partial network reaches this state if one of the following events occurs:

> COMM user requests COMM_FULL_COMMUNICATION for this partial network or

> An ERA signal with partial network = active is received and the partial network is
coordinated.

The state will be left if all COMM users for the corresponding partial network request
COMM_NO_COMMUNICATION and the ERA signals for the corresponding partial
network are received with status inactive.

PNC_READY_SLEEP

The partial network reaches this state if the following events occurred:

> All COMM users for the partial network request COMM_NO_COMMUNICATION and

> An EIRA signal is received with partial network = active and

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 27
based on template version 5.2.0

> All ERA signals are received with partial network = inactive and the partial network is
coordinated.

The state will be left if a COMM user for PNC requests COMM_FULL_COMMUNCIATION
or EIRA is received with partial network = inactive or ERA is received with partial network =
active.

PNC_PREPARE_SLEEP

The partial network reaches this state if one of the following events occurs:

> An EIRA signal is received with partial network = inactive or

> EcuM notified a passive wake-up event and ‘Synchronous Wake-Up’ feature is
enabled and ComMPncPrepareSleepTimer is configured with a value > 0.

The state will be left if a COMM user for PNC requests COMM_FULL_COMMUNCIATION
or EIRA/ERA signals are received with partial network = active or the
ComMPncPrepareSleepTimer is expired.

If ComMPncPrepareSleepTimer is configured with 0, the state PNC_PREPARE_SLEEP is
omitted when de-activating the partial network but it is still notified to BswM for the sake of
completeness.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 28
based on template version 5.2.0

Caution
PNC Prepare Sleep Timer shall expire before Network Management leaves Ready
Sleep state when shutting down the communication.

The crucial time is the time between indication of EIRA signal with PNC status =
inactive and indication of Prepare Bus Sleep on CAN or Bus Sleep on FlexRay. The
calculation of the exact time value depends on the bus type.

> On CAN:

CanNm Timeout Time (lowest of all CAN channels) – CanNm PNC Reset Time

> On FlexRay:

((Ready Sleep Count+1)*Repetition Cycle*<Duration of FlexRay Cycles>) – FrNm PNC
Reset Time

> On Ethernet:

UdpNm Timeout Time (lowest of all Ethernet channels) – UdpNm PNC Reset Time

Calculate the lowest BusNm specific Timeout Time according to the rules given above.
Then choose the PNC Prepare Sleep Timer to be less than (lowest BusNm specific
Timeout Time) – (COMM Main Function Period of Channel with ID 0).

Caution
Only the COMM module is allowed to write the TX EIRA signals. The application must
not write the TX EIRA signals by its own.

3.5 Main Functions

This chapter describes how the Communication Manager features are to be used by upper
software layers or application software and shows the interaction with other modules.

3.5.1 Communication Control Handling

The communication control handling is the main functionality of the communication
manager. This functionality contains the following parts:

> Collection of the network wake-up events, means bus wake-up, user and DCM
communication requests

> Verification of the network wake-up events and start of the corresponding network with
regarding of the used NM variant.

The COMM supports the following NM variants:

> FULL, AUTOSAR NM is used. Also it is designed to support LIN NM and J1939 NM.

> PASSIVE, AUTOSAR NM is used, but the ECU is not allowed to keep the network
awake. COMM ignores communication requests from users and DCM on this channel;

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 29
based on template version 5.2.0

refer to chapters 3.1.2, 5.4.4 and 5.4.5. The parameter ComMNoCom has to be set to
true.

> LIGHT, no AUTOSAR NM is used, but the shutdown is synchronized via timeout,
which is configured with the parameter ComMNmLightTimeout.

> NONE, no AUTOSAR NM is used and no shutdown synchronization is available. I.e.
once a channel reached the COMM_FULL_COMMUNICATION mode, it will never
leave it. Stop of communication is done via power off or reset. COMM ignores user
requests of COMM_NO_COMMUNICATION mode and requests for No
Communication Mode Limitation; refer to chapters 5.2.11 and 5.2.12.

Caution
If LIN NM is used on a COMM channel, its NM Variant shall be ‘FULL’.

LIN NM does not trigger communication shutdown after COMM called

Nm_PassiveStartUp. This can prevent the ECU from entering the sleep state. To

avoid this, apply one of the workarounds described in the Technical Reference of
MICROSAR LIN Network Management [6].

Caution
If J1939 NM is used on a COMM channel, its NM Variant shall be ‘FULL’.

J1939 NM does not provide Nm_PassiveStartUp API. Therefore channels with

J1939 NM cannot be woken up externally. Ensure that parameter ‘Synchronous Wake
Up’ is disabled in the COMM module configuration (see chapter 3.5.3).

COMM_BUS_TYPE_INTERNAL shall be configured if a channel is used for internal
communication only. Such channels have no corresponding bus interface. Only NM Variant
LIGHT is supported for channels with COMM_BUS_TYPE_INTERNAL.

3.5.2 Mode Limitation

Mode limitation is a mechanism to restrict the actions of the COMM user, especially the
requesting of communication modes. The COMM supports 2 different mode limitation
mechanisms:

> No Communication mode limitation and

> Prevent Wake-up.

The mode limitation mechanism can be used to restrict the communication requests of
ECUs which wrongly keep the bus awake.

3.5.2.1 Mode Limitation to NO_COM

This mechanism can be used to force COMM channel(s) into the sleep mode although one
or more COMM user requests COMM_FULL_COMMUNICATION. Note that this is not
supported for Nm Variant NONE.

The limitation can be activated/deactivated via ComM_LimitChannelToNoComMode(), for
a specific channel, or via ComM_LimitECUToNoComMode() for the whole ECU.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 30
based on template version 5.2.0

If Mode Limitation is active, COMM ignores new COMM_FULL_COMMUNICATION mode
requests and triggers communication shutdown on the channel.

When a channel switches to NO_COM mode due to an active Mode Limitation, COMM
clears all COMM_FULL_COMMUNICATION requests of users that are mapped to the
channel directly or via PNC. New COMM_FULL_COMMUNICATION mode requests are
stored but not performed as long as Mode Limitation is active. The requests are performed
if Mode Limitation is deactivated.

Reset after Forcing NO_COM functionality

When a channel switches to NO_COM mode due to an active Mode Limitation (i.e. BusSM
indicates NO_COM), COMM requests an ECU reset by calling BswM_ComM_InitiateReset
if the following conditions are fulfilled:

1. Reset after Forcing NO_COM functionality is enabled and

2. BusSM indicated NO_COM for all channels and

3. All channels are in NO_COM mode. Possible bus wake-ups are ignored in order to
trigger a reset as soon as possible.

Notes:

> The purpose of conditions 2 and 3 is to ensure a controlled reset, i.e. to avoid that a
reset is performed during active bus communication.

> Conditions 2 and 3 are not applicable for channels with Nm Variant NONE.

3.5.2.2 Prevent Wake-Up

Prevent Wake-Up is the second mode limitation mechanism; it avoids that COMM
channels can be woken up via a COMM_FULL_COMMUNICATION request by a COMM
user. Prevent wake-up can be activated/deactivated via ComM_PreventWakeUp() but the
limitation is only performed if the current state of the COMM channel is
COMM_NO_COMMUNCIATION or COMM_SILENT_COMMUNCIATION. User requests
for COMM_FULL_COMMUNCIATION are stored but not performed. The requests are
performed if Prevent Wake-up is deactivated.

