

MICROSAR NVM

Technical Reference

Version 5.06.02

Authors Christian Kaiser, Tomas Ondrovic

Status Released

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 2
based on template version 3.01

1 Document Information

1.1 History

Author Date Version Remarks

Christian Kaiser 2007-08-20 1.4 AUTOSAR 2.1,

updated for EAD3.1 usage,

conversion to new template

Christian Kaiser 2007-12-06 3.01.00 Change of the document's versioning
scheme to correspond to the module's
major and minor,

update of parameter description in
chapter 'Graphical Configuration of NvM'
and service port generation description,

remove of DATASET ROM, feature not
supported anymore,

remove of introduction paragraphs from
'Description of Memory Mapping and
Compiler Abstraction', not subject of this
document,

simplified 'Block Management Types'
naming,

formal changes

Christian Kaiser 2008-01-11 3.01.01 New chapter to clarify the dependency on
the CRC library,

stated explicitly that DET is optional,

corrected default values

Manfred Duschinger,

Heike Bischof

2008-05-23 3.02.00 AUTOSAR 3,

conversion to Technical Reference

Manfred Duschinger 2008-12-08 3.03.00 ESCAN00027300: Description of

NvM_ServiceIdType in

SingleBlockCallbackFunction and
MultiBlockCallbackFunction

Description and expected caller context

of NvM_SetBlockLockStatus-API

reworked.

Chapter 4.4.17 ‘Concurrent access to NV
data for DCM’ added.

Chapter 4.4.5.2: Write order at redundant
blocks added.

Expansion of glossary.

Chapter 7.2.2: Description of ‘Dataset
Selection Bits’ added.

Manfred Duschinger 2009-02-25 3.03.01 ESCAN00031177: Manufacturer specific
requirements attribute for traceability
reasons

Manfred Duschinger 2009-03-24 3.03.02 ESCAN00032480: Missing information in

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 3
based on template version 3.01

documentation:

Chapter 6.4.5: ‘Description of
NvM_RequestResultType added’.

Chapters 6.4.15 and 6.4.16: ‘Services are
multiblock requests’.

Manfred Duschinger 2009-06-03 3.04.00 ESCAN00032480: Update of History of
version 3.03.02: Updated changed
chapters.

Chapter 6.2: ‘Block ID 0 is only allowed
for API NvM_GetErrorStatus()’

ESCAN00033075: Chapter 4.5.1.1:
DataIndex Check in NvM_ReadBlock()
added. DataIndex Check was also added
to NvM_InvalidateNvBlock() and
NvM_EraseNvBlock().

ESCAN00033900: Chapter 4.4.17:
“Priority Handling of DCM-Blocks”

ESCAN00035089: Chapters 4.1, 7.2.2
“Callbacks NvM_JobEndNotification,
NvM_JobErrorNotification implemented”

ESCAN00034073: Chapters 2, 4.4.5.1,
7.2.2 “Crc Handling is configurable: Either
an internal buffer is used or Crc is stored
at the end of RAM Block.”

ESCAN00035891: Chapter 7.1.1
“Integrate SWC-Generation into CFG
Pro's Generation process”

Chapter 3.1: update AUTOSAR
architecture figure.

Christian Kaiser 2010-01-25 3.04.01 ESCAN00039648 – Rebuilt document;
made hyperlinks working. Updated Logo;
No changes in content.

Christian Kaiser 2010-03-26 3.05.00 Updated Component history

Whole document: “EAD”  “DaVinci
Configurator”

Added Ch. 7.3 “Attributes only
configurable using GCE”

Updated Ch. 5.6.1 – “RAM Usage”

ESCAN00040662: Chapter 4.4.3: Added
note about restricted access to RAM
block during job execution.

ESCAN00035134: Chapter 5.1.2
reworked

ESCAN00039749: Ch. 4.4.10, 8.2.4:
Guaranteed CRC values; Ch 6.4.7: note
about asynchronous CRC calculation

ESCAN00031315: added Ch. 4.2.1, Ch

8.2.3; updated Ch. 7.2.5

ESCAN00042745 – corrected Ch. 4.5.2

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 4
based on template version 3.01

Manfred Duschinger 2011-01-25 3.07.00 ESCAN00047171: Ch. 6.4.18:
NvM_KillWriteAll; Abbreviations: ECUM

ESCAN00045141: Ch. 4.4.5.1:
information about names of Block
Handles

Manuela Scheufele 2011-02-03 3.07.01 Minor changes

Manfred Duschinger 2011-07-12 3.08.00 ESCAN00049327: Ch. 4.5.2 DEM errors
inserted into MICROSAR DEM

Christian Kaiser 2012-01-24 3.09.00 ESCAN00053235, ESCAN00051729: Ch.
7.1 – updated PortInterface names

