

MICROSAR Network Management
Interface

Technical Reference

Version 10.00.00

Authors Leticia Garcia; Markus Drescher

Status Released

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 2
based on template version 4.8.0

Document Information

History

Author Date Version Remarks

Oliver Hornung 2011-03-11 1.00.00 ESCAN00048893: Initial Version of Nm
AUTOSAR Release 4

Philipp Ritter 2012-07-20 2.00.00 ESCAN00058346: Updated to ASR 4.0.3

Markus Drescher 2013-05-11 2.01.00 ESCAN00063146: Updated Figure 2-1

ESCAN00067284: Added chapter 1,
merged Chapter ‘AUTOSAR Standard
Compliance’ with chapter 3.1, removed
chapter ‘Compiler Abstraction and Memory
Mapping’, various improvements

ESCAN00067285: Rewritten chapter 3.8

Markus Drescher 2013-10-01 3.00.00 ESCAN00068794: Added J1939Nm
Support

ESCAN00068989: Adapted conditions for
availability of Nm_PrepareBusSleepMode

ESCAN00070593: Added Runtime
Measurement Support as ‘Feature Beyond
the AUTOSAR Standard’

ESCAN00070804: Updated Figure 2-1

Markus Drescher 2014-02-14 3.01.00 ESCAN00071769: Updated chapters 1,
3.1, 5.2, 5.4, 5.6, added chapter 3.9

ESCAN00073703: Updated Figure 2-1

ESCAN00073704: Updated chapter 3.1.3

ESCAN00073705: Updated chapter 3.11.1

ESCAN00073707: Added chapter 4.3.2

ESCAN00073709: Updated chapter 5.1

Markus Drescher 2014-04-17 4.00.00 ESCAN00074299: Added chapter 3.1.2.8

ESCAN00075103: Updated chapter 3

ESCAN00075105: Updated Figure 2-1

ESCAN00075012: Updated Figure 3-1,
added chapter 3.1.1.2

ESCAN00075311: Updated Figure 3-1

ESCAN00075118: Updated chapters 3.1.2,
3.4.4

ESCAN00075812: Added chapter 3.3.1

Markus Drescher 2014-10-07 5.00.00 ESCAN00076764: Updated chapters 2, 3.1

ESCAN00078802: Updated chapter 5.2.15

ESCAN00078803: Updated Figure 2-1

Markus Drescher 2015-03-23 6.00.00 ESCAN00081207 Updated Table 3-7,
updated Table 5-1

Leticia Garcia 2015-07-21 7.00.00 ESCAN00080959: Updated chapter
3.1.2.1

ESCAN00083545: Added chapters:

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 3
based on template version 4.8.0

3.1.2.9, 5.4.8 and 5.6.1.4.

ESCAN00083555: Updated chapters.5.4.2,
5.4.3, 5.4.4, 5.4.5 and 5.4.6

ESCAN00084339: Updated chapter 3.11.1

Leticia Garcia 2015-12-16 8.00.00 ESCAN00084773 Updated chapter 5.6.1,
3.1.2.3, 3.8.2, 4.2

ESCAN00085986: Updated chapter 5.2.16

ESCAN00087098: Updated chapter 3.1.1

Markus Drescher 2016-03-08 9.00.00 ESCAN00088776: Updated Figure 2-1

ESCAN00088777: Update to new CI layout

ESCAN00088778: Extended chapter 3.9.1

Leticia Garcia 2016-07-04 10.00.00 ESCAN00089481 Extended chapters:
3.1.2.6, 3.4.2 and 3.4.6.

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_NetworkManagementInterface.pdf 3.0.0

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf 4.2.0

[4] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[5] AUTOSAR AUTOSAR_SWS_RTE.pdf 3.2.0

[6] Vector TechnicalReference_CanNm.pdf See
delivery

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 4
based on template version 4.8.0

Contents

1 Component History .. 9

2 Introduction... 10

2.1 Architecture Overview .. 11

3 Functional Description ... 13

3.1 Features .. 13

3.1.1 Deviations Against AUTOSAR 4.0.3 ... 13

3.1.1.1 Set Sleep Ready Bit ... 14

3.1.1.2 Nm_NetworkStartIndication as trigger for Coordinated
Shutdown Abortion ... 14

3.1.2 Additions/ Extensions ... 14

3.1.2.1 Additional DET Error Codes ... 14

3.1.2.2 Synchronization Timeout .. 15

3.1.2.3 Configurable Notification Functions 15

3.1.2.4 Macro Layer Optimization .. 15

3.1.2.5 Memory Initialization .. 15

3.1.2.6 Automatic Calculation of Shutdown Delay Timer 15

3.1.2.7 Callback Nm_CoordReadyToSleepCancellation 16

3.1.2.8 Passive Mode as Global Setting 16

3.1.2.9 BusNm Specific Pdu Rx Indication Support 16

3.1.2.9.1 Macro Layer interaction with BusNm
Specific Pdu Rx Indication 17

3.1.3 Limitations .. 17

3.1.3.1 Multiple BusNms on One Channel 17

3.2 Basic Functionality ... 18

3.3 Support of Generic BusNm Modules .. 18

3.3.1 Creating a Generic BusNm or a Generic BusNm Wrapper 18

3.3.1.1 Providing the Interfaces that are called by the Nm
module ... 19

3.3.1.2 Implementing the functions called by Nm 20

3.4 Coordinator Functionality ... 21

3.4.1 Coordinated Networks .. 21

3.4.2 Shutdown Algorithm ... 22

3.4.3 State Machine of Coordinator ... 24

3.4.4 Wake-up... 25

3.4.5 Sleep Master .. 25

3.4.6 Wait Bus Sleep Extensions .. 25

3.4.6.1 CanNm and NmOsek on the same channel 26

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 5
based on template version 4.8.0

3.5 State Report ... 26

3.6 Macro Layer Optimization .. 26

3.7 Initialization .. 26

3.8 Provision of the NM State .. 27

3.8.1 Determining the NM State Using Nm_GetState 27

3.8.2 Using the ‘State Change Ind Enabled’ feature 27

3.9 Multiple BusNms on One Channel ... 27

3.9.1 Notification of Mode Changes in the BusNms 29

3.9.2 State Change Notifications ... 31

3.9.3 Remote Sleep Indication Statuses ... 33

3.9.4 Other Aggregated Information and Caveats 34

3.10 Main Functions .. 35

3.11 Error Handling .. 35

3.11.1 Development Error Reporting ... 35

3.11.2 Production Code Error Reporting ... 37

4 Integration ... 38

4.1 Scope of Delivery ... 38

4.1.1 Static Files ... 38

4.1.2 Dynamic Files .. 38

4.2 Include Structure .. 39

4.3 Critical Sections ... 40

4.3.1 Exclusive Area 0 .. 40

4.3.2 Exclusive Area 1 .. 41

5 API Description ... 42

5.1 Type Definitions ... 42

5.2 Services Provided by Nm ... 44

5.2.1 Nm_Init .. 44

5.2.2 Nm_PassiveStartUp ... 45

5.2.3 Nm_NetworkRequest ... 46

5.2.4 Nm_NetworkRelease ... 47

5.2.5 Nm_DisableCommunication ... 48

5.2.6 Nm_EnableCommunication .. 49

5.2.7 Nm_SetUserData ... 50

5.2.8 Nm_GetUserData .. 51

5.2.9 Nm_GetPduData .. 52

5.2.10 Nm_RepeatMessageRequest .. 53

5.2.11 Nm_GetNodeIdentifier ... 54

5.2.12 Nm_GetLocalNodeIdentifier ... 55

5.2.13 Nm_CheckRemoteSleepIndication ... 56

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 6
based on template version 4.8.0

5.2.14 Nm_GetState ... 57

5.2.15 Nm_GetVersionInfo .. 58

5.2.16 Nm_MainFunction .. 59

5.2.17 Nm_InitMemory .. 60

5.3 Services Used by Nm .. 60

5.4 Callback Functions ... 61

5.4.1 Nm_NetworkStartIndication .. 61

5.4.2 Nm_NetworkMode ... 62

5.4.3 Nm_BusSleepMode ... 63

5.4.4 Nm_PrepareBusSleepMode ... 64

5.4.5 Nm_RemoteSleepIndication ... 65

5.4.6 Nm_RemoteSleepCancellation .. 66

5.4.7 Nm_SynchronizationPoint .. 66

5.4.8 Nm_<BusNm>_PduRxIndication .. 67

5.4.9 Nm_PduRxIndication ... 68

5.4.10 Nm_StateChangeNotification ... 69

5.4.11 Nm_RepeatMessageIndication .. 70

5.4.12 Nm_TxTimeoutException ... 71

5.4.13 Nm_CarWakeUpIndication ... 72

5.4.14 Nm_CoordReadyToSleepIndication ... 72

5.4.15 Nm_CoordReadyToSleepCancellation ... 73

5.5 Callback Functions used by Nm ... 73

5.6 Configurable Interfaces .. 73

5.6.1 Notifications ... 73

5.6.1.1 UL_Nm_RemoteSleepIndication 74

5.6.1.2 UL_Nm_RemoteSleepCancellation 75

5.6.1.3 UL_Nm_PduRxIndication ... 76

5.6.1.4 UL_Nm_BusNmSpecificPduRxIndication 77

5.6.1.5 UL_Nm_StateChangeNotification 78

5.6.1.6 UL_Nm_RepeatMessageIndication 79

5.6.1.7 UL_Nm_TxTimeoutException .. 80

5.6.1.8 UL_Nm_CarWakeUpIndication 81

6 Glossary and Abbreviations .. 82

6.1 Glossary .. 82

6.2 Abbreviations ... 82

7 Contact .. 83

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 7
based on template version 4.8.0

Illustrations

Figure 2-1 AUTOSAR 4.x Architecture Overview ... 11
Figure 2-2 Interfaces to adjacent modules of the Nm ... 12
Figure 3-1 State Machine of Coordinator ... 24
Figure 3-2 Left: Architectural View in AUTOSAR. Right: Network Topology with

multiple BusNms on one network .. 28
Figure 3-3 Not recommended use case having more than one node with multiple

BusNms on the network .. 28
Figure 3-4 Unsupported use case having more than one node with multiple

BusNms .. 29
Figure 3-5 Mode Changes with two BusNms on one channel 30
Figure 3-6 State Machine of Remote Sleep callbacks for two BusNms on one

channel ... 33
Figure 4-1 Include structure ... 39

Tables

Table 1-1 Component history.. 9
Table 3-1 Supported AUTOSAR standard conform features 13
Table 3-2 Not supported AUTOSAR standard conform features 13
Table 3-3 Features provided beyond the AUTOSAR standard 14
Table 3-4 Configurable Notification Function Mapping .. 15
Table 3-5 BusNm Shutdown Time Calculation .. 16
Table 3-6 Nm State Change Signal Values ... 26
Table 3-7 Overall State of two BusNms on one channel ... 32
Table 3-8 Service IDs ... 36
Table 3-9 Errors reported to DET ... 37
Table 4-1 Static files ... 38
Table 4-2 Generated files ... 38
Table 4-3 Exclusive Area 0 ... 40
Table 4-4 Exclusive Area 1 ... 41
Table 5-1 Type definitions ... 43
Table 5-2 Nm_Init ... 44
Table 5-3 Nm_PassiveStartUp ... 45
Table 5-4 Nm_NetworkRequest .. 46
Table 5-5 Nm_NetworkRelease .. 47
Table 5-6 Nm_DisableCommunication ... 48
Table 5-7 Nm_EnableCommunication .. 49
Table 5-8 Nm_SetUserData ... 50
Table 5-9 Nm_GetUserData ... 51
Table 5-10 Nm_GetPduData .. 52
Table 5-11 Nm_RepeatMessageRequest ... 53
Table 5-12 Nm_GetNodeIdentifier .. 54
Table 5-13 Nm_GetLocalNodeIdentifier .. 55
Table 5-14 Nm_CheckRemoteSleepIndication ... 56
Table 5-15 Nm_GetState .. 57
Table 5-16 Nm_GetNodeIdentifier .. 58
Table 5-17 Nm_MainFunction .. 59
Table 5-18 Nm_InitMemory .. 60
Table 5-19 Services used by the Nm .. 61
Table 5-20 Nm_NetworkStartIndication .. 61
Table 5-21 Nm_NetworkMode .. 62
Table 5-22 Nm_BusSleepMode .. 63

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 8
based on template version 4.8.0

Table 5-23 Nm_PrepareBusSleepMode ... 64
Table 5-24 Nm_RemoteSleepIndication ... 65
Table 5-25 Nm_RemoteSleepCancellation ... 66
Table 5-26 Nm_SynchronizationPoint ... 66
Table 5-27 Nm_BusNmSpecificPduRxIndication .. 67
Table 5-28 Nm_PduRxIndication .. 68
Table 5-29 Nm_StateChangeNotification .. 69
Table 5-30 Nm_RepeatMessageIndication ... 70
Table 5-31 Nm_TxTimeoutException .. 71
Table 5-32 Nm_CarWakeUpIndication ... 72
Table 5-33 Nm_CoordReadyToSleepIndication .. 72
Table 5-34 Nm_CoordReadyToSleepCancellation .. 73
Table 5-35 Callback Functions used by the Nm .. 73
Table 5-36 UL_Nm_RemoteSleepIndication ... 74
Table 5-37 UL_Nm_RemoteSleepCancellation .. 75
Table 5-38 UL_Nm_PduRxIndication.. 76
Table 5-39 Standard Bus Nm Pdu Rx Indication ... 77
Table 5-40 UL_Nm_StateChangeNotification ... 78
Table 5-41 UL_Nm_RepeatMessageIndication .. 79
Table 5-42 UL_Nm_TxTimeoutException ... 80
Table 5-43 UL_Nm_CarWakeUpIndication ... 81
Table 6-1 Glossary ... 82
Table 6-2 Abbreviations .. 82

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 9
based on template version 4.8.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Creation for AUTOSAR 4.0.1

2.00.00 Adaption for AUTOSAR 4.0.3

Added Coordinator Support

Added support for AUTOSAR Standard BusNms

3.00.00 Added Runtime Measurement Support

Added J1939Nm Support

3.01.00 Added Support for Multiple BusNms on one CAN channel

4.00.00 Added support for Variant Post-Build-Selectable

Added wake-up support for NM Coordinator

6.00.00 Added support for OSEK NM

7.00.00 Added support for BusNm Pdu-Rx indications

8.00.00 Added support for Class C and Class B BusNms

Added support for Nm Gateway Extensions

9.00.00 Adapter for Safe BSW feature.

10.00.00 Added support for Wait Bus Sleep Extension

Table 1-1 Component history

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 10
based on template version 4.8.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module Nm as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile, post-build-selectable

Vendor ID: NM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: NM_MODULE_ID 29 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The Nm module acts as an adaptation layer between the AUTOSAR BSW module ComM
and the AUTOSAR BSW bus-specific network management modules (BusNm), e.g.
CanNm. Therefore a call of the ComM on a network is forwarded to the corresponding
BusNm on this network. Callback functions from a BusNm are forwarded to the ComM.
This functionality is also called ‘basic functionality’.