Note
The prevent wake-up state is stored in the non-volatile memory.

3.5.3 Synchronous Wake-Up

Synchronous wake-up means, that the COMM triggers a wake-up of all COMM busses as
soon as one COMM bus notifies an external wake–up, e.g. via ECUM wake-up notification
or via the notification of the configured NM.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 31
based on template version 5.2.0

Caution
Synchronous wake-up does only trigger the wake-up but is not responsible to keep all
busses awake or responsible for a synchronous shutdown of these busses.
Synchronous shutdown of multiple channels is the responsibility of Nm coordinator.

If J1939 NM is used on a channel, Synchronous wake-up must be disabled in the
COMM module configuration, consider the notes in chapter 3.5.1.

3.6 Error Handling

3.6.1 Development Error Reporting

Development errors are reported to the DET using the service Det_ReportError() as

specified in [2], if development error reporting is enabled (i.e. pre-compile parameter

COMM_DEV_ERROR_DETECT==STD_ON).

The reported COMM ID is 12 decimal.

The reported service IDs identify the services which are described in Table 3-5. The
following table presents the service IDs and the related services:

Service ID Service

0x01 ComM_Init

0x02 ComM_DeInit

0x03 ComM_GetStatus

0x04 ComM_GetInhibitionStatus

0x05 ComM_RequestComMode

0x06 ComM_GetMaxComMode

0x07 ComM_GetRequestedComMode

0x08 ComM_GetCurrentComMode

0x09 ComM_PreventWakeUp

0x0b ComM_LimitChannelToNoComMode

0x0c ComM_LimitECUToNoComMode

0x0d ComM_ReadInhibitCounter

0x0e ComM_ResetInhibitCounter

0x0f ComM_SetECUGroupClassification

0x10 ComM_GetVersionInfo

0x15 ComM_Nm_NetworkStartIndication

0x18 ComM_Nm_NetworkMode

0x19 ComM_Nm_PrepareBusSleepMode

0x1a ComM_Nm_BusSleepMode

0x1b ComM_Nm_RestartIndication

0x1f ComM_DCM_ActiveDiagnostic

0x20 ComM_DCM_InactiveDiagnostic

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 32
based on template version 5.2.0

Service ID Service

0x2a ComM_EcuM_WakeUpIndication

0x33 ComM_BusSM_ModeIndication

0x34 ComM_GetState

0x35 ComM_CommunicationAllowed

0x36 ComM_LimitPncToChannelRouting

0x60 ComM_MainFunction

0x37 ComM_GetDcmRequestStatus

0x38 ComM_GetMinFullComModeTimerStatus

Table 3-5 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 COMM_E_NOT_INITED API service used without module
initialization

0x02 COMM_E_WRONG_PARAMETERS API service used with wrong parameters

0x03 COMM_E_ERROR_IN_PROV_SERVICE Provided API service of other modules
returned with an error

0x04 COMM_E_NOSUPPORTED_MODECHANGE COMM tries to perform a not allowed
state change

0x05 COMM_E_DIAGNOSTIC_NOT_SUPPORTED Diagnostic communication is requested
or released on a channel where
diagnostic is not supported. This happens
when Nm Variant PASSIVE is configured
on the channel.

0x06 COMM_E_ALREADY_INITIALIZED The service ComM_Init is called while the
module is already initialized

Table 3-6 Errors reported to DET

3.6.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. The checks in
Table 3-7 are internal parameter checks of the API functions. These checks are for
development error reporting and can be enabled or disabled via the parameter

COMM_DEV_ERROR_DETECT.

The following table shows which parameter checks are performed on which services:

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 33
based on template version 5.2.0

Check

Service

C
O

M
M

_
E

_
N

O
T

_
IN

IT
E

D

C
O

M
M

_
E

_
W

R
O

N
G

_
P

A
R

A
M

E
T

E
R

S

C
O

M
M

_
E

_
E

R
R

O
R

_
IN

_
P

R
O

V
ID

E
D

_
S

E
R

V
IC

E

C
O

M
M

_
E

_
N

O
T

S
U

P
P

O
R

T
E

D
_

M
O

D
E

C
H

A
N

G
E

C
O

M
M

_
E

_
D

IA
G

N
O

S
T

IC
_

N
O

T
_
S

U
P

P
O

R
T

E
D

ComM_Init 

ComM_DeInit 

ComM_GetStatus 

ComM_GetState  

ComM_GetInhibitionStatus  

ComM_RequestComMode  

ComM_GetMaxComMode  

ComM_GetRequestedComMode  

ComM_GetCurrentComMode  

ComM_PreventWakeUp  

ComM_LimitChannelToNoComMode  

ComM_LimitECUToNoComMode 

ComM_ReadInhibitCounter  

ComM_ResetInhibitCounter 

ComM_SetECUGroupClassification  

ComM_GetVersionInfo 

ComM_MainFunction    

ComM_CommunicationAllowed  

ComM_Nm_NetworkStartIndication  

ComM_Nm_NetworkMode  

ComM_Nm_PrepareBusSleepMode  

ComM_Nm_BusSleepMode  

ComM_Nm_RestartIndication  

ComM_DCM_ActiveDiagnostic   

ComM_DCM_InactiveDiagnostic   

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 34
based on template version 5.2.0

Check

Service

C
O

M
M

_
E

_
N

O
T

_
IN

IT
E

D

C
O

M
M

_
E

_
W

R
O

N
G

_
P

A
R

A
M

E
T

E
R

S

C
O

M
M

_
E

_
E

R
R

O
R

_
IN

_
P

R
O

V
ID

E
D

_
S

E
R

V
IC

E

C
O

M
M

_
E

_
N

O
T

S
U

P
P

O
R

T
E

D
_

M
O

D
E

C
H

A
N

G
E

C
O

M
M

_
E

_
D

IA
G

N
O

S
T

IC
_

N
O

T
_
S

U
P

P
O

R
T

E
D

ComM_EcuM_WakeUpIndication  

ComM_BusSM_ModeIndication  

ComM_TF_NoCom_NetReq 

ComM_TF_ReadyS_NetReq 

ComM_TF_NetReq_ReadyS 

Table 3-7 Development Error Reporting: Assignment of checks to services

3.6.2 Production Code Error Reporting

COMM does not report any production errors.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 35
based on template version 5.2.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR COMM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the COMM contains the files which are described in the following chapters.

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

ComM.c


This is the source file of the COMM. It contains the
implementation of the main functionality.

ComM.h


This is the header file of the COMM, which is the
interface for upper layers to the services of the
COMM.

ComM_Types.h


Header File which includes COMM specific data
types.

ComM_BusSM.h


Header File which includes the external
declarations of the Bus State Manager callback
functions.

ComM_EcuMBswM.h


Header File which includes the external
declarations of the EcuM and BswM callback
functions.

ComM_Nm.h


Header File which includes the external
declarations of the Nm callback functions.

ComM_Dcm.h


Header File which includes the external
declarations of the Dcm callback functions.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator 5.

File Name Description

ComM_Lcfg.c This is the link time configuration source file. It contains all link time
configuration settings.

ComM_Lcfg.h This is the link time configuration header file.

ComM_Cfg.h This is the COMM configuration header file.

ComM_GenTypes.h This file contains the generated type definitions of the COMM.

ComM_PBcfg.h Post-build variant configuration header file.

ComM_PBcfg.c Post-build variant configuration source file.