Manfred Duschinger 2013-01-02 5.00.00 Ch. 4.1: supported features added
Ch. 4.4.3 and ch. 4.4.4: added
NvM_CancelJobs
Ch. 4.3.5: error handling updated

Ch. 4.4.20: added explicit synchronization
mechanism
Ch. 5.4.6: updated callback functions

Ch. 5.5: updated initialization process of
memory stack
Ch. 6.4: updated return values of most
synchronous APIs

Ch. 6.4.6: instanceID deleted

Ch. 6.4.16: updated NvM_WriteAll
handling
Ch. 6.4.19: description of API
NvM_CancelJobs
Ch. 6.7.4 and 6.7.5: Callback routines for
explicit synchronization mechanism
Ch. 7: completely reworked
Ch. 9.2: added abbreviations
Ch. 7.2.1 and ch. 7.3 removed

Manfred Duschinger 2013-01-04 5.01.00 Ch. 5.4.8 Interaction with BswM

Manfred Duschinger,

Christian Kaiser

2013-08-23 5.01.01 ESCAN00064110: Ch. 4.4.8 Description
of synchronous Job-End Notification
ESCAN00062895: Ch. 4.4.5.1 Symbolic
name values of Nv Block Handles
updated.
ESCAN00062896: Ch. 4.4.13. 4.4.20,
5.4.8, 6.7.3, 6.7.4 and 6.7.5: Added
information that block is still busy during
invoking callback.
ESCAN00063639: Ch. 4.4.20: Extended
information about explicit synchronization
mechanism
ESCAN00064063: Ch. 6.2 Improve
description of
NvM_RequestResultType

ESCAN00064173: Ch. 5.3: Explanation
of some necessity of memory mapping

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 5
based on template version 3.01

ESCAN00068239: Ch. 6.4, Ch. 4.4.20:
Limitations Explicit Synchronization
Mechanism

ESCAN00063532 – Ch. 6.4.16 Block
Processing order during NvM_WriteAll

Christian Kaiser 2014-06-17 5.02.00 Internal release; no changes

Christian Kaiser 2014-10-13 5.02.01 Updated Ch. 2. Component history.

ESCAN00073178 – updated Ch. 4.1
unsupported features, Ch. 8.1 Deviations

ESCAN00074672 – Description of
Redundant Blocks; extended Ch. 4.4.5.2

ESCAN00076366 – SWCs’ callback
return types – added Ch. 7.1.5

Removed Ch. 4.4.18, 4.4.19

ESCAN00071933 – Description of
internal buffering and internal CRC
storage, rewording Ch. 4.4.5.1, 4.4.5.5,
4.4.10, 5.6.1

ESCAN00075284 – Reworked Ch.
4.4.17, Ch. 6.4.8

Review findings – Development Error
Codes in chapter 4.5.1, minor rephrasing,
Glossary (PIM)

Added Chapter 5.7

Christian Kaiser 2015-01-07 5.02.02 Chapters 6.4.8, 8.1
NvM_SetBlockLockStatus – emphasized
deviation from AUTOSAR.

Tomas Ondrovic 2015-02-02 5.03.00 Chapter 4.2.1, 4.5.1 – removed RAM and
ROM block length DET check

Chapter 4.5.3 – describes the new
compile time RAM and ROM block length
checks

Chapter 4.1.1.1– created to describe
feature Block Id check

Chapter 6.4.20 – describes the new
feature “Repair Redundant Blocks”

Tomas Ondrovic 2015-09-28 5.03.01 Only improvements

Tomas Ondrovic 2015-11-25 5.0400 Added chapter 4.1.2 and updated chapter
4.5.3

Tomas Ondrovic 2016-02-11 5.05.00 Removed the possibility to configure dev
error hook, include file and reporting

Tomas Ondrovic 2016-04-14 5.06.00 ESCAN00088791: updated function
signatures to AUTOSAR4 in chapter 6.4

FEAT-1888: described changed callback
invoking during ReadAll in chapters 4.4.8
and 4.4.13

Added new chapter 5.2 with critical
section list.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 6
based on template version 3.01

ESCAN00091004: extended chapter 4.2

Tomas Ondrovic 2016-10-18 5.06.01 ESCAN00073639: improved chapter
4.4.17

Tomas Ondrovic 2017-02-23 5.06.02 ESCAN00094128: improved DEM error
handling description (chapter 4.5.2 and
5.5.2)

Table 1-1 History of the document

1.2 Reference Documents

No. Title Version

[1] AUTOSAR_SWS_NVRAMManager.pdf V 2.2.0

[2] AUTOSAR_SWS_DET.pdf V 2.2.0

[3] AUTOSAR_SWS_DEM.pdf V 2.2.1

[4] AUTOSAR_BasicSoftwareModules.pdf V 1.2.0

Table 1-2 Reference documents

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 7
based on template version 3.01