Beside the standard BusNm modules defined by AUTOSAR, the Nm module can also
support generic lower layer modules to allow the integration of OEM specific or legacy NM
components, e.g. OSEK NM (NmOsek). For this support it is required that the lower layer
modules implements the requirements for a generic BusNm.

Optionally the Nm module provides a coordination algorithm to perform a synchronous
shutdown handling of several connected networks and/or multiple BusNms on one
channel.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 11
based on template version 4.8.0

2.1 Architecture Overview

The following figure shows where the Nm is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.x Architecture Overview

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 12
based on template version 4.8.0

The next figure shows the interfaces to adjacent modules of the Nm. These interfaces are
described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the Nm

class Architecture

Com

BusNm

ComM

Nm Det

SchM

BswM

Nm_API

Nm_MainfunctionNm_Cbk_API

Nm_API

SchM_Nm_API

Com_API

«optional»

BusNm_API

ComM_Nm_API

Det_API

«optional»

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 13
based on template version 4.8.0

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
Nm.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further Nm functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Basic Functionality

Support of Generic BusNm Modules

Coordinator Functionality

State Report

MICROSAR Identity Manager using Post-Build Selectable

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations Against AUTOSAR 4.0.3

The following features specified in [1] are not supported:

Category Description ASR
Version

- - 4.0.3

Table 3-2 Not supported AUTOSAR standard conform features

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 14
based on template version 4.8.0

3.1.1.1 Set Sleep Ready Bit

According to [1], Sleep Ready Bit will be set before waiting for Synchronization Points. In
this implementation, Sleep Ready Bit will be set after a Synchronization Point appears.

3.1.1.2 Nm_NetworkStartIndication as trigger for Coordinated Shutdown Abortion

The function Nm_NetworkStartIndication is not a trigger for aborting a shutdown in the NM
Coordinator algorithm despite the requirements in [1]. The NM deviates against this
requirement, because it has been removed in newer versions of [1].

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Additional DET Error Codes

Synchronization Timeout

Configurable Notification Functions

Macro Layer Optimization

Memory Initialization

Support for J1939Nm

Runtime Measurement Support

Automatic Calculation of Shutdown Delay Timer

Callback Nm_CoordReadyToSleepCancellation

Multiple BusNms on One Channel

Wake-up by Nm Coordinator

Passive Mode as Global Setting

BusNm Specific Pdu Rx Indication support

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.2.1 Additional DET Error Codes

The following error code is reported additionally to the errors defined in [1]:

> NM_E_SYNCHRONIZATION_TIMEOUT: Nm_SynchronizationPoint was not

called within the configured synchronization timeout time.

> NM_E_INVALID_STATE: An invalid/unexpected state transition has been passed to

Nm_StateChangeNotification (only available if the optimization for only one

BusNm on a channel is OFF) (e.g. transition from Normal Operation to Ready Sleep if
all BusNms are currently in Bus Sleep).

> NM_E_SAME_STATES: The same states have been passed to
Nm_StateChangeNotification.

> NM_E_FUNCTION_PTR_IS_NULL: The pointer that has been passed in order to call
a function is equals to NULL. (E.g. BusNm function in the generated function table).

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 15
based on template version 4.8.0

3.1.2.2 Synchronization Timeout

If Nm Synchronizing Network is enabled, coordinator algorithm waits for a suitable point in
time to continue shutdown of corresponding networks. If such a point is never reached,
coordination algorithm will wait forever. To prevent this, a timeout for this point can be
defined by setting the ‘Synchronization Timeout Time’.

3.1.2.3 Configurable Notification Functions

Some of the callback functions provided by the Nm may be needed by upper layers.
Therefore the Nm was extended to provide a configurable notification interface where
those callbacks can be configured to be forwarded to another module. Therefore a name
has to be entered into the corresponding configuration parameter.

The following table shows which Nm callbacks can be forwarded and the corresponding
configuration parameter where a function name has to be entered.

Nm Callback Configuration Parameter

Nm_StateChangeNotification State Change Indication Callback

Nm_RemoteSleepIndication Remote Sleep Indication Callback

Nm_RemoteSleepCancellation Remote Sleep Cancellation Callback

Nm_PduRxIndication PDU Receive Indication Callback

Nm_RepeatMessageIndication Repeat Message Indication Callback

Nm_TxTimeoutException Transmission Timeout Error Callback

Nm_<Specific Standard BusNm>_PduRxIndication Standard Bus Nm Pdu Rx Indication

Nm_<Specific Generic BusNm>_PduRxIndication Generic Bus Nm Pdu Rx Indication

Table 3-4 Configurable Notification Function Mapping

Note that the prototypes for the forwarded functions must be provided by the module that
wants to implement those notifications. Therefore header files containing the prototype
definitions can be entered in the configuration.

The API prototype for these functions are described in chapter 5.6.1 ‘Notifications’.

3.1.2.4 Macro Layer Optimization

When having only one type of BusNm the Nm can be configured to be realized completely
as a macro layer to save resources (ROM, RAM and run-time).

For further information refer to chapter 3.6 ‘Macro Layer Optimization’.

3.1.2.5 Memory Initialization

Not every start-up code of embedded targets and neither CANoe provide initialized RAM.
It thus may happen that the state of a variable that needs initialized RAM may not be set to
the expected initial value. Therefore an explicit initialization of such variables has to be

provided at start-up by calling the additional function Nm_InitMemory.

For more information refer to chapter 3.7 ‘Initialization’.

3.1.2.6 Automatic Calculation of Shutdown Delay Timer

The shutdown delay timer is determined automatically. Therefore, the shutdown time of the
corresponding BusNm is calculated and cannot be set by the user. The computation
formula for each type is listed in the following table.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 16
based on template version 4.8.0

NM Type Shutdown Time

CAN Nm CanNmWaitBusSleepTime1 + CanNmTimeoutTime1

FlexRay Nm ((FrNmReadySleepCnt2 + 2) * FrNmRepetitionCycle3 * FrCycleTime4)

Udp Nm UdpNmWaitBusSleepTime1 + UdpNmTimeoutTime1

Lin Nm 0

Generic Nm Value of GenericBusNmShutdownTime1

Table 3-5 BusNm Shutdown Time Calculation

If BusNm is a Generic Nm, Generic Bus Nm Shutdown Time is used. The shutdown time is
subtracted from the Global Coordinator Time and the result is used as the shutdown delay
timer.

3.1.2.7 Callback Nm_CoordReadyToSleepCancellation

When the NM Coordinator Sleep Ready Bit in the Control Bit Vector is set, the
corresponding BusNm sets an indication and coordination algorithm assumes that the
corresponding network is ready to sleep. But when the Sleep Ready Bit is not set
anymore, and therefore the network is not ready to sleep anymore, there is no
indication/cancellation according to [1]. For this reason, this callback is introduced.

For further information refer to chapter 5.4.15 ‘Nm_CoordReadyToSleepCancellation’.

3.1.2.8 Passive Mode as Global Setting

The setting ‘Passive Mode Enabled’ can either be configured for each NM channel (note:
the BusNm setting is globally) or globally for all channels.

The possibility to configure this setting for each channel exists due to the requirements in
[1]; however newer versions of [1] have moved the ‘Passive Mode Enabled’ setting to a
global configuration container so that this setting is applied for the whole ECU.

The NM module supports both possibilities, but the parameter may either only exist in
every channel configuration container or exist in the global container.

3.1.2.9 BusNm Specific Pdu Rx Indication Support

The setting ‘Bus Nm Specific Pdu Rx Indication Enabled’ allows the generation of a
BusNm specific callback that shall be called by the BusNm upon reception of the
RxNmPdu. This function is called to notify the reception of a NmPdu in order to distinguish
between each BusNm on the same channel (Multiple BusNms on a Channel, chapter 3.9)
by using different identifiers for each BusNm.

Any function can be configured that shall be called on NM PDU reception.

Please note that this feature is relevant for rare cases.

1
 In the 'Wait Bus Sleep Extensions' feature is activated and in presence of NmOsek BusNm, the NM

coordination algorithm permits two different shut-down times, depending on the NmOsek state (Normal or
LimpHome), this times are calculated during run time. Refer to chapter 3.4.6 for more information.
 In all cases the timing value given in s.
2
 Ready Sleep Counter is given in number of Repetition Cycles.

3
 Repetition Cycle is given in number of FlexRay Cycles

4
 FlexRay Cycle Time (duration of one FlexRay cycle) given in ms.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 17
based on template version 4.8.0

Example

In a setup with one channel equipped with CanNm and NmOsek on the same channel,
a distinction of which BusNm has received a NM PDU cannot be made by the
NmPduReceiveIndCallback, since the provided Network Handle is the same.

Therefore, for a distinction, define the parameter ‘Standard Bus Nm Pdu Rx Indication’
to a certain value for CanNm and the ‘Generic Bus Nm Pdu Rx Indication’ for the
NmOsek to yet another certain value.

Note

Use case not needed if, for example:

In a setup with two channels, one of them equipped with CanNm, the other one
equipped with FrNm, there is no distinction required between the BusNms, because the
Network Handle parameter is different for each channel.

Therefore it suffices to use ‘Pdu Rx Indication Enabled’ with ‘Pdu Receive Ind
Callback’. (see also chapter 5.4.9 and 5.6.1.3).

Caution
‘Bus Nm Specific Pdu Rx Indication Support’ cannot be turned on if ‘Standard Bus
Type’ is not equal to NM_BUSNM_CANNM. This functionality works only for CAN
channels.

It is not necessary to configure the function if there is only one BusNm on the channel. The
‘Pdu Receive Ind Callback’ (See chapter 5.4.9) can be used as an alternative for this
purpose.

3.1.2.9.1 Macro Layer interaction with BusNm Specific Pdu Rx Indication

It is possible to use ‘Bus Nm Specific Pdu Rx Indication’ with the Macro Layer optimization
active.

The BusNm should call Nm_<BusNm>_PduRxIndication which is a macro definition in
Nm_Cfg.h, therefore, at most one upper layer BusNm Specific Pdu Rx Indication is
allowed if 'Macro Layer Enabled' is turned ON.

3.1.3 Limitations

3.1.3.1 Multiple BusNms on One Channel

There are several restrictions for multiple BusNms on one channel:

The BusNms on one channel are either coordinated completely actively or passively on
one node.

Multiple BusNms on one channel can only be used on CAN channels.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 18
based on template version 4.8.0

The NM Coordinator needs to be activated if at least one channel exists that contains
more than one BusNm. The channel can however be inside a coordination cluster that
contains multiple channels or can form a coordination cluster on its own. This implies that,
if the channel is coordinated actively by the node, the node is the last one that withdraws
its communication request.

Furthermore, it is required that the BusNms either call the required functions for an active
coordination (Nm_RemoteSleepIndication, Nm_RemoteSleepCancellation) / passive
coordination (Nm_CoordReadyToSleepIndication, Nm_CoordReadyToSleepCancellation)
or that the BusNm is a Channel Sleep Master, i.e. other nodes cannot keep the bus awake
while the own node is ready to sleep.

Passive Mode can only have the same value for all BusNms on a channel.

The feature ‘State Report Enabled’ only reports the aggregated state (numerically highest
state is considered as current state) of all BusNms on a channel to a Com signal.

If ‘Synchronized Network’ is enabled, it is only waited for one function call of
Nm_SynchronizationPoint by one of the BusNms until the Shutdown Delay Timers are
started.

Many service functions aggregate data retrieved from the BusNms in a manner that is not
useful for the application (see also chapter 3.9.4).

3.2 Basic Functionality

The Nm module is a bus-independent adaptation layer between the ComM module and
the bus-specific network management modules (e.g. CanNm, FrNm, LinNm, UdpNm or
J1939Nm). Therefore it forwards function calls from the ComM module to the
corresponding bus-specific network management and vice versa.

Further details can be found in [1].

The API description can be found in chapter 5 ‘API Description’.

3.3 Support of Generic BusNm Modules

Beside the bus-specific network management modules defined by AUTOSAR the Nm
module is able to support further OEM-specific or legacy Nm modules if they fulfill the
requirements for generic BusNm modules. This means that such modules have to provide
the same APIs as the standard BusNm modules but with an own prefix. Also these
modules have to take care about the Nm module configuration.