ComM_Private_Cfg.h This file contains generated types, macros, and #includes which are
needed by COMM implementation but not exposed through ComM.h

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 36
based on template version 5.2.0

Table 4-2 Generated files

4.2 Include Structure

Figure 4-1 Include structure

 class IncludeStructure

ComM.c

ComM.h

ComM_Cfg.h

ComM_Lcfg.c

ComM_PBcfg.c

ComM_Types.h

ComM_GenTypes.h

SchM_ComM.h

BswM_ComM.h

ComM_Nm.h

Rte_ComM.h

Det.h

ComM_EcuMBswM.h

ComM_Dcm.h

ComM_BusSM.h

Dcm_Cbk.h

ComM_Lcfg.h

NvM.h
Nm.h

EcuM_Error.h

ComM_PBcfg.h

CanSM_ComM.h

CanSM.h

EthSM.h

FrSM.h

LinSM.h

If Configuration Variant

is Post Build Loadable

Rte_ComM_Type.h

Com.h

Appl_Cbk.h

If ComMPncSupport

is true

ComStack_Types.h

ComM_Private_Cfg.h

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 37
based on template version 5.2.0

4.3 Critical Sections

COMM requires the following critical code sections:

COMM_EXCLUSIVE_AREA_0

> Configuration: This critical section must lock task interrupts and interrupt sources.

> Purpose: This critical section protects the channel state and user request status.

> This critical section covers calls to several sub-functions and can have a long run-time.

COMM_EXCLUSIVE_AREA_1

> Configuration: This critical section must lock task interrupts if ComM_MainFunction()
can be interrupted by one of the following BSW Module tasks. Otherwise no interrupt
lock is necessary.

> Nm_MainFunction()

> BusNm_MainFunction(), e.g. CanNm_MainFunction()

> BusSM_MainFunction(), e.g. CanSM_MainFunction()

> If ‘Pnc Support’ is enabled in the module configuration, it must be ensured that
ComM_MainFunction() is not interrupted by ComM_RequestComMode(). If an
interruption is possible, the section requires global interrupt lock.

> Purpose: This critical section protects the channel state.

> This critical section covers calls to several sub-functions and can have a long run-time.

Note
It is recommended to use OS Resources for these exclusive areas to prevent priority
inversions and deadlocks.

Using OS Resources for COMM_EXCLUSIVE_AREA_0 is not possible if ‘Pnc Support’
is enabled in the module configuration.

4.4 Handling of non-volatile Data

The non-volatile data is handled via the AUTOSAR NvRAM Manager. The COMM uses the
following NvRAM Manager API:

> NvM_GetErrorStatus(..) The non-volatile data must be loaded and stored in the

below listed variable before the COMM is initialized via ComM_Init(). The COMM
checks with the function NvM_GetErrorStatus(..) if the COMM data is loaded or not. If
not then the COMM works with the configured values of the ECU Group Classification
and prevent wake-up state. Additionally the COMM resets the inhibition counter to 0.

> NvM_SetRamBlockStatus(..) This function is used to trigger the storage of the

non-volatile data.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 38
based on template version 5.2.0

The non-volatile data of the COMM are grouped inside the structure called

ComM_Inhibition. The structure contains the following elements (order of elements

equal to the structure element order):

> ComM_ECUGroupClassification

> size: 1 Byte

> stores the ECU Group classification

> ComM_InhibitCnt

> size: 2 Byte

> stores the inhibition counter

> ComM_InhibitionStatus[<COMM_ACTIVE_CHANNEL>]

> size: 1 Byte per COMM channel

> stores the prevent wake up state

Caution
The COMM non-volatile data must be loaded and stored inside the above listed

variables before the COMM is initialized via ComM_Init(). If not, COMM will use the

configured values.

The non-volatile data handling is only necessary if at least one of the COMM
configuration options Mode Limitation or Wake-up Inhibition is enabled.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 39
based on template version 5.2.0

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the COMM are described in this chapter.

Type Name C-
Type

Description Value Range

ComM_InitStatusType uint8 Initialization
status of
COMM.

COMM_UNINIT

COMM is not initialized

COMM_INIT

COMM is initialized and usable

ComM_InhibitionStatusType uint8 Inhibition
status of
COMM

Bit 0 (LSB):

0 - Wake-up Inhibition is not active

1 - Wake-up Inhibition is active

Bit 1:

0 - Mode Limitation is not active

1 - Mode Limitation is active

ComM_UserHandleType uint8 Handle to
identify a
COMM user

0..255

Note: ID 255 is reserved

ComM_BusType uint8 Configured
Bus Type of a
COMM
Channel

COMM_BUS_TYPE_CAN

The channel is a CAN Channel

COMM_BUS_TYPE_FR

The channel is a FlexRay channel

COMM_BUS_TYPE_LIN

The channel is a LIN channel

COMM_BUS_TYPE_ETH

The channel is an Ethernet channel

COMM_BUS_TYPE_INTERNAL

The channel is an INTERNAL channel

ComM_ModeType uint8 Current
COMM mode
(main state of
the state
machine)

COMM_NO_COMMUNICATION

COMM is in the state No Communication

COMM_SILENT_COMMUNICATION

COMM is in state Silent Communication

COMM_FULL_COMMUNICATION

COMM is in state Full Communication

ComM_PncModeType uint8 Current mode
of a PNC

COMM_PNC_NO_COMMUNICATION

PNC is in the state No Communication

COMM_PNC_PREPARE_SLEEP

PNC is in state Prepare Sleep

COMM_PNC_READY_SLEEP

PNC is in state Ready Sleep

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 40
based on template version 5.2.0

Type Name C-
Type

Description Value Range

COMM_PNC_REQUESTED

PNC is in state Requested

ComM_StateType uint8 State and
sub-state of
COMM state
machine

COMM_NO_COM_NO_PENDING_REQUEST

COMM_NO_COM_REQUEST_PENDING

COMM_FULL_COM_NETWORK_REQUESTED

COMM_FULL_COM_READY_SLEEP

COMM_SILENT_COM

ComM_ConfigType struct Post-build
configuration
structure

-

Table 5-1 Type definitions

ComM_InhibitionType

This structure contains current inhibition status. It is stored non-volatile.

Struct Element Name C-
Type

Description Value Range

ComM_ECUGroupClassification uint8 Current ECU
group
classification

0

ECU is not affected by mode
inhibition

1

ECU is affected by Wake-up
Inhibition only

2

ECU is affected by Mode Limitation
only

3

ECU is affected by both inhibition
types

ComM_InhibitCnt uint16 Inhibition
counter

0..65535

ComM_InhibitionStatus uint8[] Inhibition status
per COMM
channel

0..3

Refer to description of
ComM_InhibitionStatusType

Table 5-2 ComM_InhibitionType

ComM_UserHandleArrayType

This structure contains the set of COMM users requesting Full Communication for a channel.

Struct Element Name C-Type Description Value Range

numberOfRequesters uint8 Number of valid user handles in the 0..254

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 41
based on template version 5.2.0

Struct Element Name C-Type Description Value Range

handleArray member. The value is
zero if no user keeps the channel
requested.

handleArray ComM_UserHan
dleType[]

User handles of the users which keep
the channel requested (if any),
starting in its first entries. The size of
the array is the number of users
configured on the channel.

Table 5-3 ComM_UserHandleArrayType

5.2 Services provided by COMM

5.2.1 ComM_InitMemory

Prototype

void ComM_InitMemory (void)

Parameter

- -

Return code

- -

Functional Description

If RAM is not automatically initialized at start-up, this function must be called from start-up code to ensure

that variables which must be initialized with a certain value (e.g. initialization status with COMM_UNINIT

value) are set to those values.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> This function is a Vector Extension.

