

MICROSAR CSM

Technical Reference

Version 1.5

Authors Markus Schneider, Philipp Ritter

Status Released

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 2
based on template version 5.2.0

Document Information

History

Author Date Version Remarks

Philipp Ritter 2012-10-01 1.00 Initial Version of MICROSAR Csm

Markus Schneider 2013-09-24 1.01 Adapted Configuration Chapter

Markus Schneider 2014-02-06 1.02 Adapted Service Port Chapter

Markus Schneider 2015-08-27 1.03 Corrections due to SafeBSW process

Markus Schneider 2015-11-18 1.04 Minor corrections

Markus Schneider 2016-02-24 1.05 Minor corrections

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_CryptoServiceManager.pdf 1.2.0

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf 4.2.0

[4] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[5] AUTOSAR AUTOSAR_SWS_RTE.pdf 3.2.0

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 3
based on template version 5.2.0

Contents

1. Component History .. 12

2. Introduction .. 13

2.1 Architecture Overview .. 13

3. Functional Description .. 15

3.1 Features ... 15

3.2 Initialization .. 16

3.3 States ... 16

3.4 Main Functions ... 16

3.5 Asynchronous Handling ... 16

3.6 Error Handling .. 18

3.6.1 Development Error Reporting .. 18

3.6.2 Production Code Error Reporting .. 21

4. Integration .. 22

4.1 Scope of Delivery ... 22

4.1.1 Static Files .. 22

4.1.2 Dynamic Files ... 22

4.2 Include Structure .. 23

4.3 Compiler Abstraction and Memory Mapping ... 23

4.4 Critical Sections ... 24

5. API Description .. 25

5.1 Type Definitions .. 25

5.2 Services provided by CSM ... 29

5.2.1 Csm_Init .. 29

5.2.2 Csm_InitMemory ... 29

5.2.3 Csm_MainFunction ... 30

5.2.4 Csm_Interruption ... 30

5.2.5 Csm_GetVersionInfo ... 31

5.2.6 Csm_HashStart ... 31

5.2.7 Csm_HashUpdate ... 32

5.2.8 Csm_HashFinish ... 33

5.2.9 Csm_MacGenerateStart .. 34

5.2.10 Csm_MacGenerateUpdate .. 35

5.2.11 Csm_MacGenerateFinish .. 36

5.2.12 Csm_MacVerifyStart.. 37

5.2.13 Csm_MacVerifyUpdate .. 38

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 4
based on template version 5.2.0

5.2.14 Csm_MacVerifyFinish .. 39

5.2.15 Csm_RandomSeedStart ... 40

5.2.16 Csm_RandomSeedUpdate.. 41

5.2.17 Csm_RandomSeedFinish ... 42

5.2.18 Csm_RandomGenerate .. 43

5.2.19 Csm_SymBlockEncryptStart ... 44

5.2.20 Csm_SymBlockEncryptUpdate ... 45

5.2.21 Csm_SymBlockEncryptFinish ... 46

5.2.22 Csm_SymBlockDecryptStart ... 46

5.2.23 Csm_SymBlockDecryptUpdate ... 47

5.2.24 Csm_SymBlockDecryptFinish ... 48

5.2.25 Csm_SymEncryptStart .. 49

5.2.26 Csm_SymEncryptUpdate .. 50

5.2.27 Csm_SymEncryptFinish .. 51

5.2.28 Csm_SymDecryptStart .. 52

5.2.29 Csm_SymDecryptUpdate .. 53

5.2.30 Csm_SymDecryptFinish .. 54

5.2.31 Csm_AsymEncryptStart .. 55

5.2.32 Csm_AsymEncryptUpdate .. 56

5.2.33 Csm_AsymEncryptFinish .. 57

5.2.34 Csm_AsymDecryptStart .. 58

5.2.35 Csm_AsymDecryptUpdate .. 59

5.2.36 Csm_AsymDecryptFinish .. 60

5.2.37 Csm_SignatureGenerateStart ... 61

5.2.38 Csm_SignatureGenerateUpdate ... 62

5.2.39 Csm_SignatureGenerateFinish ... 63

5.2.40 Csm_SignatureVerifyStart ... 64

5.2.41 Csm_SignatureVerifyUpdate ... 65

5.2.42 Csm_SignatureVerifyFinish ... 66

5.2.43 Csm_ChecksumStart .. 67

5.2.44 Csm_ChecksumUpdate .. 67

5.2.45 Csm_ChecksumFinish .. 68

5.2.46 Csm_KeyDeriveStart ... 69

5.2.47 Csm_KeyDeriveUpdate ... 70

5.2.48 Csm_KeyDeriveFinish ... 71

5.2.49 Csm_KeyDeriveSymKey ... 72

5.2.50 Csm_KeyExchangeCalcPubVal... 73

5.2.51 Csm_KeyExchangeCalcSecretStart .. 74

5.2.52 Csm_KeyExchangeCalcSecretUpdate .. 75

5.2.53 Csm_KeyExchangeCalcSecretFinish .. 76

5.2.54 Csm_KeyExchangeCalcSymKeyStart ... 77

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 5
based on template version 5.2.0

5.2.55 Csm_KeyExchangeCalcSymKeyUpdate ... 78

5.2.56 Csm_KeyExchangeCalcSymKeyFinish ... 79

5.2.57 Csm_SymKeyExtractStart ... 80

5.2.58 Csm_SymKeyExtractUpdate ... 81

5.2.59 Csm_SymKeyExtractFinish ... 82

5.2.60 Csm_SymKeyWrapSymStart .. 83

5.2.61 Csm_SymKeyWrapSymUpdate... 84

5.2.62 Csm_SymKeyWrapSymFinish .. 85

5.2.63 Csm_SymKeyWrapAsymStart ... 85

5.2.64 Csm_SymKeyWrapAsymUpdate ... 86

5.2.65 Csm_SymKeyWrapAsymFinish ... 87

5.2.66 Csm_AsymPublicKeyExtractStart.. 87

5.2.67 Csm_AsymPublicKeyExtractUpdate .. 88

5.2.68 Csm_AsymPublicKeyExtractFinish .. 89

5.2.69 Csm_AsymPrivateKeyExtractStart .. 89

5.2.70 Csm_AsymPrivateKeyExtractUpdate .. 90

5.2.71 Csm_AsymPrivateKeyExtractFinish .. 91

5.2.72 Csm_AsymPrivateKeyWrapSymStart .. 92

5.2.73 Csm_AsymPrivateKeyWrapSymUpdate .. 93

5.2.74 Csm_AsymPrivateKeyWrapSymFinish .. 94

5.2.75 Csm_AsymPrivateKeyWrapAsymStart .. 95

5.2.76 Csm_AsymPrivateKeyWrapAsymUpdate .. 96

5.2.77 Csm_AsymPrivateKeyWrapAsymFinish .. 97

5.3 Services used by CSM ... 97

5.4 Callback Functions ... 97

5.4.1 Csm_HashCallbackNotification ... 98

5.4.2 Csm_HashServiceFinishNotification .. 98

5.4.3 Csm_MacGenerateCallbackNotification .. 99

5.4.4 Csm_MacGenerateServiceFinishNotification .. 99

5.4.5 Csm_MacVerifyCallbackNotification .. 100

5.4.6 Csm_MacVerifyServiceFinishNotification .. 100

5.4.7 Csm_RandomSeedCallbackNotification .. 101

5.4.8 Csm_RandomSeedServiceFinishNotification .. 101

5.4.9 Csm_RandomGenerateCallbackNotification ... 102

5.4.10 Csm_RandomGenerateServiceFinishNotification .. 102

5.4.11 Csm_SymBlockEncryptCallbackNotification .. 103

5.4.12 Csm_SymBlockEncryptServiceFinishNotification .. 104

5.4.13 Csm_SymBlockDecryptCallbackNotification .. 104

5.4.14 Csm_SymBlockDecryptServiceFinishNotification .. 105

5.4.15 Csm_SymEncryptCallbackNotification .. 105

5.4.16 Csm_SymEncryptServiceFinishNotification ... 106

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 6
based on template version 5.2.0

5.4.17 Csm_SymDecryptCallbackNotification .. 106

5.4.18 Csm_SymDecryptServiceFinishNotification ... 107

5.4.19 Csm_AsymEncryptCallbackNotification ... 107

5.4.20 Csm_AsymEncryptServiceFinishNotification ... 108

5.4.21 Csm_AsymDecryptCallbackNotification... 108

5.4.22 Csm_AsymDecryptServiceFinishNotification ... 109

5.4.23 Csm_SignatureGenerateCallbackNotification .. 109

5.4.24 Csm_SignatureGenerateServiceFinishNotification 110

5.4.25 Csm_SignatureVerifyCallbackNotification ... 111

5.4.26 Csm_SignatureVerifyServiceFinishNotification ... 111

5.4.27 Csm_ChecksumCallbackNotification ... 112

5.4.28 Csm_ChecksumServiceFinishNotification ... 112

5.4.29 Csm_KeyDeriveCallbackNotification ... 113

5.4.30 Csm_KeyDeriveServiceFinishNotification .. 113

5.4.31 Csm_KeyDeriveSymKeyCallbackNotification .. 114

5.4.32 Csm_KeyDeriveSymKeyServiceFinishNotification 114

5.4.33 Csm_KeyExchangeCalcPubValCallbackNotification 115

5.4.34 Csm_KeyExchangeCalcPubValServiceFinishNotification 115

5.4.35 Csm_KeyExchangeCalcSecretCallbackNotification 116

5.4.36 Csm_KeyExchangeCalcSecretServiceFinishNotification 116

5.4.37 Csm_KeyExchangeCalcSymKeyCallbackNotification.................................. 117

5.4.38 Csm_KeyExchangeCalcSymKeyServiceFinishNotification 117

5.4.39 Csm_SymKeyExtractCallbackNotification ... 118

5.4.40 Csm_SymKeyExtractServiceFinishNotification .. 118

5.4.41 Csm_SymKeyWrapSymCallbackNotification ... 119

5.4.42 Csm_SymKeyWrapSymServiceFinishNotification 119

5.4.43 Csm_SymKeyWrapAsymCallbackNotification ... 120

5.4.44 Csm_SymKeyWrapAsymServiceFinishNotification...................................... 120

5.4.45 Csm_AsymPublicKeyExtractCallbackNotification .. 121

5.4.46 Csm_AsymPublicKeyExtractServiceFinishNotification 121

5.4.47 Csm_AsymPrivateKeyExtractCallbackNotification 122

5.4.48 Csm_AsymPrivateKeyExtractServiceFinishNotification 122

5.4.49 Csm_AsymPrivateKeyWrapSymCallbackNotification 123

5.4.50 Csm_AsymPrivateKeyWrapSymServiceFinishNotification........................... 123

5.4.51 Csm_AsymPrivateKeyWrapAsymCallbackNotification 124

5.4.52 Csm_AsymPrivateKeyWrapAsymServiceFinishNotification 124

5.5 Configurable Interfaces .. 125

5.5.1 Notifications .. 125

5.6 Service Ports .. 125

5.6.1 Client Server Interface ... 125

5.6.2 Provide Ports on CSM Side ... 125

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 7
based on template version 5.2.0

6. Configuration.. 127

6.1 Configuration Variants .. 127

6.2 Configuration with DaVinci Configurator 5 .. 127

6.2.1 Common Properties .. 127

6.2.2 Service Type related Properties... 128

6.2.3 Service specific Properties .. 128

7. AUTOSAR Standard Compliance .. 130

7.1 Deviations .. 130

7.2 Additions/ Extensions ... 130

7.2.1 Not supported service APIs can be disabled ... 130

7.3 Memory Initialization ... 130

7.4 Limitations .. 130

7.4.1 Interruption of job processing .. 130

7.4.2 Production Error Reporting .. 130

7.4.3 Development Error Reporting .. 130

8. Glossary and Abbreviations .. 131

8.1 Glossary ... 131

8.2 Abbreviations ... 131

9. Contact.. 132

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 8
based on template version 5.2.0

Illustrations

Figure 2-1 AUTOSAR 4.x Architecture Overview ... 13
Figure 2-2 AUTOSAR architecture ... 14
Figure 2-3 Interfaces to adjacent modules of the CSM .. 14
Figure 3-1 CSM asynchronous mode... 17
Figure 4-1 Include structure ... 23