3.3.1 Creating a Generic BusNm or a Generic BusNm Wrapper

If a Generic BusNm needs to be created or a legacy Nm module needs to be wrapped by
Generic BusNm interfaces, the following (not necessarily complete) list of aspects has to
be considered:

> The Generic BusNm interfaces that are called by the Nm module have to be provided
by the <GenericBusNmPrefix>.h. The <GenericBusNmPrefix> has to be configured in
the configuration tool in the Nm module. This parameter determines the header file
name as well as the prefix of the APIs called by the Nm module.

> At least the interface of Nm concerning the current mode (Nm_NetworkMode /
Nm_BusSleepMode and optionally Nm_PrepareBusSleepMode has to be used).

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 19
based on template version 4.8.0

> If the Generic BusNm sends or receives messages, the corresponding Bus Interface
module (e.g. CanIf) has to be configured to forward the RxIndication / TxConfirmation
towards the Generic BusNm and to have the possibility to use <BusIf>_Transmit.

The last aspect is not covered by this document, because this document describes only
the aspects of the NM Interface module.

3.3.1.1 Providing the Interfaces that are called by the Nm module

The <GenericBusNmPrefix>.h needs to provide the following function declarations:

> <GenericBusNmPrefix>_PassiveStartUp

> <GenericBusNmPrefix>_NetworkRequest5

> <GenericBusNmPrefix>_NetworkRelease5

> <GenericBusNmPrefix>_EnableCommunication6

> <GenericBusNmPrefix>_DisableCommunication6

> <GenericBusNmPrefix>_SetUserData7

> <GenericBusNmPrefix>_GetUserData8

> <GenericBusNmPrefix>_GetPduData9

> <GenericBusNmPrefix>_RepeatMessageRequest10

> <GenericBusNmPrefix>_GetNodeIdentifier11

> <GenericBusNmPrefix>_GetLocalNodeIdentifier11

> <GenericBusNmPrefix>_CheckRemoteSleepIndication12

> <GenericBusNmPrefix>_GetState

> <GenericBusNmPrefix>_RequestBusSynchronization13

> <GenericBusNmPrefix>_SetSleepReadyBit14

It is recommended to copy the function prototypes from Nm.h and replace the compiler
abstraction and memory mapping parts to the sections/keywords of NM to
<GENERICBUSNMPREFIX>. Since there are no prototypes of
Nm_RequestBusSynchronization and Nm_SetSleepReadyBit, an example header for the
exemplary Generic Bus Nm ‘SpecialBusNm’ is provided for these function prototypes as

5
 Function is only required if ‘Passive Mode Enabled’ is OFF in the Nm channel/module configuration settings

6
 Function is only required if ‘Com Control Enabled’ is ON in the Nm module configuration settings

7
 Function is only required if ‘User Data Enabled’ is ON, ‘Passive Mode Enabled’ is OFF, ‘Com User Data

Support’ is OFF in the Nm module configuration settings
8
 Function is only required if ‘User Data Enabled’ is ON in the Nm module configuration settings

9
 Function is only required if ‘Node Id Enabled’ is ON or ‘User Data Enabled’ is ON in the Nm module

configuration settings
10

 Function is only required if ‘Node Detection Enabled’ is ON in the Nm module configuration settings
11

 Function is only required if ‘Node Id Enabled’ is ON in the Nm module configuration settings
12

 Function is only required if ‘Remote Sleep Ind Enabled’ is ON in the Nm module configuration settings
13

 Function is only required if ‘Bus Synchronization Enabled’ is ON in the Nm module configuration settings
14

 Function is only required if ‘Passive Mode Enabled’ is OFF in the Nm channel/module configuration
settings and if ‘Coordinator Sync Support’ is ON in the Nm module configuration settings

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 20
based on template version 4.8.0

follows. Note that Compiler_Cfg.h has to be extended by the SPECIALBUSNM_CODE
keyword and MemMap.h has to be adapted by the SPECIALBUSNM_START_SEC_CODE
/ SPECIALBUSNM_STOP_SEC_CODE section begin/end parts.

Example
If a Generic Bus Nm called ‘SpecialBusNm’ needs to be implemented, a header file
called ‘SpecialBusNm.h’ also needs to be provided. Note that this header does not
contain all prototypes, only those that cannot be derived from the prototypes of Nm.h.

#if !defined(SPECIALBUSNM_H)

#define SPECIALBUSNM_H

#include "Nm_Cfg.h"

#define SPECIALBUSNM_START_SEC_CODE

#include "MemMap.h"

/* Insert other function prototypes like

 * SpecialNm_PassiveStartUp here...

 */

#if (NM_BUS_SYNCHRONIZATION_ENABLED == STD_ON)

extern FUNC(Std_ReturnType, SPECIALBUSNM_CODE)

SpecialBusNm_RequestBusSynchronization

(CONST(NetworkHandleType, AUTOMATIC) nmNetworkHandle);

#endif

#if (NM_PASSIVE_MODE_ENABLED == STD_OFF) && \

 (NM_COORDINATOR_SYNC_SUPPORT == STD_ON)

extern FUNC(Std_ReturnType, SPECIALBUSNM_CODE)

GenericBusNm_SetSleepReadyBit

(CONST(NetworkHandleType, AUTOMATIC) nmNetworkHandle,

CONST(boolean, AUTOMATIC) nmSleepReadyBit);

#endif

#define SPECIALBUSNM_STOP_SEC_CODE

#include "MemMap.h"

#endif

3.3.1.2 Implementing the functions called by Nm

As next step, implement these functions in a C file of the application that includes
<GenericBusNm>.h. As a minimum requirement,

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 21
based on template version 4.8.0

> <GenericBusNm>_PassiveStartUp

> <GenericBusNm>_NetworkRequest

> <GenericBusNm>_NetworkRelease

> <GenericBusNm>_GetState

should be implemented.

It is useful to use a variable of the Nm_StateType that holds the current state towards the
NM Interface.

When the <GenericBusNm> is asleep, <GenericBusNm>_PassiveStartUp and/or
<GenericBusNm>_NetworkRequest have been called, this should lead to a call of
Nm_NetworkMode (not necessarily in the context of these function, may be delayed).
When <GenericBusNm> is not asleep (i.e. Nm_NetworkMode has been called),
Nm_BusSleepMode may only be called if there is no network request (i.e.
<GenericBusNm>_NetworkRelease has been called after
<GenericBusNm>_NetworkRequest or only <GenericBusNm>_PassiveStartUp led to the
call of Nm_NetworkMode).

The usage of

> Nm_BusSleepMode

> Nm_NetworkMode

is mandatory for a Generic BusNm. The usage of the other callback functions (see chapter
5.4) is optional.

If a legacy module is wrapped, the <GenericBusNm>_PassiveStartUp,
<GenericBusNm>_NetworkRequest, <GenericBusNm>_NetworkRelease functions (and
eventually other <GenericBusNm> functions called by Nm) probably need to call a function
of the legacy module. Vice versa, if the legacy module wants to notify a higher module,
these callbacks need to be implemented by <GenericBusNm> and to be forwarded to the
Nm callbacks (e.g. Nm_BusSleepMode, Nm_NetworkMode).

3.4 Coordinator Functionality

The coordinator functionality can be used to shut down two or more networks
synchronously. The coordination algorithm keeps all networks of a coordinator awake as
long as at least one network is not ready to sleep. When all networks are ready to sleep,
synchronous shutdown will start.

The coordinator can also be used to coordinate the usage of multiple BusNms on one
network.

3.4.1 Coordinated Networks

An ECU can have multiple, independent coordinators as long as every coordinator has at
least two networks (or at least two BusNms one network). Not every network of an ECU
must be part of a coordinator.

A network, which shall be part of a coordinator, must have a configured ‘Coordinator
Cluster Index’. This index identifies the coordinator which is associated to the network.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 22
based on template version 4.8.0

Furthermore, a coordinated network can either be an active or a passive one. On an
actively coordinated network, the current ECU is the last ECU which releases the Network.
As long as any other ECU requests the network, the current ECU requests the network,
too.

Caution
A network should only have one active coordinator!

If there were two or more active coordinators on one network, no ECU would enter
sleep because the coordinators keep awake each other.

Additionally, an actively coordinated network is kept awake as long as any other network of
the same coordinator is requested.

If a coordinated network is not an active one, it is automatically a passively coordinated
network. Passively coordinated networks are kept awake when a local request exists or as
long as at least one actively coordinated network of the same coordinator is requested.

3.4.2 Shutdown Algorithm

The coordinator algorithm checks the communication status of all networks belonging to
the same coordinator. Communication is required as long as a local or a remote request is

present. A local request means, that Nm_NetworkRequest() was called and

Nm_NetworkRelease() was not called yet. For an actively coordinated network a

remote request is assumed as long as no call of Nm_RemoteSleepIndication()

indicates that network is ready to sleep. Nm_RemoteSleepCancellation() restores a

remote request. Nm_CoordReadyToSleepIndication() and Nm_CoordReady-

ToSleepCancellation() are the counterpart of passively coordinated networks.

When no communication request for actively coordinated networks is present, shutdown

algorithm starts. Therefore, BusNm_NetworkRelease() will be called on passively

coordinated networks if there is no local communication request present anymore. As soon
as an actively coordinator on a remote ECU determines that no other ECU requests the
network, it will locally initiate its shutdown algorithm. Hence, remaining ECUs do not have
a remote communication request on its passively coordinated channels and can continue
the shutdown procedure.

If one of the networks belonging to the coordinator is awake and is a synchronizing
network, the shutdown algorithm waits for a suitable point in time to continue the shutdown

procedure. This point is indicated by Nm_SynchronizationPoint().

If no synchronizing network is available or the synchronization point has occurred, a
network-specific delay time starts for each actively coordinated network. The timing is
predetermined and depends on the Global Coordination Delay Time and the network-
specific shutdown time (refer to chapter 3.1.2.6 ‘Automatic Calculation of Shutdown Delay
Timer’ for more information). In case the network has NmOsek and all NmOsek members
are in “Normal State” the shutdown delay time is calculated differently. (refer to chapter
3.4.6 ‘Wait Bus Sleep Extension’) Additionally, the Sleep Ready Bit is set by calling the

corresponding BusNm_SetSleepReadyBit() function.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 23
based on template version 4.8.0

When a timer of a network expires, this network will be released by calling the

corresponding BusNm_RequestBusSynchronization() and BusNm_Network-

Release() function.

Finally, when all timers are expired and every network has notified Bus Sleep, the
coordinator is shut down.

If the coordinator detects any need for communication during the shutdown procedure, the
algorithm ensures that all not sleeping networks are restarted again. Additionally, on
actively coordinated networks, the Sleep Ready Bit will be set back. For networks which

are already asleep ComM_Nm_RestartIndication() will be called.

Caution
When a new request on a network occurs and coordinator is already shut down, neither
a restart nor an indication will be invoked on networks belonging to the same
coordinator.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 24
based on template version 4.8.0

3.4.3 State Machine of Coordinator

Figure 3-1 State Machine of Coordinator

 stm Cooordinator

for each coordinator

Network Passiv ed

Released

Network Requested

for each coordinated network

Shut Down

Start Timers

Timer Expired

Wait For Sync

Wait For Timers Abort Shutdown

Ready_To_Sleep

Bus_Awake

Local_Request

Bus_Awake

Remote_Request

Bus_Sleep

Abort=

Nm_PassiveStartUp()

|| Nm_NetworkRequest()

|| Nm_NetworkMode()

|| Nm_RemoteSleepCancellation()

|| Nm_CoordReadyToSleepCancellation()

Nm_SynchronizationPoint()

Nm_CoordReadyToSleepIndication(),

Nm_RemoteSleepIndication()

Nm_NetworkRelease()

[Nm_RemoteSleepIndication() ||

Nm_CoordReadyToSleepIndication()

called]

Nm_NetworkRelease()

[Nm_RemoteSleepIndication() &&

Nm_CoordReadyToSleepIndication()

not called]

Nm_NetworkRequest()Nm_RemoteSleepCancellation(),

Nm_CoordReadyToSleepCancellation()

Nm_BusSleepMode()

/Nm_NeworkRequest() on

not sleeping networks &&

ComM_RestartIndication

on sleeping networks

Abort

Timer of network expired

/BusNm_RequestBusSynchronization()

& BusNm_NetworkRelease()

Timer not expired

/Decrease timer

All Bus Timer

expired

Nm_NetworkRequest()

Abort

Every network is in

BusSleep

Abort

Abort

/start timers &&

set ready sleep bit on

active coordinated

networks

Nm_NetworkMode() [on any network if

NmCoordinatorRequestChannelsInBusSleep

== false]

all active coordinated

networks are

Ready_To_Sleep ||

Bus_Sleep

/BusNm_NetworkRelease()

for all networks which are in

Remote_Request

all passive coordinated networks are

Ready_To_Sleep || Bus_Sleep [any awake

network is a synchronizing network]

Abort

all passive coordinated networks are Ready_To_Sleep ||

Bus_Sleep [no awake network is a synchronizing network]

Network changes state from Local_Request to Remote_Request

/BusNm_NetworkRelease()

Nm_NetworkMode()

[Nm_NetworkRequest() called]
Nm_NetworkMode()

[Nm_PassiveStartup() called]

Abort [NmCoordinatorRequestChannelsInBusSleep == true]

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 25
based on template version 4.8.0

3.4.4 Wake-up

The wake-up of networks is outside the scope of the Nm according to AUTOSAR,
independent of coordinator support being enabled or not. Further details can be found in
[1].

Note
ComM can be configured to automatically start all networks when one network is
requested (Synchronous Wake-up).

However, the NM Coordinator can also be used to indicate to ComM via
ComM_Nm_RestartIndication that an asleep network should be requested in the
coordinator state ‘Shut Down’ (see Figure 3-1). This requires the configuration setting
‘Coordinator Request Channels In Bus Sleep’ to be turned ON.