Expected Caller Context

> This function has to be called once during start-up and before ComM_Init() is called.

Table 5-4 ComM_InitMemory

5.2.2 ComM_Init

Prototype

void ComM_Init (void)

void ComM_Init (ComM_ConfigType* ConfigPtr)

Parameter

ConfigPtr Configuration pointer is needed if MICROSAR Identity Manager Post-Build
Selectable or Post-Build Loadable is used. Otherwise the function has no
parameter.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 42
based on template version 5.2.0

Return code

- -

Functional Description

This function initializes the COMM. All variables are set to default values. The COMM initialization state is
set to COMM_INIT and the COMM main state is set to COMM_NO_COM_NO_PENDING_REQUEST.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> If Mode Limitation or Wake-up Inhibition is enabled, the non-volatile values must be loaded
and stored before this function is called (refer to chapter ‘Handling of non-volatile Data’).

Expected Caller Context

> This function is to be called once during start-up after ComM_InitMemory() is called.

Table 5-5 ComM_Init

5.2.3 ComM_DeInit

Prototype

void ComM_DeInit (void)

Parameter

- -

Return code

- -

Functional Description

This function de-initializes COMM and sets the initialization status to COMM_UNINIT. It stores non-volatile

values in NVRAM (refer to chapter ‘Handling of non-volatile Data’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> This function is executed if all COMM channels are in state

COMM_NO_COM_NO_PENDING_REQUEST. Otherwise calling the function has no effect.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-6 ComM_DeInit

5.2.4 ComM_GetStatus

Prototype

Std_ReturnType ComM_GetStatus (ComM_InitStatusType* Status)

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 43
based on template version 5.2.0

Parameter

Status Pointer where the COMM initialization status shall be stored

Return code

E_OK ComM_GetStatus has performed

E_NOT_OK Invalid parameter

Functional Description

This function gets the initialization status of the COMM.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-7 ComM_GetStatus

5.2.5 ComM_GetInhibitionStatus

Prototype

Std_ReturnType ComM_GetInhibitionStatus (NetworkHandleType Channel,

ComM_InihibitionStatusType* Status)

Parameter

Channel Index of the system channel

Status Pointer where the COMM inhibition status shall be stored

Return code

E_OK Successfully returned Inhibition Status

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function gets the current COMM inhibition status of the given channel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-8 ComM_GetInhibitionStatus

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 44
based on template version 5.2.0

5.2.6 ComM_RequestComMode

Prototype

Std_ReturnType ComM_RequestComMode (ComM_UserHandleType User, ComM_ModeType

ComMode)

Parameter

User Index of the User, the user handles are generated and can be found in the
ComM_Lcfg.h file

ComMode The requested communication mode:

COMM_FULL_COMMUNICATION

COMM_NO_COMMUNICATION

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

COMM_E_MODE_LIMITATI

ON

Requested was successful but mode cannot be granted because of mode
inhibition

Functional Description

This function is used by upper layer modules or application to request the given communication mode. The
communication mode request is stored and will be processed in the ComM_MainFunction().

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-9 ComM_RequestComMode

5.2.7 ComM_GetMaxComMode

Prototype

Std_ReturnType ComM_GetMaxComMode (ComM_UserHandleType User, ComM_ModeType*

ComMode)

Parameter

User Index of the User, the user handles are generated and can be found in the
ComM_Lcfg.h file

ComMode Pointer where the maximal communication mode of the given user shall be
stored

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 45
based on template version 5.2.0

Functional Description

This function queries the maximum allowed communication mode of the corresponding user.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-10 ComM_GetMaxComMode

5.2.8 ComM_GetRequestedComMode

Prototype

Std_ReturnType ComM_GetRequestedComMode (ComM_UserHandleType User,

ComM_ModeType* ComMode)

Parameter

User Index of the User, the user handles are generated and can be found in the
ComM_Lcfg.h file

ComMode Pointer where the requested communication mode of the given user shall be
stored

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function queries the requested communication mode of the corresponding user.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-11 ComM_GetRequestedComMode

5.2.9 ComM_GetCurrentComMode

Prototype

Std_ReturnType ComM_GetCurrentComMode (ComM_UserHandleType User,

ComM_ModeType* ComMode)

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 46
based on template version 5.2.0

Parameter

User Index of the User, the user handles are generated and can be found in the
ComM_Lcfg.h file

ComMode Pointer where the current communication mode of the given user shall be
stored

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function queries the current communication mode of the corresponding user. If the user is assigned to
more than one communication channel, then always the lowest communication mode is returned.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-12 ComM_GetCurrentComMode

5.2.10 ComM_PreventWakeUp

Prototype

Std_ReturnType ComM_PreventWakeUp (NetworkHandleType Channel, boolean Status)

Parameter

Channel Index of the system channel

Status TRUE: Wake Up Inhibition is switched on

FALSE: Wake Up Inhibition is switched off

Return code

E_OK Request is accepted

E_NOT_OK Request is ignored if one of the following occurs

> Channel parameter is invalid or

> 'Wake-Up Inhibition Enabled‘ is de-activated in the module configuration or

> ‘ECU Group Classification’ does not support Prevent Wake-Up (refer to
chapter 5.2.15).

COMM_E_UNINIT COMM is not initialized

Functional Description

This function changes the inhibition status ComMNoWakeUp of the COMM for the given channel.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 47
based on template version 5.2.0

Particularities and Limitations

> A proper ECU Group Classification shall be set before using this API (refer to chapter 5.2.15).

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-13 ComM_PreventWakeUp

5.2.11 ComM_LimitChannelToNoComMode

Prototype

Std_ReturnType ComM_LimitChannelToNoComMode (NetworkHandleType Channel,

boolean Status)

Parameter

Channel Index of the system channel

Status TRUE: limitation to COMM_NO_COMMUNCIATION is ON

FALSE: limitation to COMM_NO_COMMUNCIATION is OFF

Return code

E_OK Request is accepted

E_NOT_OK Request is ignored if one of the following occurs

> Channel parameter is invalid or

> 'Mode Limitation Enabled‘ is de-activated in the module configuration or

> ‘ECU Group Classification’ does not support Mode Limitation (refer to
chapter 5.2.15) or

> The current state of the COMM channel is not
COMM_FULL_COM_NETWORK_REQUESTED or

> Nm Variant NONE is configured on the channel.

COMM_E_UNINIT COMM is not initialized

Functional Description

This function changes the inhibition status ComMNoCom of the COMM for the given channel.

Particularities and Limitations

> A proper ECU Group Classification shall be set before using this API (refer to chapter 5.2.15).

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-14 ComM_LimitChannelToNoComMode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 48
based on template version 5.2.0

5.2.12 ComM_LimitECUToNoComMode

Prototype

Std_ReturnType ComM_LimitECUToNoComMode (boolean Status)

Parameter

Status TRUE: limitation to COMM_NO_COMMUNCIATION is ON

FALSE: limitation to COMM_NO_COMMUNCIATION is OFF

Return code

E_OK Request is accepted

E_NOT_OK Request is ignored if one of the following occurs

> 'Mode Limitation Enabled‘ is de-activated in the module configuration or

> ‘ECU Group Classification’ does not support Mode Limitation (refer to
chapter 5.2.15) or

> The API ComM_LimitChannelToNoComMode returned E_NOT_OK for at
least one channel.