Tables

Table 1-1 Component history.. 12
Table 3-1 Supported AUTOSAR standard conform features 15
Table 3-2 Not supported AUTOSAR standard conform features 15
Table 3-3 Features provided beyond the AUTOSAR standard 15
Table 3-4 Service IDs ... 20
Table 3-5 Errors reported to DET ... 20
Table 3-6 Development Error Reporting: Assignment of checks to services 20
Table 4-1 Static files ... 22
Table 4-2 Generated files ... 22
Table 4-3 Compiler abstraction and memory mapping .. 24
Table 5-1 Type definitions ... 25
Table 5-2 Csm_AsymPublicKeyType .. 26
Table 5-3 Csm_AsymPivateKeyType .. 26
Table 5-4 Csm_SymKeyType ... 26
Table 5-5 Csm_SymKeyType ... 27
Table 5-6 Csm_KeyExchangeBaseType .. 27
Table 5-7 Csm_KeyExchangePrivateType.. 27
Table 5-8 Csm_<Service>ConfigType .. 28
Table 5-9 Csm_Init ... 29
Table 5-10 Csm_InitMemory .. 29
Table 5-11 Csm_MainFunction ... 30
Table 5-12 Csm_Interruption .. 30
Table 5-13 Csm_GetVersionInfo ... 31
Table 5-14 Csm_HashStart .. 31
Table 5-15 Csm_HashUpdate .. 32
Table 5-16 Csm_HashFinish .. 33
Table 5-17 Csm_MacGenerateStart ... 34
Table 5-18 Csm_MacGenerateUpdate ... 35
Table 5-19 Csm_MacGenerateFinish ... 36
Table 5-20 Csm_MacVerifyStart ... 37
Table 5-21 Csm_MacVerifyUpdate ... 38
Table 5-22 Csm_MacVerifyFinish ... 39
Table 5-23 Csm_RandomSeedStart ... 40
Table 5-24 Csm_RandomSeedUpdate ... 41
Table 5-25 Csm_RandomSeedFinish ... 42
Table 5-26 Csm_RandomGenerate .. 43
Table 5-27 Csm_SymBlockEncryptStart ... 44
Table 5-28 Csm_SymBlockEncryptUpdate ... 45
Table 5-29 Csm_SymBlockEncryptFinish ... 46
Table 5-30 Csm_SymBlockDecryptStart ... 47
Table 5-31 Csm_SymBlockDecryptUpdate ... 47
Table 5-32 Csm_SymBlockDecryptFinish ... 48
Table 5-33 Csm_SymEncryptStart ... 49

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 9
based on template version 5.2.0

Table 5-34 Csm_SymEncryptUpdate.. 50
Table 5-35 Csm_SymEncryptFinish ... 51
Table 5-36 Csm_SymDecryptStart ... 52
Table 5-37 Csm_SymDecryptUpdate ... 53
Table 5-38 Csm_SymDecryptFinish ... 54
Table 5-39 Csm_AsymEncryptStart .. 55
Table 5-40 Csm_AsymEncryptUpdate .. 56
Table 5-41 Csm_AsymEncryptFinish .. 57
Table 5-42 Csm_AsymDecryptStart ... 58
Table 5-43 Csm_AsymDecryptUpdate .. 59
Table 5-44 Csm_AsymDecryptFinish.. 60
Table 5-45 Csm_SignatureGenerateStart ... 61
Table 5-46 Csm_SignatureGenerateUpdate ... 62
Table 5-47 Csm_SignatureGenerateFinish ... 63
Table 5-48 Csm_SignatureVerifyStart... 64
Table 5-49 Csm_SignatureVerifyUpdate ... 65
Table 5-50 Csm_SignatureVerifyFinish ... 66
Table 5-51 Csm_ChecksumStart .. 67
Table 5-52 Csm_ChecksumUpdate .. 68
Table 5-53 Csm_ChecksumFinish .. 68
Table 5-54 Csm_KeyDeriveStart .. 69
Table 5-55 Csm_KeyDeriveUpdate .. 70
Table 5-56 Csm_KeyDeriveFinish .. 71
Table 5-57 Csm_KeyDeriveSymKey .. 72
Table 5-58 Csm_KeyExchangeCalcPubVal .. 73
Table 5-59 Csm_KeyExchangeCalcSecretStart ... 74
Table 5-60 Csm_KeyExchangeCalcSecretUpdate.. 75
Table 5-61 Csm_KeyExchangeCalcSecretFinish.. 76
Table 5-62 Csm_KeyExchangeCalcSymKeyStart... 77
Table 5-63 Csm_KeyExchangeCalcSymKeyUpdate ... 78
Table 5-64 Csm_KeyExchangeCalcSymKeyFinish ... 79
Table 5-65 Csm_SymKeyExtractStart .. 80
Table 5-66 Csm_SymKeyExtractUpdate .. 81
Table 5-67 Csm_SymKeyExtractFinish .. 82
Table 5-68 Csm_SymKeyWrapSymStart .. 83
Table 5-69 Csm_SymKeyWrapSymUpdate .. 84
Table 5-70 Csm_SymKeyWrapSymFinish .. 85
Table 5-71 Csm_SymKeyWrapAsymStart .. 86
Table 5-72 Csm_SymKeyWrapAsymUpdate .. 86
Table 5-73 Csm_SymKeyWrapAsymFinish .. 87
Table 5-74 Csm_AsymPublicKeyExtractStart ... 87
Table 5-75 Csm_AsymPublicKeyExtractUpdate ... 88
Table 5-76 Csm_AsymPublicKeyExtractFinish ... 89
Table 5-77 Csm_AsymPrivateKeyExtractStart .. 90
Table 5-78 Csm_AsymPrivateKeyExtractUpdate .. 90
Table 5-79 Csm_AsymPrivateKeyExtractFinish .. 91
Table 5-80 Csm_AsymPrivateKeyWrapSymStart ... 92
Table 5-81 Csm_AsymPrivateKeyWrapSymUpdate ... 93
Table 5-82 Csm_AsymPrivateKeyWrapSymFinish ... 94
Table 5-83 Csm_AsymPrivateKeyWrapAsymStart ... 95
Table 5-84 Csm_AsymPrivateKeyWrapAsymUpdate ... 96
Table 5-85 Csm_AsymPrivateKeyWrapAsymFinish ... 97
Table 5-86 Services used by the CSM .. 97
Table 5-87 Csm_HashCallbackNotification ... 98

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 10
based on template version 5.2.0

Table 5-88 Csm_HashServiceFinishNotification ... 98
Table 5-89 Csm_MacGenerateCallbackNotification .. 99
Table 5-90 Csm_MacGenerateServiceFinishNotification .. 99
Table 5-91 Csm_MacVerifyCallbackNotification ... 100
Table 5-92 Csm_MacVerifyServiceFinishNotification .. 100
Table 5-93 Csm_RandomSeedCallbackNotification ... 101
Table 5-94 Csm_RandomSeedServiceFinishNotification .. 102
Table 5-95 Csm_RandomGenerateCallbackNotification ... 102
Table 5-96 Csm_RandomGenerateServiceFinishNotification 103
Table 5-97 Csm_SymBlockEncryptCallbackNotification ... 103
Table 5-98 Csm_SymBlockEncryptServiceFinishNotification 104
Table 5-99 Csm_SymBlockDecryptCallbackNotification ... 104
Table 5-100 Csm_SymBlockDecryptServiceFinishNotification 105
Table 5-101 Csm_SymEncryptCallbackNotification .. 106
Table 5-102 Csm_SymEncryptServiceFinishNotification .. 106
Table 5-103 Csm_SymDecryptCallbackNotification .. 107
Table 5-104 Csm_SymDecryptServiceFinishNotification .. 107
Table 5-105 Csm_AsymEncryptCallbackNotification .. 108
Table 5-106 Csm_AsymEncryptServiceFinishNotification... 108
Table 5-107 Csm_AsymDecryptCallbackNotification .. 109
Table 5-108 Csm_AsymDecryptServiceFinishNotification .. 109
Table 5-109 Csm_SignatureGenerateCallbackNotification ... 110
Table 5-110 Csm_SignatureGenerateServiceFinishNotification 110
Table 5-111 Csm_SignatureVerifyCallbackNotification .. 111
Table 5-112 Csm_SignatureVerifyServiceFinishNotification .. 111
Table 5-113 Csm_ChecksumCallbackNotification .. 112
Table 5-114 Csm_ChecksumServiceFinishNotification ... 112
Table 5-115 Csm_KeyDeriveCallbackNotification ... 113
Table 5-116 Csm_KeyDeriveServiceFinishNotification ... 113
Table 5-117 Csm_KeyDeriveSymKeyCallbackNotification.. 114
Table 5-118 Csm_KeyDeriveSymKeyServiceFinishNotification 114
Table 5-119 Csm_KeyExchangeCalcPubValCallbackNotification 115
Table 5-120 Csm_KeyExchangeCalcPubValServiceFinishNotification 115
Table 5-121 Csm_KeyExchangeCalcSecretCallbackNotification 116
Table 5-122 Csm_KeyExchangeCalcSecretServiceFinishNotification 116
Table 5-123 Csm_KeyExchangeCalcSymKeyCallbackNotification 117
Table 5-124 Csm_KeyExchangeCalcSymKeyServiceFinishNotification 117
Table 5-125 Csm_SymKeyExtractCallbackNotification ... 118
Table 5-126 Csm_SymKeyExtractServiceFinishNotification 118
Table 5-127 Csm_SymKeyWrapSymCallbackNotification .. 119
Table 5-128 Csm_SymKeyWrapSymServiceFinishNotification 119
Table 5-129 Csm_SymKeyWrapAsymCallbackNotification ... 120
Table 5-130 Csm_SymKeyWrapAsymServiceFinishNotification 120
Table 5-131 Csm_AsymPublicKeyExtractCallbackNotification 121
Table 5-132 Csm_AsymPublicKeyExtractServiceFinishNotification 121
Table 5-133 Csm_AsymPrivateKeyExtractCallbackNotification 122
Table 5-134 Csm_AsymPrivateKeyExtractServiceFinishNotification 122
Table 5-135 Csm_AsymPrivateKeyWrapSymCallbackNotification 123
Table 5-136 Csm_AsymPrivateKeyWrapSymServiceFinishNotification 123
Table 5-137 Csm_AsymPrivateKeyWrapAsymCallbackNotification 124
Table 5-138 Csm_AsymPrivateKeyWrapAsymServiceFinishNotification 124
Table 5-139 ServiceCallback .. 125
Table 8-1 Glossary ... 131
Table 8-2 Abbreviations .. 131

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 11
based on template version 5.2.0

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 12
based on template version 5.2.0

1. Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Initial version

2.00.00 DaVinci Configurator 5 support added

2.02.00 SafeBSW

Table 1-1 Component history

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 13
based on template version 5.2.0

2. Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CSM as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile

Vendor ID: CSM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CSM_MODULE_ID 110 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The Crypto Service Manager (CSM) is an abstraction layer to offer a unique access to
underlying basic cryptographic functionalities. Therefore, synchronous or asynchronous
services are provided for which several configurations may exist.

2.1 Architecture Overview

The following figure shows where the CSM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.x Architecture Overview

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 14
based on template version 5.2.0

Figure 2-2 AUTOSAR architecture

The next figure shows the interfaces to adjacent modules of the CSM. These interfaces
are described in chapter 5.

Figure 2-3 Interfaces to adjacent modules of the CSM

 cmp Architecture_Print

CSM

User Application

RTE

BswM

Det

Cry

<Service>Callback

«optional»

Cry_<Primitive>

Cry_<Primitive>FinishCry_<Primitive>Start

Cry_<Primitive>Update

Det_ReportError

«optional»

Csm_<Service>Start

Csm_<Service>Update

Csm_<Service>Finish

Csm_<Service>

Csm_MainFunction

«optional»

Csm_Init

Csm_<Service>FinishNotification

«async»

Csm_<Service>CallbackNotification

«async»

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 15
based on template version 5.2.0

3. Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
CSM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 7.

Vector Informatik provides further CSM functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

All mentioned services are supported (5.2)

Synchronous job processing

Asynchronous job processing

Development Error Detection

Debugging Concept

Configuration through BSWMD with DaVinci Configurator Pro 5

Ports and Port Interfaces (RTE Support)

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Interruption of job processing

No support of DEM

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Unused service APIs can be deactivated

Table 3-3 Features provided beyond the AUTOSAR standard

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 16
based on template version 5.2.0

3.2 Initialization

Before calling any other functionality of the CSM module the initialization function

Csm_Init() has to be called by the application. The initialization call shall take place

after initializing the corresponding cryptographic modules.

For API details refer to chapter 5.2.1 ‘Csm_Init’.

The CSM module assumes that some variables are initialized with certain values at start-
up. As not all embedded targets support the initialization of RAM within the start-up code

the CSM module provides the function Csm_InitMemory(). This function has to be

called during start-up and before Csm_Init() is called. Refer also to chapter 7.3 ‘Memory
Initialization’.

For API details refer to chapter 5.2.2 ‘Csm_InitMemory’.

3.3 States

The CSM module stores a state for every service which clarifies if a service is active or
idle. The service state is set to active in the Csm_<Service>Start function if the return
value is CSM_E_OK. To reset a state to idle, e.g. due to service cancelation during update
process, the specific Csm_<Service>Finish function has to be called.

3.4 Main Functions

The CSM module implementation provides one main function. When the usage of
asynchronous job processing is enabled, this main function has to be called cyclically on
task level. The default cycle time is 10 milliseconds. The main function is responsible to
execute active services by calling the main function of the corresponding cryptographic
primitive.

For API details refer to chapter 5.2.3 ‘Csm_MainFunction’.

3.5 Asynchronous Handling

There are some differences in the handling between asynchronous and synchronous
mode. Asynchronous services need external state machines in the application to track the
progress. When calling Csm_<Service>Start() the specific CRY function is called. The
function stores the provided pointer and data provided by the API internally. Processing of
data is triggered in the specific Cry_<ServiceName>MainFunction(). The configured user
callback function indicates that the processing is finished carrying the result of the
operation. Depending on the result, the next operation can be performed e.g.
Csm_<Service>Update(). Figure 3-1 depicts this sequence.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 17
based on template version 5.2.0

Figure 3-1 CSM asynchronous mode

 sd General Processing (streaming approach, async mode)

Application Csm Cry_1Scheduler

Asynchronous processing of the Csm

Csm_<Service>Start(...)

Cry_<ServiceName>Start(..)

Csm_MainFunction()

Cry_<ServiceName>MainFunction()

Csm_<Service>CallbackNotification()

UserCallbackFunction()

Csm_<Service>Update(..)

