vector”

MICROSAR Memif

Technical Reference

Version 2.02.00

Authors Tobias Schmid, Manfred Duschinger, Michael Gof3
Status Released

Technical Reference MICROSAR Memlf VeCtOf

1 Document Information

1.1 History

Author Date Version Remarks

Tobias Schmid 2008-04-14 1.0 Creation of document

Manfred Duschinger 2013-02-20 1.01.00 Ch. 4.1. Update files
according to new generator
Ch. 6 Update Configuration

Michael Gol} 2014-11-21 2.01.01 Typos were corrected and
content was modified a little

Michael Gol} 2015-04-23 2.02.00 Content was updated
regarding SafeBSW Memlf

Table 1-1 History of the document

1.2 Reference Documents

ho e T ersion

[1] AUTOSAR_SWS_ Mem_Abstractioninterface.pdf V1.4.0

[2] AUTOSAR_SWS_DET.pdf V2.2.0

[3] AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[4] AUTOSAR_SWS_EEPROM_Abstraction.pdf V2.0.0

[5] AUTOSAR_SWS_Flash_EEPROM_Emulation.pdf V2.0.0
Table 1-2 Reference documents

1.3 Scope of the Document

This technical reference describes the general use of module Memlf (AUTOSAR Memory
Abstraction Interface).

f Please note
t » ‘E? We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH Version: 2.02.00 2/25

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

Contents
1 Document Informationc 2
1.1 L 15 (o) YU 2
1.2 Reference DOCUMENTS ... 2
1.3 Scope of the DOCUMENT.........oouiii e 2
2 INtrOdUCTION.... ..o e a e 6
21 ArchiteCture OVEIVIEWcoooiiiiiicee e, 7
3 Functional DescCription.............cooo i 8
3.1 FRALUIES ... e 8
3.2 INIETALIZALION ... e 8
3.3 Main FUNCLIONS ...t e e e e eeeees 8
3.4 Error Handling.........ooooo i 8
3.4.1 Development Error Reporting.........c.covvviiiiiiiiiiii e 8
3.4.1.1 Parameter Checking ..., 9
4 Nt gratioN ... 1
4.1 SCOPE Of DEIIVEIY ...ttt ssessnnnennnnnnnes 11
411 StAtIC FIlES e 11
41.2 DyNamicC FilESccouvei e 11
4.2 INCIUAE SETUCIUNE.....ccoeee e 12
4.3 Compiler Abstraction and Memory Mapping...............eeeeueemeieemieieminieennennennnnnnn. 12
B API DESCIIPLION... .o 14
5.1 INTEIFACES OVEIVIEW ...t e e e e e e e e e e 14
5.2 Type DEfiNItIONS ... 14
5.3 Services provided by Memlf.............ouiiiiiiiiiiiii 15
5.3.1 MemIf_GetVersionInfoeueeiiiiiiiiiiiiiiiiieeeeeeaeee 15
5.3.2 MemIf_SetMOdE.........uuiiiiiiiiiiiiiiiii e 16
53.3 1Y 1=T 0 0] (Y- Lo 16
534 1Y 1= 0] A 1 (S 17
5.3.5 MEMIT_CaNCEI.......uuiiiiiiiiiiiiiiiiii e 18
5.3.6 MeMIf_GetStatUSuueeeiiiiiiiiiiiiiiiiiiiie e 18
5.3.7 Memlf_GetJODRESUILuuiiiiiiiiiiiiiiiiiii 19
5.3.8 Memlf_EraselmmediateBlocKccvieeiiiiiiiiiiiicce e, 20
5.3.9 Memlf_InvalidateBIOCKuuuuiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 20
5.4 Services used by Memlf........oooii e 21
I 0o T e 11T =1 4 e o 22

©2015, Vector Informatik GmbH Version: 2.02.00 3/25

Technical Reference MICROSAR Memlf VeCtOf

7 AUTOSAR Standard Compliance.................oooiiiiiii i 23
71 [SN/ = 1 (0] o L= TP 23
711 EXxtension of Brror COAESvvieieeeee e 23