COMM_E_UNINIT COMM is not initialized

Functional Description

This function changes the inhibition status ComMNoCom of the COMM for all channels.

Particularities and Limitations

> A proper ECU Group Classification shall be set before using this API (refer to chapter 5.2.15).

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-15 ComM_LimitECUToNoComMode

5.2.13 ComM_ReadInhibitCounter

Prototype

Std_ReturnType ComM_ReadInhibitCounter (uint16* CounterValue)

Parameter

CounterValue Pointer where the value of the COMM mode inhibition counter shall be stored

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function returns the amount of rejected Full Communication user requests.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 49
based on template version 5.2.0

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-16 ComM_ReadInhibitCounter

5.2.14 ComM_ResetInhibitCounter

Prototype

Std_ReturnType ComM_ReadInhibitCounter (void)

Parameter

- -

Return code

E_OK Request is accepted

COMM_E_UNINIT COMM is not initialized

Functional Description

This function resets the counter of rejected Full Communication user requests.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-17 ComM_ResetInhibitCounter

5.2.15 ComM_SetECUGroupClassification

Prototype

Std_ReturnType ComM_SetECUGroupClassification (ComM_InhibitionStatusType

Status)

Parameter

Status Defines Mode Inhibition types the ECU is affected by:

0 - ECU is not affected by mode inhibition

1 - ECU is affected by Wake-up Inhibition only

2 - ECU is affected by Mode Limitation only

3 - ECU is affected by both inhibition types

Return code

E_OK Request is accepted

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 50
based on template version 5.2.0

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function changes the ECU group classification status during runtime. The value is stored non-volatile.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-18 ComM_SetECUGroupClassification

5.2.16 ComM_GetVersionInfo

Prototype

void ComM_GetVersionInfo (Std_versionInfoType* versioninfo)

Parameter

versioninfo Pointer where the version information shall be stored.

Return code

- -

Functional Description

This function is called to get the version information of the COMM.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The Function is only available if it is enabled during pre-compile time
(COMM_VERSION_INFO_API == STD_ON)

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-19 ComM_GetVersionInfo

5.2.17 ComM_MainFunction

Prototype

void ComM_MainFunction_<Channel_ID> (void)

(Channel_ID 0..255)

Parameter

- -

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 51
based on template version 5.2.0

Return code

- -

Functional Description

This function must be called cyclically with the configured COMM cycle time. Within this function COMM
performs the channel specific state transitions and state change notifications to users and BswM.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Function must be called in task context and not in a reentrant way

Table 5-20 ComM_MainFunction

5.2.18 ComM_GetState

Prototype

Std_ReturnType ComM_GetState (NetworkHandleType Channel, ComM_StateType* State

)

Parameter

Channel Index of the system channel

State Pointer where the current COMM state shall be stored

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

This function queries the current communication state of the corresponding channel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-21 ComM_GetState

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 52
based on template version 5.2.0

5.2.19 ComM_LimitPncToChannelRouting

Prototype

Std_ReturnType ComM_LimitPncToChannelRouting(PNCHandleType Pnc,

NetworkHandleType Channel, boolean Status)

Parameter

Pnc Handle of the PNC to set the limitation status for. Handles can be found in
ComM_Lcfg.h file.

Channel Handle of the system channel to set the limitation status for. Handles can be
found in ComM_Lcfg.h file.

Status TRUE: activate the Routing Limitation of the PNC on the channel.

FALSE: de-activate the Routing Limitation of the PNC on the channel. This is
the default status set after initialization of ComM module.

Return code

E_OK The Routing Limitation status is accepted, parameters are correct and ComM
module is initialized.

E_NOT_OK The Routing Limitation status is not accepted if one of following occurs:

> ComM module is not initialized or

> One of the parameters is out of range or

> The ‘Pnc Gateway Type’ of the system channel provided is
COMM_GATEWAY_TYPE_NONE.

Functional Description

The function stores the limitation status for the given PNC and Channel. The status will be used in
combination with some other conditions (current Nm state, receiving of ERA signal) to decide whether the
routing of PNC information on the channel is active or not. The decision and corresponding actions are
taken in the next ComM_MainFunction()

Particularities and Limitations

> COMM must be initialized.

Call context

> Function can be called in task and interrupt context

Table 5-22 ComM_LimitPncToChannelRouting

5.2.20 ComM_GetDcmRequestStatus

Prototype

Std_ReturnType ComM_GetDcmRequestStatus (NetworkHandleType Channel, boolean

*Status)

Parameter

Channel [in] Valid channel identifier (network handle)

Status [out] Valid pointer where the request status shall be stored

TRUE: DCM indicated active diagnostic

FALSE: otherwise

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 53
based on template version 5.2.0

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

Queries the status of DCM active diagnostic request of the corresponding channel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The function is only available if DCM module is present (COMM_DCM_INDICATION ==
STD_ON)

Call context

> Function can be called in task and interrupt context

Table 5-23 ComM_GetDcmRequestStatus

5.2.21 ComM_GetMinFullComModeTimerStatus

Prototype

Std_ReturnType ComM_GetMinFullComModeTimerStatus (NetworkHandleType Channel,

boolean *Status)

Parameter

Channel [in] Valid channel identifier (network handle)

Status [out] Valid pointer where the timer status shall be stored

TRUE: Min Full Com Mode Timer is running

FALSE: otherwise

Return code

E_OK Request is accepted

E_NOT_OK Invalid parameter

COMM_E_UNINIT COMM is not initialized

Functional Description

Queries the status of Min Full Com Mode Timer of the corresponding channel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The function is only available if at least one channel has Min Full Com Mode Timer
(COMM_MINFULLCOMTIMEOFCHANNEL == STD_ON)

Call context

> Function can be called in task and interrupt context

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 54
based on template version 5.2.0

Table 5-24 ComM_GetMinFullComModeTimerStatus

5.3 Services used by COMM

In the following table services provided by other components, which are used by the
COMM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Component API

DET Det_ReportError

CanSM CanSM_RequestComMode

CanSM CanSM_GetCurrentComMode

LinSM LinSM_RequestComMode

LinSM LinSM_GetCurrentComMode

FrSM FrSM_RequestComMode

FrSM FrSM_GetCurrentComMode

EthSM EthSM_RequestComMode

EthSM EthSM_GetCurrentComMode

NvM NvM_GetErrorStatus

NvM NvM_SetRamBlockStatus

Nm Nm_PassiveStartUp

Nm Nm_NetworkRequest

Nm Nm_NetworkRelease

BswM BswM_ComM_CurrentMode

BswM BswM_ComM_CurrentPNCMode

BswM BswM_ComM_InitiateReset

SchM SchM_Enter_ComM_COMM_EXCLUSIVE_AREA_0

SchM SchM_Exit_ComM_COMM_EXCLUSIVE_AREA_0

SchM SchM_Enter_ComM_COMM_EXCLUSIVE_AREA_1

SchM SchM_Exit_ComM_COMM_EXCLUSIVE_AREA_1

COM Com_SendSignal

COM Com_ReceiveSignal

Table 5-25 Services used by the COMM

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the COMM and can
be invoked by other modules. The prototypes of the callback functions are provided in the

header files ComM_BusSM.h, ComM_Dcm.h, ComM_EcuMBswM.h and ComM_Nm.h.