Thus an alternative way of waking up networks synchronously can be realized: if one of
the networks that is inside a coordinator cluster is woken up by bus or is requested by
ComM while the NM Coordinator is in the ‘Shut Down’ state, all networks are woken up in
the coordinator cluster. So this feature permits the NM coordinator to wake up only the
channels in one NM coordinator cluster, not every communication channel like
‘Synchronous Wake-up’ of ComM does.

If the configuration setting ‘Coordinator Request Channels In Bus Sleep’ is not ON, this
behavior is disabled.

3.4.5 Sleep Master

If a coordinated network is a Sleep Master, the current ECU can absolutely decide when to
shut down this network. Therefore, the coordinator assumes that this bus is always ready
to sleep when no local request exists and does not evaluate the remote sleep indication
status.

3.4.6 Wait Bus Sleep Extensions

Within NM Coordination, the shutdown time of each BusNm is considered as a static time
and therefore generated into constant arrays.

However, the feature 'Wait Bus Sleep Extensions' permits NmOsek to have two different
shutdown times. Thus, the NM Coordination algorithm needs to decide during run-time
which of the two shutdown times will be applied by NmOsek depending on the status of
NmOsek (either Normal or LimpHome).

When at least one of the NmOsek BusNms is in 'LimpHome' status, the regular shut down
time is used.

On the other hand, when the NmOsek BusNms are in 'Normal' status on every channel, a
shorter shut down timer is used. The timer calculation is realized by Nm and it depends on
the configured NmGenericBusNmShutdownTime.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 26
based on template version 4.8.0

3.4.6.1 CanNm and NmOsek on the same channel

CanNm behaves differently regarding its shutdown time if NmOsek is located on the same
channel and if Wait Bus Sleep Extensions are turned ON [6]. This is also considered by
the Nm code generator for the shutdown delay timer calculation.

3.5 State Report

The feature ‘State Report’ writes state change notifications about a network as bit-coded
values in a configured Com signal for every network which has enabled the feature.

The following table provides all state changes (from previous state to current state) and
the corresponding signal values that are set by the NM Interface.

Previous State Current State Signal Value

Bus Sleep Mode15 Repeat Message 1

Prepare Bus Sleep Mode16 Repeat Message 2

Repeat Message Normal Operation 4

Ready Sleep Normal Operation 8

Ready Sleep Repeat Message 16

Normal Operation Repeat Message 32

Table 3-6 Nm State Change Signal Values

3.6 Macro Layer Optimization

The Nm module implementation can be optionally configured to be only a macro layer if

only one BusNm type is used. All function calls beside Nm_GetVersionInfo() are then

realized as preprocessor defines that forward the calls directly to calls of the
corresponding BusNm module. Also all callback functions from the BusNm module are
redefined directly to callbacks to the upper layer (e.g. ComM).

3.7 Initialization

Before calling any other functionality of the Nm module the initialization function

Nm_Init()has to be called by the application. The initialization call shall take place after

initializing the BusNm modules and prior to the initialization of the ComM module.

For API details refer to chapter 5.2.1 ‘Nm_Init’.

The Nm module assumes that some variables are initialized with certain values at start-up,
if the feature ‘Macro Layer Optimization’ is disabled and ‘Coordinator Support’ is enabled.
As not all embedded targets support the initialization of RAM within the start-up code the
Nm module provides the function Nm_InitMemory(). This function has to be called during
start-up and before Nm_Init() is called. Refer also to chapter 3.1.2.5 ‘Memory Initialization’.

For API details refer to chapter 5.2.17 ‘Nm_InitMemory’.

15

 As FlexRay NM does not perform a transition directly from Bus Sleep Mode to Repeat Message State the
value is set in the transition from Synchronize Mode to Repeat Message State.
16

 This transition is not available for FlexRay NM.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 27
based on template version 4.8.0

3.8 Provision of the NM State

The NM State can be determined either by using the function Nm_GetState() (see also

chapter 5.2.14) or by activating the feature ‘State Change Ind Enabled’. Both of these
features are implemented according to [1].

Note that the NM state may also be optionally reported into Com signals using the ‘State
Report Enabled’ feature (refer to chapter 3.5 for details).

3.8.1 Determining the NM State Using Nm_GetState

If Nm_GetState() (see also chapter 5.2.14) has been called, the current NM state and

the current NM mode of the bus-specific Nm (e.g. CanNm, FrNm) associated with the

system channel index nmChannelHandle are written to the passed pointer variables.

Possible state and mode values that are returned into these variables can be seen in the

definition of Nm_StateType / Nm_ModeType in NmStack_Types.h.

3.8.2 Using the ‘State Change Ind Enabled’ feature

The ‘State Change Ind Enabled’ feature enables a callback that is called each time the NM
state has been changed. To use this feature, activate the ‘State Change Ind Enabled’
setting in configuration. Furthermore, enter the name of the function that shall be called in
case of a NM state change into the ‘State Change Ind Callback’ field and provide the file
name of the header file that contains the function prototype of this function as one of the
‘Callbacks Prototype Header’ setting.

Note that the function prototype of the function given in ‘State Change Ind Callback’ has to

be the same as (except the function name) Nm_StateChangeNotification (refer to

chapter 5.4.10 for details).

3.9 Multiple BusNms on One Channel

The Nm module provides the possibility to support multiple BusNms on one channel (e.g.
CanNm and J1939Nm, see Figure 3-2 Left). That means that there can be several NM
algorithms running on one network and they can be coordinated by one node (see Figure
3-2 Right).

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 28
based on template version 4.8.0

Figure 3-2 Left: Architectural View in AUTOSAR. Right: Network Topology with multiple BusNms on one network

In the bus topology example (Figure 3-2 Right), two ECUs are equipped with CanNm
(ECU 1, ECU 2) and two other ECUs (ECU 3, ECU 4) are equipped with a proprietary
BusNm. ECU 5 is equipped with both BusNms (CanNm and the proprietary one).

To realize the functionality of ECU 5, this feature can be used. It requires the NM
Coordinator to be used.

There should be only one node that has multiple BusNms on the network (ECU 5 in this
example). If there is more than one node, only one of the nodes that have multiple
BusNms is allowed to be coordinated actively (thus the other nodes with multiple BusNms
need to be coordinated passively, Figure 3-3). This use case is not recommended.

Figure 3-3 Not recommended use case having more than one node with multiple BusNms on the network

Even worse would be a setup with three different types of BusNms (e.g. CanNm,
proprietary BusNm Type 1, and proprietary BusNm Type 2) without having one node that
provides all three types of BusNms. Instead there could be two nodes having two BusNms

 cmp CanNm and J1939Nm on one channel

ComM

Nm

CanNm J1939Nm

CanIf

 object Network View

ECU 1 ECU 2

ECU 4ECU 3

ECU 5

Equipped with CanNm

and proprietary BusNm

(Generic BusNm)

CAN

Equipped with CanNm

Equipped with proprietary BusNm (Generic BusNm)

 object Network View of not recommended use case

ECU 3

ECU 1 ECU 2

ECU 4

ECU 5 ECU 6

Equipped with CanNm

Equipped with proprietary BusNm

Equipped with CanNm

and proprietary BusNm

(actively coordinated)

Equipped with CanNm

and proprietary BusNm

(passively coordinated)

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 29
based on template version 4.8.0

of a certain type, for instance one having the two first types and the other having the last
two types (Figure 3-4). Such setups are not supported!

Figure 3-4 Unsupported use case having more than one node with multiple BusNms

Caution
Currently, multiple BusNms are only supported on CAN channels.

The following sections explain the basic principles how information is exchanged between
the BusNms, Nm and the upper layers.

3.9.1 Notification of Mode Changes in the BusNms

The BusNms notify the Nm module about changes in their modes (Bus Sleep Mode,
Prepare Bus Sleep Mode, Network Mode).

This mode is notified towards ComM. If multiple BusNms are configured on one channel,
the modes need to be aggregated before ComM is notified. In other words, the ‘highest’
mode of all BusNms on a channel needs to be determined before ComM is notified about
mode changes. The set of modes of all BusNms on a channel is an unordered one (the
order does not matter to Nm).

The mode requests (Nm_PassiveStartUp, Nm_NetworkRequest, Nm_NetworkRelease)
are propagated towards the BusNm by the NM Coordinator (refer to chapter 3.4 for
details).

Figure 3-5 provides an example of two BusNms on one channel. The encoding of the sub-
states ‘00’, ‘01’, ‘02’, ‘11’, ‘12’, ‘22’ represents the current modes of the underlying
BusNms, where ‘0’ indicates ‘Bus Sleep Mode’, ‘1’ refers to ‘Prepare Bus Sleep Mode’ and
‘2’ stands for ‘Network Mode’.

Note that the super-states ‘Bus Sleep Mode’, ‘Prepare Bus Sleep Mode’ and ‘Bus Sleep
Mode’ indicate the mode that is forwarded as an aggregated mode towards ComM.

 object Network View of not supported use case

ECU 1 ECU 2 ECU 3

ECU 4 ECU 5 ECU 6

ECU 8ECU 7

Equipped with CanNm

Equipped with proprietary BusNm (Type 1)

Equipped with

proprietary BusNm

(Type 2)

Equipped with CanNm

and proprietary BusNm

(Type 2)

Equipped with CanNm

and proprietary BusNm

(Type 1)

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 30
based on template version 4.8.0

Figure 3-5 Mode Changes with two BusNms on one channel

The states ‘01’ of ‘Prepare Bus Sleep Mode’ and ’12’ of ‘Network Mode’ need to recalculate
the Overall Mode of all BusNms for certain triggers (01: Nm_NetworkMode, 12:
Nm_BusSleepMode). This is because these triggers are ambiguous inside these states
(e.g. possible target states from ‘01’ for the trigger Nm_NetworkMode are ‘02’ and ‘12’,
because either the one BusNm or the other may have changed to Network Mode).

In ambiguous cases, BusNm_GetState is called for each BusNm. This requires each
BusNm to provide the correct new mode in the context of the Nm_BusSleepMode,
Nm_PrepareBusSleepMode, Nm_NetworkMode calls by the BusNm.

Figure 3-5 also contains transitions annotated as ‘irregular transitions’. These are
transitions that shall normally not occur because they are not intended by AUTOSAR.
Example: Nm_PrepareBusSleepMode() shall not be called in Bus Sleep Mode. However, if
it was called, it would not lead to any problems.

 stm State Machine for Mode Changes with Two BusNms

Bus Sleep Mode

Prepare Bus Sleep Mode

Network Mode

00

01 11

12

22

02

Regular transition

Irregular transition

Legend

N
m

_
B

u
s
S

le
e

p
M

o
d

e

/C
o

m
M

_
N

m
_

B
u

s
S

le
e

p
M

o
d

e
()

Nm_BusSleepMode

/ComM_Nm_BusSleepMode()

N
m

_
N

e
tw

o
rk

M
o

d
e

/C
o

m
M

_
N

m
_

N
e

tw
o

rk
M

o
d

e
()

Nm_BusSleepMode

Nm_PrepareBusSleepMode

/ComM_Nm_PrepareBusSleepMode()

Nm_NetworkMode

/ComM_Nm_NetworkMode()

Nm_NetworkMode [Overall

Mode is 12]

/ComM_Nm_NetworkMode()

Nm_NetworkMode [Overall Mode is 02]

/ComM_Nm_NetworkMode()

Nm_BusSleepMode

[Overall Mode is 01]

/ComM_Nm_PrepareBusSleepMode()

Nm_PrepareBusSleepMode

/ComM_Nm_PrepareBusSleepMode()

Nm_NetworkMode

Nm_BusSleepMode

[Overall Mode is 02]

Nm_BusSleepModeNm_NetworkMode

Nm_PrepareBusSleepMode

Nm_NetworkMode

Nm_PrepareBusSleepMode

Nm_PrepareBusSleepMode

Nm_PrepareBusSleepMode

Nm_BusSleepMode

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 31
based on template version 4.8.0

Caution
Take care that BusNm_GetState returns the correct new mode in the context of the
Nm_BusSleepMode, Nm_PrepareBusSleepMode, Nm_NetworkMode calls by the
BusNm when implementing a Generic BusNm.

Note
The ‘Synchronize Mode’ is not explicitly notified through a callback function and is
therefore considered as ‘Bus Sleep Mode’ concerning the aggregation.

3.9.2 State Change Notifications

If the ‘State Change Ind Enabled’ feature is used (see chapter 3.8.2), the state change
notifications are aggregated over all BusNms on a channel. Only the numerically highest
state is forwarded to the ‘State Change Ind Callback’ function (e.g. implemented by
BswM). In other words, the current overall state of n BusNms is maxi=1,…,n{statei}.

Since the previous state is also provided by the call of Nm_StateChangeNotification, there
are no ambiguities and errors in state changes can also be detected and reported to Det
(see chapter 3.11.1).