Cry_<ServiceName>Update(..)

Csm_MainFunction()

Cry_<ServiceName>MainFunction()

Csm_<Service>CallbackNotification()

UserCallbackFunction()

Csm_<Service>Finish(..)

Cry_<ServiceName>MainFunction()

Csm_MainFunction()

Cry_<ServiceName>MainFunction()

Csm_<Service>CallbackNotification()

UserCallbackFunction() Csm_<Service>FinishNotification()

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 18
based on template version 5.2.0

Caution
All input and output data buffers have to be valid during the whole processing, not only
for the execution of the service call itself.

3.6 Error Handling

3.6.1 Development Error Reporting

If development error reporting is enabled (i.e. pre-compile parameter

CSM_DEV_ERROR_REPORT == STD_ON), reporting of development errors is done by the

service

Std_ReturnType Det_ReportError (

 uint16 ModuleId, uint8 InstanceId,

 uint8 ApiId, uint8 ErrorId) (5.3)

Please refer to the documentation of the development error tracer [2] for further
information and a detailed description of the API.

The reported CSM ID is 110.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x03 CSM_HASHSTART_ID Csm_HashStart()

0x04 CSM_HASHUPDATE_ID Csm_HashUpdate()

0x05 CSM_HASHFINISH_ID Csm_HashFinish()

0x06 CSM_MACGENERATESTART_ID Csm_MacGenerateStart()

0x07 CSM_MACGENERATEUPDATE_ID Csm_MacGenerateUpdate()

0x08 CSM_MACGENERATEFINISH_ID Csm_MacGenerateFinish()

0x09 CSM_MACVERIFYSTART_ID Csm_MacVerifyStart()

0x0A CSM_MACVERIFYUPDATE_ID Csm_MacVerifyUpdate()

0x0B CSM_MACVERIFYFINISH_ID Csm_MacVerifyFinish()

0x0C CSM_RANDOMSEEDSTART_ID Csm_RandomSeedStart()

0x0D CSM_RANDOMSEEDUPDATE_ID Csm_RandomSeedUpdate()

0x0E CSM_RANDOMSEEDFINISH_ID Csm_RandomSeedFinish()

0x0F CSM_RANDOMGENERATE_ID Csm_RandomGenerate()

0x10 CSM_SYMBLOCKENCRYPTSTART_ID Csm_SymBlockEncryptStart()

0x11 CSM_SYMBLOCKENCRYPTUPDATE_ID Csm_SymBlockEncryptUpdate()

0x12 CSM_SYMBLOCKENCRYPTFINISH_ID Csm_SymBlockEncryptFinish()

0x13 CSM_SYMBLOCKDECRYPTSTART_ID Csm_SymBlockDecryptStart()

0x14 CSM_SYMBLOCKDECRYPTUPDATE_ID Csm_SymBlockDecryptUpdate()

0x15 CSM_SYMBLOCKDECRYPTFINISH_ID Csm_SymBlockDecryptFinish()

0x16 CSM_SYMENCRYPTSTART_ID Csm_SymEncryptStart()

0x17 CSM_SYMENCRYPTUPDATE_ID Csm_SymEncryptUpdate()

0x18 CSM_SYMENCRYPTFINISH_ID Csm_SymEncryptFinish()

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 19
based on template version 5.2.0

Service ID Service

0x19 CSM_SYMDECRYPTSTART_ID Csm_SymDecryptStart()

0x1A CSM_SYMDECRYPTUPDATE_ID Csm_SymDecryptUpdate()

0x1B CSM_SYMDECRYPTFINISH_ID Csm_SymDecryptFinish()

0x1C CSM_ASYMENCRYPTSTART_ID Csm_AsymEncryptStart()

0x1D CSM_ASYMENCRYPTUPDATE_ID Csm_AsymEncryptUpdate()

0x1E CSM_ASYMENCRYPTFINISH_ID Csm_AsymEncryptFinish()

0x1F CSM_ASYMDECRYPTSTART_ID Csm_AsymDecryptStart()

0x20 CSM_ASYMDECRYPTUPDATE_ID Csm_AsymDecryptUpdate()

0x21 CSM_ASYMDECRYPTFINISH_ID Csm_AsymDecryptFinish()

0x22 CSM_SIGNATUREGENERATESTART_ID Csm_SignatureGenerateStart()

0x23 CSM_SIGNATUREGENERATEUPDATE_ID Csm_SignatureGenerateUpdate()

0x24 CSM_SIGNATUREGENERATEFINISH_ID Csm_SignatureGenerateFinish()

0x25 CSM_SIGNATUREVERIFYSTART_ID Csm_SignatureVerifyStart()

0x26 CSM_SIGNATUREVERIFYUPDATE_ID Csm_SignatureVerifyUpdate()

0x27 CSM_SIGNATUREVERIFYFINISH_ID Csm_SignatureVerifyFinish()

0x28 CSM_CHECKSUMSTART_ID Csm_ChecksumStart()

0x29 CSM_CHECKSUMUPDATE_ID Csm_ChecksumUpdate()

0x2A CSM_CHECKSUMFINISH_ID Csm_ChecksumFinish()

0x2B CSM_KEYDERIVESTART_ID Csm_KeyDeriveStart()

0x2C CSM_KEYDERIVEUPDATE_ID Csm_KeyDeriveUpdate()

0x2D CSM_KEYDERIVEFINISH_ID Csm_KeyDeriveFinish()

0x4C CSM_KEYDERIVESYMKEY_ID Csm_KeyDeriveSymKey()

0x2E CSM_KEYEXCHANGECALCPUBVAL_ID Csm_KeyExchangeCalcPubVal()

0x2F CSM_KEYEXCHANGECALCSECRETSTART_ID Csm_KeyExchangeCalcSecretStart()

0x30 CSM_KEYEXCHANGECALCSECRETUPDATE_ID Csm_KeyExchangeCalcSecretUpdate()

0x31 CSM_KEYEXCHANGECALCSECRETFINISH_ID Csm_KeyExchangeCalcSecretFinish()

0x3D CSM_KEYEXCHANGECALCSYMKEYSTART_ID Csm_KeyExchangeCalcSymKeyStart()

0x3E CSM_KEYEXCHANGECALCSYMKEYUPDATE_ID Csm_KeyExchangeCalcSymKeyUpdate()

0x3F CSM_KEYEXCHANGECALCSYMKEYFINISH_ID Csm_KeyExchangeCalcSymKeyFinish()

0x32 CSM_SYMKEYEXTRACTSTART_ID Csm_SymKeyExtractStart()

0x33 CSM_SYMKEYEXTRACTUPDATE_ID Csm_SymKeyExtractUpdate()

0x34 CSM_SYMKEYEXTRACTFINISH_ID Csm_SymKeyExtractFinish()

0x40 CSM_SYMKEYWRAPSYMSTART_ID Csm_SymKeyWrapSymStart()

0x41 CSM_SYMKEYWRAPSYMUPDATE_ID Csm_SymKeyWrapSymUpdate()

0x42 CSM_SYMKEYWRAPSYMFINISH_ID Csm_SymKeyWrapSymFinish()

0x43 CSM_SYMKEYWRAPASYMSTART_ID Csm_SymKeyWrapAsymStart()

0x44 CSM_SYMKEYWRAPASYMUPDATE_ID Csm_SymKeyWrapAsymUpdate()

0x45 CSM_SYMKEYWRAPASYMFINISH_ID Csm_SymKeyWrapAsymFinish()

0x35 CSM_ASYMPUBLICKEYEXTRACTSTART_ID Csm_AsymPublicKeyExtractStart()

0x36 CSM_ASYMPUBLICKEYEXTRACTUPDATE_ID Csm_AsymPublicKeyExtractUpdate()

0x37 CSM_ASYMPUBLICKEYEXTRACTFINISH_ID Csm_AsymPublicKeyExtractFinish()

0x38 CSM_ASYMPRIVATEKEYEXTRACTSTART_ID Csm_AsymPrivateKeyExtractStart()

0x39 CSM_ASYMPRIVATEKEYEXTRACTUPDATE_ID Csm_AsymPrivateKeyExtractUpdate()

0x3A CSM_ASYMPRIVATEKEYEXTRACTFINISH_ID Csm_AsymPrivateKeyExtractFinish()

0x46 CSM_ASYMPRIVATEKEYWRAPSYMSTART_ID Csm_AsymPrivateKeyWrapSymStart()

0x47 CSM_ASYMPRIVATEKEYWRAPSYMUPDATE_ID Csm_AsymPrivateKeyWrapSymUpdate()

0x48 CSM_ASYMPRIVATEKEYWRAPSYMFINISH_ID Csm_AsymPrivateKeyWrapSymFinish()

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 20
based on template version 5.2.0

Service ID Service

0x49 CSM_ASYMPRIVATEKEYWRAPASYMSTART_ID Csm_AsymPrivateKeyWrapAsymStart()

0x4A CSM_ASYMPRIVATEKEYWRAPASYMUPDATE_ID Csm_AsymPrivateKeyWrapAsymUpdate()

0x4B CSM_ASYMPRIVATEKEYWRAPASYMFINISH_ID Csm_AsymPrivateKeyWrapAsymFinish()

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 CSM_E_PARAM_PTR_INVALID API request called with invalid parameter (null
pointer).

0x02 CSM_E_SERVICE_NOT_STARTED Requested service is not initialized.

0x03 CSM_E_PARAM_METHOD_INVALID API request called with invalid parameter
(invalid method for selected service).

0x04 CSM_E_PARAM_KEY_TYPE_INVALID API request called with invalid parameter
(invalid key type for selected service).

0x05 CSM_E_UNINT API request called before initialization of CSM
module.

0x06 CSM_E_BUFFER_TOO_SMALL Provided buffer for storing the result of a
computation is too small.

Table 3-5 Errors reported to DET

The following table shows which development error can occur on which services:

Check

Service

C
S

M
_
E

_
P

A
R

A
M

_
P

T
R

_
IN

V
A

L
ID

C
S

M
_
E

_
S

E
R

V
IC

E
_
N

O
T

_
S

T
A

R
T

E
D

C
S

M
_
E

_
P

A
R

A
M

_
M

E
T

H
O

D
_
IN

V
A

L
ID

C
S

M
_
E

_
U

N
IN

T

Csm_MainFunction

Csm_<Service>Start

Csm_<Service>Update

Csm_<Service>Finish

Table 3-6 Development Error Reporting: Assignment of checks to services

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 21
based on template version 5.2.0

3.6.2 Production Code Error Reporting

The current implementation of the CSM module does not report any production errors.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 22
based on template version 5.2.0

4. Integration

This chapter gives necessary information for the integration of the MICROSAR CSM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the CSM contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

Csm.c This is the source file of the CSM

Csm.h This is the header file of the CSM.

Csm_Cbk.h This is the callback header file of the CSM

Csm_Types.h This is the type definition header file of the CSM

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator Pro 5.

For more Information about the configuration see chapter 6.2 Configuration with DaVinci
Configurator.

File Name Description

Csm_Cfg.h This is the configuration header file.

Csm_Cfg.c This is the configuration source file.

Table 4-2 Generated files

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 23
based on template version 5.2.0

4.2 Include Structure

Figure 4-1 shows the include structure of the CSM. Some includes are optional and

depend on the configuration. Cry<Primitve>.h stands for every used cryptographic

primitive.

Figure 4-1 Include structure

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table (Table 4-3) contains the memory section names and the compiler
abstraction definitions of the CSM and illustrates their assignment among each other.

 class IncludeStructure

Source Header IncContainer

Static

Generated

Csm_Compiler_Cfg.inc

Cry_<ServiceName>.c Cry_<ServiceName>.h

Csm.c Csm.h Csm_Cbk.h

Csm_Cfg.c Csm_Cfg.h

Csm_Types.h

Det.h

Csm_MemMap.inc Std_Types.h
«include»

«include»

«include»«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 24
based on template version 5.2.0

Compiler Abstraction

Definitions

Memory Mapping

Sections

C
S

M
_
C

O
D

E

C
S

M
_
C

O
N

S
T

C
S

M
_
V

A
R

_
N

O
IN

IT

C
S

M
_
V

A
R

_
Z

E
R

O
_
IN

IT

C
S

M
_
A

P
P

L
_
V

A
R

CSM_START_SEC_CODE

CSM_STOP_SEC_CODE

CSM_START_SEC_CONST_8BIT

CSM_STOP_SEC_CONST_8BIT

CSM_START_SEC_CONST_UNSPECIFIED

CSM_STOP_SEC_CONST_UNSPECIFIED

CSM_START_SEC_VAR_NOINIT_8BIT

CSM_STOP_SEC_VAR_NOINIT_8BIT

CSM_START_SEC_VAR_NOINIT_16BIT

CSM_STOP_SEC_VAR_NOINIT_16BIT

CSM_START_SEC_VAR_ZERO_INIT_8BIT

CSM_STOP_SEC_VAR_ZERO_INIT_8BIT

Table 4-3 Compiler abstraction and memory mapping

4.4 Critical Sections

The current implementation of the CSM module does not need any critical section.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 25
based on template version 5.2.0

5. API Description

For an interfaces overview please see Figure 2-3.

5.1 Type Definitions

The types defined by the CSM are described in this chapter.

Type Name C-Type Description Value Range

Csm_ConfigIdType uint16 Identification of a CSM
service configuration via
a numeric identifier, that
is unique within a
service.