5.4.1 ComM_CommunicationAllowed

Prototype

void ComM_CommunicationAllowed (NetworkHandleType Channel, boolean Allowed)

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 55
based on template version 5.2.0

Parameter

Channel Index of the system channel

Allowed TRUE: Communication is allowed

FALSE: Communication is not allowed (default after COMM initialization)

Return code

- -

Functional Description

The function indicates to COMM when communication is allowed.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> COMM must be initialized

> The communication allowed state is only evaluated in the COMM state
COMM_NO_COM_REQUEST_PENDING

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-26 ComM_CommunicationAllowed

5.4.2 ComM_EcuM_WakeUpIndication

Prototype

void ComM_EcuM_WakeUpIndication (const NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This function notifies the COMM about a valid bus wake-up event. The COMM stores this event and start
up the corresponding channel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-27 ComM_EcuM_WakeUpIndication

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 56
based on template version 5.2.0

5.4.3 ComM_BusSM_ModeIndication

Prototype

void ComM_BusSM_ModeIndication (const NetworkHandleType Channel,

ComM_ModeType* ComM_Mode)

Parameter

Channel Index of the system channel

ComM_Mode Pointer to variable which contains the new BusSM communication mode

Return code

- -

Functional Description

This function notifies the COMM about a state change of the BusSM. The COMM performs corresponding
actions dependent on the given ComM_Mode.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-28 ComM_BusSM_ModeIndication

5.4.4 ComM_DCM_ActiveDiagnostic

Prototype

void ComM_DCM_ActiveDiagnostic (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This function notifies the COMM about the start of an active diagnostic session for the given channel. The
COMM starts the communication for this channel as long as the DCM informs the COMM about the end of
this session. If more channels needed for diagnostic purpose, DCM needs to indicate it for each channel.

If the Nm Variant configured on the channel is PASSIVE

> COMM ignores the indication and

> Reports a DET error with error code COMM_E_DIAGNOSTIC_NOT_SUPPORTED.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 57
based on template version 5.2.0

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-29 ComM_DCM_ActiveDiagnostic

5.4.5 ComM_DCM_InactiveDiagnostic

Prototype

void ComM_DCM_InactiveDiagnostic (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This function notifies the COMM about the end of the DCM diagnostic session for the given channel. The
COMM triggers the network shutdown for this channel if all COMM users assigned to it request the COMM
state No Communication.

If the Nm Variant configured on the channel is PASSIVE

> COMM ignores the indication and

> Reports a DET error with error code COMM_E_DIAGNOSTIC_NOT_SUPPORTED.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-30 ComM_DCM_InactiveDiagnostic

5.4.6 ComM_Nm_NetworkStartIndication

Prototype

void ComM_Nm_NetworkStartIndication (NetworkHandleType Channel)

Parameter

Channel Index of the system channel, which has already entered Bus-Sleep Mode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 58
based on template version 5.2.0

Return code

- -

Functional Description

This function notifies the COMM about a restart of the network management. The restart was triggered by
receiving an Nm message when Nm was in Bus-Sleep Mode. COMM stores the event and starts up the
corresponding network in the next ComM_MainFunction.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-31 ComM_Nm_NetworkStartIndication

5.4.7 ComM_Nm_NetworkMode

Prototype

void ComM_Nm_NetworkMode (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This function notifies the COMM that the Nm entered the Network Mode.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-32 ComM_Nm_NetworkMode

5.4.8 ComM_Nm_PrepareBusSleep

Prototype

void ComM_Nm_PrepareBusSleep (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 59
based on template version 5.2.0

Return code

- -

Functional Description

This function notifies the COMM that the NM has entered Prepare Bus-Sleep Mode. The COMM uses this
function as synchronization for the network shutdown. Inside this function the COMM sets the
corresponding Bus state Manager into the COMM mode Silent Communication and the COMM itself
changes the state to Silent Communication.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant (but not for the same Nm channel).

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-33 ComM_Nm_PrepareBusSleep

5.4.9 ComM_Nm_BusSleepMode

Prototype

void ComM_Nm_BusSleepMode (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This function notifies the COMM that the NM ends the prepare bus sleep phase and has entered Bus-Sleep
Mode. The COMM uses this function as synchronization for the network shutdown. Inside this function the
COMM sets the corresponding Bus state Manager into the COMM mode No Communication and the
COMM itself changes the state to No Communication.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant (but not for the same Nm channel).

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-34 ComM_Nm_BusSleepMode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 60
based on template version 5.2.0

5.4.10 ComM_Nm_RestartIndication

Prototype

void ComM_Nm_RestartIndication (NetworkHandleType Channel)

Parameter

Channel Index of the system channel, which has already entered Bus-Sleep Mode

Return code

- -

Functional Description

NmIf notifies COMM that NmIf has started to shut down the coordinated busses, and not all coordinated
busses have indicated Bus-Sleep Mode, and on at least one of the coordinated busses Nm is restarted.
COMM stores the event and starts up the corresponding network in the next ComM_MainFunction.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is asynchronous.

> This function is reentrant.

> COMM must be initialized.

Expected Caller Context

> Function can be called in task and interrupt context

Table 5-35 ComM_Nm_RestartIndication

5.4.11 ComM_Nm_StateChangeNotification

Prototype

void ComM_Nm_StateChangeNotification (const NetworkHandleType Channel, const

Nm_StateType NmPreviousState, const Nm_StateType NmCurrentState)

Parameter

Channel Valid channel identifier (network handle)

NmPreviousState Previous state of Nm

NmCurrentState Current state of Nm

Return code

None -

Functional Description

Notification that the Nm state has changed. The Pnc Routing Limitation state is updated depending on Nm
has left or entered the state NM_STATE_REPEAT_MESSAGE.

Particularities and Limitations

> The function is available if Pnc to Channel Routing Limitation feature is activated.

> This function is synchronous.

> This function is not reentrant.

Call context

> Function can be called in task or interrupt context

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 61
based on template version 5.2.0

Table 5-36 ComM_Nm_StateChangeNotification

5.4.12 ComM_ComCbk_<SignalName>

Prototype

void ComM_ComCbk_<SignalName> (void)

Parameter

- -

Return code

None -

Functional Description

Notification that ComSignal data which is used to transport the partial network channel request information
has changed. SignalName is the name of the corresponding EIRA_RX or ERA ComSignal. The function is
generated.

Particularities and Limitations

> The function is available if support of Partial Networking is enabled.

> This function is synchronous.

> This function is not reentrant.

Call context

> Function can be called in task context

Table 5-37 ComM_ComCbk_<SignalName>

5.5 Configurable Interfaces

5.5.1 Notifications

At its configurable interfaces the COMM defines notifications that can be mapped to
callback functions provided by other modules. The mapping is not statically defined by the
COMM but can be performed at configuration time. The function prototypes that can be
used for the configuration have to match the appropriate function prototype signatures,
which are described in the following sub-chapters.

5.5.1.1 Dcm_ComM_FullComModeEntered

Prototype

void Dcm_ComM_FullComModeEntered (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This callback function informs the DCM about the COMM state change into Full Communication.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 62
based on template version 5.2.0

Particularities and Limitations

> This callback function is only available if the DCM module is activated in the ECU
configuration.

Call context

> The function is called in the context of ComM_BusSM_ModeIndication

Table 5-38 Dcm_ComM_FullComModeEntered

5.5.1.2 Dcm_ComM_SilentComModeEntered

Prototype

void Dcm_ComM_SilentComModeEntered (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This callback function informs the DCM about the COMM state change into Silent Communication.