7.2 Yo (o[(o T N (=Y A 11 (0] 1 1= TP 23

8 Glossary and Abbreviations ... 24
8.1 (€10 1STT= | Y PSSP 24

8.2 Y2 o o1 L=V F= 1 (o) o 1= PR 24

L T 00T 01 7- Vo3 PP 25

©2015, Vector Informatik GmbH Version: 2.02.00 4/25

Technical Reference MICROSAR Memlf VeCtOf

lllustrations

Figure 2-1 AUTOSAR architeCture...........cooooviiiiiiii 7
Figure 2-2 Interfaces to adjacent modules of the Memlf..............coooiiiiii i, 7
Figure 4-1 INClude StrUCIUrE ... e 12
Figure 5-1 Memlf interactions with other BSWouiiiiiiiiiiiiiiie 14
Tables

Table 1-1 History of the document.............ooiiii i 2
Table 1-2 ReferenCe dOCUMENTS.........uuiiiiiiiiiiiiiiiiiiitiii i eeannnne 2
Table 3-1 Supported SWS featuresuuuiiii e e 8
Table 3-2 Mapping of service IDS t0 SEIVICEScoovvuvvviiiiiieeiieeecee e 9
Table 3-3 Errors reported t0 DETovn it 9
Table 3-4 Development Error Reporting: Assignment of checks to services 9
Table 4-1 StAtIC fIlES ..o 11
Table 4-2 Generated fileSuuuuuiiiiiiiiiiiii e 11
Table 4-3 Compiler abstraction and memory mapping..........cccvveeeeieeeeeeivviiiiieeee e, 13
Table 5-1 Type definitioNS. ..o 15
Table 5-2 Memlf_GetVersionInfo...........oouuiiiiiii e 16
Table 5-3 MemIf_SetMOdEoueiiieiee e 16
Table 5-4 MemIf_ReAd ... 17
Table 5-5 1= a1 AT L 18
Table 5-6 MemIf _CanCEIooeiiiiii e 18
Table 5-7 MemIf _GetStatus.........cooi i 19
Table 5-8 Memif_GetJObRESUIL.........cooie e 19
Table 5-9 Memlf _EraselmmediateBloCKc.oooiiiiiiiiiiiiiiccc e, 20
Table 5-10 Memif_InvalidateBIocK.............oouviiiiii e, 21
Table 5-11 Services used by the Memlf............cccooiiiiiiiie 21
Table 8-1 GIOSSANY ...ttt 24
Table 8-2 ABDIrEeVIatioNSo 24

©2015, Vector Informatik GmbH Version: 2.02.00 5/25

Technical Reference MICROSAR Memlf V@CtOf

2 Introduction

This document describes the functionality, APl and configuration of the AUTOSAR BSW
module Memlf as specified in [1].

Supported AUTOSAR Release*: 4
Supported Configuration Variants: PRE-COMPILE

Vendor ID: MEMIF_VENDOR_ID 30 decimal
(= Vector-Informatik,
according to HIS)
Module ID: MEMIF_MODULE_ID 22 decimal

(according to ref. [3])
* For the precise AUTOSAR Release 4.x please see the release specific documentation.

Memlf (Memory Abstraction Interface) provides the interface that is used by the NvM to
access NV memory devices. Two different types of NV memory are intended for use: Flash
memory and EEPROM. To abstract the hardware dependencies of the memory devices,
low level drivers with a commonly defined API are used: FIs and Eep (internal or external).
These modules are abstracted by the modules Fee (Flash EEPROM Emulation) and Ea
(EEPROM Abstraction). Both modules may exist at the same time.

Memlf offers a common interface for accessing Fee or Ea instances. In order to distinguish
those different instances Memlf provides a set of device handles, which may be used for
configuration of NvM.

©2015, Vector Informatik GmbH Version: 2.02.00 6/25

Technical Reference MICROSAR Memlf VQCEO('

2.1 Architecture Overview
The following figure shows where the Memlf is located in the AUTOSAR architecture.

Application

IOHW
0S Conl1plex
Drivers
sl sl 3
A N B B
) [(=
Vector MICROSAR Product Service by Vector * Option included in LINIF
Figure 2-1 AUTOSAR architecture

The next figure shows the interfaces to adjacent modules of the Memlf. These interfaces
are described in chapter 5.

NvM

Figure 2-2 Interfaces to adjacent modules of the Memlf

©2015, Vector Informatik GmbH Version: 2.02.00 7125

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

3 Functional Description

3.1 Features
The features listed in this chapter cover the complete functionality specified in [1].

The "supported" and "not supported" features are presented in the following two tables.
For further information of not supported features also see chapter 7.