An example for two BusNms on one channel is provided in Table 3-7.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 32
based on template version 4.8.0

Current State of BusNm 1

Current State of BusNm 2

0
:
N

M
_
S

T
A

T
E

_
U

N
IN

IT

1
:
N

M
_
S

T
A

T
E

_
B

U
S

_
S

L
E

E
P

2
:
N

M
_
S

T
A

T
E

_
P

R
E

P
A

R
E

_
B

U
S

_
S

L
E

E
P

3
:
N

M
_
S

T
A

T
E

_
R

E
A

D
Y

_
S

L
E

E
P

4
:
N

M
_
S

T
A

T
E

_
N

O
R

M
A

L
_

O
P

E
R

A
T

IO
N

5
:
N

M
_
S

T
A

T
E

_
R

E
P

E
A

T
_
M

E
S

S
A

G
E

6
:
N

M
_
S

T
A

T
E

_
S

Y
N

C
H

R
O

N
IZ

E

7
:
N

M
_
S

T
A

T
E

_
O

F
F

L
IN

E

8
:
N

M
_
S

T
A

T
E

_
C

H
E

C
K

_
W

A
K

E
U

P

9
:
N

M
_
S

T
A

T
E

_
W

A
IT

_
S

T
A

R
T

U
P

1
0
:
N

M
_

S
T
A

T
E

_
W

A
IT

_
N

E
T

W
O

R
K

_
G

W
_

M
S

G
_
A

C
T

IV
E

1
1
:
N

M
_
S

T
A

T
E

_
W

A
IT

_
N

E
T

W
O

R
K

_
G

W
_

A
N

D
_
E

V
E

N
T

_
M

S
G

_
A

C
T

IV
E

1
2
:
N

M
_

S
T
A

T
E

_
B

U
S

_
O

F
F

0: NM_STATE_UNINIT 0 1 2 3 4 5 6 7 8 9 10 11 12

1: NM_STATE_BUS_SLEEP 1 1 2 3 4 5 6 7 8 9 10 11 12

2:
NM_STATE_PREPARE_BUS_SLEEP

2 2 2 3 4 5 6 7 8 9 10 11 12

3: NM_STATE_READY_SLEEP 3 3 3 3 4 5 6 7 8 9 10 11 12

4: NM_STATE_NORMAL_OPERATION 4 4 4 4 4 5 6 7 8 9 10 11 12

5: NM_STATE_REPEAT_MESSAGE 5 5 5 5 5 5 6 7 8 9 10 11 12

6: NM_STATE_SYNCHRONIZE 6 6 6 6 6 6 6 7 8 9 10 11 12

7: NM_STATE_OFFLINE 7 7 7 7 7 7 7 7 8 9 10 11 12

8: NM_STATE_CHECK_WAKEUP 8 8 8 8 8 8 8 8 8 9 10 11 12

9: NM_STATE_WAIT_STARTUP 9 9 9 9 9 9 9 9 9 9 10 11 12

10:
NM_STATE_WAIT_NETWORK_GW_M
SG_ACTIVE

10 10 10 10 10 10 10 10 10 10 10 11 12

11:
NM_STATE_WAIT_NETWORK_GW_A
ND_EVENT_MSG_ACTIVE

11 11 11 11 11 11 11 11 11 11 11 11 12

12: NM_STATE_BUS_OFF 12 12 12 12 12 12 12 12 12 12 12 12 12

Table 3-7 Overall State of two BusNms on one channel

Note that the initial state of each BusNm is ‘Bus Sleep’ (1).

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 33
based on template version 4.8.0

3.9.3 Remote Sleep Indication Statuses

The Remote Sleep status for actively coordinated channels and the Coordinator Ready to
Sleep status for passively coordinated channels is aggregated over all BusNms on a
channel.

The ‘Remote Sleep Ind Callback’ / ‘Remote Sleep Cancel Callback’ notifications that may
be implemented by an upper layer are thus also augmented by an aggregation of the
Remote Sleep Indication overall state of all BusNms.

The initial Remote Sleep state is ‘Number of BusNms that are Channel Sleep Masters’.
Currently, J1939Nm is always considered as a Channel Sleep Master (see chapter3.4.5)
and each Generic BusNm can be configured individually as Channel Sleep Master.

The ‘Remote Sleep Ind Callback’ function is called when all BusNms that are not ‘Channel
Sleep Masters’ have indicated the readiness to sleep of the other nodes (call of
Nm_RemoteSleepIndication on actively coordinated channels /
Nm_CoordReadyToSleepIndication on passively coordinated channels).

If ‘Remote Sleep Ind Callback’ has already been called and one BusNm has detected that
at least one remote node is not ready to sleep (call of Nm_RemoteSleepCancellation on
actively coordinated channels / Nm_CoordReadyToSleepCancellation passively
coordinated channels), the ‘Remote Sleep Cancel Callback’ function is called.

A call of Nm_NetworkMode by the first BusNm that enters Network Mode resets the
Remote sleep to its initial value (‘Number of BusNms that are Channel Sleep Masters’).

An example state machine of the remote sleep callbacks is illustrated in Figure 3-6.

Figure 3-6 State Machine of Remote Sleep callbacks for two BusNms on one channel

As it can be seen, the total number of states is ‘Number of BusNms on the channel’ + 1.

 stm Remote Sleep for Two BusNms

0

1

2

Nm_CoordReadyToSleepIndication

/Nm_ChannelState =

NM_BUS_STATE_READY_TO_SLEEP;

Nm_RemoteSleepIndication

Nm_CoordReadyToSleepIndication

Nm_NetworkMode [Number

of BusNms in Network Mode

== 0 && Channel Sleep

Masters == 0]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in

Network Mode == 0 && Channel Sleep Masters

== 1]

/ComM_Nm_NetworkMode();

N
m

_
N

e
tw

o
rk

M
o

d
e

 [
N

u
m

b
e

r
o

f
B

u
s
N

m
s
 i
n

 N
e

tw
o

rk
 M

o
d

e
 =

=
 0

 &
&

C
h

a
n

n
e

l
S

le
e

p
 M

a
s
te

rs
 =

=
 2

]

/C
o

m
M

_
N

m
_

N
e

tw
o

rk
M

o
d

e
()

;

Nm_RemoteSleepCancellation Nm_CoordReadyToSleepCancellation

Nm_RemoteSleepIndication

/Nm_ChannelState = NM_BUS_STATE_READY_TO_SLEEP;

UL_Nm_RemoteSleepIndication;

Nm_CoordReadyToSleepCancellation

Nm_NetworkMode [Number of BusNms in Network Mode == 0 &&

Channel Sleep Masters == 1]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in Network

Mode == 0 && Channel Sleep Masters == 1]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in Network Mode == 0 &&

Channel Sleep Masters == 0]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in Network Mode == 0 &&

Channel Sleep Masters == 2]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in Network Mode == 0 && Channel Sleep Masters == 2]

/ComM_Nm_NetworkMode();

Nm_NetworkMode [Number of BusNms in Network Mode == 0 &&

Channel Sleep Masters == 0]

/ComM_Nm_NetworkMode();

Nm_RemoteSleepCancellation

/Nm_ChannelState =

NM_BUS_STATE_BUS_AWAKE;

Nm_AbortShutdown();

UL_Nm_RemoteSleepCancellation();

Nm_CoordReadyToSleepCancellation

/Nm_ChannelState =

NM_BUS_STATE_BUS_AWAKE;

Nm_AbortShutdown();

Nm_CoordReadyToSleepIndication Nm_RemoteSleepIndication

Nm_RemoteSleepCancellation

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 34
based on template version 4.8.0

3.9.4 Other Aggregated Information and Caveats

If the following service functions are used by the application, the data that is retrieved from
the BusNms is aggregated overall BusNms. It is therefore recommended to call the
corresponding BusNm function directly if multiple BusNms are used on one channel. Refer
to the detailed service description chapters for details.

Nm_GetUserData (chapter 5.2.8)

Nm_GetPduData (chapter 5.2.9)

Nm_GetNodeIdentifier (chapter 5.2.11)

Nm_GetLocalNodeIdentifier (chapter 5.2.12)

Nm_CheckRemoteSleepIndication (chapter 5.2.13)

Nm_GetState (chapter 5.2.14)

The service function Nm_SetUserData (chapter 5.2.7) propagates the provided user data
to all BusNms on the channel. Therefore the pointer nmUserDataPtr has to point to a
buffer that is large enough to fit into the user data bytes of the BusNm that has greatest
number of user data bytes. Even though E_NOT_OK may be returned from
Nm_SetUserData, the user data has been accepted by the BusNms that support the
service BusNm_SetUserData. No DET Error is thrown by Nm itself (but maybe thrown by
the BusNm, depends on the BusNm).

Also consider the following caveats:

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 35
based on template version 4.8.0

Caution

> The function Nm_PduRxIndication (and thus the user callback
UL_Nm_PduRxIndication) can be called by any BusNm on the channel and it
cannot be determined during run-time which BusNm has called the function. Refer
to chapter 5.6.1.3 for details.

> The functions Nm_<BusNm>_PduRxIndication (and thus the configured user
callbacks) can be called by any BusNm on the channel and they can determine
which BusNm has called the function by using different identifiers for each BusNm.

> The function Nm_StateChangeNotification (and thus the callback
UL_Nm_StateChangeNotification) can be called by any BusNm on the channel and
the numerically highest state is reported as current state towards the
UL_Nm_StateChangeNotification callback and the Com Signal if ‘State Report
Enabled’ is used. Refer to chapter 5.6.1.5 for details.

> The function Nm_RepeatMessageIndication (and thus the callback
UL_Nm_RepeatMessageIndication) can be called by any BusNm on the channel
and thus it cannot be determined which of the BusNms has entered Repeat
Message. The repeat message request is not forwarded to the other BusNms on the
channel by the Nm. Refer to chapter 5.6.1.6 for details.

> The function Nm_TxTimeoutException and Nm_CarWakeUpIndication (and thus the
callbacks UL_Nm_TxTimeoutException, UL_Nm_CarWakeUpIndication) can be
called by any BusNm on the channel and thus it cannot be determined which of the
BusNms has called it.

> The return values of the service functions are aggregated (i.e. if one BusNm call
returns E_NOT_OK, E_NOT_OK is returned by the corresponding Nm function).

> The data behind the pointer(s) in Nm_GetNodeIdentifier,
Nm_GetLocalNodeIdentifier might have been manipulated although E_NOT_OK is
returned.

3.10 Main Functions

The Nm module implementation provides one main function. When the NM Coordinator is
enabled this main function has to be called cyclically on task level. The default cycle time
is 10 milliseconds. The value has to be set in the component configuration.

For API details refer to chapter 5.2.16 ‘Nm_MainFunction’.

3.11 Error Handling

3.11.1 Development Error Reporting

Reporting of development errors is done by the service

Std_ReturnType Det_ReportError (

 uint16 ModuleId, uint8 InstanceId,

 uint8 ApiId, uint8 ErrorId) (5.3)

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 36
based on template version 4.8.0

Please refer to the documentation of the development error tracer [2] for further
information and a detailed description of the API.

The reported Nm ID is 29.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

NM_SID_INIT Nm_Init

NM_SID_PASSIVESTARTUP Nm_PassiveStartUp

NM_SID_NETWORKREQUEST Nm_NetworkRequest

NM_SID_NETWORKRELEASE Nm_NetworkRelease

NM_SID_DISABLECOMMUNICATION Nm_DisableCommunication

NM_SID_ENABLECOMMUNICATION Nm_EnableCommunication

NM_SID_SETUSERDATA Nm_SetUserData

NM_SID_GETUSERDATA Nm_GetUserData

NM_SID_GETPDUDATA Nm_GetPduData

NM_SID_REPEATMESSAGEREQUEST Nm_RepeatMessageRequest

NM_SID_GETNODEIDENTIFIER_ Nm_GetNodeIdentifier

NM_SID_GETLOCALNODEIDENTIFIER Nm_GetLocalNodeIdentifier

NM_SID_CHECKREMOTESLEEPINDICATION Nm_CheckRemoteSleepIndication

NM_SID_GETSTATE Nm_GetState

NM_SID_GETVERSIONINFO Nm_GetVersionInfo

NM_SID_MAINFUNCTION Nm_MainFunction

NM_SID_NETWORKSTARTINDICATION Nm_NetworkStartIndication

NM_SID_NETWORKMODE Nm_NetworkMode

NM_SID_PREPAREBUSSLEEPMODE Nm_PrepareBusSleepMode

NM_SID_BUSSLEEPMODE Nm_BusSleepMode

NM_SID_PDURXINDICATION Nm_PduRxIndication

NM_SID_STATECHANGENOTIFICATION Nm_StateChangeNotification

NM_SID_REMOTESLEEPINDICATION Nm_RemoteSleepIndication

NM_SID_REMOTESLEEPCANCELLATION Nm_RemoteSleepCancellation

NM_SID_SYNCHRONIZATIONPOINT Nm_SynchronizationPoint

NM_SID_REPEATMESSAGEINDICATION Nm_RepeatMessageIndication

NM_SID_TXTIMEOUTEXCEPTION Nm_TxTimeoutException

NM_SID_BUSNMSPECIFICPDURXINDICATION Nm_<BusNm>_PduRxIndication

NM_SID_CARWAKEUPINDICATION Nm_CarWakeUpIndication

NM_SID_COORDREADYTOSLEEPINDICATION Nm_CoordReadyToSleepIndication

NM_SID_COORDREADYTOSLEEPCANCELLATION Nm_CoordReadyToSleepCancellation

NM_SID_INITMEMORY Nm_InitMemory

Table 3-8 Service IDs

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 37
based on template version 4.8.0

The errors reported to DET are described in the following table:

Error Code Description

0x00 NM_E_UNINIT API service used without module initialization.

0x01 NM_E_HANDLE_UNDEF API service used with wrong network handle.

0x02 NM_E_PARAM_POINTER API service called with a NULL pointer

0x20 NM_E_SYNCHRONIZATION
_TIMEOUT17

Nm_SynchronizationPoint was not called within the

configured synchronization timeout time.

0x21 NM_E_FUNCTION_PTR_IS
_NULL

Pointer to a function to be called is equals NULL

0x22 NM_E_INVALID_STATE17 An invalid state has been passed to

Nm_StateChangeNotification (only available if

the optimization for only one BusNm on a channel is
OFF)

0x23 NM_E_SAME_STATES17 The same states have been passed to
Nm_StateChangeNotification

0x24 NM_E_NOT_AVAILABLE_IN
_PASSIVE_MODE

Nm Passive Mode is not enabled for this channel

Table 3-9 Errors reported to DET

3.11.2 Production Code Error Reporting

The Nm module currently does not have any error which has to be reported to the DEM.