Particularities and Limitations

> This callback function is only available if the DCM module is activated in the ECU
configuration.

Call context

> The function is called in the context of ComM_BusSM_ModeIndication

Table 5-39 Dcm_ComM_SilentComModeEntered

5.5.1.3 Dcm_ComM_NoComModeEntered

Prototype

void Dcm_ComM_NoComModeEntered (NetworkHandleType Channel)

Parameter

Channel Index of the system channel

Return code

- -

Functional Description

This callback function informs the DCM about the COMM state change into No Communication.

Particularities and Limitations

> This callback function is only available if the DCM module is activated in the ECU
configuration.

Call context

> The function is called in the context of ComM_BusSM_ModeIndication

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 63
based on template version 5.2.0

Table 5-40 Dcm_ComM_NoComModeEntered

5.5.1.4 BswM_ComM_CurrentMode

Prototype

void BswM_ComM_CurrentMode (NetworkHandleType Network, ComM_ModeType

RequestedMode)

Parameter

Network Index of the system channel

RequestedMode Current Communication Mode, where COMM changed to

Return code

- -

Functional Description

COMM indicates every main state change to BswM.

Particularities and Limitations

> -

Call context

> The function is called in the context of ComM_BusSM_ModeIndication

Table 5-41 BswM_ComM_CurrentMode

5.5.1.5 BswM_ComM_CurrentPNCMode

Prototype

void BswM_ComM_CurrentPNCMode (PNCHandleType Pnc, ComM_PncModeType

RequestedMode)

Parameter

Pnc Partial network identifier

RequestedMode Partial network state where the COMM changed to

Return code

- -

Functional Description

COMM indicates every partial network state change to BswM.

Particularities and Limitations

> This callback function is only available if Partial Network functionality is activated in the ECU
configuration.

Call context

> The function is called in the context of ComM_MainFunction

Table 5-42 BswM_ComM_CurrentPNCMode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 64
based on template version 5.2.0

5.5.1.6 BswM_ComM_InitiateReset

Prototype

void BswM_ComM_InitiateReset (void)

Parameter

- -

Return code

- -

Functional Description

COMM indicates a need for an ECU reset to BswM, see chapter ‘Mode Limitation to NO_COM’ for details.

Particularities and Limitations

> This callback function is only available if BswM has a Mode Request Port with the Source
BswMComMInitiateReset.

Call context

> The function is called in the context of ComM_BusSM_ModeIndication

Table 5-43 BswM_ComM_InitiateReset

5.5.1.7 Rte_Switch_ComM_<UserName>_currentMode

Prototype

Std_ReturnType Rte_Switch_ComM_<UserName>_currentMode (Rte_ModeType_ComMMode

mode)

Parameter

mode > RTE_MODE_ComMMode_NO_COMMUNICATION, no communication is
entered

> RTE_MODE_ComMMode_SILENT_COMMUNICATION, silent
communication is entered

> RTE_MODE_ComMMode_FULL_COMMUNICATION, full communication
is entered

Return code

Std_ReturnType > RTE_E_OK, the SW-C notified

> RTE_E_LIMIT, the SW-C does not notified the mode and the COMM shall
informed again

Functional Description

This callback functions inform the SW-C about a mode change of a COMM user.

Particularities and Limitations

> This callback function is only available for users with parameter ComMUserModeNotification set to true.

Call context

> The function is called in the context of ComM_MainFunction

Table 5-44 Rte_Switch_ComM_<UserName>_currentMode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 65
based on template version 5.2.0

6 Service Ports

6.1.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

6.1.1.1 Provide Ports on COMM Side

At the Provide Ports of the COMM the API functions described in chapter 5.2 are available
as Runnable Entities. The Runnable Entities are invoked via Operations. The mapping
from a SWC client call to an Operation is performed by the RTE. In this mapping the RTE
adds Port Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the COMM and the
Operations defined for the Provide Ports, the API functions related to the Operations and
the Port Defined Argument Values to be added by the RTE.

6.1.1.1.1 ComM_UserRequest

Operation API Function Port Defined Argument Values

RequestComMode ComM_RequestComMode ComM_UserHandleType UserHandle

GetCurrentComMode ComM_GetCurrentComMode ComM_UserHandleType UserHandle

GetMaxComMode ComM_GetMaxComMode ComM_UserHandleType UserHandle

GetRequestedComMode ComM_GetRequestedComMode ComM_UserHandleType UserHandle

Table 6-1 ComM_UserRequest

The naming rule for corresponding ports is UR_<user_name>, e.g. UR_ComMUser_000.

6.1.1.1.2 ComM_ECUModeLimitation

Operation API Function

LimitECUToNoComMode ComM_LimitECUToNoComMode

ReadInhibitCounter ComM_ReadInhibitCounter

ResetInhibitCounter ComM_ResetInhibitCounter

SetECUGroupClassification ComM_SetECUGroupClassification

Table 6-2 ComM_ECUModeLimitation

The naming rule for the corresponding port is modeLimitation.

6.1.1.1.3 ComM_ChannelWakeUp

Operation API Function Port Defined Argument Values

PreventWakeUp ComM_PreventWakeUp NetworkHandleType Channel

GetInhibitionStatus (optional,
see below)

ComM_GetInhibitionStatus NetworkHandleType Channel

Table 6-3 ComM_ChannelWakeUp

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 66
based on template version 5.2.0

For compatibility, the operation GetInhibitionStatus can be omitted from this interface. Its
presence depends on the value of the optional configuration parameter
ComMOperationGetInhibitionStatusEnabled:

> If the parameter does not exist or is set to ‘true’, the interface contains the operation
GetInhibitionStatus.

> If the parameter exists and is set to ‘false’, the interface does not expose the
operation GetInhibitionStatus.

Note that the COMM API Function ComM_GetInhibitionStatus exists in both cases and is
also exposed through the Client Server Interface ComM_ChannelLimitation as described
in chapter 6.1.1.1.4.

The naming rule for corresponding ports is CW_<channel_name>, e.g.
CW_ComMChannel_CAN0.

6.1.1.1.4 ComM_ChannelLimitation

Operation API Function Port Defined Argument Values

LimitChannelToNoComMode ComM_LimitChannelToNoComMode NetworkHandleType Channel

GetInhibitionStatus ComM_GetInhibitionStatus NetworkHandleType Channel

Table 6-4 ComM_ChannelLimitation

The naming rule for corresponding ports is CL_<channel_name>, e.g.
CL_ComMChannel_CAN0.

6.1.1.2 Require Ports on COMM Side

COMM does not require any Ports providing Client Server Interface.

6.1.2 Mode Switch Interface

6.1.2.1 ComM_CurrentMode

The interface is optional. It can be activated or de-activated for each configured COMM
user separately using the parameter ComMUserModeNotification.

The purpose of this interface is to inform an SW-C about the current COMM mode for each
configured COMM user, to which an SW-C is connected. For each configured interface
COMM requires a notification callback function, which is provided by the RTE and
described in 5.5.1.7.

Operation Rte Interface Mode Declaration Group

currentMode Rte_Switch_ComM_UM_<UserName>_current
Mode

e.g.
Rte_Switch_ComM_UM_ComMUser_000_curr
entMode

RTE_MODE_ComMMode_COMM_FUL
L_COMMUNICATION

RTE_MODE_ComMMode_COMM_NO_
COMMUNICATION

RTE_MODE_ComMMode_COMM_SILE
NT_COMMUNICATION

Table 6-5 ComM_CurrentMode

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 67
based on template version 5.2.0

The naming rule for corresponding ports is UM_<user_name>, e.g. UM_ComMUser_000.