The following features described in [1] are supported:

Memlf allows the NVRAM manager to access multiple instances of memory hardware
abstraction modules (Fee or Ea), regardless of different APIs and implementations.

Table 3-1 Supported SWS features

3.2 Initialization

Memlf does not need any initialization. Nevertheless it is necessary to initialize all memory
hardware abstraction module instances that are interfaced by Memlf.

f Caution
: Memlf does not provide any services for initialization of underlying memory hardware
abstraction modules. Initialization of these modules is not done by Memlf!

3.3 Main Functions

Memlf does not implement main-functions that would need recurring execution. Job
requests are mapped to the appropriate underlying memory hardware abstraction module,
which implements the main-function for processing the job.

f Caution
(: Lﬁ Memlf is not responsible for calling main-functions of the underlying hardware
abstraction modules. Calling main-functions cyclically has to be implemented in the
BSW Scheduler (or something similar).

3.4 Error Handling

3.4.1 Development Error Reporting

Development errors are reported by default to DET wusing the service
Det ReportError (), (specified in [2]), if the pre-compile configuration parameter for
“‘Development Mode” and “Development Error Reporting” are enabled.

©2015, Vector Informatik GmbH Version: 2.02.00 8125

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

The reported service IDs identify the services which are described in 5.3. The following
table presents the service IDs and the related services:

Service ID Service
MemIf SetMode

MemIf Read

MemIf Write

MemIf Cancel

MemIf GetStatus

MemIf GetJobResult
MemIf InvalidateBlock

0 NoO g b~ ON -~

MemIf GetVersionInfo

©

MemIf EraseImmediateBlock

Table 3-2 Mapping of service IDs to services

The errors reported to DET are described in the following table:

Error Code Description

0x01 MEMIF_E_PARAM_DEVICE The parameter denoting the device index passed to
the API service is out of range.

0x02 MEMIF_E_PARAM_POINTER The parameter passed to Memlf_GetVersioninfo
references no valid address (NULL-Pointer).

Table 3-3 Errors reported to DET

3.4.1.1 Parameter Checking
The following table shows which parameter checks are performed on which services:

Check

Service

Check device
index passed to
API services
Check parameter
= for referencing a
valid address

Memlf_GetVersioninfo
Memlf_SetMode
Memlf_Read

Memlf_Write

Memlf_Cancel
Memlf_GetStatus
Memlf_GetJobResult
Memlf_InvalidateBlock
Memlf_EraselmmediateBlock

Table 3-4 Development Error Reporting: Assignment of checks to services

©2015, Vector Informatik GmbH Version: 2.02.00 9/25

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

AUTOSAR requires that API functions check the validity of their parameters. The checks in
Table 3-4 are internal parameter checks of the API functions.

©2015, Vector Informatik GmbH Version: 2.02.00 10/25

Technical Reference MICROSAR Memlf VeCtOf

4 Integration

This chapter gives necessary information for the integration of the MICROSAR Memlf into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the Memlf contains the files which are described in the chapters 4.1.1 and
4.1.2:

411 Static Files

File Name Description

Memlf.h API of module Memlf, only this file needs to be included by upper layer
software (e.g. NvM)

Memlf_Types.h Defines all standard types, needed by upper layer modules as well as the
modules Fee and Ea.

This file needs to be included by all memory hardware abstraction
modules according to AUTOSAR.

Memlf.c Implementation of the functionalities of the module Memlf

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool.
File Name Description

Memlf_Cfg.h Configuration header file

Memlf_Cfg.c Configuration source file

Table 4-2 Generated files

©2015, Vector Informatik GmbH Version: 2.02.00 1/25

based on template version 3.1

Technical Reference MICROSAR Memlf

4.2 Include Structure

deployment File Structure

’ .
., ,.«include»

e
Memlf.c

Det.h Memlf_Cfg.f[E] | . .-
«include» [~
«incl:ude»
Memlf_Type@ Memif.h
«include»
7 ™
4 ~
‘ N
4 N
’ N
‘ N
,/
e Std_Types.l@

Fee.h
) I
«configurable . ----"""¢g
.-include»
<<configurab|e--~--__\> Ea.h
include» 0
~
N
N
\A
«include»
N
N
N
\\ ~
~ N
h N
«|nc|ude»\ AN
S~ A
Memlf_Cfg.%

Figure 4-1 Include structure

4.3 Compiler Abstraction and Memory Mapping

vector’

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is

assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions, which are defined for the Memlf, and illustrates their assignment among each

other.

