

MICROSAR ComStackLib

Technical Reference

ComStackLib based BSW generators

Version 2.01.00

Authors Gunnar Meiss

Status Released

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 2
based on template version 5.5.0

Document Information

History

Author Date Version Remarks

Gunnar Meiss 2013-03-25 1.00.00 initial version

Gunnar Meiss 2013-08-23 1.01.00 ESCAN00068919 Remove
<MSN>UseSignedDataTypesInIndexArrays

ESCAN00070017 Remove <MSN>_Resource.xml

Gunnar Meiss 2014-10-06 2.00.00 ESCAN00078776 AR4-698: Post-Build Selectable
(Identity Manager)

Gunnar Meiss 2014-12-19 2.00.01 ESCAN00080380 Minor typing and grammar corrections

Gunnar Meiss 2016-03-30 2.00.02 ESCAN00089127 Extend MD_CSL_3355_3356 with the
aspects of the PRQA Rule 3358 and 3359

ESCAN00089126 Support a justification for PRQA Rule
310 and PCSymbolicNonDereferenciateablePointers

Added chapter Freedom from Interference

Gunnar Meiss 2016-07-19 2.00.03 ESCAN00091055 Extend
MD_CSL_3355_3356_3358_3359 with the aspects of
PRQA Rule 3325

Gunnar Meiss 2017-03-24 2.01.00 STORYC-534: <MSN>MinimizeNumericalDataTypes is
always enabled

Reference Documents

No. Source Title Version

[1] Vector Compliance Documentation MISRA-C:2004 / MICROSAR 2.2.0

Scope of the Document

This technical reference describes the general use of the ComStackLib based BSW
generators.

alm:entity?guid=STORYC-28AB713C-50EB-42E8-A457-80739549AAC7

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 3
based on template version 5.5.0

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 4
based on template version 5.5.0

Contents

1 Component History .. 6

2 Introduction... 7

2.1 Architecture Overview .. 8

3 Functional Description ... 9

3.1 CONFIG-CLASS of Data .. 10

3.2 CONFIG-CLASS PRE-COMPILE Optimizations .. 10

3.2.1 Optimize Const Data to Defines ... 10

3.2.2 Optimize Bool Data in Structs .. 11

3.2.3 Data Deduplication and Reduction ... 12

3.2.3.1 Equal Data ... 13

3.2.3.2 Unary and Binary Operations ... 14

3.2.4 Data Streaming .. 15

3.3 CONFIG-CLASS Independent Optimizations ... 16

3.3.1 Sort Struct Elements .. 16

3.3.2 Optimize Data Types .. 17

3.4 SELECTABLE Optimizations .. 18

3.4.1 Merge of VAR and CONST Based Data ... 18

3.5 Freedom from Interference .. 18

4 Integration ... 19

4.1 Dynamic Files .. 19

4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data 21

4.3 Optimization Levels .. 22

4.4 MISRA, PRQA and Compiler Warnings .. 24

4.4.1 General .. 24

4.4.2 Bitfields .. 31

4.4.3 <MSN>_Has Macros in the SELECTABLE Use Case 32

5 Configuration .. 33

5.1 Configuration Variants .. 33

5.2 Configuration with a GCE ... 33

6 Glossary and Abbreviations .. 39

6.1 Glossary .. 39

6.2 Abbreviations ... 40

7 Contact .. 41

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 5
based on template version 5.5.0

Illustrations

Figure 2-1 Embedded Code Aspects ... 7
Figure 2-2 AUTOSAR 4.2 Architecture Overview ... 8
Figure 3-1 Resources in compiler optimization variants ... 9
Figure 3-2 Using defines for CONST data .. 10
Figure 3-3 Boolean struct data variants ... 11
Figure 3-4 Boolean struct data versus Bitmasking ... 12
Figure 3-5 Data deduplication without operations .. 13
Figure 3-6 Data deduplication with operations ... 14
Figure 3-7 Data Streaming ... 15
Figure 3-8 Sorting struct elements ... 16
Figure 3-9 Data type minimization ... 17
Figure 4-1 Resources in optimization variants ... 22

Tables

Table 1-1 Component history.. 6
Table 4-1 Generated files ... 20
Table 4-2 IMPLEMENTATION-CONFIG-VARIATIONS ... 21
Table 4-3 Optimization Levels .. 22
Table 4-4 Optimization Decision Table .. 23
Table 4-5 MD_CSL_3199 ... 24
Table 4-6 MD_CSL_750_759 ... 25
Table 4-7 MD_CSL_0779 ... 26
Table 4-8 MD_CSL_2018 ... 27
Table 4-9 MD_CSL_3355_3356_3358_3359_3325 .. 28
Table 4-10 MD_CSL_3453 ... 29
Table 4-11 MD_CSL_0310 ... 30
Table 4-12 /MICROSAR/EcuC/EcucGeneral/BitFieldDataType 31
Table 5-1 Container .. 33
7Table 5-2 Attributes of ComStackLib based BSW generators 38
Table 6-1 Glossary ... 39
Table 6-2 Abbreviations .. 40

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 6
based on template version 5.5.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Support of embedded data generation in the

IMPLEMENTATION-CONFIG-VARIANT VARIANT-PRE-COMPILE

2.00.00 Support of the

IMPLEMENTATION-CONFIG-VARIANT VARIANT-POST-BUILD-
LOADABLE

3.00.00 Revision of existing techniques

4.00.00 Revision of existing techniques

5.00.00 AR4-698: Post-Build Selectable (Identity Manager)

6.00.00 Support VTT

7.00.00 Support Techniques to ensure Freedom of Interference

8.00.00 Java 8

Table 1-1 Component history

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 7
based on template version 5.5.0

2 Introduction

This document describes the configuration of ComStackLib based BSW generators.