6.1.3 Sender Receiver Interface

6.1.3.1 ComM_CurrentChannelRequest

The interface is optional. It can be activated or de-activated for each configured COMM
channel separately using the parameter ComMFullCommRequestNotificationEnabled.

The purpose of this interface is to inform an SW-C about COMM users requesting Full
Communication for a channel. Whenever the set of COMM users that are currently
requesting Full Communication for a channel changes, COMM updates the data element
ComM_FullComRequesters_CR_<channel_name>. A change updates the data element
only, when COMM accepts the communication request of the COMM user. If a Mode
Inhibition is active on a channel, this set is empty because no user is allowed to keep the
communication on the channel awake.

Rte Interface Data element

Rte_Write_ComM_CR_<channel_name>_full
ComRequestors

ComM_UserHandleArrayType_<channel_name>

Table 6-6 ComM_CurrentChannelRequest

The type ComM_UserHandleArrayType_<channel_name> exists for each channel where
the sender receiver interface is enabled. Refer to the Table 5-3 for details.

Please note that COMM only informs about COMM users requesting Full Communication
for users which are directly assigned to the COMM channel. COMM will not inform about
COMM users requesting a Partial Network, even if the channel is in Full Communication
mode because the Partial Network is requested by such a COMM user.

The naming rule for corresponding ports is CR_<channel_name>, e.g.
CR_ComMChannel_CAN0.

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 68
based on template version 5.2.0

Example
Assumptions:

One CAN channel with enabled interface ComM_CurrentChannelRequest, Channel ID
‘0’ and Channel name ‘CAN0’.

There are 2 COMM users configured on the channel ‘CAN0’ having user handles:

> ComMConf_ComMUser_000 (value = 0) and

> ComMConf_ComMUser_001 (value = 1).

The corresponding define macro is COMM_MAX_CR_CAN0 = 2

Example Sequence:

The channel is in COMM_NO_COMMUNICATION mode. The application calls
ComM_RequestComMode(ComMConf_ComMUser_000,

 COMM_FULL_COMMUNICATION)

COMM will call the following RTE interface in the next ComM_MainFunction_0():

Rte_Write_ComM_CR_CAN0_fullComRequestors(

 ComM_FullComRequesters_CR_CAN0)

The structure passed to the interface contains the following values:

/* a single user keeps the channel requested */

ComM_FullComRequesters_CR_CAN0.numberOfRequesters = 1

/* user with handle ComMConf_ComMUser_000 keeps the channel

 requested */

ComM_FullComRequesters_CR_CAN0.handleArray[0] =

 ComMConf_ComMUser_000

/* the 2nd element contains the invalid user handle */

ComM_FullComRequesters_CR_CAN0.handleArray[1] = 0xff

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 69
based on template version 5.2.0

7 Abbreviations

7.1 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

DCM Diagnostic Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

PNC Partial Network Cluster

PPort Provide Port

RPort Require Port

RTE Runtime Environment

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

Table 7-1 Abbreviations

Technical Reference MICROSAR Communication Manager

© 2016 Vector Informatik GmbH Version 8.00.00 70
based on template version 5.2.0

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.1.1 Variant Post-Build

	3.1.2 Additions/ Extensions
	3.1.2.1 Memory Initialization
	3.1.2.2 Post-Build Loadable
	3.1.2.3 Timer-based Shutdown Synchronization via Silent State
	3.1.2.4 Channel-specific Minimum Full Com Mode Timer
	3.1.2.5 Pnc to Channel Routing Limitation
	3.1.2.6 Extended RAM Check

	3.1.3 Limitations
	3.1.3.1 Non-volatile Data Handling
	3.1.3.2 Assignment of Users to Channels and PNCs

	3.2 Initialization
	3.3 States
	3.4 Partial Network States
	3.5 Main Functions
	3.5.1 Communication Control Handling
	3.5.2 Mode Limitation
	3.5.2.1 Mode Limitation to NO_COM
	3.5.2.2 Prevent Wake-Up

	3.5.3 Synchronous Wake-Up

	3.6 Error Handling
	3.6.1 Development Error Reporting
	3.6.1.1 Parameter Checking

	3.6.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Critical Sections
	4.4 Handling of non-volatile Data

	5 API Description
	5.1 Type Definitions
	5.2 Services provided by COMM
	5.2.1 ComM_InitMemory
	5.2.2 ComM_Init
	5.2.3 ComM_DeInit
	5.2.4 ComM_GetStatus
	5.2.5 ComM_GetInhibitionStatus
	5.2.6 ComM_RequestComMode
	5.2.7 ComM_GetMaxComMode
	5.2.8 ComM_GetRequestedComMode
	5.2.9 ComM_GetCurrentComMode
	5.2.10 ComM_PreventWakeUp
	5.2.11 ComM_LimitChannelToNoComMode
	5.2.12 ComM_LimitECUToNoComMode
	5.2.13 ComM_ReadInhibitCounter
	5.2.14 ComM_ResetInhibitCounter
	5.2.15 ComM_SetECUGroupClassification
	5.2.16 ComM_GetVersionInfo
	5.2.17 ComM_MainFunction
	5.2.18 ComM_GetState
	5.2.19 ComM_LimitPncToChannelRouting
	5.2.20 ComM_GetDcmRequestStatus
	5.2.21 ComM_GetMinFullComModeTimerStatus

	5.3 Services used by COMM
	5.4 Callback Functions
	5.4.1 ComM_CommunicationAllowed
	5.4.2 ComM_EcuM_WakeUpIndication
	5.4.3 ComM_BusSM_ModeIndication
	5.4.4 ComM_DCM_ActiveDiagnostic
	5.4.5 ComM_DCM_InactiveDiagnostic
	5.4.6 ComM_Nm_NetworkStartIndication
	5.4.7 ComM_Nm_NetworkMode
	5.4.8 ComM_Nm_PrepareBusSleep
	5.4.9 ComM_Nm_BusSleepMode
	5.4.10 ComM_Nm_RestartIndication
	5.4.11 ComM_Nm_StateChangeNotification
	5.4.12 ComM_ComCbk_<SignalName>

	5.5 Configurable Interfaces
	5.5.1 Notifications
	5.5.1.1 Dcm_ComM_FullComModeEntered
	5.5.1.2 Dcm_ComM_SilentComModeEntered
	5.5.1.3 Dcm_ComM_NoComModeEntered
	5.5.1.4 BswM_ComM_CurrentMode
	5.5.1.5 BswM_ComM_CurrentPNCMode
	5.5.1.6 BswM_ComM_InitiateReset
	5.5.1.7 Rte_Switch_ComM_<UserName>_currentMode

	6 Service Ports
	6.1.1 Client Server Interface
	6.1.1.1 Provide Ports on COMM Side
	6.1.1.1.1 ComM_UserRequest
	6.1.1.1.2 ComM_ECUModeLimitation
	6.1.1.1.3 ComM_ChannelWakeUp
	6.1.1.1.4 ComM_ChannelLimitation

	6.1.1.2 Require Ports on COMM Side

	6.1.2 Mode Switch Interface
	6.1.2.1 ComM_CurrentMode

	6.1.3 Sender Receiver Interface
	6.1.3.1 ComM_CurrentChannelRequest

	7 Abbreviations
	7.1 Abbreviations

	8 Contact