Compiler Abstraction
Definitions

Memory Mapping
Sections

MEMIF_START_SEC_CONST_8BIT
MEMIF_STOP_SEC_CONST _8BIT

©2015, Vector Informatik GmbH

MEMIF_PRIVATE_CODE

MEMIF_CONST
MEMIF_CODE
MEMIF_APPL_DATA

Version: 2.02.00

based on template version 3.1

12/25

Technical Reference MICROSAR Memlf VeCtOf

MEMIF_START_SEC_CONST_32BIT
MEMIF_STOP_SEC_CONST_32BIT

MEMIF_START_SEC_CODE
MEMIF_STOP SEC_CODE

Memory sections in which underlying memory
hardware abstraction modules’ code resides

Memory sections of data buffers, which are passed
to the API services for read or write jobs

Memory sections of buffers passed to
Memlf_GetVersioninfo

Table 4-3 Compiler abstraction and memory mapping

©2015, Vector Informatik GmbH Version: 2.02.00 13/25

Technical Reference MICROSAR Memlf

5 API Description

51 Interfaces Overview

vector’

class Logical View /
NvM
'
'
'
'
'
'
'
'
\
Memlf
+ Memlf_Cancel(uint8) : void
+ Memlf_EraselmmediateBlock(uint8, uintl6) : Std_ReturnType
+ Memlf_GetJobResult(uint8) : MemIf_JobResultType
+ Memlf_GetStatus(uint8) : Memlf_StatusType - a
+ Memlf_GetVersioninfo(Std_VersioninfoType*): void [77777 7 mmsmms S Det
+ Memlf_InvalidateBlock(uint8, uintl6) : Std_RetunType
+ Memlf_Read(uint8, uintl6, uintl6, Memlf_DataPtr_pu8*, uint16) : Std_ReturnType + Det_ReportError(uintl6, uint8, uint8, uint8) : void
+ Memlf_SetMode(MemIf_ModeType) : void
+ Memlf_Write(uint8, uintl6, Memlf_DataPtr_pu8) : Std_ReturnType
T
|I \\
!
/ N
; N
' N
’ ‘\
|0 "3\ 0
Fee Ea
+ Fee_Cancel() : void + Ea_Cancel() : void
+ Fee_EraselmmediateBlock(uint16) : Std_ReturnType + Ea_EraselmmediateBlock(uint16) : Std_ReturnType
+ Fee_GetJobResult() : MemlIf_JobResultType + Ea_GetJobResult() : MemIf_JobResultType
+ Fee_GetStatus() : MemlIf_StatusType + Ea_GetStatus() : Memlf_StatusType
+ Fee_GetVersionInfo(Std_VersionInfoType*) : void + Ea_GetVersioninfo(Std_VersionInfoType) : void
+ Fee_lInit() : void + Ea_lnit() : void
+ Fee_lnvalidateBlock(uint16) : Std_ReturnType + Ea_lnvalidateBlock(uint16) : Std_ReturnType
+ Fee_Read(uintl6, uintl6, uint8*, uintl6) : Std_ReturnType + Ea_Read(uintl6, uint16, uint8*, uint16) : Std_ReturnType
+ Fee_SetMode(Memlf_ModeType) : void + Ea_SetMode(MemlIf_ModeType) : void
+ Fee_Write(uintl6, uint8*) : Std_ReturnType + Ea_Write(uintl6, uint8*) : Std_ReturnType
Figure 5-1 Memlf interactions with other BSW

5.2 Type Definitions

Type Name

Memlf_StatusType enum

©2015, Vector Informatik GmbH

Denotes the states of
BSW modules in the
memory stack

MEMIF UNINIT
Module is not initialized
MEMIF IDLE

There are no pending jobs that
need processing

MEMIF BUSY

Module is processing jobs, no
further job requests are accepted
MEMIF BUSY INTERNAL

No job requests are being
processed, but the module is busy
executing internal operations

Version: 2.02.00 14725

based on template version 3.1

Technical Reference MICROSAR Memlf VQCEO('