0..65535

Csm_ReturnType uint8 Return Type of the Csm
Module

CSM_E_OK

The execution of the called
function succeeded.

CSM_E_NOT_OK

The execution of the called
function failed

CSM_E_BUSY

The service request failed because
the service is still busy.

CSM_E_SMALL_BUFFER

The service request failed because
the provided buffer is too small to
store the result of the service.

CSM_E_ENTROPY_EXHAUSION

The service request failed because
the entropy of the random number
generator is exhausted.

Csm_AlignType uint8,
uint16,
uint32

A scalar type which has
maximum alignment
restrictions on the given
platform. This value is
configured by
CsmMaxAlignScalarType

Csm_VerifyResultType uint8 CSM_E_VER_OK

The result of the verification is
"true".

CSM_E_VER_NOT_OK

The result of the verification is
"false".

Csm_CallbackType* Std_Ret
urnType

Function pointer for
service notification
callback.

Table 5-1 Type definitions

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 26
based on template version 5.2.0

Csm_AsymPublicKeyType

This structure represents a public asymmetrical key.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_ASYM_PUB_KEY_MAX_SIZE

Table 5-2 Csm_AsymPublicKeyType

Csm_AsymPrivateKeyType

This structure represents a private asymmetrical key.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_ASYM_PUB_KEY_MAX_SIZE

Table 5-3 Csm_AsymPivateKeyType

Csm_SymKeyType

This structure represents a symmetrical key.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_ASYM_PRIV_KEY_MAX_SIZE

Table 5-4 Csm_SymKeyType

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 27
based on template version 5.2.0

Csm_SymKeyType

This structure represents a symmetrical key.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_SYM_KEY_MAX_SIZE

Table 5-5 Csm_SymKeyType

Csm_KeyExchangeBaseType

This structure represents base type information of the key exchange protocol.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_KEY_EX_BASE_MAX_SIZE

Table 5-6 Csm_KeyExchangeBaseType

Csm_KeyExchangePrivateType

This structure represents private information of the key exchange protocol.

Struct Element
Name

C-Type Description Value Range

length uint32 This element contains
the length of the key
stored in element 'data'

0..4294967295

data Csm_AlignType
This element contains
the key data or a key
handle.

CSM_KEY_EX_PRIV_MAX_SIZE

Table 5-7 Csm_KeyExchangePrivateType

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 28
based on template version 5.2.0

Csm_<Service>ConfigType

This structure is defined for each service and represents the configuration of this service.

The parameters of the several function pointers depend on the service and are nearly

equal to the corresponding Csm Service function. Only the CfgId, which is part of every

Csm service function, will be replaced by the corresponding PrimitiveConfigPtr.

Struct Element Name C-Type Description

ConfigId Csm_ConfigIdType The numeric identifier of a configuration.

CallbackFct* Csm_CallbackType

A pointer to the callback function which shall be
called when the configured service has finished.
This Element is only available if
"CsmUseSyncJobProcessing" is disabled.

PrimitiveStartFct* Csm_ReturnType

This element shall only exist if the service contains
the function Csm_<Service>Start. It is a pointer to
the function Cry_<Primitive>Start of the configured
cryptographic primitive.

PrimitiveUpdateFct* Csm_ReturnType

This element shall only exist if the service contains
the function Csm_<Service>Update. It is a pointer
to the function Cry_<Primitive>Update of the
configured cryptographic primitive.

PrimitiveFinishFct* Csm_ReturnType

This element shall only exist if the service contains
the function Csm_<Service>Finish. It is a pointer
to the function Cry_<Primitive>Finish of the
configured cryptographic primitive.

PrimitiveFct* Csm_ReturnType

This element shall only exist if the service contains
the function Csm_<Service>. It is a pointer to the
function Cry_<Primitive> of the configured
cryptographic primitive.

PrimitiveMainFct* void
A pointer to the function
Cry_<Primitive>MainFunction of the configured
cryptographic primitive.

PrimitiveConfigPtr* void
A pointer to the configuration of the underlying
cryptographic primitive.

Table 5-8 Csm_<Service>ConfigType

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 29
based on template version 5.2.0

5.2 Services provided by CSM

5.2.1 Csm_Init

Prototype

void Csm_Init (void)

Parameter

-

Return code

-

Functional Description

This function initializes the CSM.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function has to be called during start-up.

Call Context

> This function can be called from task level only.

Table 5-9 Csm_Init

5.2.2 Csm_InitMemory

Prototype

void Csm_InitMemory (void)

Parameter

-

Return code

-

Functional Description

If RAM is not automatically initialized at start-up, this function must be called from start-up code to ensure
that variables which must be initialized with a certain value (e.g. initialization status with UNINIT value) are
set to those values.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function has to be called during start-up before the initialization is executed.

> This function is a Vector Extension. Refer also to chapter 7.3 ‘Memory Initialization’.

Call Context

> This function can be called from task level only.

Table 5-10 Csm_InitMemory

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 30
based on template version 5.2.0

5.2.3 Csm_MainFunction

Prototype

void Csm_MainFunction (void)

Parameter

-

Return code

-

Functional Description

This function implements the asynchronous service handling.

Note
This function is empty if ‘Use Sync Job Processing’ is enabled.

Particularities and Limitations

> This function is synchronous.

> This function is not reentrant.

> This function has to be called cyclically on task level by BSW Scheduler.

> This function must not be called by the application.

Call Context

> This function can be called from task level only.

Table 5-11 Csm_MainFunction

5.2.4 Csm_Interruption

Prototype

void Csm_Interruption (void)

Parameter

-

Return code

-

Functional Description

This function has no functionality and exists only for compatibility reasons.

Particularities and Limitations

> This function has no functionality.

Call Context

> This function can be called from task and interrupt level.

Table 5-12 Csm_Interruption

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 31
based on template version 5.2.0

5.2.5 Csm_GetVersionInfo

Prototype

void Csm_GetVersionInfo (Std_VersionInfoType *csmVerInfoPtr)

Parameter

csmVerInfoPtr Pointer where the version information shall be copied to.

Return code

-

Functional Description

This function copies the CSM version information to the location provided by the pointer.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is only available if ‘Version Info Api” is enabled.

Call Context

> This function can be called from task and interrupt level.

Table 5-13 Csm_GetVersionInfo

5.2.6 Csm_HashStart

Prototype

Csm_ReturnType Csm_HashStart (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the hash computation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-14 Csm_HashStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 32
based on template version 5.2.0

5.2.7 Csm_HashUpdate

Prototype

Csm_ReturnType Csm_HashUpdate (Csm_ConfigIdType cfgId, const uint8

*dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a hash value shall be computed.

dataLength Contains the number of bytes for which the hash value shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the hash computation service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-15 Csm_HashUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 33
based on template version 5.2.0

5.2.8 Csm_HashFinish

Prototype

Csm_ReturnType Csm_HashFinish (Csm_ConfigIdType cfgId, uint8

*resultPtr, uint32 *resultLengthPtr, boolean truncationIsAllowed)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

resultPtr Holds a pointer to the memory location which will hold the hash value. If the
hash value does not fit into the given buffer, and truncation is allowed, the
result shall be truncated.

resultLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned hash value shall be stored.

truncationIsAllowed This parameter states whether a truncation of the result is allowed or not.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the hash computation service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-16 Csm_HashFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 34
based on template version 5.2.0

5.2.9 Csm_MacGenerateStart

Prototype

Csm_ReturnType Csm_MacGenerateStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the MAC generation
operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the MAC generation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-17 Csm_MacGenerateStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 35
based on template version 5.2.0

5.2.10 Csm_MacGenerateUpdate

Prototype

Csm_ReturnType Csm_MacGenerateUpdate (Csm_ConfigIdType cfgId, const

uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a MAC shall be computed.

dataLength Contains the number of bytes for which the MAC shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the MAC generation service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-18 Csm_MacGenerateUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 36
based on template version 5.2.0

5.2.11 Csm_MacGenerateFinish

Prototype

Csm_ReturnType Csm_MacGenerateFinish (Csm_ConfigIdType cfgId, uint8

*resultPtr, uint32 *resultLengthPtr, boolean truncationIsAllowed)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

resultPtr Holds a pointer to the memory location which will hold the MAC. If the MAC
does not fit into the given buffer, and truncation is allowed, the result shall be
truncated.

resultLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned MAC shall be stored.

truncationIsAllowed This parameter states whether a truncation of the result is allowed or not.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the MAC generation service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-19 Csm_MacGenerateFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 37
based on template version 5.2.0

5.2.12 Csm_MacVerifyStart

Prototype

Csm_ReturnType Csm_MacVerifyStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the MAC verification
operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the MAC verification service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-20 Csm_MacVerifyStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 38
based on template version 5.2.0

5.2.13 Csm_MacVerifyUpdate

Prototype

Csm_ReturnType Csm_MacVerifyUpdate (Csm_ConfigIdType cfgId, const uint8

*dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a MAC shall be computed.

dataLength Contains the number of bytes for which the MAC shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the MAC verification service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-21 Csm_MacVerifyUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 39
based on template version 5.2.0

5.2.14 Csm_MacVerifyFinish

Prototype

Csm_ReturnType Csm_MacVerifyFinish (Csm_ConfigIdType cfgId, const uint8

*MacPtr, uint32 MacLength, Csm_VerifyResultType *resultPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

MacPtr Holds a pointer to the memory location which will hold the MAC to verify.

MacLength Holds the length of the MAC to be verified. Note: the computed MAC will be
internally truncated to this

resultPtr Holds a pointer to the memory location which will hold the result of the
verification.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the MAC verification service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-22 Csm_MacVerifyFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 40
based on template version 5.2.0

5.2.15 Csm_RandomSeedStart

Prototype

Csm_ReturnType Csm_RandomSeedStart (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the random seed service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-23 Csm_RandomSeedStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 41
based on template version 5.2.0

5.2.16 Csm_RandomSeedUpdate

Prototype

Csm_ReturnType Csm_RandomSeedUpdate (Csm_ConfigIdType cfgId, const

uint8 *seedPtr, uint32 seedLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

seedPtr Holds a pointer to a source of entropy which is used to provide a seed for the
random number generator.

seedLength Contains the number of bytes for which the seed shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the random seed service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-24 Csm_RandomSeedUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 42
based on template version 5.2.0

5.2.17 Csm_RandomSeedFinish

Prototype

Csm_ReturnType Csm_RandomSeedFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the random seed service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-25 Csm_RandomSeedFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 43
based on template version 5.2.0

5.2.18 Csm_RandomGenerate

Prototype

Csm_ReturnType Csm_RandomGenerate (Csm_ConfigIdType cfgId, uint8

*resultPtr, uint32 resultLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

resultPtr Holds a pointer to the memory location which will hold the random number.

resultLength Contains the number of bytes for which the random number shall be
computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the random number generation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-26 Csm_RandomGenerate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 44
based on template version 5.2.0

5.2.19 Csm_SymBlockEncryptStart

Prototype

Csm_ReturnType Csm_SymBlockEncryptStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the symmetrical block
encryption operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical block encryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-27 Csm_SymBlockEncryptStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 45
based on template version 5.2.0

5.2.20 Csm_SymBlockEncryptUpdate

Prototype

Csm_ReturnType Csm_SymBlockEncryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *plainTextPtr, uint32 plainTextLength, uint8 *cipherTextPtr,

uint32 *cipherTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

plainTextPtr Holds a pointer to the data for which a encrypted text shall be computed.

plainTextLength Contains the number of bytes for which the encrypted text shall be computed.

cipherTextPtr Holds a pointer to the memory location which will hold the encrypted text.

cipherTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned encrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the symmetrical block encryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-28 Csm_SymBlockEncryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 46
based on template version 5.2.0

5.2.21 Csm_SymBlockEncryptFinish

Prototype

Csm_ReturnType Csm_SymBlockEncryptFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the symmetrical block encryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-29 Csm_SymBlockEncryptFinish

5.2.22 Csm_SymBlockDecryptStart

Prototype

Csm_ReturnType Csm_SymBlockDecryptStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the symmetrical block
decryption operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical block decryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 47
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-30 Csm_SymBlockDecryptStart

5.2.23 Csm_SymBlockDecryptUpdate

Prototype

Csm_ReturnType Csm_SymBlockDecryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *cipherTextPtr, uint32 cipherTextLength, uint8 *plainTextPtr,

uint32 *plainTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

cipherTextPtr Holds a pointer to the data for which a decrypted text shall be computed.

cipherTextLength Contains the number of bytes for which the decrypted text shall be computed.

plainTextPtr Holds a pointer to the memory location which will hold the decrypted text.

plainTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned decrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the symmetrical block decryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-31 Csm_SymBlockDecryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 48
based on template version 5.2.0

5.2.24 Csm_SymBlockDecryptFinish

Prototype

Csm_ReturnType Csm_SymBlockDecryptFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the symmetrical block decryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-32 Csm_SymBlockDecryptFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 49
based on template version 5.2.0

5.2.25 Csm_SymEncryptStart

Prototype

Csm_ReturnType Csm_SymEncryptStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr, const uint8 *InitVectorPtr, uint32

InitVectorLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the symmetrical
encryption operation.

InitVectorPtr Holds a pointer to the initialisation vector which has to be used.