17

 This error code is an extension to AUTOSAR. Refer also to chapter 3.1.2.1 ‘Additional DET Error Codes’.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 38
based on template version 4.8.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR Nm into an
application environment of an ECU.

4.1 Scope of Delivery

The delivery of the Nm contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

Nm.c This is the source file of the Nm.

Nm.lib This is the library file built from the source file

Nm.h This is the header file of the Nm.

Nm_Cbk.h This is the callback header file of the Nm.

NmStack_
Types.h

This is the Nm type definition header file of the Nm.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

Nm_Cfg.h This is the configuration header file.

Nm_Cfg.c This is the configuration source file containing all pre-compile relevant content.

Nm_Lcfg.c This is the configuration source file containing all link-time relevant content.

Table 4-2 Generated files

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 39
based on template version 4.8.0

4.2 Include Structure

Figure 4-1 Include structure

Some includes are optional and depend on the configuration. BusNm.h stands for every

used BusNm module and if multiple BusNm modules are used for each one the
corresponding header is included. For example if CanNm and FrNm are used, the header

files CanNm.h and FrNm.h are included. The files are included either in Nm_Cfg.h or

Nm_Cfg.c depending on the configuration settings for ‘Macro Layer Optimization’.

 class File Include Structure_extended

Det.hNm.c

NmStack_Types.h

Nm.h

Nm_Cbk.h

Nm_Cfg.c

Nm_Cfg.h

Nm_Lcfg.c ComM_Nm.h

SchM_Nm.h

Compiler.h

MemMap.h

Platform_Types.h

Std_Types.h

BusNm.h

ComStack_Types.hUserCfg.h

CallbacksPrototype.h

Rtm.h

«include»

«include»

«include»

0..1

«include»

«include»

«include»

«include»

«include»
«include»

1..*

«include»

0..1

«include»

0..1

«include»

«include»«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»«include»
«include»

«include»

«include»

0..1

«include»

0..1

«include»

0..*

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 40
based on template version 4.8.0

CallbacksPrototype.h and UserCfg.h stand for the respectively configured header

files.

4.3 Critical Sections

The AUTOSAR standard provides with the BSW Scheduler (SchM) a BSW module, which
handles entering and leaving critical sections.

The NM Interface calls the following function when entering a critical section:

void SchM_Enter_Nm_NM_EXCLUSIVE_AREA_i() ()

When the critical section is left the following function is called by the NM Interface:

void SchM_Exit_Nm_NM_EXCLUSIVE_AREA_i() ()

The critical sections have to be defined and mapped to corresponding interrupt locks by
the BSW Scheduler. Details which section needs what kind of interrupt lock are provided in
the following section. For more information about the BSW Scheduler please refer to [5].

4.3.1 Exclusive Area 0

Interrupt Lock

No interruption by any interrupt is allowed. Therefore this section must always lock global
interrupts.

Interfaces

> SchM_Enter_Nm_NM_EXCLUSIVE_AREA_0

> SchM_Exit_Nm_NM_EXCLUSIVE_AREA_0

Purpose

Ensures data consistency between BusNm and coordination algorithm.

Particularities and Limitations

This critical section is only relevant if the Nm coordinator is used.

Table 4-3 Exclusive Area 0

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 41
based on template version 4.8.0

4.3.2 Exclusive Area 1

Interrupt Lock

No interruption by an interrupt is allowed if one of the following functions is executed in the
context of an interrupt service routine:

> Nm_NetworkMode

> Nm_BusSleepMode

> Nm_PrepareBusSleepMode

> Nm_RemoteSleepIndication

> Nm_RemoteSleepCancellation

> Nm_CoordReadyToSleepIndication

> Nm_CoordReadyToSleepCancellation

If at least one of the above mentioned functions is executed in interrupt context, this section must
always lock global interrupts.

Interfaces

> SchM_Enter_Nm_NM_EXCLUSIVE_AREA_1

> SchM_Exit_Nm_NM_EXCLUSIVE_AREA_1

Purpose

Ensures data consistency between BusNm and coordination algorithm.

Particularities and Limitations

This critical section is only relevant if the Nm coordinator is used and at least one channel
contains more than one BusNm (e.g. CanNm and J1939Nm on one channel).

Table 4-4 Exclusive Area 1

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 42
based on template version 4.8.0

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the Nm are described in this chapter.

Type Name C-Type Description Value Range

Nm_StateType uint8 States of the bus-
specific network
management state
machine. Not all states
will be reached by each
BusNm. For details
refer to the Technical
Reference or the
AUTOSAR SWS of the
corresponding BusNm.

NM_STATE_UNINIT

No initialization has been performed.

NM_STATE_BUS_SLEEP

Nm entered sleep state due to
initialization or shutdown.

NM_STATE_PREPARE_BUS_SLEEP

Nm prepares for entering sleep. This
state is only relevant for BusNm
modules on CAN, e.g. CanNm.

NM_STATE_READY_SLEEP

Communication is not needed any
more by the application and no NM
messages are transmitted.

NM_STATE_NORMAL_OPERATION

Communication is needed by the
application and the NM message is
transmitted

NM_STATE_REPEAT_MESSAGE

Nm has (re-)started and
communication is enabled. Nm stays
a configurable amount of time in this
state and transmits its Nm message.

NM_STATE_SYNCHRONIZE

Start-up has been requested and Nm
waits to be synchronized to the
Repetition Cycle. This state is only
relevant for FrNm.

NM_STATE_OFFLINE

Address Claiming is running or
Address Loss has occurred. This
state is only relevant for J1939Nm.

NM_STATE_CHECK_WAKEUP

State that is entered on external bus
wake-up event. This state is only
relevant for NmStMgr.

NM_STATE_WAIT_STARTUP

State that is entered on internal
network request on NmStMgr

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 43
based on template version 4.8.0

Type Name C-Type Description Value Range

channels.

Nm is starting up and sends a wake-
up message. No other messages can
be transmitted in this state on
NmOsek channels. This state is only
relevant for NmStMgr and NmOsek.

NM_STATE_WAIT_NETWORK_GW_MS

G_ACTIVE

Nm is starting up and was in state
NM_STATE_WAIT_STARTUP
before. The transmission of

gateway messages is enabled in this
state. This state is only relevant for
NmOsek.

NM_STATE_WAIT_NETWORK_GW_AN

D_EVENT_MSG_ACTIVE

Nm is starting up and was in state
NM_STATE_WAIT_NETWORK_GW_MS

G_ACTIVE before. Gateway as well

as event triggered messages can be
transmitted in this state. This state is
only relevant for NmOsek.

NM_STATE_BUS_OFF

This state is entered upon a BusOff
notification. This state is only
relevant for NmOsek.

Nm_ModeType uint8 Modes of the bus-
specific network
management state
machine. Not all modes
will be reached by each
BusNm. For details
refer to the Technical
Reference or the
AUTOSAR SWS of the
corresponding BusNm.

NM_MODE_BUS_SLEEP

Nm entered sleep mode due to
initialization or shutdown.

NM_MODE_PREPARE_BUS_SLEEP

Nm prepares for entering sleep. This
mode is only relevant for BusNm
modules on CAN, e.g. CanNm.

NM_MODE_SYNCHRONIZE

Start-up has been requested and Nm
waits to be synchronized to the
Repetition Cycle. This mode is only
relevant for FrNm.

NM_MODE_NETWORK

Nm has (re-)started and
communication is (partly) enabled.

Table 5-1 Type definitions

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 44
based on template version 4.8.0

5.2 Services Provided by Nm

5.2.1 Nm_Init

Prototype

void Nm_Init (void)

Parameter

-

Return code

-

Functional Description

This function initializes the Nm.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> This function has to be called after the initialization of the respective bus interface.

> This API is realized as a macro if ‘Coordinator Support’ is disabled.

Expected Caller Context

> This function can be called from task level only.

Table 5-2 Nm_Init

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 45
based on template version 4.8.0

5.2.2 Nm_PassiveStartUp

Prototype

Std_ReturnType Nm_PassiveStartUp (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Passive start of network management has failed

Functional Description

This function requests a passive start-up of the network management. The Nm calls therefore the passive
start-up function of the respective BusNm (see also chapter 5.3 ‘Services Used by Nm’).

Note
When Nm_PassiveStartUp is called for a coordinated network the network request
function of the respective BusNm(s) on the network is called instead of the passive
start-up function.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-3 Nm_PassiveStartUp

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 46
based on template version 4.8.0

5.2.3 Nm_NetworkRequest

Prototype

Std_ReturnType Nm_NetworkRequest (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Requesting the network has failed

Functional Description

This function requests the network and the bus communication. The Nm calls therefore the network request
function of the respective BusNm(s) on the network (see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available if at least one network is not passive or CONFIG-VARIANT is
LINK-TIME.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-4 Nm_NetworkRequest

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 47
based on template version 4.8.0

5.2.4 Nm_NetworkRelease

Prototype

Std_ReturnType Nm_NetworkRelease (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Releasing the network has failed

Functional Description

This function releases the network and the bus communication. The Nm calls therefore the network release
function of the respective BusNm (see also chapter 5.3 ‘Services Used by Nm’).

Note
When Nm_NetworkRelease is called for a coordinated network, the network release
function of the respective BusNm(s) is/are not called immediately. Instead, the network
release function(s) is/are called when every network of the corresponding coordinator
is ready to sleep.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous for not coordinated networks.

> This function is asynchronous for coordinated networks.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available, if at least one network is not passive or CONFIG-VARIANT is
LINK-TIME.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-5 Nm_NetworkRelease

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 48
based on template version 4.8.0

5.2.5 Nm_DisableCommunication

Prototype

Std_ReturnType Nm_DisableCommunication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Disabling the communication has failed

Functional Description

This function disables the NM PDU transmission ability. The Nm calls therefore the disable communication
function of the respective BusNm(s) on the network (see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available if ‘Com Control Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-6 Nm_DisableCommunication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 49
based on template version 4.8.0

5.2.6 Nm_EnableCommunication

Prototype

Std_ReturnType Nm_EnableCommunication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Enabling the communication has failed

Functional Description

This function enables the NM PDU transmission ability. The Nm calls therefore the enable communication
function of the respective BusNm(s) on the network (see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available if ‘Com Control Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-7 Nm_EnableCommunication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 50
based on template version 4.8.0

5.2.7 Nm_SetUserData

Prototype

Std_ReturnType Nm_SetUserData (
 const NetworkHandleType nmNetworkHandle,

 const uint8 * const nmUserDataPtr)

Parameter

nmNetworkHandle Identification of the network

nmUserDataPtr Pointer to the user data that shall be transmitted in the next NM messages

Return code

E_OK

E_NOT_OK

No error

Setting of user data has failed

Functional Description

This function sets the user data that shall be transmitted within the next NM messages. The Nm calls
therefore the set user data function of the respective BusNm(s) (see also chapter 5.3 ‘Services Used by
Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available if ‘User Data Enabled’ is enabled, ‘Com User Data Support’ is
disabled and at least one network is not passive or CONFIG-VARIANT is LINK-TIME.

> If multiple BusNms are configured on the channel, the Set User Data API will be called for all
BusNms on the channel. This implies that the buffer behind the nmUserDataPtr has to provide
enough data bytes so that all BusNms copy valid user data bytes. If the user data bytes shall
be different for each BusNm, call the BusNm_SetUserData function directly instead.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-8 Nm_SetUserData

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 51
based on template version 4.8.0

5.2.8 Nm_GetUserData

Prototype

Std_ReturnType Nm_GetUserData (
 const NetworkHandleType nmNetworkHandle,

 uint8 * const nmUserDataPtr)

Parameter

nmNetworkHandle Identification of the network

nmUserDataPtr Pointer where the user data of the last received NM message shall be copied
to

Return code

E_OK

E_NOT_OK

No error

Getting of user data has failed

Functional Description

This function copies the user data of the last received NM message to the location provided by the pointer.
The Nm calls therefore the get user data function of the respective BusNm(s) on the network (see also
chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘User Data Enabled’ is enabled.

> If multiple BusNms are configured on the channel, the Get User Data API will be called for all
BusNms on the channel. This implies that the buffer will contain the most recent user data
bytes of one of the BusNms that is configured on the channel and that has implemented the
service. It is recommended to call each BusNm_GetUserData function directly for channels
with multiple BusNms, otherwise (one BusNm is configured on the channel) use
Nm_GetUserData.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-9 Nm_GetUserData

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 52
based on template version 4.8.0

5.2.9 Nm_GetPduData

Prototype

Std_ReturnType Nm_GetPduData (
 const NetworkHandleType nmNetworkHandle,

 uint8 * const nmPduDataPtr)

Parameter

nmNetworkHandle Identification of the network

nmUserDataPtr Pointer where the PDU data of the last received NM message shall be copied
to

Return code

E_OK

E_NOT_OK

No error

Getting of PDU data has failed

Functional Description

This function copies the complete PDU data (system bytes and user data) of the last received NM message
to the location provided by the pointer. The Nm calls therefore the get PDU data function of the respective
BusNm(s) on the network (see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘User Data Enabled’ is enabled or ‘Node Id Enabled’ is
enabled.

> If multiple BusNms are configured on the channel, the Get Pdu Data API will be called for all
BusNms on the channel. This implies that the buffer will contain the most recent PDU data
bytes of one of the BusNms that is configured on the channel and that has implemented the
service. It is recommended to call each BusNm_GetPduData function directly for channels
with multiple BusNms, otherwise (one BusNm is configured on the channel) use
Nm_GetPduData.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-10 Nm_GetPduData

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 53
based on template version 4.8.0

5.2.10 Nm_RepeatMessageRequest

Prototype

Std_ReturnType Nm_RepeatMessageRequest (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

E_OK

E_NOT_OK

No error

Repeat message request has failed

Functional Description

This function sets the repeat message request bit for the next NM message transmitted on the bus. This
will force all NM nodes on the bus (including itself) to enter state ‘Repeat Message’ again and transmit NM
messages. The Nm calls therefore the repeat message request function of the respective BusNm(s) on the
network (see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant for the same network handle, reentrant otherwise.