Type Name C-Type |Description Value Range
Memlf_JobResultType enum Denotes the result of a MEMIF JOB OK
job request after Job processing finished
processing of this job successfully

MEMIF JOB FAILED

Job processing finished with an
error

MEMIF JOB PENDING
Job is currently being processed
MEMIF JOB CANCELLED

Job has been cancelled by the
user

MEMIF BLOCK INCONSISTENT

Job finished successfully, but data
is inconsistent

MEMIF BLOCK INVALID

Job finished successfully but data
has been invalidated

Memlf_ModeType enum Denotes the processing MEMIF_MODE_SLOW
mode for a module in the Jobs are processed with the
memory stack configured properties for slow
mode

MEMIF MODE_ FAST

Jobs are processed with the
configured properties for fast mode

Table 5-1 Type definitions

5.3 Services provided by Memlf
The Memlf API consists of services, which are realized by function calls.
5.3.1 Memlf_GetVersioninfo

Prototype
void MemIf GetVersionInfo (Std VersionInfoType * VersionInfoPtr)

Parameter

VersionInfoPtr Reference to a version information structure in RAM

Return code

Functional Description

This service writes the version information of Memlf to the referenced structure.

Particularities and Limitations

m In case the input parameter references an invalid address (NULL-pointer) the error
MEMIF E PARAM POINTER is reported to Det and execution of the service is aborted.
m This service is only available if “Vversion Info Api”is configuredto STD ON

©2015, Vector Informatik GmbH Version: 2.02.00

based on template version 3.1

15/25

Technical Reference MICROSAR Memlf VQCEO('

Expected Caller Context

m This service has no restriction to the allowed or expected caller context.

Table 5-2 Memlf_GetVersioninfo

5.3.2 Memlf_SetMode

Prototype
void MemIf SetMode (MemIf ModeType Mode)

Parameter
Mode Mode to switch modules into

Return code

Functional Description

This service switches all underlying memory hardware abstraction modules to the requested mode of
operation, by calling [Ea|Fee]_SetMode (See description of respective module’s function).

Particularities and Limitations

= All memory abstraction modules have to be in state MEMIF IDLE when this service is
executed.

Call context

> This service has no restriction to the allowed or expected caller context.

Table 5-3 Memlf_SetMode

5.3.3 Memlf_Read

Prototype

Std ReturnType MemIf Read
(
uint8 Devicelndex,
uintloe BlockNumber,
uintl6 BlockOffset,
uint8* DataBufferPtr,
uintl6é Length

‘

Parameter

Index of the memory hardware abstraction module to which the read operation
shall be delegated.

Identifies the block to read in non-volatile memory.

Devicelndex

BlockNumber

BlockOffset Offset in the block identified by BlockNumber from which on reading is
performed

DataBufferPtr Reference to the data buffer to which the data in non-volatile memory is read
to.

Length Number of bytes to read

©2015, Vector Informatik GmbH Version: 2.02.00 16 /25

based on template version 3.1

Technical Reference MICROSAR Memlf VQCEO('

Return code

E OK Read job request is accepted by the addressed memory hardware abstraction
- module.
E_NOT_OK Rezd Ijob request is rejected by the addressed memory hardware abstraction
module.

Functional Description

Delegates the job request to the appropriate memory hardware abstraction module by calling the service
[Eal|Fee]_Read of the addressed module instance (See description of respective module’s function)

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context

> NvM / Application

Table 5-4 Memlf_Read

5.3.4 Memlf_Write

Prototype

Std ReturnType MemIf Write
(

uint8 DevicelIndex,
uintloe BlockNumber,
uint8* DataBufferPtr

Parameter

‘

Index of the memory hardware abstraction module to which the write

Devicelndex
operation shall be delegated.
BlockNumber Identifies the block to write to non-volatile memory.
DataBufferPtr Reference to the data buffer whose content is written to non-volatile memory

Return code

E OK Write job request is accepted by the addressed memory hardware abstraction
- module.
E_NOT_OK Wri;e Ijob request is rejected by the addressed memory hardware abstraction
module.

Functional Description

Delegates the job request to the appropriate memory hardware abstraction module by calling the service
[Ea|Fee]_Write of the addressed module instance (See description of respective module’s function)

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context

©2015, Vector Informatik GmbH Version: 2.02.00

based on template version 3.1

17125

Technical Reference MICROSAR Memlf VQCEO('

> NvM / Application

Table 5-5 Memlf_Write

5.3.5 Memlf_Cancel

Prototype
void MemIf Cancel (uint8 DevicelIndex)

Parameter

Index of the memory hardware abstraction module whose job processing shall

Devicelndex
be cancelled.