Supported AUTOSAR Release*: 4

Supported Configuration Variants: PRE-COMPILE [SELECTABLE]

POST-BUILD-LOADABLE [SELECTABLE]

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The ComStackLib is an embedded data generation engine designed for AUTOSAR based
BSW software. Generating embedded software is situated in the context of different
aspects.

Figure 2-1 Embedded Code Aspects

The number of aspects for embedded software is quite high and they have a various
importance from the view of different stakeholders. Some aspects contradict to each other
and other aspects cannot be changed at the time of the project. Due to this the
ComStackLib has been introduced as scalable embedded data generation engine
designed for AUTOSAR.

Size of ROM

Size of RAM

Size of code

Runtime of code

Readability of code

Readability of generated
data

MISRA conformance
Maintainability of the BSW

and code generators

Hardware

Compiler implementations
and configurations

Complexity of Features

Complexity of different
configuration variants

Development costs

Developer Customer A Customer B

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 8
based on template version 5.5.0

2.1 Architecture Overview

The following figure shows where the ComStackLib is used in the MICROSAR
architecture.

Figure 2-2 AUTOSAR 4.2 Architecture Overview

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 9
based on template version 5.5.0

3 Functional Description

This chapter gives necessary information for the tailoring of the MICROSAR ComStackLib
based software into your environment. Figure 3-1 Resources in compiler optimization
variants shows the resource consumption of two different ECUs combined with different
compiler optimization levels. The compiler is not able to influence the size of CONST and
VAR data. The embedded software developer is in charge to reduce the CONST and VAR
data consumption.

Figure 3-1 Resources in compiler optimization variants

0

5000

10000

15000

20000

25000

/Od (Disable
(Debug))

/O1 (Minimize Size) /O2 (Maximize
Speed)

/Ox (Full
Optimization)

CanLin CONST

CanLin VAR

CanLin CODE

FrLin CONST

FrLin VAR

FrLin CODE

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 10
based on template version 5.5.0

3.1 CONFIG-CLASS of Data

The code generator has an internal knowledge of the required CONFIG-CLASS. Due to
this data can be moved dependent on the IMPLEMENTATION-CONFIG-VARIANT. See
chapter 4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data.

3.2 CONFIG-CLASS PRE-COMPILE Optimizations

3.2.1 Optimize Const Data to Defines

Set the configuration parameters <MSN>OptimizeConstVars2Define and
<MSN>OptimizeConstArrays2Define to TRUE to optimize automatically CONST data in
the CONFIG-CLASS PRE-COMPILE to a define.

Figure 3-2 Using defines for CONST data

The optimization effect depends on the available configuration data. CONST and CODE
size in the ECU can be reduced.

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 11
based on template version 5.5.0

3.2.2 Optimize Bool Data in Structs

Boolean data can be represented differently in C structs. Due to this, the generation of
boolean data can be configured with <MSN>StructBoolDataUsage as BOOLEAN,
BITFIELD and BITMASKING. There is nearly no difference between the usage of different
bit data types.

Figure 3-3 Boolean struct data variants

0

5000

10000

15000

20000

25000

CanLin CONST

CanLin VAR

CanLin CODE

FrLin CONST

FrLin VAR

FrLin CODE

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 12
based on template version 5.5.0

Figure 3-4 Boolean struct data versus Bitmasking

The usage of BITMASKING reduces the CONST size. The increase of the CODE size is
so tiny, that it can be omitted.

3.2.3 Data Deduplication and Reduction

Data deduplication and reduction is a typical way to reduce the amount of data. The
ComStackLib provides generic algorithms which implement typical data deduplication
mechanisms.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 13
based on template version 5.5.0

3.2.3.1 Equal Data

Identical data can be deduplicated by redirection of the data access to other data. There is
no influence to the runtime of the embedded software.

Figure 3-5 Data deduplication without operations

0%

2%

4%

6%

8%

10%

12%

14%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 14
based on template version 5.5.0

3.2.3.2 Unary and Binary Operations

Data can be reduced by using unary operations or operations on constants or operations
on other data elements. The operations are located in the data access layer. Due to this,
the code itself remains as implemented. This reduction has influence to the runtime of the
embedded software.

Figure 3-6 Data deduplication with operations

0%

5%

10%

15%

20%

25%

30%

35%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 15
based on template version 5.5.0

3.2.4 Data Streaming

Data can be packed into multiple streams of basic data types and identical parts can be
overlapped with and without data offsets. The data access layer redirects to the dependent
data index. There is no influence to the runtime of the embedded software, but the data
compression rate is quite high in large configurations and complex modules containing lots
of data.