InitVectorLength Contains the number of bytes provided as the initialisation vector.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical encryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-33 Csm_SymEncryptStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 50
based on template version 5.2.0

5.2.26 Csm_SymEncryptUpdate

Prototype

Csm_ReturnType Csm_SymEncryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *plainTextPtr, uint32 plainTextLength, uint8 *cipherTextPtr,

uint32 *cipherTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

plainTextPtr Holds a pointer to the data for which a encrypted text shall be computed.

plainTextLength Contains the number of bytes for which the encrypted text shall be computed.

cipherTextPtr Holds a pointer to the memory location which will hold the encrypted text.

cipherTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned encrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the symmetrical encryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-34 Csm_SymEncryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 51
based on template version 5.2.0

5.2.27 Csm_SymEncryptFinish

Prototype

Csm_ReturnType Csm_SymEncryptFinish (Csm_ConfigIdType cfgId, uint8

*cipherTextPtr, uint32 *cipherTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

cipherTextPtr Holds a pointer to the memory location which will hold the encrypted text.

cipherTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned encrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the symmetrical encryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-35 Csm_SymEncryptFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 52
based on template version 5.2.0

5.2.28 Csm_SymDecryptStart

Prototype

Csm_ReturnType Csm_SymDecryptStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr, const uint8 *InitVectorPtr, uint32

InitVectorLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the symmetrical
decryption operation.

InitVectorPtr Holds a pointer to initialisation vector which has to be used during the
symmetrical decryption.

InitVectorLength Holds a pointer to the initialisation vector which has to be used during the
symmetrical decryption.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical decryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-36 Csm_SymDecryptStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 53
based on template version 5.2.0

5.2.29 Csm_SymDecryptUpdate

Prototype

Csm_ReturnType Csm_SymDecryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *cipherTextPtr, uint32 cipherTextLength, uint8 *plainTextPtr,

uint32 *plainTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

cipherTextPtr Holds a pointer to the data for which a decrypted text shall be computed.

cipherTextLength Contains the number of bytes for which the decrypted text shall be computed.

plainTextPtr Holds a pointer to the memory location which will hold the decrypted text.

plainTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned decrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the symmetrical decryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-37 Csm_SymDecryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 54
based on template version 5.2.0

5.2.30 Csm_SymDecryptFinish

Prototype

Csm_ReturnType Csm_SymDecryptFinish (Csm_ConfigIdType cfgId, uint8

*plainTextPtr, uint32 *plainTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

plainTextPtr Holds a pointer to the memory location which will hold the decrypted text.

plainTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned decrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the symmetrical decryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-38 Csm_SymDecryptFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 55
based on template version 5.2.0

5.2.31 Csm_AsymEncryptStart

Prototype

Csm_ReturnType Csm_AsymEncryptStart (Csm_ConfigIdType cfgId, const

Csm_AsymPublicKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the asymmetrical
encryption operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the asymmetrical encryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-39 Csm_AsymEncryptStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 56
based on template version 5.2.0

5.2.32 Csm_AsymEncryptUpdate

Prototype

Csm_ReturnType Csm_AsymEncryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *plainTextPtr, uint32 plainTextLength, uint8 *cipherTextPtr,

uint32 *cipherTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

plainTextPtr Holds a pointer to the data for which a encrypted text shall be computed.

plainTextLength Contains the number of bytes for which the encrypted text shall be computed.

cipherTextPtr Holds a pointer to the memory location which will hold the encrypted text.

cipherTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned encrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the asymmetrical encryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-40 Csm_AsymEncryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 57
based on template version 5.2.0

5.2.33 Csm_AsymEncryptFinish

Prototype

Csm_ReturnType Csm_AsymEncryptFinish (Csm_ConfigIdType cfgId, uint8

*cipherTextPtr, uint32 *cipherTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

cipherTextPtr Holds a pointer to the memory location which will hold the encrypted text.

cipherTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned encrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the asymmetrical encryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-41 Csm_AsymEncryptFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 58
based on template version 5.2.0

5.2.34 Csm_AsymDecryptStart

Prototype

Csm_ReturnType Csm_AsymDecryptStart (Csm_ConfigIdType cfgId, const

Csm_AsymPrivateKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the asymmetrical
decryption operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the asymmetrical decryption service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-42 Csm_AsymDecryptStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 59
based on template version 5.2.0

5.2.35 Csm_AsymDecryptUpdate

Prototype

Csm_ReturnType Csm_AsymDecryptUpdate (Csm_ConfigIdType cfgId, const

uint8 *cipherTextPtr, uint32 cipherTextLengthPtr, uint8 *plainTextPtr,

uint32 *plainTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

cipherTextPtr Holds a pointer to the data for which a decrypted text shall be computed.

cipherTextLengthPtr Contains the number of bytes for which the decrypted text shall be computed.

plainTextPtr Holds a pointer to the memory location which will hold the decrypted text.

plainTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned decrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to feed the asymmetrical decryption service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-43 Csm_AsymDecryptUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 60
based on template version 5.2.0

5.2.36 Csm_AsymDecryptFinish

Prototype

Csm_ReturnType Csm_AsymDecryptFinish (Csm_ConfigIdType cfgId, uint8

*plainTextPtr, uint32 *plainTextLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

plainTextPtr Holds a pointer to the memory location which will hold the decrypted text.

plainTextLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned decrypted text shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the asymmetrical decryption service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-44 Csm_AsymDecryptFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 61
based on template version 5.2.0

5.2.37 Csm_SignatureGenerateStart

Prototype

Csm_ReturnType Csm_SignatureGenerateStart (Csm_ConfigIdType cfgId,

const Csm_AsymPrivateKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the signature generate
operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the signature generate service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-45 Csm_SignatureGenerateStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 62
based on template version 5.2.0

5.2.38 Csm_SignatureGenerateUpdate

Prototype

Csm_ReturnType Csm_SignatureGenerateUpdate (Csm_ConfigIdType cfgId,

const uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a signature shall be computed.

dataLength Contains the number of bytes for which the signature shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the signature generate service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-46 Csm_SignatureGenerateUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 63
based on template version 5.2.0

5.2.39 Csm_SignatureGenerateFinish

Prototype

Csm_ReturnType Csm_SignatureGenerateFinish (Csm_ConfigIdType cfgId,

uint8 *resultPtr, uint32 *resultLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

resultPtr Holds a pointer to the memory location which will hold the signature.

resultLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned signature shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the signature generate service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-47 Csm_SignatureGenerateFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 64
based on template version 5.2.0

5.2.40 Csm_SignatureVerifyStart

Prototype

Csm_ReturnType Csm_SignatureVerifyStart (Csm_ConfigIdType cfgId, const

Csm_AsymPublicKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the signature
verification operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the signature verification service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-48 Csm_SignatureVerifyStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 65
based on template version 5.2.0

5.2.41 Csm_SignatureVerifyUpdate

Prototype

Csm_ReturnType Csm_SignatureVerifyUpdate (Csm_ConfigIdType cfgId, const

uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a signature shall be computed.

dataLength Contains the number of bytes for which the signature shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the signature verification service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-49 Csm_SignatureVerifyUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 66
based on template version 5.2.0

5.2.42 Csm_SignatureVerifyFinish

Prototype

Csm_ReturnType Csm_SignatureVerifyFinish (Csm_ConfigIdType cfgId, const

uint8 *signaturePtr, uint32 signatureLength, Csm_VerifyResultType

*resultPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

signaturePtr Holds a pointer to the memory location which holds the signature to be
verified.

signatureLength Holds the length of the Signature to be verified

resultPtr Holds a pointer to the memory location which will hold the result of the
signature verification.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the signature verification service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-50 Csm_SignatureVerifyFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 67
based on template version 5.2.0

5.2.43 Csm_ChecksumStart

Prototype

Csm_ReturnType Csm_ChecksumStart (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the checksum generation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-51 Csm_ChecksumStart

5.2.44 Csm_ChecksumUpdate

Prototype

Csm_ReturnType Csm_ChecksumUpdate (Csm_ConfigIdType cfgId, const uint8

*dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data for which a checksum shall be computed.

dataLength Contains the number of bytes for which the checksum shall be computed.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the checksum generation service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 68
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-52 Csm_ChecksumUpdate

5.2.45 Csm_ChecksumFinish

Prototype

Csm_ReturnType Csm_ChecksumFinish (Csm_ConfigIdType cfgId, uint8

*resultPtr, uint32 *resultLengthPtr, boolean truncationIsAllowed)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

resultPtr Holds a pointer to the memory location which will hold the checksum. If the
checksum does not fit into the given buffer, and truncation is allowed, the
result shall be truncated.

resultLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned checksum shall be stored.

truncationIsAllowed This parameter states whether a truncation of the result is allowed or not.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the checksum generation service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-53 Csm_ChecksumFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 69
based on template version 5.2.0

5.2.46 Csm_KeyDeriveStart

Prototype

Csm_ReturnType Csm_KeyDeriveStart (Csm_ConfigIdType cfgId, uint32

keyLength, uint32 iterations)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyLength Holds the length of the key to be derived by the underlying key derivation
primitive.

iterations Holds the number of iterations to be performed by the underlying key
derivation primitive.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the Key Derivation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-54 Csm_KeyDeriveStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 70
based on template version 5.2.0

5.2.47 Csm_KeyDeriveUpdate

Prototype

Csm_ReturnType Csm_KeyDeriveUpdate (Csm_ConfigIdType cfgId, const uint8

*passwordPtr, uint32 passwordLength, const uint8 *saltPtr, uint32

saltLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

passwordPtr Holds a pointer to the password, i.e. the original key, from which to derive a
new key.

passwordLength Holds the length of the password in bytes.

saltPtr Holds a pointer to the cryptographic salt, i.e. a random number, for the
underlying primitive.

saltLength Holds the length of the salt in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the Key Derivation service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-55 Csm_KeyDeriveUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 71
based on template version 5.2.0

5.2.48 Csm_KeyDeriveFinish

Prototype

Csm_ReturnType Csm_KeyDeriveFinish (Csm_ConfigIdType cfgId,

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the memory location which will hold the derived key.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the Key Derivation service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-56 Csm_KeyDeriveFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 72
based on template version 5.2.0

5.2.49 Csm_KeyDeriveSymKey

Prototype

Csm_ReturnType Csm_KeyDeriveSymKey (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *baseKeyPtr, const uint8 *customisationValPtr, uint32

customisationValLength, Csm_SymKeyType *derivedKeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

baseKeyPtr Holds a pointer to the key from which the new key shall be derived.

customisationValPtr Holds a pointer to the customisation value (if any).

customisationValLength Holds the length of the customisation value in bytes.

derivedKeyPtr Holds a pointer to the memory location which will hold the result of the key
derivation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the Key Derivation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-57 Csm_KeyDeriveSymKey

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 73
based on template version 5.2.0

5.2.50 Csm_KeyExchangeCalcPubVal

Prototype

Csm_ReturnType Csm_KeyExchangeCalcPubVal (Csm_ConfigIdType cfgId, const

Csm_KeyExchangeBaseType *basePtr, const Csm_KeyExchangePrivateType

*privateValuePtr, uint8 *publicValuePtr, uint32 *publicValueLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

basePtr holds a pointer to the base information known to both users of the key
exchange protocol.

privateValuePtr Holds a pointer to the private information known only to the current user of the
key exchange protocol.

publicValuePtr Holds a pointer to the memory location which will hold the public value.

publicValueLengthPtr Holds a pointer to the number of bytes for the input buffer and the number of
actual written bytes if the request was successful.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to initialize the public value calculation service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-58 Csm_KeyExchangeCalcPubVal

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 74
based on template version 5.2.0

5.2.51 Csm_KeyExchangeCalcSecretStart

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSecretStart (Csm_ConfigIdType cfgId,

const Csm_KeyExchangeBaseType *basePtr, const

Csm_KeyExchangePrivateType *privateValuePtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

basePtr Holds a pointer to the base information known to both users of the key
exchange protocol.

privateValuePtr Holds a pointer to the private information known only to the current user of the
key exchange protocol.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the Key Exchange service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-59 Csm_KeyExchangeCalcSecretStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 75
based on template version 5.2.0

5.2.52 Csm_KeyExchangeCalcSecretUpdate

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSecretUpdate (Csm_ConfigIdType cfgId,

const uint8 *partnerPublicValuePtr, uint32 partnerPublicValueLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

partnerPublicValuePtr Holds a pointer to the data representing the public value of the key exchange
partner.

partnerPublicValueLength Holds the length of the part of the partner value in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the Key Exchange service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-60 Csm_KeyExchangeCalcSecretUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 76
based on template version 5.2.0

5.2.53 Csm_KeyExchangeCalcSecretFinish

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSecretFinish (Csm_ConfigIdType cfgId,

uint8 *sharedSecretPtr, uint32 *sharedSecretLengthPtr, boolean

truncationIsAllowed)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

sharedSecretPtr Holds a pointer to the memory location which will hold the secret key. If the
secret key does not fit into the given buffer, and truncation is allowed, the
result shall be truncated.

sharedSecretLengthPtr Holds a pointer to the number of bytes for which a secret key shall be
computed.

truncationIsAllowed This parameter states whether a truncation of the result is allowed or not.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

CSM_E_SMALL_BUFFER

Request successful.

Request failed.

Request failed, service is still busy.

The provided buffer is too small to store the result and truncation was not
allowed.