> This function is only available if ‘Node Detection Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-11 Nm_RepeatMessageRequest

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 54
based on template version 4.8.0

5.2.11 Nm_GetNodeIdentifier

Prototype

Std_ReturnType Nm_GetNodeIdentifier (
 const NetworkHandleType nmNetworkHandle,

 uint8 * const nmNodeIdPtr)

Parameter

nmNetworkHandle Identification of the network

nmNodeIdPtr Pointer where the node identifier of the last received NM message shall be
copied to

Return code

E_OK

E_NOT_OK

No error

Getting of node identifier has failed

Functional Description

This function copies the node identifier of the last received NM message to the location provided by the
pointer. The Nm calls therefore the get node identifier function of the respective BusNm(s) on the network
(see also chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Node Id Enabled’ is enabled.

> If multiple BusNms are configured on the channel, the Get Node Identifier API will be called for
all BusNms on the channel. This implies that the buffer will contain the most recent node
identifier of one of the BusNms that is configured on the channel and that has implemented the
service. If one of the BusNm_GetNodeIdentifier calls returns E_NOT_OK, the buffer behind
the nmNodeIdPtr may still have been manipulated due to the call of Nm_GetNodeIdentifier. It
is recommended to call each BusNm_GetNodeIdentifier function directly for channels with
multiple BusNms, otherwise (one BusNm is configured on the channel) use
Nm_GetNodeIdentifier.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-12 Nm_GetNodeIdentifier

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 55
based on template version 4.8.0

5.2.12 Nm_GetLocalNodeIdentifier

Prototype

Std_ReturnType Nm_GetLocalNodeIdentifier (
 const NetworkHandleType nmNetworkHandle,

 uint8 * const nmNodeIdPtr)

Parameter

nmNetworkHandle Identification of the network

nmNodeIdPtr Pointer where the node identifier of the local node shall be copied to

Return code

E_OK

E_NOT_OK

No error

Getting of local node identifier has failed

Functional Description

This function copies the node identifier of the local node to the location provided by the pointer. The Nm
calls therefore the get local node identifier function of the respective BusNm(s) on the network (see also
chapter 5.3 ‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Node Id Enabled’ is enabled.

> If multiple BusNms are configured on the channel, the Get Local Node Identifier API will be
called for all BusNms on the channel. This implies that the buffer will contain the local node
identifier of one of the BusNms that is configured on the channel and that has implemented the
service. If one of the BusNm_GetLocalNodeIdentifier calls returns E_NOT_OK, the buffer
behind the nmNodeIdPtr may still have been manipulated due to the call of
Nm_GetLocalNodeIdentifier. It is recommended to call each BusNm_GetLocalNodeIdentifier
function directly for channels with multiple BusNms, otherwise (one BusNm is configured on
the channel) use Nm_GetLocalNodeIdentifier.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-13 Nm_GetLocalNodeIdentifier

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 56
based on template version 4.8.0

5.2.13 Nm_CheckRemoteSleepIndication

Prototype

Std_ReturnType Nm_CheckRemoteSleepIndication (
 const NetworkHandleType nmNetworkHandle,

 boolean * const nmRemoteSleepIndPtr)

Parameter

nmNetworkHandle Identification of the network

nmRemoteSleepIndPtr Pointer where the remote sleep status shall be copied to

Return code

E_OK

E_NOT_OK

No error

Checking of remote sleep status has failed

Functional Description

This function copies the remote sleep status to the location provided by the pointer. The Nm calls therefore
the check remote sleep indication function of the respective BusNm(s) on the network (see also chapter 5.3
‘Services Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Remote Sleep Ind Enabled’ is enabled.

> If multiple BusNms are configured on the channel, the Check Remote Sleep Indication API will
be called for all BusNms on the channel. This implies that the buffer will contain the overall
remote sleep statuses of all BusNms on the channel. That means that if one of the Remote
Sleep Indication statuses is false, the result will be false. Also, if one of the
BusNm_CheckRemoteSleepIndication returns E_NOT_OK, the result will not be returned. If
one is interested the Remote Sleep Indication status of a particular BusNm on the channel, it
is recommended to call BusNm_CheckRemoteSleepIndication directly for channels with
multiple BusNms.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-14 Nm_CheckRemoteSleepIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 57
based on template version 4.8.0

5.2.14 Nm_GetState

Prototype

Std_ReturnType Nm_GetState (
 const NetworkHandleType nmNetworkHandle,

 Nm_StateType * const nmStatePtr,

 Nm_ModeType * const nmModePtr)

Parameter

nmNetworkHandle Identification of the network

nmStatePtr Pointer where the current network management state shall be copied to

nmModePtr Pointer where the current network management mode shall be copied to

Return code

E_OK

E_NOT_OK

No error

Checking of remote sleep status has failed

Functional Description

This function copies the NM state and the NM mode to the location provided by the pointers. The Nm calls
therefore the get state function of the respective BusNm(s) on the network (see also chapter 5.3 ‘Services
Used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> If multiple BusNms are configured on the channel, the Get State API will be called for all
BusNms on the channel. This implies that the state buffer and the mode buffer will contain the
numerically greatest state/mode of all BusNms. Also, if one of the BusNm_GetState returns
E_NOT_OK, the result will not be returned. If one is interested in the state of a particular
BusNm on the channel, it is recommended to call BusNm_GetState directly for channels with
multiple BusNms.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-15 Nm_GetState

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 58
based on template version 4.8.0

5.2.15 Nm_GetVersionInfo

Prototype

void Nm_GetVersionInfo (Std_VersionInfoType * nmVerInfoPtr)

Parameter

nmVerInfoPtr Pointer where the version information shall be copied to

Return code

-

Functional Description

Nm_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the component.

The versions are BCD-coded.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Version Info Api’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-16 Nm_GetNodeIdentifier

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 59
based on template version 4.8.0

5.2.16 Nm_MainFunction

Prototype

void Nm_MainFunction (void)

Parameter

-

Return code

-

Functional Description

This function implements the handling of coordinated networks of the NM Interface.

Note
This function is not available if ‘Coordinator Support’ is turned OFF.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is not reentrant.

> This function has to be called cyclically on task level by BSW Scheduler

> This function must not be called by the application.

Expected Caller Context

> This function can be called from task level only.

Table 5-17 Nm_MainFunction

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 60
based on template version 4.8.0

5.2.17 Nm_InitMemory

Prototype

void Nm_InitMemory (void)

Parameter

-

Return code

-

Functional Description

If RAM is not automatically initialized at start-up, this function must be called from start-up code to ensure
that variables which must be initialized with a certain value (e.g. initialization status with UNINIT value) are
set to those values.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> This function is a Vector Extension. Refer also to chapter 3.1.2.5 ‘Memory Initialization’.

> This function has to be called during start-up and before the initialization is executed.

> This function is realized as a macro if ‘Coordinator Support’ is disabled.

Expected Caller Context

> This function can be called from task level only

Table 5-18 Nm_InitMemory

5.3 Services Used by Nm

In the following table services provided by other components, which are used by the Nm
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

DET Det_ReportError

BusNm (e.g. CanNm, FrNm, NmOsek) BusNm_PassiveStartUp

BusNm_NetworkRequest

BusNm_NetworkRelease

BusNm_DisableCommunication

BusNm_EnableCommunication

BusNm_SetUserData

BusNm_GetUserData

BusNm_GetPduData

BusNm_RepeatMessageRequest

BusNm_GetNodeIdentifier

BusNm_GetLocalNodeIdentifier

BusNm_CheckRemoteSleepIndication

BusNm_RequestBusSynchronization

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 61
based on template version 4.8.0

Component API

BusNm_SetSleepReadyBit

BusNm_GetState

Table 5-19 Services used by the Nm

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the Nm and can be
invoked by other modules. The prototypes of the callback functions are provided in the

header file Nm_Cbk.h by the Nm.

5.4.1 Nm_NetworkStartIndication

Prototype

void Nm_NetworkStartIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message has been received in state ‘Bus Sleep’. This indicates that some nodes in
the network have restarted and already entered ‘Network Mode’. This notification is forwarded to the ComM
(see also chapter 5.5 ‘Callback Functions used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-20 Nm_NetworkStartIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 62
based on template version 4.8.0

5.4.2 Nm_NetworkMode

Prototype

void Nm_NetworkMode (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has entered ‘Network Mode’. This notification is forwarded to the
ComM (see also chapter 5.5 ‘Callback Functions used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant if NM_COORDINATOR_SUPPORT_ENABLED is STD_OFF,
otherwise it is reentrant only for different channel handles.

> If multiple BusNms are used on a channel, the notification is only forwarded to ComM if it is
the first BusNm that has entered ‘Network Mode’ on this channel.

> If multiple BusNms are used on a channel, the new mode must also be returned by a
BusNm_GetState call within the context of the Nm_NetworkMode call.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-21 Nm_NetworkMode

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 63
based on template version 4.8.0

5.4.3 Nm_BusSleepMode

Prototype

void Nm_BusSleepMode (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has entered ‘Bus Sleep Mode’. This notification is forwarded to the
ComM (see also chapter 5.5 ‘Callback Functions used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant if NM_COORDINATOR_SUPPORT_ENABLED is STD_OFF,
otherwise it is reentrant only for different channel handles.

> If multiple BusNms are used on a channel, the notification is only forwarded to ComM if it is
the last BusNm that enters ‘Bus Sleep Mode’.

> If multiple BusNms are used on a channel, the new mode must also be returned by a
BusNm_GetState call within the context of the Nm_BusSleepMode call.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-22 Nm_BusSleepMode

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 64
based on template version 4.8.0

5.4.4 Nm_PrepareBusSleepMode

Prototype

void Nm_PrepareBusSleepMode (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has entered ‘Prepare Bus Sleep Mode’. This notification is forwarded
to the ComM (see also chapter 5.5 ‘Callback Functions used by Nm’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant if NM_COORDINATOR_SUPPORT_ENABLED is STD_OFF,
otherwise it is reentrant only for different channel handles.

> This function is only available if CanNm, UdpNm or a Generic BusNm is used or if the
Configuration Variant is VARIANT-LINK-TIME

> If multiple BusNms are used on the channel, the notification is only forwarded if all other
BusNms have left ‘Network Mode’.

> If multiple BusNms are used on a channel, the new mode must also be returned by a
BusNm_GetState call within the context of the Nm_PrepareBusSleepMode call.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-23 Nm_PrepareBusSleepMode

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 65
based on template version 4.8.0

5.4.5 Nm_RemoteSleepIndication

Prototype

void Nm_RemoteSleepIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has detected that all other nodes on the network are ready to sleep.
This notification is optionally forwarded to an upper layer by a configurable notification function (see also
chapter 5.6.1.1 ’UL_Nm_RemoteSleepIndication’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant if NM_COORDINATOR_SUPPORT_ENABLED is STD_OFF,
otherwise it is reentrant only for different channel handles.

> This function is only available if ‘Remote Sleep Ind Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-24 Nm_RemoteSleepIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 66
based on template version 4.8.0

5.4.6 Nm_RemoteSleepCancellation

Prototype

void Nm_RemoteSleepCancellation (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has detected that some other nodes on the network are not ready to
sleep any more. This notification is optionally forwarded to an upper layer by a configurable notification
function (see also chapter 5.6.1.2 ‘UL_Nm_RemoteSleepCancellation’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant if NM_COORDINATOR_SUPPORT_ENABLED is STD_OFF,
otherwise it is reentrant only for different channel handles.

> This function is only available if ‘Remote Sleep Ind Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-25 Nm_RemoteSleepCancellation

5.4.7 Nm_SynchronizationPoint

Prototype

void Nm_SynchronizationPoint (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification to the NM Coordinator functionality that this is a suitable point in time to initiate the coordination
algorithm.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Coordinator Support’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-26 Nm_SynchronizationPoint

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 67
based on template version 4.8.0

5.4.8 Nm_<BusNm>_PduRxIndication

Prototype

void Nm_<BusNm>_PduRxIndication(const NetworkHandleType nmNetworkHandle,

 const PduInfoType* const pduInfo);

Parameter

nmNetworkHandle Identification of the network

pduInfo Pointer to the received PDU data

Return code

-

Functional Description

Notification that a NM message has been received by a specific BusNm on a channel. This notification is
optionally forwarded to an upper layer by a configurable notification function (see also chapter 5.6.1.4
‘UL_Nm_BusNmSpecificPduRxIndication’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Bus Nm Specific Pdu Rx Indication Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-27 Nm_BusNmSpecificPduRxIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 68
based on template version 4.8.0

5.4.9 Nm_PduRxIndication

Prototype

void Nm_PduRxIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message has been received. This notification is optionally forwarded to an upper
layer by a configurable notification function (see also chapter 5.6.1.3 ‘UL_Nm_PduRxIndication’).