Figure 3-7 Data Streaming

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 16
based on template version 5.5.0

3.3 CONFIG-CLASS Independent Optimizations

3.3.1 Sort Struct Elements

C structs are always sorted depending on the size of an element data type. Sorting
structure elements reduces the number of padding bytes added by the compiler to align
the data.

Figure 3-8 Sorting struct elements

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 17
based on template version 5.5.0

3.3.2 Optimize Data Types

Every generated data element generated with the ComStackLib has an own C data type.
Due to this, the data type itself can be calculated automatically as small as possible based
on the used values.

Figure 3-9 Data type minimization

The usage of data type minimization saves CONST, VAR and CODE size.

-10,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0

5000

10000

15000

20000

25000

CONST VAR CODE

CanLin %

FrLin %

CanLin Off

CanLin On

FrLin Off

FrLin On

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 18
based on template version 5.5.0

3.4 SELECTABLE Optimizations

If the configuration variant is SELECTABLE based the following optimizations are
automatically performed.

3.4.1 Merge of VAR and CONST Based Data

All VAR based generated data is merged between different predefined variants.

Example

A predefined variant LEFT_ECU needs a VAR based array of the type uint8 with 10
elements and predefined variant RIGHT_ECU needs a VAR based array of the type
uint8 with 6 elements in the same context. The result is a variant independent
generated VAR based array of the type uint8 with 10 elements.

Due to this, if the BSW configuration data is identical in different predefined variants, the
module configuration is completely merged.

3.5 Freedom from Interference

The generated data elements are wrapped by the generated data access. Writing out of
bounds in VAR arrays is a typically trap in software programming. To avoid overriding other
variables, there are two safety strategies implemented. The strategy can be configured
with <MSN>OutOfBoundsWriteProtectionStrategy globally for the data access macros.
The component developer can deactivate the strategy for a single VAR array individually if
interference freeness does not rely on an out of bounds protection strategy.

> Index checking: the data access checks the used index against the generator known
size and values are not manipulated if the index value is out of bounds problem.

> Index saturation: VAR arrays are blown up to the next 2 n size and the used index is
saturated by a mask value. Due to this, there is no out of bounds problem, but values
in other indexes can be manipulated.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 19
based on template version 5.5.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR
ComStackLib based software into an application environment of an ECU.

4.1 Dynamic Files

The dynamic files are generated by the configuration tool CFG5 for ComStackLib based
BSW software.

File Name Description

<MSN>_Cfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS PRE-COMPILE data.

<MSN>_Cfg.c This file is generated dependent on the used code generator for
compatibility reasons and contains if generated:

> local constant macros

> local function macros

> local data types and structures

> local data prototypes

> local data

> global data

of CONFIG-CLASS PRE-COMPILE data.

<MSN>_Lcfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS LINK data.

<MSN>_Lcfg.c This file contains:

> local constant macros

> local function macros

> local data types and structures

> local data prototypes

> local data

> global data

of CONFIG-CLASS LINK and PRE-COMPILE data if the <MSN>_Cfg.c is

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 20
based on template version 5.5.0

File Name Description

not generated.

<MSN>_PBcfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS POST-BUILD data.

<MSN>_PBcfg.c This file contains:

> local constant macros

> local function macros

> local data types and structures

> local data prototypes

> local data

> global data

of CONFIG-CLASS POST-BUILD data.

<MSN>_XMI21.xml This file is a XMI file to visualize data relations e.g. in Enterprise Architect.

The file is used for development purposes at Vector and informational for
the customer.

Table 4-1 Generated files

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 21
based on template version 5.5.0

4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data

The CONFIG-CLASS of generated data depends on the configured IMPLEMENTATION-
CONFIG-VARIANT and the IMPLEMENTATION-CONFIG-CLASSES described in the
<MSN>_bswmd.arxml.

Expert Knowledge
If the generated data is in a C struct and the struct contains pre-compile and postbuild
changeable data, the data nature is postbuild.

IMPLEMENTATION-
CONFIG-VARIANT

Description

VARIANT-PRE-
COMPILE
[SELECTABLE]

> All generated data is of CONFIG-CLASS PRE-COMPILE and generated
into <MSN>_Cfg.c or <MSN>_Lcfg.c (if <MSN>_Cfg.c does not exist).

> CONFIG-CLASS LINK and POST-BUILD data does not exist.

VARIANT-LINK-TIME > CONFIG-CLASS PRE-COMPILE data and is generated into
<MSN>_Cfg.c or <MSN>_Lcfg.c(if <MSN>_Cfg.c does not exist).

> CONFIG-CLASS LINK data and is generated into <MSN>_Lcfg.c.

> CONFIG-CLASS POST-BUILD data changeable data does not exist.

VARIANT-POST-
BUILD-LOADABLE

[SELECTABLE]

> CONFIG-CLASS PRE-COMPILE data and is generated into
<MSN>_Cfg.c or <MSN>_Lcfg.c(if <MSN>_Cfg.c does not exist).

> CONFIG-CLASS LINK data and is generated into <MSN>_Lcfg.c.