Functional Description

This interface shall be used to finish the Key Exchange service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-61 Csm_KeyExchangeCalcSecretFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 77
based on template version 5.2.0

5.2.54 Csm_KeyExchangeCalcSymKeyStart

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSymKeyStart (Csm_ConfigIdType cfgId,

const Csm_KeyExchangeBaseType *basePtr, const

Csm_KeyExchangePrivateType *privateValuePtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

basePtr Holds a pointer to the base information known to both users of the key
exchange protocol.

privateValuePtr Holds a pointer to the private information known only to the current user of the
key exchange protocol.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the key exchange service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-62 Csm_KeyExchangeCalcSymKeyStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 78
based on template version 5.2.0

5.2.55 Csm_KeyExchangeCalcSymKeyUpdate

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSymKeyUpdate (Csm_ConfigIdType cfgId,

const uint8 *partnerPublicValuePtr, uint32 partnerPublicValueLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

partnerPublicValuePtr Holds a pointer to the data representing the public value of the key exchange
partner.

partnerPublicValueLength Holds the length of the part of the partner value in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the key exchange service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-63 Csm_KeyExchangeCalcSymKeyUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 79
based on template version 5.2.0

5.2.56 Csm_KeyExchangeCalcSymKeyFinish

Prototype

Csm_ReturnType Csm_KeyExchangeCalcSymKeyFinish (Csm_ConfigIdType cfgId,

Csm_SymKeyType *sharedKeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

sharedKeyPtr Holds a pointer to the memory location which will hold the shared key.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the key exchange service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-64 Csm_KeyExchangeCalcSymKeyFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 80
based on template version 5.2.0

5.2.57 Csm_SymKeyExtractStart

Prototype

Csm_ReturnType Csm_SymKeyExtractStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the key which has to be used during the symmetrical key
extraction operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical key extraction service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-65 Csm_SymKeyExtractStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 81
based on template version 5.2.0

5.2.58 Csm_SymKeyExtractUpdate

Prototype

Csm_ReturnType Csm_SymKeyExtractUpdate (Csm_ConfigIdType cfgId, const

uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data which contains the key in a format which cannot be
used directly by the CSM. From this data the key will be extracted in a CSM-
conforming format.

dataLength Holds the length of the data in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the symmetrical key extraction service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-66 Csm_SymKeyExtractUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 82
based on template version 5.2.0

5.2.59 Csm_SymKeyExtractFinish

Prototype

Csm_ReturnType Csm_SymKeyExtractFinish (Csm_ConfigIdType cfgId,

Csm_SymKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to a structure where the result (i.e. the symmetrical key) is
stored in.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the symmetrical key extraction service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-67 Csm_SymKeyExtractFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 83
based on template version 5.2.0

5.2.60 Csm_SymKeyWrapSymStart

Prototype

Csm_ReturnType Csm_SymKeyWrapSymStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr, const Csm_SymKeyType *wrappingkeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the symmetric key to be wrapped.

wrappingkeyPtr Holds a pointer to the key used for wrapping.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical key wrapping service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-68 Csm_SymKeyWrapSymStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 84
based on template version 5.2.0

5.2.61 Csm_SymKeyWrapSymUpdate

Prototype

Csm_ReturnType Csm_SymKeyWrapSymUpdate (Csm_ConfigIdType cfgId, uint8

*dataPtr, uint32 *dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the memory location which will hold the first chunk of the
result of the key wrapping. If the result does not fit into the given buffer, the
caller shall call the service again, until *dataLengthPtr is equal to zero,
indicating that the complete result has been retrieved.

dataLength Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned wrapped key shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the symmetrical key wrapping service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-69 Csm_SymKeyWrapSymUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 85
based on template version 5.2.0

5.2.62 Csm_SymKeyWrapSymFinish

Prototype

Csm_ReturnType Csm_SymKeyWrapSymFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the symmetrical key wrapping service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-70 Csm_SymKeyWrapSymFinish

5.2.63 Csm_SymKeyWrapAsymStart

Prototype

Csm_ReturnType Csm_SymKeyWrapAsymStart (Csm_ConfigIdType cfgId, const

Csm_SymKeyType *keyPtr, const Csm_AsymPublicKeyType *wrappingkeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the symmetric key to be wrapped.

wrappingkeyPtr Holds a pointer to the key used for wrapping.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the symmetrical key wrapping service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 86
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-71 Csm_SymKeyWrapAsymStart

5.2.64 Csm_SymKeyWrapAsymUpdate

Prototype

Csm_ReturnType Csm_SymKeyWrapAsymUpdate (Csm_ConfigIdType cfgId, uint8

*dataPtr, uint32 *dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the memory location which will hold the first chunk of the
result of the key wrapping. If the result does not fit into the given buffer, the
caller shall call the service again, until *dataLengthPtr is equal to zero,
indicating that the complete result has been retrieved.

dataLength Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned wrapped key shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the symmetrical key wrapping service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-72 Csm_SymKeyWrapAsymUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 87
based on template version 5.2.0

5.2.65 Csm_SymKeyWrapAsymFinish

Prototype

Csm_ReturnType Csm_SymKeyWrapAsymFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the symmetrical key wrapping service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-73 Csm_SymKeyWrapAsymFinish

5.2.66 Csm_AsymPublicKeyExtractStart

Prototype

Csm_ReturnType Csm_AsymPublicKeyExtractStart (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the public key extraction service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-74 Csm_AsymPublicKeyExtractStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 88
based on template version 5.2.0

5.2.67 Csm_AsymPublicKeyExtractUpdate

Prototype

Csm_ReturnType Csm_AsymPublicKeyExtractUpdate (Csm_ConfigIdType cfgId,

const uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data which contains the key in a format which cannot be
used directly by the CSM. From this data the key will be extracted in a CSM-
conforming format.

dataLength Holds the length of the data in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the public key extraction service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-75 Csm_AsymPublicKeyExtractUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 89
based on template version 5.2.0

5.2.68 Csm_AsymPublicKeyExtractFinish

Prototype

Csm_ReturnType Csm_AsymPublicKeyExtractFinish (Csm_ConfigIdType cfgId,

Csm_AsymPublicKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to a structure where the result (i.e. the asymmetrical public
key) is stored in.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the public key extraction service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-76 Csm_AsymPublicKeyExtractFinish

5.2.69 Csm_AsymPrivateKeyExtractStart

Prototype

Csm_ReturnType Csm_AsymPrivateKeyExtractStart (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the private key extraction service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 90
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-77 Csm_AsymPrivateKeyExtractStart

5.2.70 Csm_AsymPrivateKeyExtractUpdate

Prototype

Csm_ReturnType Csm_AsymPrivateKeyExtractUpdate (Csm_ConfigIdType cfgId,

const uint8 *dataPtr, uint32 dataLength)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the data which contains the key in a format which cannot be
used directly by the CSM. From this data the key will be extracted in a CSM-
conforming format.

dataLength Holds the length of the data in bytes.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the private key extraction service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-78 Csm_AsymPrivateKeyExtractUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 91
based on template version 5.2.0

5.2.71 Csm_AsymPrivateKeyExtractFinish

Prototype

Csm_ReturnType Csm_AsymPrivateKeyExtractFinish (Csm_ConfigIdType cfgId,

Csm_AsymPrivateKeyType *keyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to a structure where the result (i.e. the asymmetrical private
key) is stored in.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the private key extraction service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-79 Csm_AsymPrivateKeyExtractFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 92
based on template version 5.2.0

5.2.72 Csm_AsymPrivateKeyWrapSymStart

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapSymStart (Csm_ConfigIdType cfgId,

const Csm_AsymPrivateKeyType *keyPtr, const Csm_SymKeyType

*wrappingkeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the private key to be wrapped.

wrappingkeyPtr Holds a pointer to the public key used for wrapping.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the asymmetrical key wrapping service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-80 Csm_AsymPrivateKeyWrapSymStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 93
based on template version 5.2.0

5.2.73 Csm_AsymPrivateKeyWrapSymUpdate

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapSymUpdate (Csm_ConfigIdType cfgId,

uint8 *dataPtr, uint32 *dataLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the memory location which will hold the first chunk of the
result of the key wrapping. If the result does not fit into the given buffer, the
caller shall call the service again, until *dataLengthPtr is equal to zero,
indicating that the complete result has been retrieved.

dataLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned wrapped key shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the asymmetrical key wrapping service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-81 Csm_AsymPrivateKeyWrapSymUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 94
based on template version 5.2.0

5.2.74 Csm_AsymPrivateKeyWrapSymFinish

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapSymFinish (Csm_ConfigIdType cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the asymmetrical key wrapping service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-82 Csm_AsymPrivateKeyWrapSymFinish

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 95
based on template version 5.2.0

5.2.75 Csm_AsymPrivateKeyWrapAsymStart

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapAsymStart (Csm_ConfigIdType cfgId,

const Csm_AsymPrivateKeyType *keyPtr, const Csm_AsymPublicKeyType

*wrappingkeyPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

keyPtr Holds a pointer to the symmetric key to be wrapped.

wrappingkeyPtr Holds a pointer to the key used for wrapping.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to initialize the asymmetrical key wrapping service of the CSM module.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-83 Csm_AsymPrivateKeyWrapAsymStart

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 96
based on template version 5.2.0

5.2.76 Csm_AsymPrivateKeyWrapAsymUpdate

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapAsymUpdate (Csm_ConfigIdType

cfgId, uint8 *dataPtr, uint32 *dataLengthPtr)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

dataPtr Holds a pointer to the memory location which will hold the first chunk of the
result of the key wrapping. If the result does not fit into the given buffer, the
caller shall call the service again, until *dataLengthPtr is equal to zero,
indicating that the complete result has been retrieved.

dataLengthPtr Holds a pointer to the memory location in which the length information is
stored. On calling this function this parameter shall contain the size of the
provided buffer. When the request has finished, the actual length of the
returned wrapped key shall be stored.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to feed the asymmetrical key wrapping service with the input data.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-84 Csm_AsymPrivateKeyWrapAsymUpdate

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 97
based on template version 5.2.0

5.2.77 Csm_AsymPrivateKeyWrapAsymFinish

Prototype

Csm_ReturnType Csm_AsymPrivateKeyWrapAsymFinish (Csm_ConfigIdType

cfgId)

Parameter

cfgId Holds the identifier of the CSM module configuration that has to be used
during the operation.

Return code

CSM_E_OK

CSM_E_NOT_OK

CSM_E_BUSY

Request successful.

Request failed.

Request failed, service is still busy.

Functional Description

This interface shall be used to finish the asymmetrical key wrapping service.

Particularities and Limitations

> This function can be synchronous or asynchronous.

> This function is non-reentrant.

> This function is called by application.

Call Context

> This function can be called from task level only.

Table 5-85 Csm_AsymPrivateKeyWrapAsymFinish

5.3 Services used by CSM

In the following table services provided by other components, which are used by the CSM
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

DET Det_ReportError

CRY Cry_<Service>Start

Cry_<Service>Update

Cry_<Service>Finish

Cry_<Service>MainFunction

Cry_<Service>

Table 5-86 Services used by the CSM

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the CSM and shall
be invoked by the CRY modules. The prototypes of the callback functions are provided in

the header file Csm_Cbk.h by the CSM.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 98
based on template version 5.2.0

5.4.1 Csm_HashCallbackNotification

Prototype

void Csm_HashCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service Hash with the
argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-87 Csm_HashCallbackNotification

5.4.2 Csm_HashServiceFinishNotification

Prototype

void Csm_HashServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service Hash to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-88 Csm_HashServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 99
based on template version 5.2.0

5.4.3 Csm_MacGenerateCallbackNotification

Prototype

void Csm_MacGenerateCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service MacGenerate with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-89 Csm_MacGenerateCallbackNotification

5.4.4 Csm_MacGenerateServiceFinishNotification

Prototype

void Csm_MacGenerateServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service MacGenerate to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-90 Csm_MacGenerateServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 100
based on template version 5.2.0

5.4.5 Csm_MacVerifyCallbackNotification

Prototype

void Csm_MacVerifyCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service MacVerify with the
argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-91 Csm_MacVerifyCallbackNotification

5.4.6 Csm_MacVerifyServiceFinishNotification

Prototype

void Csm_MacVerifyServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service MacVerify to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-92 Csm_MacVerifyServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 101
based on template version 5.2.0

5.4.7 Csm_RandomSeedCallbackNotification

Prototype

void Csm_RandomSeedCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

CSM_E_ENTROPY_EXHAUSTION: request failed, entropy of random number

generator is exhausted.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service RandomSeed with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-93 Csm_RandomSeedCallbackNotification

5.4.8 Csm_RandomSeedServiceFinishNotification

Prototype

void Csm_RandomSeedServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service RandomSeed to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 102
based on template version 5.2.0

Table 5-94 Csm_RandomSeedServiceFinishNotification

5.4.9 Csm_RandomGenerateCallbackNotification

Prototype

void Csm_RandomGenerateCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

CSM_E_ENTROPY_EXHAUSTION: request failed, entropy of random number

generator is exhausted.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service RandomGenerate
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-95 Csm_RandomGenerateCallbackNotification

5.4.10 Csm_RandomGenerateServiceFinishNotification

Prototype

void Csm_RandomGenerateServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service RandomGenerate to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 103
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-96 Csm_RandomGenerateServiceFinishNotification

5.4.11 Csm_SymBlockEncryptCallbackNotification

Prototype

void Csm_SymBlockEncryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymBlockEncrypt
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-97 Csm_SymBlockEncryptCallbackNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 104
based on template version 5.2.0

5.4.12 Csm_SymBlockEncryptServiceFinishNotification

Prototype

void Csm_SymBlockEncryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymBlockEncrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-98 Csm_SymBlockEncryptServiceFinishNotification