Return code

Functional Description

Delegates the cancel request to the appropriate memory hardware abstraction module by calling the
service [Ea|Fee]_Cancel of the addressed module instance (See description of respective module’s
function)

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context

> NvM / Application

Table 5-6 Memlf_Cancel

5.3.6 MemlIf_GetStatus

Prototype
MemIf StatusType MemIf GetStatus (uint8 DevicelIndex)

Parameter

Index of the memory hardware abstraction module whose job processing shall

Devicelndex
be cancelled.

Return code

MEMIF_IDLE Addressed module is ready to accept job requests

MEM|F_UN|N|T Addressed module is not initialized

MEMIF_BUSY Addrestsed module is processing a job and is not able to accept new job
requests

MEMIF BUSY INTERNAL Addres_sed_ module is not_ processing any job requests, but the module is busy
- - executing internal operations

Functional Description

Delegates the call to this service to the appropriate memory hardware abstraction module by calling the
service [Ea|Fee] GetStatus (See description of respective module’s function).

©2015, Vector Informatik GmbH Version: 2.02.00 18/25

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices and unequal to MEMIF BROADCAST 1ID), the error code MEMIF E PARAM DEVICE is
reported to Det and execution of the service is aborted.
> In case the MEMIF BROADCAST ID is used as device index parameter, the overall status of all
underlying memory abstraction modules is returned. This overall status is computed as
follows:
> MEMIF IDLE — all underlying devices are in this state
> MEMIF UNINIT — at least one device returned this state
> MEMIF BUSY — at least one device returned this state and no other returned
MEMIF UNINIT
> MEMIF BUSY INTERNAL — atleast one device returned this state and no other returned
MEMIF BUSY or MEMIF UNINIT

Call context

> NvM / Application

Table 5-7 Memlf_GetStatus

5.3.7 Memlf_GetJobResult

Prototype
MemIf JobResultType MemIf GetJobResult (uint8 Devicelndex)

Parameter

Index of the memory hardware abstraction module whose job

Devicelndex .
processing shall be cancelled.

Return code

MEMIF_JOB_OK Job processing finished successfully
MEMIF_JOB_FAILED Job processing finished with an error
MEMIF_JOB_PENDING Job is currently being processed
MEMIF_JOB_CANCELLED Job has been cancelled by the user

MEMIF BLOCK INCONSISTENT Job finished successfully, but data is inconsistent
MEMIE BLOCK INVALID Job finished successfully but data has been invalidated

Functional Description

Delegates the call to this service to the appropriate memory hardware abstraction module by calling the
service [Ea|Fee]_GetJobResult (See description of respective module’s function).

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context

> NvM / Application

Table 5-8 Memlf_GetJobResult

©2015, Vector Informatik GmbH Version: 2.02.00 19/25

based on template version 3.1

Technical Reference MICROSAR Memlf VQCEO('

5.3.8 Memlf_EraselmmediateBlock

Prototype

Std ReturnType MemIf EraseImmediateBlock
(

uint8 DevicelIndex,
uintl6 BlockNumber

‘

Parameter

Index of the memory hardware abstraction module to which the operation shall
be delegated.

BlockNumber Identifies the block to erase in non-volatile memory.

Devicelndex

Return code

E OK Erase job request is accepted by the addressed memory hardware abstraction
- module.

E NOT OK Erase job request is rejected by the addressed memory hardware abstraction
- - module.

Functional Description

Delegates the job request to the appropriate memory hardware abstraction module by calling the service
[Ea|Fee]_EraselmmediateBlock of the addressed module instance (See description of respective module’s
function)

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context

> NvM / Application

Table 5-9 Memlf_EraselmmediateBlock

5.3.9 Memlf_InvalidateBlock

Prototype

Std ReturnType MemIf InvalidateBlock
(

uint8 DevicelIndex,
uintl6 BlockNumber

‘

Parameter

Index of the memory hardware abstraction module to which the operation shall
be delegated.

Identifies the block to invalidate in non-volatile memory.