> CONFIG-CLASS POST-BUILD data and is generated into
<MSN>_PBcfg.c.

Table 4-2 IMPLEMENTATION-CONFIG-VARIATIONS

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 22
based on template version 5.5.0

4.3 Optimization Levels

This chapter describes optimization levels and their configuration. Use Table 4-3
 Optimization Levels and Table 4-4 Optimization Decision Table to tailor your
configuration.

Optimization Description

Small (Default) The data is reduced by operations and not packed into a data stream.

Fast The data is not reduced by operations and not packed into a data stream.

Tiny The data is not reduced by operations and packed into a data stream.

Teeny-weeny The data is reduced by operations and packed into a data stream.

Table 4-3 Optimization Levels

Figure 4-1 Resources in optimization variants

0

5000

10000

15000

20000

25000

Off Default Fast Tiny Teeny Weeny

CanLin CONST

CanLin VAR

CanLin CODE

FrLin CONST

FrLin VAR

FrLin CODE

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 23
based on template version 5.5.0

Optimization Level

Parameter

S
m

a
ll

(D
e
fa

u
lt
)

F
a
s
t

T
in

y

T
e
e
n
y
-w

e
e
n
y

<MSN>ConstDataDeduplication

DEDUPLICATE_
CONST_DATA_

WITH_CAST

DEDUPLICATE_
CONST_DATA_

WITH_CAST

DEDUPLICATE_
CONST_DATA_

WITH_CAST

DEDUPLICATE_
CONST_DATA_

WITH_CAST

<MSN>OptimizeConstArrays2Defi
ne

TRUE TRUE TRUE TRUE

<MSN>OptimizeConstVars2Define TRUE TRUE TRUE TRUE

<MSN>StructBoolDataUsage BITMASKING BOOLEAN BOOLEAN BITMASKING

<MSN>DeduplicateZero2NIndirect
edData

TRUE TRUE TRUE TRUE

<MSN>ReduceBoolDataByNegati
onThreshold

2 0 0 2

<MSN>ReduceNumericalDataByO
ffsetThreshold

2 0 0 2

<MSN>ReduceBoolDataByNumeri
calComparisonThreshold

2 0 0 2

<MSN>ReduceNumericalDataByA
rraySubtractionThreshold

2 0 0 2

<MSN>DeduplicateBoolDataByNu
mericalComparision

2 0 0 2

<MSN>UseSignedDataTypesInInd
exArrays

FALSE FALSE FALSE FALSE

<MSN>ReduceDataByStreaming FALSE FALSE TRUE TRUE

Table 4-4 Optimization Decision Table

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 24
based on template version 5.5.0

4.4 MISRA, PRQA and Compiler Warnings

The MICROSAR code is in the most cases a piece of hand written static code and
generated data and code for different compilers. This combination of hand written and
generated code can produce MISRA deviations or compiler warnings. This chapter
extends [1].

4.4.1 General

Note
The ComStackLib switch <MSN>OptimizeConstArrays2Define may produce compiler
warnings. If you don’t trust your compiler or your project settings do not allow the usage
of compiler warnings, configure <MSN>OptimizeConstArrays2Define to false.

Deviation ID MD_CSL_3199

Violated rule PRQA Redundancy 3199 (The value of '%s' is never used following this
assignment.)

Reason The parameter /MICROSAR/EcuC/EcucGeneral/DummyStatement is
configured to TRUE to avoid the compiler warning about unused function
parameters.

If the function is an interface to other modules and the prototype is specified by
a standard, the prototype cannot be changed.

If the function is not defined by a standard, the parameter could be removed in
the implementation. The disadvantage is that the code itself is stuffed with
preprocessor statements and the number variations of the software are
exploding. Due to this, the code will not be changed.

Potential risks The function contains unused code.

Prevention of risks Configure the parameter /MICROSAR/EcuC/EcucGeneral/DummyStatement to
FALSE and accept the compiler warning about unused function parameters.

OR

The code inspection is in charge to detect unused code.

Examples #define MSN_PROCESS_DATA STD_OFF

#define MSN_USE_DUMMY_STATEMENT STD_ON

void Msn_foo(uint8 a)

{

#if (MSN_PROCESS_DATA == STD_ON)

 /* some code which uses the parameter a */

#endif

#if (MSN_USE_DUMMY_STATEMENT == STD_ON)

if (MSN_PROCESS_DATA == STD_OFF)

 a=a;

endif

#endif

}

Table 4-5 MD_CSL_3199

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 25
based on template version 5.5.0

Deviation ID MD_CSL_750_759

Violated rule Rule 18.4 (Unions shall not be used.)

Reason Generated data uses array and symbol based data access. The embedded
code itself uses only one access type. Due to this critical runtime effects do not
occur.

Potential risks The A2L data may not match to the real data.

Prevention of risks Each delivery is integrated and tested on the real target system.