Contents

1 Document Information ... 2

1.1 History ... 2

1.2 Reference Documents ... 6

2 Component History .. 13

3 Introduction... 15

3.1 Architecture Overview .. 16

4 Functional Description ... 18

4.1 Features .. 18

4.1.1 Safety Features .. 19

4.1.2 Automatic Block Length ... 19

4.2 Initialization .. 19

4.2.1 Start-up .. 20

4.2.2 Initialization of the Data Blocks .. 20

4.3 States .. 21

4.4 Main Functions .. 21

4.4.1 Hardware Independence .. 21

4.4.2 Synchronous Requests .. 21

4.4.3 Asynchronous Requests .. 21

4.4.4 API Configuration Classes and additional API Services 22

4.4.5 Block Handling ... 23

4.4.6 Prioritized or non-prioritized Queuing of asynchronous Requests 27

4.4.7 Asynchronous Job-End Polling .. 27

4.4.8 Single Block Job End Notifications ... 27

4.4.9 Immediate Priority Jobs and Cancellation of current Jobs 28

4.4.10 Asynchronous CRC Calculation ... 28

4.4.11 Write Protection ... 29

4.4.12 Erase and Invalidate .. 29

4.4.13 Init Block Callbacks .. 29

4.4.14 Define Locking/ Unlocking Services ... 30

4.4.15 Interrupts .. 30

4.4.16 Data Corruption .. 30

4.4.17 Concurrent access to NV data for DCM ... 30

4.4.18 Explicit synchronization mechanism between application and NVM . 31

4.5 Error Handling .. 32

4.5.1 Development Error Reporting ... 32

4.5.2 Production Code Error Reporting ... 35

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 8
based on template version 3.01

4.5.3 Compile-time Block Length Checks .. 35

5 Integration ... 37

5.1 Scope of Delivery ... 37

5.1.1 Static Files ... 37

5.1.2 Dynamic Files .. 37

5.2 Critical Sections ... 38

5.3 Include Structure .. 38

5.4 Compiler Abstraction and Memory Mapping ... 38

5.5 Dependencies on SW Modules .. 40

5.5.1 OSEK / AUTOSAR OS ... 40

5.5.2 DEM ... 40

5.5.3 DET ... 41

5.5.4 MEMIF ... 41

5.5.5 CRC Library ... 41

5.5.6 Callback Functions ... 41

5.5.7 RTE ... 41

5.5.8 BSWM.. 41

5.6 Integration Steps .. 42

5.7 Estimating Resource Consumption .. 43

5.7.1 RAM Usage ... 43

5.7.2 ROM Usage ... 43

5.7.3 NV Usage .. 44

5.8 How-To: Integrate NVM with AUTOSAR3 SWC’s ... 44

5.8.1 NVM’s provided Interfaces/Ports. ... 44

5.8.2 Callbacks (Ports provided by client SWCs) 45

5.8.3 Request Result Types .. 45

6 API Description ... 46

6.1 Interfaces Overview ... 46

6.2 Type Definitions ... 46

6.3 Global API Constants ... 48

6.4 Services provided by NVM ... 48

6.4.1 NvM_Init ... 48

6.4.2 NvM_SetDataIndex .. 48

6.4.3 NvM_GetDataIndex.. 49

6.4.4 NvM_SetBlockProtection ... 50

6.4.5 NvM_GetErrorStatus .. 51

6.4.6 NvM_GetVersionInfo .. 51

6.4.7 NvM_SetRamBlockStatus .. 52

6.4.8 NvM_SetBlockLockStatus .. 53

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 9
based on template version 3.01