This notification may also be forwarded to another configurable notication (see chapter 5.6.1.4
‘UL_Nm_BusNmSpecificPduRxIndication’ for details). Note that the latter upper layer notification function
will contain a NULL pointer for the pduInfo argument.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Pdu Rx Indication Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-28 Nm_PduRxIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 69
based on template version 4.8.0

5.4.10 Nm_StateChangeNotification

Prototype

void Nm_StateChangeNotification (
 const NetworkHandleType nmNetworkHandle,

 const Nm_StateType nmPreviousState,

 const Nm_StateType nmCurrentState)

Parameter

nmNetworkHandle Identification of the network

nmPreviousState Previous state of the BusNm on the respective network

nmCurrentState Current state of the BusNm on the respective network

Return code

-

Functional Description

Notification that network management state of the BusNm has changed. This notification is optionally
forwarded to an upper layer by a configurable notification function (see also chapter 5.6.1.5
‘UL_Nm_StateChangeNotification’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘State Change Ind Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-29 Nm_StateChangeNotification

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 70
based on template version 4.8.0

5.4.11 Nm_RepeatMessageIndication

Prototype

void Nm_RepeatMessageIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message with set repeat message request bit has been received. This notification is
optionally forwarded to an upper layer by a configurable notification function (see also chapter 5.6.1.6
‘UL_Nm_RepeatMessageIndication’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Repeat Msg Ind Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-30 Nm_RepeatMessageIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 71
based on template version 4.8.0

5.4.12 Nm_TxTimeoutException

Prototype

void Nm_TxTimeoutException (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that NM message could not be sent for a certain time period. This notification is optionally
forwarded to an upper layer by a configurable notification function (see also chapter 5.6.1.7
‘UL_Nm_TxTimeoutException’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if at least one network is not passive or CONFIG-VARIANT is
LINK-TIME.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-31 Nm_TxTimeoutException

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 72
based on template version 4.8.0

5.4.13 Nm_CarWakeUpIndication

Prototype

void Nm_CarWakeUpIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message with set Car Wake Up request bit has been received. This notification is
optionally forwarded to an upper layer by a configurable notification function (see also chapter 5.6.1.8)
‘UL_Nm_CarWakeUpIndication’).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Car Wake Up Rx Enabled’ is enabled.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-32 Nm_CarWakeUpIndication

5.4.14 Nm_CoordReadyToSleepIndication

Prototype

void Nm_CoordReadyToSleepIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message with set Sleep Ready bit has been received.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Coordinator Support’ and ‘Coordinator Sync Support’ are
enabled

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-33 Nm_CoordReadyToSleepIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 73
based on template version 4.8.0

5.4.15 Nm_CoordReadyToSleepCancellation

Prototype

void Nm_CoordReadyToSleepCancellation (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message, which has not set Sleep Ready bit anymore, has been received.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> This function is only available if ‘Coordinator Support’ and ‘Coordinator Sync Support’ are
enabled

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-34 Nm_CoordReadyToSleepCancellation

5.5 Callback Functions used by Nm

In the following table services provided by other components, which are used by the Nm
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

ComM ComM_Nm_NetworkStartIndication

ComM_Nm_RestartIndication

ComM_Nm_NetworkMode

ComM_Nm_BusSleepMode

ComM_Nm_PrepareBusSleepMode

Table 5-35 Callback Functions used by the Nm

5.6 Configurable Interfaces

5.6.1 Notifications

At its configurable interfaces the Nm defines notifications that can be mapped to callback
functions provided by other modules. The mapping is not statically defined by the Nm but
can be performed at configuration time. The function prototypes that can be used for the
configuration have to match the appropriate function prototype signatures, which are
described in the following sub-chapters. The name of those functions is configurable and
provided names here are just examples. The header file names where the prototypes for
those functions are provided has to be provided also in the configuration.

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 74
based on template version 4.8.0

5.6.1.1 UL_Nm_RemoteSleepIndication

Prototype

void UL_Nm_RemoteSleepIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has detected that all other nodes on the network are ready to sleep.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Remote Sleep Ind Enabled’ is enabled and a function name is
configured.

> If multiple BusNms are used on the channel, this function is only called if the last BusNm has
indicated ‘Remote Sleep’.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-36 UL_Nm_RemoteSleepIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 75
based on template version 4.8.0

5.6.1.2 UL_Nm_RemoteSleepCancellation

Prototype

void UL_Nm_RemoteSleepCancellation (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that network management has detected that some other nodes on the network are not ready to
sleep any more.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Remote Sleep Ind Enabled’ is enabled and a function name is
configured.

> If multiple BusNms are used on the channel, this function is only called if the first BusNm has
cancelled ‘Remote Sleep’.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-37 UL_Nm_RemoteSleepCancellation

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 76
based on template version 4.8.0

5.6.1.3 UL_Nm_PduRxIndication

Prototype

void UL_Nm_PduRxIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message has been received.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Pdu Rx Indication Enabled’ is enabled and a function name is
configured.

> If multiple BusNms are used on the channel and this function is called, it cannot be
distinguished which BusNm has triggered the call of this function. If the PDU contents are
different between the PDUs of BusNms, one can use BusNm_GetPduData in the context of
the callback function to get the most recently received PDU data of each BusNm.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-38 UL_Nm_PduRxIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 77
based on template version 4.8.0

5.6.1.4 UL_Nm_BusNmSpecificPduRxIndication

Prototype

void <FunctionName>(NetworkHandleType nmNetworkHandle, const PduInfoType*

const pduInfo)

Parameter

nmNetworkHandle Identification of the network

pduInfo Pointer to the received PDU data

Return code

-

Functional Description

Notification that a NM message has been received.

It can be differentiated from which BusNm it comes, in contrast to Nm_PduRxIndication 5.6.1.3.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Specific Pdu Rx Indication Enabled’ is enabled and a function
name is configured.

> This function can be used to distinguish between each BusNm on the same channel by using
different identifiers for each BusNm. It is not necessary to configure the function if there is only
one BusNm on the channel. The ‘Pdu Receive Ind Callback’ can be used as an alternative for
this purpose.

> The argument pduInfo will always be NULL if the function is called from the context of
Nm_PduRxIndication (see also chapter 5.4.9).

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-39 Standard Bus Nm Pdu Rx Indication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 78
based on template version 4.8.0

5.6.1.5 UL_Nm_StateChangeNotification

Prototype

void UL_Nm_StateChangeNotification (
 const NetworkHandleType nmNetworkHandle,

 const Nm_StateType nmPreviousState,

 const Nm_StateType nmCurrentState)

Parameter

nmNetworkHandle Identification of the network

nmPreviousState Previous state of the BusNm on the respective network

nmCurrentState Current state of the BusNm on the respective network

Return code

-

Functional Description

Notification that network management state of the BusNm has changed.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘State Change Ind Enabled’ is enabled and a function name is
configured.

> If multiple BusNms are used on the channel and if this function used, it cannot be
distinguished which BusNm has triggered the state change notification. The current state is
always the numerically highest overall state of the BusNms on the channel. If an exact state
needs to be determined for each BusNm, call BusNm_GetState directly.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-40 UL_Nm_StateChangeNotification

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 79
based on template version 4.8.0

5.6.1.6 UL_Nm_RepeatMessageIndication

Prototype

void UL_Nm_RepeatMessageIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message with set repeat message request bit has been received.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Repeat Msg Ind Enabled’ is enabled and a function name is
configured.

> If multiple BusNms are used on the channel, it cannot be distinguished which BusNm has
called this function.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-41 UL_Nm_RepeatMessageIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 80
based on template version 4.8.0

5.6.1.7 UL_Nm_TxTimeoutException

Prototype

void UL_Nm_TxTimeoutException (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that NM message could not be sent for a certain time period.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Passive Mode Enabled’ is disabled and a function name is
configured.

> If multiple BusNms are used on the channel, it cannot be distinguished which BusNm has
called this function.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-42 UL_Nm_TxTimeoutException

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 81
based on template version 4.8.0

5.6.1.8 UL_Nm_CarWakeUpIndication

Prototype

void UL_Nm_CarWakeUpIndication (const NetworkHandleType nmNetworkHandle)

Parameter

nmNetworkHandle Identification of the network

Return code

-

Functional Description

Notification that a NM message with set Car Wake Up request bit has been received.

Particularities and Limitations

> Service ID: Has to be provided by the module that implements this notification.

> This function is synchronous.

> This function is reentrant.

> The name of this function is configurable.

> This function is only available if ‘Car Wake Up Rx Enabled ‘is enabled and a function name is
configured.

> If multiple BusNms are used on the channel, it cannot be distinguished which BusNm has
called this function.

Expected Caller Context

> This function can be called from task and interrupt level.

Table 5-43 UL_Nm_CarWakeUpIndication

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 82
based on template version 4.8.0

6 Glossary and Abbreviations

6.1 Glossary

Term Description

BusNm Bus-specific network management, e.g. CanNm, FrNm, NmOsek

DaVinci Configurator Generation tool for MICROSAR components

Table 6-1 Glossary

6.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BswM Basis Software Manager

ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DLL Data Link Layer

ECU Electronic Control Unit

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

Nm AUTOSAR Network Management Interface (this module)

NM Network Management

NmOsek OSEK Network Management (Vector module)

OSEK Open Systems and the Corresponding Interfaces for Automotive
Electronics (German term: “Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug”)

SchM Schedule Manager

SWS Software Specification

Table 6-2 Abbreviations

Technical Reference MICROSAR Network Management Interface

© 2016 Vector Informatik GmbH Version 10.00.00 83
based on template version 4.8.0

7 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations Against AUTOSAR 4.0.3
	3.1.1.1 Set Sleep Ready Bit
	3.1.1.2 Nm_NetworkStartIndication as trigger for Coordinated Shutdown Abortion

	3.1.2 Additions/ Extensions
	3.1.2.1 Additional DET Error Codes
	3.1.2.2 Synchronization Timeout
	3.1.2.3 Configurable Notification Functions
	3.1.2.4 Macro Layer Optimization
	3.1.2.5 Memory Initialization
	3.1.2.6 Automatic Calculation of Shutdown Delay Timer
	3.1.2.7 Callback Nm_CoordReadyToSleepCancellation
	3.1.2.8 Passive Mode as Global Setting
	3.1.2.9 BusNm Specific Pdu Rx Indication Support
	3.1.2.9.1 Macro Layer interaction with BusNm Specific Pdu Rx Indication

	3.1.3 Limitations
	3.1.3.1 Multiple BusNms on One Channel

	3.2 Basic Functionality
	3.3 Support of Generic BusNm Modules
	3.3.1 Creating a Generic BusNm or a Generic BusNm Wrapper
	3.3.1.1 Providing the Interfaces that are called by the Nm module
	3.3.1.2 Implementing the functions called by Nm

	3.4 Coordinator Functionality
	3.4.1 Coordinated Networks
	3.4.2 Shutdown Algorithm
	3.4.3 State Machine of Coordinator
	3.4.4 Wake-up
	3.4.5 Sleep Master
	3.4.6 Wait Bus Sleep Extensions
	3.4.6.1 CanNm and NmOsek on the same channel

	3.5 State Report
	3.6 Macro Layer Optimization
	3.7 Initialization
	3.8 Provision of the NM State
	3.8.1 Determining the NM State Using Nm_GetState
	3.8.2 Using the ‘State Change Ind Enabled’ feature

	3.9 Multiple BusNms on One Channel
	3.9.1 Notification of Mode Changes in the BusNms
	3.9.2 State Change Notifications
	3.9.3 Remote Sleep Indication Statuses
	3.9.4 Other Aggregated Information and Caveats

	3.10 Main Functions
	3.11 Error Handling
	3.11.1 Development Error Reporting
	3.11.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Critical Sections
	4.3.1 Exclusive Area 0
	4.3.2 Exclusive Area 1

	5 API Description
	5.1 Type Definitions
	5.2 Services Provided by Nm
	5.2.1 Nm_Init
	5.2.2 Nm_PassiveStartUp
	5.2.3 Nm_NetworkRequest
	5.2.4 Nm_NetworkRelease
	5.2.5 Nm_DisableCommunication
	5.2.6 Nm_EnableCommunication
	5.2.7 Nm_SetUserData
	5.2.8 Nm_GetUserData
	5.2.9 Nm_GetPduData
	5.2.10 Nm_RepeatMessageRequest
	5.2.11 Nm_GetNodeIdentifier
	5.2.12 Nm_GetLocalNodeIdentifier
	5.2.13 Nm_CheckRemoteSleepIndication
	5.2.14 Nm_GetState
	5.2.15 Nm_GetVersionInfo
	5.2.16 Nm_MainFunction
	5.2.17 Nm_InitMemory

	5.3 Services Used by Nm
	5.4 Callback Functions
	5.4.1 Nm_NetworkStartIndication
	5.4.2 Nm_NetworkMode
	5.4.3 Nm_BusSleepMode
	5.4.4 Nm_PrepareBusSleepMode
	5.4.5 Nm_RemoteSleepIndication
	5.4.6 Nm_RemoteSleepCancellation
	5.4.7 Nm_SynchronizationPoint
	5.4.8 Nm_<BusNm>_PduRxIndication
	5.4.9 Nm_PduRxIndication
	5.4.10 Nm_StateChangeNotification
	5.4.11 Nm_RepeatMessageIndication
	5.4.12 Nm_TxTimeoutException
	5.4.13 Nm_CarWakeUpIndication
	5.4.14 Nm_CoordReadyToSleepIndication
	5.4.15 Nm_CoordReadyToSleepCancellation

	5.5 Callback Functions used by Nm
	5.6 Configurable Interfaces
	5.6.1 Notifications
	5.6.1.1 UL_Nm_RemoteSleepIndication
	5.6.1.2 UL_Nm_RemoteSleepCancellation
	5.6.1.3 UL_Nm_PduRxIndication
	5.6.1.4 UL_Nm_BusNmSpecificPduRxIndication
	5.6.1.5 UL_Nm_StateChangeNotification
	5.6.1.6 UL_Nm_RepeatMessageIndication
	5.6.1.7 UL_Nm_TxTimeoutException
	5.6.1.8 UL_Nm_CarWakeUpIndication

	6 Glossary and Abbreviations
	6.1 Glossary
	6.2 Abbreviations

	7 Contact