Examples /* symbolic data access for A2L */

typedef struct sMsn_FooDataStructType

{

 boolean indexA;

 boolean indexB;

} Msn_FooDataStructType;

/* union data type to have array and symbolic data

access */

typedef union uMsn_FooDataType

{

 boolean raw[2]; /**< this element is used for array

based data access from the embedded code */

 Msn_FooDataStructType str; /**< this element is

used for symbolic based data access from A2L */

} Msn_FooDataUType;

/* this variable array uses the union data type */

Msn_FooDataUType msn_FooData;

Table 4-6 MD_CSL_750_759

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 26
based on template version 5.5.0

Deviation ID MD_CSL_0779

Violated rule Rule 5.1 (Identifiers (internal and external) shall not rely on the significance of
more than 31 characters.)

Reason Generated symbols may exceed the 31 character limitation, because the code
generator concatenates strings based on fixed rules.

Potential risks The linker or compiler may mismatch symbols.

Prevention of risks Modern compilers for AUTOSAR platforms do not have this limitation any
more.

Examples
#if (MSN_DEFRXSIGGRPINFOENDIDXOFDEFRXPDUINFO == STD_ON)
{

 Msn_DefRxSigGrpInfoEndIdxOfDefRxPduInfoType idxRxSigGrpInfo =

 Msn_GetDefRxSigGrpInfoStartIdxOfDefRxPduInfo(idxRxPduInfo);

 /* some code */

#endif

Table 4-7 MD_CSL_0779

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 27
based on template version 5.5.0

Deviation ID MD_CSL_2018

Violated rule Rule 14.1 (This switch default label is unreachable.)

Reason The parameter <MSN>OptimizeConstArrays2Define is configured to TRUE.

Potential risks The default case of the switch statement contains possibly dead code.

Prevention of risks The code inspection is in charge to detect useless conditions with possibly
dead code.

Examples
#define MSN_PROCESS_DATA STD_ON

#define MSN_CASE_SMALL 5

#define MSN_CASE_MEDIUM 8

#define MSN_CASE_LARGE 12

#define MSN_CASE_SMALL_USED FALSE

#define MSN_CASE_MEDIUM_USED TRUE

#define MSN_CASE_LARGE FALSE

/* this array is reduced to a constant define

const uint8 msn_FooData [2] =

{

 MSN_CASE_MEDIUM,

 MSN_CASE_MEDIUM

};

*/

#define Msn_GetFooData (Index) MSN_CASE_MEDIUM

void Msn_foo(uint8 a)

{

#if (MSN_PROCESS_DATA == STD_ON)

 switch(Msn_GetFooData(a))

 {

#if (MSN_CASE_SMALL_USED == STD_ON)

 case MSN_CASE_SMALL:

 /* some MSN_CASE_SMALL code */

 break;

#endif

#if (MSN_CASE_MEDIUM_USED == STD_ON)

 case MSN_CASE_MEDIUM:

 /* some MSN_CASE_MEDIUM code */

 break;

#endif

#if (MSN_CASE_LARGE_USED == STD_ON)

 case MSN_CASE_LARGE:

 /* some MSN_CASE_LARGE code */

 break;

#endif

 default:

 /* some default handling like calling Det */

 }

#endif

}

Table 4-8 MD_CSL_2018

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 28
based on template version 5.5.0

Deviation ID MD_CSL_3355_3356_3358_3359_3325

Violated rule Rule 13.7 (The result of this logical operation or control expression is always
'false' or ‘true’)

Reason The parameter <MSN>OptimizeConstArrays2Define is configured to TRUE.

Potential risks The function contains useless conditions with possibly dead code.

Prevention of risks The code inspection is in charge to detect useless conditions with possibly
dead code.

Examples #define MSN_PROCESS_DATA STD_ON

/* this array is reduced to a define

const boolean msn_FooData [2] =

{

 TRUE,

 TRUE

};

*/

#define Msn_IsFooData (Index) TRUE

void Msn_foo(uint8 a)

{

#if (MSN_PROCESS_DATA == STD_ON)

 if(Msn_IsFooData(a))

 {

 /* some code */

 }

#endif

}

Table 4-9 MD_CSL_3355_3356_3358_3359_3325

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 29
based on template version 5.5.0

Deviation ID MD_CSL_3453

Violated rule Rule 19.7 (A function should be used in preference to a function-like macro.)

Reason ComStackLib based modules use macros to access generated RAM and ROM
data. The implementation of data access functions would cause much code
and runtime.

Potential risks Resulting code is difficult to understand or may not work as expected.

Prevention of risks Code inspection and test of the different variants in the component test.

Examples #define MSN_PROCESS_DATA STD_ON

/* this array is accessed by a generated data access

macro */

const boolean msn_FooData [2] =

{

 TRUE,

 TRUE

};

#define Msn_IsFooData (Index) msn_FooData[Index]

void Msn_foo(uint8 a)

{

#if (MSN_PROCESS_DATA == STD_ON)

 if(Msn_IsFooData(a))

 {

 /* some code */

 }

#endif

}

Table 4-10 MD_CSL_3453

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 30
based on template version 5.5.0

Deviation ID MD_CSL_310

Violated rule Rule 11.4 (A cast should not be performed between a pointer to object type
and a different pointer to object type.)

Reason The parameter <MSN>OptimizeConstArrays2Define is configured to TRUE
AND the module configuration variant is PRE-COMPILE or POST-BUILD-
LOADABLE SELECTABLE.