5.4.13 Csm_SymBlockDecryptCallbackNotification

Prototype

void Csm_SymBlockDecryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymBlockDecrypt
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-99 Csm_SymBlockDecryptCallbackNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 105
based on template version 5.2.0

5.4.14 Csm_SymBlockDecryptServiceFinishNotification

Prototype

void Csm_SymBlockDecryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymBlockDecrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-100 Csm_SymBlockDecryptServiceFinishNotification

5.4.15 Csm_SymEncryptCallbackNotification

Prototype

void Csm_SymEncryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymEncrypt with the
argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 106
based on template version 5.2.0

Table 5-101 Csm_SymEncryptCallbackNotification

5.4.16 Csm_SymEncryptServiceFinishNotification

Prototype

void Csm_SymEncryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymEncrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-102 Csm_SymEncryptServiceFinishNotification

5.4.17 Csm_SymDecryptCallbackNotification

Prototype

void Csm_SymDecryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymDecrypt with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 107
based on template version 5.2.0

Table 5-103 Csm_SymDecryptCallbackNotification

5.4.18 Csm_SymDecryptServiceFinishNotification

Prototype

void Csm_SymDecryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymDecrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-104 Csm_SymDecryptServiceFinishNotification

5.4.19 Csm_AsymEncryptCallbackNotification

Prototype

void Csm_AsymEncryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service AsymEncrypt with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 108
based on template version 5.2.0

Table 5-105 Csm_AsymEncryptCallbackNotification

5.4.20 Csm_AsymEncryptServiceFinishNotification

Prototype

void Csm_AsymEncryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymEncrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-106 Csm_AsymEncryptServiceFinishNotification

5.4.21 Csm_AsymDecryptCallbackNotification

Prototype

void Csm_AsymDecryptCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service AsymDecrypt with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 109
based on template version 5.2.0

Table 5-107 Csm_AsymDecryptCallbackNotification

5.4.22 Csm_AsymDecryptServiceFinishNotification

Prototype

void Csm_AsymDecryptServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymDecrypt to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-108 Csm_AsymDecryptServiceFinishNotification

5.4.23 Csm_SignatureGenerateCallbackNotification

Prototype

void Csm_SignatureGenerateCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SignatureGenerate
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 110
based on template version 5.2.0

Call Context

> This function can be called from task level only.

Table 5-109 Csm_SignatureGenerateCallbackNotification

5.4.24 Csm_SignatureGenerateServiceFinishNotification

Prototype

void Csm_SignatureGenerateServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SignatureGenerate to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-110 Csm_SignatureGenerateServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 111
based on template version 5.2.0

5.4.25 Csm_SignatureVerifyCallbackNotification

Prototype

void Csm_SignatureVerifyCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SignatureVerify with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-111 Csm_SignatureVerifyCallbackNotification

5.4.26 Csm_SignatureVerifyServiceFinishNotification

Prototype

void Csm_SignatureVerifyServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SignatureVerify to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-112 Csm_SignatureVerifyServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 112
based on template version 5.2.0

5.4.27 Csm_ChecksumCallbackNotification

Prototype

void Csm_ChecksumCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service Checksum with the
argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-113 Csm_ChecksumCallbackNotification

5.4.28 Csm_ChecksumServiceFinishNotification

Prototype

void Csm_ChecksumServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service Checksum to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-114 Csm_ChecksumServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 113
based on template version 5.2.0

5.4.29 Csm_KeyDeriveCallbackNotification

Prototype

void Csm_KeyDeriveCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service KeyDerive with the
argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-115 Csm_KeyDeriveCallbackNotification

5.4.30 Csm_KeyDeriveServiceFinishNotification

Prototype

void Csm_KeyDeriveServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service KeyDerive to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-116 Csm_KeyDeriveServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 114
based on template version 5.2.0

5.4.31 Csm_KeyDeriveSymKeyCallbackNotification

Prototype

void Csm_KeyDeriveSymKeyCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service KeyDeriveSymKey
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-117 Csm_KeyDeriveSymKeyCallbackNotification

5.4.32 Csm_KeyDeriveSymKeyServiceFinishNotification

Prototype

void Csm_KeyDeriveSymKeyServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service KeyDeriveSymKey to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-118 Csm_KeyDeriveSymKeyServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 115
based on template version 5.2.0

5.4.33 Csm_KeyExchangeCalcPubValCallbackNotification

Prototype

void Csm_KeyExchangeCalcPubValCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
KeyExchangeCalcPubVal with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-119 Csm_KeyExchangeCalcPubValCallbackNotification

5.4.34 Csm_KeyExchangeCalcPubValServiceFinishNotification

Prototype

void Csm_KeyExchangeCalcPubValServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service KeyExchangeCalcPubVal to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-120 Csm_KeyExchangeCalcPubValServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 116
based on template version 5.2.0

5.4.35 Csm_KeyExchangeCalcSecretCallbackNotification

Prototype

void Csm_KeyExchangeCalcSecretCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
KeyExchangeCalcSecret with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-121 Csm_KeyExchangeCalcSecretCallbackNotification

5.4.36 Csm_KeyExchangeCalcSecretServiceFinishNotification

Prototype

void Csm_KeyExchangeCalcSecretServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service KeyExchangeCalcSecret to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-122 Csm_KeyExchangeCalcSecretServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 117
based on template version 5.2.0

5.4.37 Csm_KeyExchangeCalcSymKeyCallbackNotification

Prototype

void Csm_KeyExchangeCalcSymKeyCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
KeyExchangeCalcSymKey with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-123 Csm_KeyExchangeCalcSymKeyCallbackNotification

5.4.38 Csm_KeyExchangeCalcSymKeyServiceFinishNotification

Prototype

void Csm_KeyExchangeCalcSymKeyServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service KeyExchangeCalcSymKey to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-124 Csm_KeyExchangeCalcSymKeyServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 118
based on template version 5.2.0

5.4.39 Csm_SymKeyExtractCallbackNotification

Prototype

void Csm_SymKeyExtractCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymKeyExtract with
the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-125 Csm_SymKeyExtractCallbackNotification

5.4.40 Csm_SymKeyExtractServiceFinishNotification

Prototype

void Csm_SymKeyExtractServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymKeyExtract to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-126 Csm_SymKeyExtractServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 119
based on template version 5.2.0

5.4.41 Csm_SymKeyWrapSymCallbackNotification

Prototype

void Csm_SymKeyWrapSymCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymKeyWrapSym
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-127 Csm_SymKeyWrapSymCallbackNotification

5.4.42 Csm_SymKeyWrapSymServiceFinishNotification

Prototype

void Csm_SymKeyWrapSymServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymKeyWrapSym to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-128 Csm_SymKeyWrapSymServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 120
based on template version 5.2.0

5.4.43 Csm_SymKeyWrapAsymCallbackNotification

Prototype

void Csm_SymKeyWrapAsymCallbackNotification (Csm_ReturnType Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service SymKeyWrapAsym
with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-129 Csm_SymKeyWrapAsymCallbackNotification

5.4.44 Csm_SymKeyWrapAsymServiceFinishNotification

Prototype

void Csm_SymKeyWrapAsymServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service SymKeyWrapAsym to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-130 Csm_SymKeyWrapAsymServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 121
based on template version 5.2.0

5.4.45 Csm_AsymPublicKeyExtractCallbackNotification

Prototype

void Csm_AsymPublicKeyExtractCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
AsymPublicKeyExtract with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-131 Csm_AsymPublicKeyExtractCallbackNotification

5.4.46 Csm_AsymPublicKeyExtractServiceFinishNotification

Prototype

void Csm_AsymPublicKeyExtractServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymPublicKeyExtract to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-132 Csm_AsymPublicKeyExtractServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 122
based on template version 5.2.0

5.4.47 Csm_AsymPrivateKeyExtractCallbackNotification

Prototype

void Csm_AsymPrivateKeyExtractCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
AsymPrivateKeyExtract with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-133 Csm_AsymPrivateKeyExtractCallbackNotification

5.4.48 Csm_AsymPrivateKeyExtractServiceFinishNotification

Prototype

void Csm_AsymPrivateKeyExtractServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymPrivateKeyExtract to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-134 Csm_AsymPrivateKeyExtractServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 123
based on template version 5.2.0

5.4.49 Csm_AsymPrivateKeyWrapSymCallbackNotification

Prototype

void Csm_AsymPrivateKeyWrapSymCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
AsymPrivateKeyWrapSym with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-135 Csm_AsymPrivateKeyWrapSymCallbackNotification

5.4.50 Csm_AsymPrivateKeyWrapSymServiceFinishNotification

Prototype

void Csm_AsymPrivateKeyWrapSymServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymPrivateKeyWrapSym to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-136 Csm_AsymPrivateKeyWrapSymServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 124
based on template version 5.2.0

5.4.51 Csm_AsymPrivateKeyWrapAsymCallbackNotification

Prototype

void Csm_AsymPrivateKeyWrapAsymCallbackNotification (Csm_ReturnType

Result)

Parameter

Result Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

Return code

-

Functional Description

This function shall call the callback function as given in the configuration of the service
AsymPrivateKeyWrapAsym with the argument given by Result.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-137 Csm_AsymPrivateKeyWrapAsymCallbackNotification

5.4.52 Csm_AsymPrivateKeyWrapAsymServiceFinishNotification

Prototype

void Csm_AsymPrivateKeyWrapAsymServiceFinishNotification (void)

Parameter

-

Return code

-

Functional Description

This function shall set the state of the service AsymPrivateKeyWrapAsym to idle.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by cryptographic primitive.

Call Context

> This function can be called from task level only.

Table 5-138 Csm_AsymPrivateKeyWrapAsymServiceFinishNotification

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 125
based on template version 5.2.0

5.5 Configurable Interfaces

5.5.1 Notifications

At its configurable interfaces the CSM defines notifications that can be mapped to callback
functions provided by other modules. This only applies for the asynchronous processing
mode. The mapping is not statically defined by the CSM but can be performed at
configuration time. For each service, a notification can be configured. The appropriate
function prototype signature is described in the following sub-chapters. The name of the
function is only a placeholder.

ServiceCallback

Prototype

Std_ReturnType ServiceCallback (Csm_ReturnType Return)

Parameter

Return Contains the result of a cryptographic operation.

CSM_E_OK: request successful.

CSM_E_NOT_OK: request failed.

CSM_E_BUSY: request failed, service is still busy.

CSM_E_SMALL_BUFFER: provided buffer is too small to store the result.

CSM_E_ENTROPY_EXHAUSTION: request failed, entropy of random number

generator is exhausted.

Return code

E_OK

E_NOT_OK

Return Value is ignored in this implementation of the Csm

Functional Description

Function will be called when configured service has finished.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> This function is called by Csm.

Call Context

> This function will be called from task level only.

Table 5-139 ServiceCallback

5.6 Service Ports

5.6.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

5.6.2 Provide Ports on CSM Side

At the Provide Ports of the Csm the cryptographic API functions described in 5.2 are
available as Runnable Entities. The Runnable Entities are invoked via Operations. The

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 126
based on template version 5.2.0

mapping from a SWC client call to an Operation is performed by the RTE. In this mapping
the RTE adds Port Defined Argument Values to the client call of the SWC, if configured.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 127
based on template version 5.2.0

6. Configuration

In the Csm the attributes can be configured with the following tools:

> Configuration in DaVinci Configurator

FAQ
By default the CSM configuration is empty. To create a service instance, the specific
service sub container has to be created. Afterwards you can instance the service by
creating a new configuration container.

6.1 Configuration Variants

The CSM supports the configuration variants

> VARIANT-PRE-COMPILE

6.2 Configuration with DaVinci Configurator 5

6.2.1 Common Properties

Attribute Name Values

Default value is
typed bold

Description

CsmDevErrorDetect STD_ON

STD_OFF

Pre-processor switch to enable and disable
development error detection.
True: Development error detection enabled.

False: Development error detection disabled

CsmDisableNotConfiguredApis STD_ON

STD_OFF

If enabled, APIs of not configured services will be
disabled.

CsmMainFunctionPeriod 0.001 to
65.535

Specifies the period of main function
Csm_MainFunction in seconds.

CsmMaxAlignScalarType 8

16

32

The scalar type which has the maximum alignment
restrictions on the given platform.

This type can be e.g. uint8, uint16 or uint32.

CsmMaximumBlockingTime 1 to
4294967295

If interruption is turned on with the configuration
option CsmUseInterruption, this option configures
the maximum time in microseconds the main
function shall be allowed to run before it must
interrupt itself. The lowest allowed value for the
option is implementation dependent.

NOT USED

CsmRteBufferSize 1 to
4294967295
; 128

Specifies the size in bytes for the Rte Buffer types
created by Csm.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 128
based on template version 5.2.0

Attribute Name Values

Default value is
typed bold

Description

CsmUseInterruption STD_ON

STD_OFF

Pre-processor switch to enable and disable
interruption of job processing.

NOT USED

True: Interruption of job processing enabled

False: Interruption of job processing disabled

CsmUseSyncJobProcessing STD_ON
STD_OFF

Pre-processor switch to enable and disable
synchronous job processing.

True: synchronous job processing enabled

False: synchronous job processing disabled

CsmUserConfigFile String User configuration file that shall be part of the Csm
configuration.