Devicelndex

BlockNumber

Return code

E OK Erase job request is accepted by the addressed memory hardware abstraction
- module.
E NOT OK Erase job request is rejected by the addressed memory hardware abstraction
- - module.
©2015, Vector Informatik GmbH Version: 2.02.00

based on template version 3.1

20/25

Technical Reference MICROSAR Memlf VeCtOf

Functional Description

Delegates the job request to the appropriate memory hardware abstraction module by calling the service
[Ea|Fee]_InvalidateBlock of the addressed module instance (See description of respective module’s
function)

Particularities and Limitations

> If the parameter DeviceIndex is out of range (greater than the number of configured
devices), the error code MEMIF E PARAM DEVICE is reported to Det and execution of the
service is aborted.

Call context
> NvM / Application

Table 5-10 Memlf_InvalidateBlock

5.4 Services used by Memlf

In the following table services provided by other components, which are used by the Memlf
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API
DET (see [2]) Det ReportError
EA (see [4]) Ea_ SetMode

Ea Read

Ea Write

Ea Cancel

Ea GetStatus

Ea GetJobResult

Ea InvalidateBlock

Ea GetVersionInfo

Ea EraseImmediateBlock
FEE (see [5]) Fee SetMode

Fee Read

Fee Write

Fee Cancel

Fee GetStatus

Fee GetJobResult

Fee InvalidateBlock

Fee GetVersionInfo

Fee EraseImmediateBlock

Table 5-11 Services used by the Memlf

©2015, Vector Informatik GmbH Version: 2.02.00 21/25

based on template version 3.1

Technical Reference MICROSAR Memlf VeCtOf

6 Configuration
The MEMIF attributes can be configured using the DaVinci Configurator. The outputs of

the configuration and generation process are the configuration source files.
The description of each used parameter is set in the Memlf bswmd file.

©2015, Vector Informatik GmbH Version: 2.02.00 22/25

Technical Reference MICROSAR Memlf V@CtOf

7 AUTOSAR Standard Compliance

7.1 Deviations

7.1.1 Extension of Error Codes

In contradiction to AUTOSAR standard MemlIf019, no set of macros is implemented, which
maps the Memory Abstraction Interface API to the API of the corresponding memory
abstraction module.

7.2 Additions/ Extensions
No Extensions to AUTOSAR standard

©2015, Vector Informatik GmbH Version: 2.02.00 23/25

Technical Reference MICROSAR Memlf VeCtOf

8 Glossary and Abbreviations

8.1 Glossary

Term Description

DaVinci Configurator = Generation tool for MICROSAR components

Table 8-1 Glossary

8.2 Abbreviations

API Application Programming Interface
AUTOSAR Automotive Open System Architecture
BSW Basis Software
DET Development Error Tracer
ECU Electronic Control Unit
MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)
SRS Software Requirement Specification
SWS Software Specification
NVRAM Non Volatile RAM Manager
NvM NVRAM Manager
Fee Flash EEPROM Emulation
Ea EEPROM Abstraction
Fls Flash Driver
Eep EEPROM Driver
RAM Random Access Memory
Table 8-2 Abbreviations
©2015, Vector Informatik GmbH Version: 2.02.00 24125

based on template version 3.1

Technical Reference MICROSAR Memlf

9 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector.com

©2015, Vector Informatik GmbH

Version: 2.02.00

vector’

25125

http://www.vector.com/

	1 Document Information
	1.1 History
	1.2 Reference Documents
	1.3 Scope of the Document

	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 Main Functions
	3.4 Error Handling
	3.4.1 Development Error Reporting
	3.4.1.1 Parameter Checking

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping

	5 API Description
	5.1 Interfaces Overview
	5.2 Type Definitions
	5.3 Services provided by MemIf
	5.3.1 MemIf_GetVersionInfo
	5.3.2 MemIf_SetMode
	5.3.3 MemIf_Read
	5.3.4 MemIf_Write
	5.3.5 MemIf_Cancel
	5.3.6 MemIf_GetStatus
	5.3.7 MemIf_GetJobResult
	5.3.8 MemIf_EraseImmediateBlock
	5.3.9 MemIf_InvalidateBlock

	5.4 Services used by MemIf

	6 Configuration
	7 AUTOSAR Standard Compliance
	7.1 Deviations
	7.1.1 Extension of Error Codes

	7.2 Additions/ Extensions

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