The values behind a symbol are reduced to a constant define, but a non
NULL_PTR is needed to identify the usage of the values in the source code.
Due to this the module root symbol is used.

Potential risks The compiler and MISRA warns about the cast of different pointer types.

Prevention of risks The code uses the generated macros to access data values and does not
touch the pointers.

Examples
#define Msn_GetFoo(Index) 1U

#define Msn_HasFoo () (Msn_ConfigDataPtr->FooPtrOfPCConfig != NULL_PTR)

#define Msn_Foo ((Msn_FooPtrType)(&(Msn_PCConfig)))

CONST(Msn_PCConfigsType, MSN_CONST) Msn_PCConfig = {

 { /* Index: 0 Keys: [Config_LeftFront] */

 Msn_Foo /**< the pointer to Msn_Foo */ /* PRQA S 0310 */ /* MD_CSL_310

*/

 , 5U /**< the number of elements in Msn_Foo */

 },

 { /* Index: 1 Keys: [Config_RightFront] */

 NULL_PTR /**< the pointer to Msn_Foo */

 , 0U /**< the number of elements in Msn_Foo */

 }

};

Table 4-11 MD_CSL_0310

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 31
based on template version 5.5.0

4.4.2 Bitfields

The data type of bit fields is configurable in the EcuC module and important if
<MSN>StructBoolDataUsage is configured to BITFIELD. According to Table 4-12
 /MICROSAR/EcuC/EcucGeneral/BitFieldDataType the usage of UNSIGNED_INT is the
best choice, but for some compilers the usage of UNSIGNED_CHAR is for some reasons
required and you want to live with the MISRA violations.

BitFieldDataType
Literal

Description

INT does typically not produce a compiler warning

 violates

MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned int or
signed int.

MISRA Rule 6.5 Bit fields of type signed int shall be at least 2 bits long.

MISRA Rule 10.1 The value of an expression of integer type shall not be
implicitly converted to a different underlying type if: a) it is not a conversion to a
wider integer type of the same signedness, or b) the expression is complex, or
c) the expression is not constant and is a function argument, or d) the
expression is not constant and is a return expression (if TRUE is assigned to
the value as initializer)

UNSIGNED_INT does typically not produce a compiler warning

 violates no MISRA Rule

UNSIGNED_CHAR does typically produce a compiler warning like warning C4214: nonstandard
extension used : bit field types other than int

 violates MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned
int or signed int.

UNSIGNED_SHORT does typically produce a compiler warning like warning C4214: nonstandard
extension used : bit field types other than int

 violates MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned
int or signed int.

Table 4-12 /MICROSAR/EcuC/EcucGeneral/BitFieldDataType

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 32
based on template version 5.5.0

4.4.3 <MSN>_Has Macros in the SELECTABLE Use Case

The usage of <MSN>_Has* macros produces in the SELECTABLE use case compiler
warnings like “The result of this logical operation is always 'false' or ‘true’”. This compiler
warning is up to now acceptable because the compiler detects automatically the case
where the “if” condition is not needed and removes automatically the runtime consuming if
condition. A typical use case is described in the following example code.

Example

The generated CONST or VAR data element accesses by Msn_GetFooData() is

needed in all predefined variants. Due to this, the generated Msn_HasFooData()

macro is always true and the compiler warning occurs.

#define MSN_USE_INIT_POINTER STD_ON

#define Msn_HasFooData() TRUE

void Msn_foo(uint8 a)

{

#if (MSN_USE_INIT_POINTER == STD_ON)

 if(Msn_HasFooData())

#endif

 {

 /* some code and process Msn_GetFooData() */

 }

}

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 33
based on template version 5.5.0

5 Configuration

ComStackLib based BSW generators can be configured according with CFG5. For a
detailed description see 5.2.

5.1 Configuration Variants

The configuration classes of ComStackLib based BSW generators depend on the
supported configuration variants. For their definitions please see the BSW specific
<MSN>_bswmd.arxml file.

5.2 Configuration with a GCE

Note
The configuration parameters, their multiplicity and default values depend on the BSW
module. For their definitions please see the BSW specific <MSN>_bswmd.arxml file.

Container Name <MSN>General

Path \MICROSAR\<MSN>\<MSN>General

Multiplicity 1..1

Description The general configuration container of the ComStackLib based BSW
configuration

Table 5-1 Container

Attribute Name Value
Type

Description

<MSN>OutOfBound
sWriteProtectionStra
tegy

ENUM This parameter is used to configure a strategy to protect the code to
write out of bounds.

NONE: no protection strategy is generated in the data access.

INDEX_SATURATION: arrays are blown up and the data access index
is saturated by an appropriate mask. The advantage is the speed of the
data access, but own data elements at other indexes of the same
variable can be overridden.

INDEX_CHECKING: the data access index is validated by a runtime
check. The advantage is that values are never written to incorrect
indexes of the data access.

<MSN>OutOfBound
sWriteSanitizer

BOOL This parameter activates/deactivates the generation of runtime checks
which call a DET error notification function to find easily out of bounds
write problems.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 34
based on template version 5.5.0

Attribute Name Value
Type

Description

This debugging feature must not be used in production code!