If you want to overwrite or provide own settings in
the generated configuration file, you can specify a
path to a user defined configuration file. The user
defined configuration file will be included at the end
of the generated file. Thus definitions in the user
defined configuration file can overwrite definitions in
the generated configuration file.

CsmVersionInfoApi STD_ON
STD_OFF

Pre-processor switch to enable and disable
availability of the API Csm_GetVersionInfo().

True: API Csm_GetVersionInfo() is available.

False: API Csm_GetVersionInfo() is not available.

6.2.2 Service Type related Properties

Depending on the type of service, the following parameter may configurable:

Attribute Name Values

Default value is
typed bold

Description

Csm<ServiceType>MaxKeySize 1..
4294967295

This is the maximum size over all key lengths used
in all CRY primitives, which implement the specific
kind of <ServiceType>.

Please note that the calling application has to
provide the key buffer. So, it has to be ensured that
the size of this buffer matches with the configured
value here.

6.2.3 Service specific Properties

Each service configuration has the following adjustable parameters:

Attribute Name Description

Csm<ServiceType>Config This container holds the configuration of one <ServiceType>
service. The container name serves as a symbolic name for the
identifier of a service configuration.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 129
based on template version 5.2.0

Attribute Name Description

CsmCallback<ServiceType> Callback function to be called if service has finished. This
parameter is only needed if the CSM is in asynchronous mode.

Csm<ServiceType>IncludeFile Header file of the underlying cryptographic service that shall be
used.

Csm<ServiceType>InitConfiguration This is the name of the C symbol, which contains the configuration
of the underlying cryptographic primitive.

Usually, this symbol represents a structure provided by the CRY
module.

Csm<ServiceType>PrimitiveName This is the name of the cryptographic primitive to use.

This name will be used to form the function pointers to the Start,
Update and Finish functions of the corresponding cryptographic
primitive according to the following rule:
<name>[Start|Update|Finish]

Usually these functions are provided by the CRY module.

Csm<ServiceType>UseServicePorts This parameter defines if this service is accessible via service
ports. The PortName will be derived from the service name.

Csm<ServiceType>CryRef Reference to MICROSAR CRY. This eases up the configuration for
MICROSAR CRY. All necessary attributes will be set automatically
if linked with a CRY service instance.

Usage of callback functions without the RTE
The default use case of the CSM is the use with the RTE, so the callback functions are
automatically set to Rte_Call_<Shortname>_Callback_JobFinished. To use the
callback function without the RTE set this field to user defined.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 130
based on template version 5.2.0

7. AUTOSAR Standard Compliance

7.1 Deviations

The current implementation does not have any deviations.

7.2 Additions/ Extensions

7.2.1 Not supported service APIs can be disabled

When enabling the switch “Disable not used APIs”, each API of a service without a
configuration will be disabled.

7.3 Memory Initialization

Not every start-up code of embedded targets and neither CANoe-Emulation provide
initialized RAM. It thus may happen that the state of a variable that needs initialized RAM
may not be set to the expected initial value. Therefore an explicit initialization of such
variables has to be provided at start-up by calling the additional function Csm_InitMemory.

For more information refer to chapter 3.2 ‘Initialization’.

7.4 Limitations

7.4.1 Interruption of job processing

The interruption of job processing is not supported in this implementation of the CSM. The

API Csm_Interruption can be activated for compatibility reasons but has no effect

when called.

7.4.2 Production Error Reporting

Currently, no production errors are reported.

7.4.3 Development Error Reporting

According to SWS [1], the CSM module has six different Error Codes. The current
implementation only reports four. CSM_E_PARAM_KEY_TYPE_INVALID and
CSM_E_BUFFER_TOO_SMALL are not reported.

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 131
based on template version 5.2.0

8. Glossary and Abbreviations

8.1 Glossary

Term Description

Cryptographic
Primitive

An underlying cryptographic module or library

Table 8-1 Glossary

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

Csm Crypto Service Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

HIS Hersteller Initiative Software

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

RTE Runtime Environment

SchM Schedule Manager

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

Table 8-2 Abbreviations

Technical Reference MICROSAR CSM

© 2016 Vector Informatik GmbH Version 1.5 132
based on template version 5.2.0

9. Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1. Component History
	2. Introduction
	2.1 Architecture Overview

	3. Functional Description
	3.1 Features
	3.2 Initialization
	3.3 States
	3.4 Main Functions
	3.5 Asynchronous Handling
	3.6 Error Handling
	3.6.1 Development Error Reporting
	3.6.2 Production Code Error Reporting

	4. Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping
	4.4 Critical Sections

	5. API Description
	5.1 Type Definitions
	5.2 Services provided by CSM
	5.2.1 Csm_Init
	5.2.2 Csm_InitMemory
	5.2.3 Csm_MainFunction
	5.2.4 Csm_Interruption
	5.2.5 Csm_GetVersionInfo
	5.2.6 Csm_HashStart
	5.2.7 Csm_HashUpdate
	5.2.8 Csm_HashFinish
	5.2.9 Csm_MacGenerateStart
	5.2.10 Csm_MacGenerateUpdate
	5.2.11 Csm_MacGenerateFinish
	5.2.12 Csm_MacVerifyStart
	5.2.13 Csm_MacVerifyUpdate
	5.2.14 Csm_MacVerifyFinish
	5.2.15 Csm_RandomSeedStart
	5.2.16 Csm_RandomSeedUpdate
	5.2.17 Csm_RandomSeedFinish
	5.2.18 Csm_RandomGenerate
	5.2.19 Csm_SymBlockEncryptStart
	5.2.20 Csm_SymBlockEncryptUpdate
	5.2.21 Csm_SymBlockEncryptFinish
	5.2.22 Csm_SymBlockDecryptStart
	5.2.23 Csm_SymBlockDecryptUpdate
	5.2.24 Csm_SymBlockDecryptFinish
	5.2.25 Csm_SymEncryptStart
	5.2.26 Csm_SymEncryptUpdate
	5.2.27 Csm_SymEncryptFinish
	5.2.28 Csm_SymDecryptStart
	5.2.29 Csm_SymDecryptUpdate
	5.2.30 Csm_SymDecryptFinish
	5.2.31 Csm_AsymEncryptStart
	5.2.32 Csm_AsymEncryptUpdate
	5.2.33 Csm_AsymEncryptFinish
	5.2.34 Csm_AsymDecryptStart
	5.2.35 Csm_AsymDecryptUpdate
	5.2.36 Csm_AsymDecryptFinish
	5.2.37 Csm_SignatureGenerateStart
	5.2.38 Csm_SignatureGenerateUpdate
	5.2.39 Csm_SignatureGenerateFinish
	5.2.40 Csm_SignatureVerifyStart
	5.2.41 Csm_SignatureVerifyUpdate
	5.2.42 Csm_SignatureVerifyFinish
	5.2.43 Csm_ChecksumStart
	5.2.44 Csm_ChecksumUpdate
	5.2.45 Csm_ChecksumFinish
	5.2.46 Csm_KeyDeriveStart
	5.2.47 Csm_KeyDeriveUpdate
	5.2.48 Csm_KeyDeriveFinish
	5.2.49 Csm_KeyDeriveSymKey
	5.2.50 Csm_KeyExchangeCalcPubVal
	5.2.51 Csm_KeyExchangeCalcSecretStart
	5.2.52 Csm_KeyExchangeCalcSecretUpdate
	5.2.53 Csm_KeyExchangeCalcSecretFinish
	5.2.54 Csm_KeyExchangeCalcSymKeyStart
	5.2.55 Csm_KeyExchangeCalcSymKeyUpdate
	5.2.56 Csm_KeyExchangeCalcSymKeyFinish
	5.2.57 Csm_SymKeyExtractStart
	5.2.58 Csm_SymKeyExtractUpdate
	5.2.59 Csm_SymKeyExtractFinish
	5.2.60 Csm_SymKeyWrapSymStart
	5.2.61 Csm_SymKeyWrapSymUpdate
	5.2.62 Csm_SymKeyWrapSymFinish
	5.2.63 Csm_SymKeyWrapAsymStart
	5.2.64 Csm_SymKeyWrapAsymUpdate
	5.2.65 Csm_SymKeyWrapAsymFinish
	5.2.66 Csm_AsymPublicKeyExtractStart
	5.2.67 Csm_AsymPublicKeyExtractUpdate
	5.2.68 Csm_AsymPublicKeyExtractFinish
	5.2.69 Csm_AsymPrivateKeyExtractStart
	5.2.70 Csm_AsymPrivateKeyExtractUpdate
	5.2.71 Csm_AsymPrivateKeyExtractFinish
	5.2.72 Csm_AsymPrivateKeyWrapSymStart
	5.2.73 Csm_AsymPrivateKeyWrapSymUpdate
	5.2.74 Csm_AsymPrivateKeyWrapSymFinish
	5.2.75 Csm_AsymPrivateKeyWrapAsymStart
	5.2.76 Csm_AsymPrivateKeyWrapAsymUpdate
	5.2.77 Csm_AsymPrivateKeyWrapAsymFinish

	5.3 Services used by CSM
	5.4 Callback Functions
	5.4.1 Csm_HashCallbackNotification
	5.4.2 Csm_HashServiceFinishNotification
	5.4.3 Csm_MacGenerateCallbackNotification
	5.4.4 Csm_MacGenerateServiceFinishNotification
	5.4.5 Csm_MacVerifyCallbackNotification
	5.4.6 Csm_MacVerifyServiceFinishNotification
	5.4.7 Csm_RandomSeedCallbackNotification
	5.4.8 Csm_RandomSeedServiceFinishNotification
	5.4.9 Csm_RandomGenerateCallbackNotification
	5.4.10 Csm_RandomGenerateServiceFinishNotification
	5.4.11 Csm_SymBlockEncryptCallbackNotification
	5.4.12 Csm_SymBlockEncryptServiceFinishNotification
	5.4.13 Csm_SymBlockDecryptCallbackNotification
	5.4.14 Csm_SymBlockDecryptServiceFinishNotification
	5.4.15 Csm_SymEncryptCallbackNotification
	5.4.16 Csm_SymEncryptServiceFinishNotification
	5.4.17 Csm_SymDecryptCallbackNotification
	5.4.18 Csm_SymDecryptServiceFinishNotification
	5.4.19 Csm_AsymEncryptCallbackNotification
	5.4.20 Csm_AsymEncryptServiceFinishNotification
	5.4.21 Csm_AsymDecryptCallbackNotification
	5.4.22 Csm_AsymDecryptServiceFinishNotification
	5.4.23 Csm_SignatureGenerateCallbackNotification
	5.4.24 Csm_SignatureGenerateServiceFinishNotification
	5.4.25 Csm_SignatureVerifyCallbackNotification
	5.4.26 Csm_SignatureVerifyServiceFinishNotification
	5.4.27 Csm_ChecksumCallbackNotification
	5.4.28 Csm_ChecksumServiceFinishNotification
	5.4.29 Csm_KeyDeriveCallbackNotification
	5.4.30 Csm_KeyDeriveServiceFinishNotification
	5.4.31 Csm_KeyDeriveSymKeyCallbackNotification
	5.4.32 Csm_KeyDeriveSymKeyServiceFinishNotification
	5.4.33 Csm_KeyExchangeCalcPubValCallbackNotification
	5.4.34 Csm_KeyExchangeCalcPubValServiceFinishNotification
	5.4.35 Csm_KeyExchangeCalcSecretCallbackNotification
	5.4.36 Csm_KeyExchangeCalcSecretServiceFinishNotification
	5.4.37 Csm_KeyExchangeCalcSymKeyCallbackNotification
	5.4.38 Csm_KeyExchangeCalcSymKeyServiceFinishNotification
	5.4.39 Csm_SymKeyExtractCallbackNotification
	5.4.40 Csm_SymKeyExtractServiceFinishNotification
	5.4.41 Csm_SymKeyWrapSymCallbackNotification
	5.4.42 Csm_SymKeyWrapSymServiceFinishNotification
	5.4.43 Csm_SymKeyWrapAsymCallbackNotification
	5.4.44 Csm_SymKeyWrapAsymServiceFinishNotification
	5.4.45 Csm_AsymPublicKeyExtractCallbackNotification
	5.4.46 Csm_AsymPublicKeyExtractServiceFinishNotification
	5.4.47 Csm_AsymPrivateKeyExtractCallbackNotification
	5.4.48 Csm_AsymPrivateKeyExtractServiceFinishNotification
	5.4.49 Csm_AsymPrivateKeyWrapSymCallbackNotification
	5.4.50 Csm_AsymPrivateKeyWrapSymServiceFinishNotification
	5.4.51 Csm_AsymPrivateKeyWrapAsymCallbackNotification
	5.4.52 Csm_AsymPrivateKeyWrapAsymServiceFinishNotification

	5.5 Configurable Interfaces
	5.5.1 Notifications

	5.6 Service Ports
	5.6.1 Client Server Interface
	5.6.2 Provide Ports on CSM Side

	6. Configuration
	6.1 Configuration Variants
	6.2 Configuration with DaVinci Configurator 5
	6.2.1 Common Properties
	6.2.2 Service Type related Properties
	6.2.3 Service specific Properties

	7. AUTOSAR Standard Compliance
	7.1 Deviations
	7.2 Additions/ Extensions
	7.2.1 Not supported service APIs can be disabled

	7.3 Memory Initialization
	7.4 Limitations
	7.4.1 Interruption of job processing
	7.4.2 Production Error Reporting
	7.4.3 Development Error Reporting

	8. Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9. Contact