FALSE: no checks are generated in the data access.

TRUE: the data access is enriched with DET checks to validate
indexes.

<MSN>OutOfBound
sReadSanitizer

BOOL This parameter activates/deactivates the generation of runtime checks
which call a DET error notification function to find easily out of bounds
read problems.

The debugging feature must not be used in production code!

FALSE: no checks are generated in the data access.

TRUE: the data access is enriched with DET checks to validate
indexes.

<MSN>ConstDataD
eduplication

ENUM This parameter is used to deduplicate CONFIG-CLASS PRE-COMPILE
ROM data.

NONE: The generated data is not deduplicated.

DEDUPLICATE_CONST_DATA_WITHOUT_CAST: The data is
deduplicated without using casts.

Code: no change expected.

RAM: no change expected.

ROM: the ROM size can be minimized.

Runtime: no change expected.

DEDUPLICATE_CONST_DATA_WITH_CAST: The data is deduplicated
using casts.

Code: no change expected.

RAM: no change expected.

ROM: the ROM size can be minimized more than in
DEDUPLICATE_CONST_DATA_WITHOUT_CAST.

Runtime: no change expected.

<MSN>OptimizeCon
stArrays2Define

BOOL This parameter activates/deactivates the capability to generate
CONFIG-CLASS PRE-COMPILE ROM arrays as constant define.

TRUE: ROM arrays are generated as constant define if all values are
identical.

Code: the code size is smaller.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased.

FALSE: ROM arrays are generated as data even if all values are
identical.

<MSN>OptimizeCon
stVars2Define

BOOL This parameter activates/deactivates the capability to generate
CONFIG-CLASS PRE-COMPILE ROM constants as constant define.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 35
based on template version 5.5.0

Attribute Name Value
Type

Description

TRUE: ROM constants are generated as constant define.

Code: the code size is smaller.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased.

FALSE: ROM constants are always generated as data.

<MSN>StructBoolD
ataUsage

ENUM This parameter is used to tailor the usage of boolean data in structures
in all CONFIG-CLASSES. The difference between BITFIELD and
BITMASKING depends on your compiler options and memory mapping.

BOOLEAN: The datatype of boolean data is native boolean.

Code: the code size is small.

RAM: no change expected.

ROM: the ROM size is large.

Runtime: the runtime is fast.

BITFIELD: The bitfield type is used and the compiler extracts the
boolean data from structures.

Code: the code size is larger than using BOOLEAN.

RAM: no change expected.

ROM: the ROM size is smaller than using BOOLEAN.

Runtime: the runtime is larger than using BOOLEAN.

BITMASKING: Generated Masks are used to extract the boolean data
from structures.

Code: the code size is larger than using BOOLEAN.

RAM: no change expected.

ROM: the ROM size is smaller than using BOOLEAN.

Runtime: the runtime is larger than using BOOLEAN.

<MSN>Deduplicate
Zero2NIndirectedDa
ta

BOOL This parameter activates/deactivates the capability to compress 0:N
relational ROM data in all CONFIG-CLASSES without increasing the
runtime.

This option can be used in lib builds and in postbuild configurations.

TRUE: 0:N relational ROM data is compressed without decreasing the
runtime.

Code: no change expected.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: no change expected.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 36
based on template version 5.5.0

Attribute Name Value
Type

Description

FALSE: 0:N relational ROM data is not compressed.

<MSN>ReduceBool
DataByNegationThr
eshold

INT This parameter activates/deactivates the capability to compress
boolean CONFIG-CLASS PRE-COMPILE ROM data by using the
negation operator.

0: The optimization is not performed.

>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the negation
operator in the data access.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the negation
operator in the data access.

<MSN>ReduceNum
ericalDataByOffsetT
hreshold

INT This parameter activates/deactivates the capability to compress
numerical CONFIG-CLASS PRE-COMPILE ROM data by using a
constant offset.

0: The optimization is not performed.

>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the constant offset
operation in the data access.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the constant
offset operation in the data access.

<MSN>ReduceBool
DataByNumericalCo
mparisonThreshold

INT This parameter activates/deactivates the capability to compress
boolean CONFIG-CLASS PRE-COMPILE ROM data by using
comparison with other ROM data.

0: The optimization is not performed.

>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

<MSN>ReduceBool
DataByNumericalRe
lationThreshold

INT This parameter activates/deactivates the capability to compress
boolean CONFIG-CLASS PRE-COMPILE ROM data by using relational
comparison with other ROM data.

0: The optimization is not performed.

>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 37
based on template version 5.5.0

Attribute Name Value
Type

Description

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

<MSN>ReduceNum
ericalDataByArrayS
ubtractionThreshold

INT This parameter activates/deactivates the capability to compress
numerical CONFIG-CLASS PRE-COMPILE ROM data by using a
subtraction with other ROM data.

0: The optimization is not performed.

>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

RAM: no change expected.

ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

<MSN>Deduplicate
BoolDataByNumeric
alComparision

ENUM This parameter is used to tailor the CONFIG-CLASS PRE-COMPILE
ROM data deduplication mechanisms. A comparison with 0 is very
efficient, but a numerical comparison with a value not 0 can be used to
increase the ROM data compression rate.

NONE: ROM data deduplications are switched off.

Code: the code size is small.

RAM: no change expected.

ROM: the ROM size is large.

Runtime: the runtime is fast.

DEDUPLICATE_DATA_WITH_ZERO: ROM data deduplications can be
applied with the value 0.

Code: the code size is larger than using NONE

RAM: no change expected.

ROM: the ROM size is smaller than using NONE.

Runtime: the runtime is larger than using NONE.

DEDUPLICATE_DATA_WITH_ANY_VALUE: ROM data deduplications
can be applied with any numerical value.

Code: the code size is larger than using NONE

RAM: no change expected.

ROM: the ROM size is smaller than using
DEDUPLICATE_DATA_WITH_ZERO.

Runtime: the runtime is larger than using NONE.

<MSN>ReduceData
ByStreaming

BOOL This parameter activates/deactivates the capability to pack generated
CONFIG-CLASS PRE-COMPILE ROM data into a data type dependent
stream.

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 38
based on template version 5.5.0

Attribute Name Value
Type

Description

TRUE: generated const data is packed into a data type dependent
stream.

Code: no change expected.

RAM: no change expected.

ROM: configuration dependent smaller than with FALSE.

Runtime: no change expected.

FALSE: generated const data is not packed into a data type dependent
stream.

<MSN>ShortSymbol
s

BOOL This parameter activates/deactivates the capability to generate
shortened symbol names.

FALSE: symbol names are generated in a human readable style based
on the MIP, tags and variant names.

TRUE: symbol names are generated based on the MIP and a CRC32.

<MSN>InterfacesFo
rDeactivatedData

BOOL This parameter activates/deactivates the capability to generate bsw
data interfaces for deactivated data elements. This is an advantage for
the BSW developer to reduce the time to market with a development
environment using auto completition and to investigate potential
interfaces.

FALSE: data interfaces are not generated if the data element is
deactivated.

TRUE: data interfaces are generated as e.g. empty macros.

<MSN>ReferringKe
ysInComments

BOOL This parameter activates/deactivates the capability to generate referring
keys in comments. This is an advantage for the developer to investigate
indirections, but this feature reduces the overall readability of the
generated data.

FALSE: referring keys are not generated in comments.

TRUE: referring keys are generated in comments.

7Table 5-2 Attributes of ComStackLib based BSW generators

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 39
based on template version 5.5.0

6 Glossary and Abbreviations

6.1 Glossary

Term Description

BSWMD The BSWMD is a formal notation of all information belonging to a certain
BSW artifact (BSW module or BSW cluster) in addition to the
implementation of that artifact.

CFG5 Generation tool for MICROSAR components.

Electronic Control
Unit

Also known as ECU. Small embedded computer system consisting of at
least one CPU and corresponding periphery which is placed in one
housing.

Post-build This type of configuration is possible after building the software module or
the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that
can be downloaded to the ECU separately, avoiding a re-compilation and
re-build of the ECU software modules. In order to make the post-build
time reconfiguration possible, the reconfigurable parameters shall be
stored at a known memory location of ECU storage area.

Use case A model of the usage by the user of a system in order to realize a single
functional feature of the system.

Table 6-1 Glossary

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 40
based on template version 5.5.0

6.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CPU Central Processing Unit

DET Development Error Tracer

ECU Electronic Control Unit

GCE Generic Configuration Editor

HIS Hersteller Initiative Software

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MIP Module Implementation Prefix

MISRA Motor Industry Software Reliability Association

RAM Random Access Memory

ROM Read-Only Memory

SWS Software Specification

XMI The XML Metadata Interchange (XMI) is an Object Management Group
(OMG) standard for exchanging metadata information via Extensible
Markup Language (XML).

Table 6-2 Abbreviations

Technical Reference MICROSAR ComStackLib

© 2017 Vector Informatik GmbH Version 2.01.00 41
based on template version 5.5.0

7 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 CONFIG-CLASS of Data
	3.2 CONFIG-CLASS PRE-COMPILE Optimizations
	3.2.1 Optimize Const Data to Defines
	3.2.2 Optimize Bool Data in Structs
	3.2.3 Data Deduplication and Reduction
	3.2.3.1 Equal Data
	3.2.3.2 Unary and Binary Operations

	3.2.4 Data Streaming

	3.3 CONFIG-CLASS Independent Optimizations
	3.3.1 Sort Struct Elements
	3.3.2 Optimize Data Types

	3.4 SELECTABLE Optimizations
	3.4.1 Merge of VAR and CONST Based Data

	3.5 Freedom from Interference

	4 Integration
	4.1 Dynamic Files
	4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data
	4.3 Optimization Levels
	4.4 MISRA, PRQA and Compiler Warnings
	4.4.1 General
	4.4.2 Bitfields
	4.4.3 <MSN>_Has Macros in the SELECTABLE Use Case

	5 Configuration
	5.1 Configuration Variants
	5.2 Configuration with a GCE

	6 Glossary and Abbreviations
	6.1 Glossary
	6.2 Abbreviations

	7 Contact