6.4.9 NvM_MainFunction .. 54

6.4.10 NvM_ReadBlock .. 54

6.4.11 NvM_WriteBlock .. 55

6.4.12 NvM_RestoreBlockDefaults ... 56

6.4.13 NvM_EraseNvBlock ... 57

6.4.14 NvM_InvalidateNvBlock ... 58

6.4.15 NvM_ReadAll ... 59

6.4.16 NvM_WriteAll ... 60

6.4.17 NvM_CancelWriteAll .. 61

6.4.18 NvM_KillWriteAll .. 61

6.4.19 NvM_CancelJobs ... 62

6.4.20 NvM_RepairRedundantBlocks ... 62

6.5 Services used by NVM ... 63

6.6 Callback Functions ... 64

6.6.1 NvM_JobEndNotification .. 64

6.6.2 NvM_JobErrorNotification .. 65

6.7 Configurable Interfaces .. 65

6.7.1 SingleBlockCallbackFunction ... 65

6.7.2 MultiBlockCallbackFunction ... 66

6.7.3 InitBlockCallbackFunction .. 66

6.7.4 Callback function for RAM to NvM copy ... 67

6.7.5 Callback function for NvM to RAM copy ... 68

6.8 Service Ports ... 68

6.8.1 Client Server Interface ... 68

7 Configuration .. 71

7.1 Software Component Template .. 71

7.1.1 Generation ... 71

7.1.2 Import into DaVinci Developer .. 71

7.1.3 Dependencies on Configuration of NVM Attributes 72

7.1.4 Service Port Prototypes ... 73

7.1.5 Modelling SWC’s callback functions ... 73

7.2 Configuration of NVM Attributes ... 75

8 AUTOSAR Standard Compliance... 77

8.1 Deviations .. 77

8.2 Additions/ Extensions ... 77

8.2.1 Parameter Checking .. 77

8.2.2 Concurrent access to NV data ... 77

8.2.3 RAM-/ROM Block Size checks ... 77

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 10
based on template version 3.01

8.2.4 Calculated CRC value does not depend on number of calculation
steps .. 77

8.3 Limitations.. 78

9 Glossary and Abbreviations .. 79

9.1 Glossary .. 79

9.2 Abbreviations ... 79

10 Contact .. 81

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 11
based on template version 3.01

Illustrations

Figure 3-1 AUTOSAR 4.x Architecture Overview ... 16
Figure 3-2 Interfaces to adjacent modules of the NVM .. 17
Figure 5-1 The file structure of the NVM sections module .. 38
Figure 7-1 Import a new software component into DaVinci Developer 71
Figure 7-2 A “Single Block Job End Notification” with return type Std_ReturnType 74
Figure 7-3 A “Single Block Job End Notification” with return type void. 75

Tables

Table 1-1 History of the document .. 6
Table 1-2 Reference documents ... 6
Table 2-1 Component history.. 14
Table 4-1 Supported SWS features .. 18
Table 4-2 Not supported SWS features .. 18
Table 4-3 Block concept ... 25
Table 4-4 Mapping of service IDs to services ... 33
Table 4-5 Errors reported to DET ... 34
Table 4-6 Development Error Checking: Assignment of checks to services 34
Table 4-7 Errors reported to DEM ... 35
Table 5-1 Static files ... 37
Table 5-2 Generated files ... 37
Table 5-3 Compiler abstraction and memory mapping .. 39
Table 6-1 Type definitions ... 48
Table 6-2 NvM_Init ... 48
Table 6-3 NvM_SetDataIndex... 49
Table 6-4 NvM_GetDataIndex .. 50
Table 6-5 NvM_SetBlockProtection .. 50
Table 6-6 NvM_GetErrorStatus .. 51
Table 6-7 NvM_GetVersionInfo ... 52
Table 6-8 NvM_SetRamBlockStatus... 52
Table 6-9 NvM_SetBlockLockStatus... 53
Table 6-10 NvM_MainFunction ... 54
Table 6-11 NvM_ReadBlock ... 55
Table 6-12 NvM_WriteBlock ... 56
Table 6-13 NvM_RestoreBlockDefaults .. 57
Table 6-14 NvM_EraseNvBlock .. 58
Table 6-15 NvM_InvalidateNvBlock .. 59
Table 6-16 NvM_ReadAll .. 60
Table 6-17 NvM_WriteAll .. 61
Table 6-18 NvM_CancelWriteAll ... 61
Table 6-19 NvM_KilllWriteAll .. 62
Table 6-20 NvM_CancelJobs ... 62
Table 6-21 NvM_RepairRedundantBlocks .. 63
Table 6-22 Services used by the NVM .. 64
Table 6-23 NvM_JobEndNotification .. 64
Table 6-24 NvM_JobErrorNotification ... 65
Table 6-25 SingleBlockCallbackFunction .. 66
Table 6-26 MultiBlockCallbackFunction .. 66
Table 6-27 InitBlockCallbackFunction ... 67
Table 6-28 Callback function for RAM to NvM copy .. 68

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 12
based on template version 3.01

Table 6-29 Callback function for NvM to RAM copy .. 68
Table 6-30 Operations of Port Prototype Padmin_<BlockName> 69
Table 6-31 Operations of Port Prototype PS_<BlockName> 69
Table 6-32 Operation of Port prototype NvM_RpNotifyFinished_Id<BlockName> 70
Table 9-1 Glossary ... 79
Table 9-2 Abbreviations .. 80

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 13
based on template version 3.01

2 Component History

Component
Version
(Implementation)

New Features

5.05.xx Reworked job end and init block callback invocation during ReadAll for blocks
with service ports

5.03.xx Specific development errors cannot be switched on/off, only global development
error mode can be enabled/disabled

5.02.xx Added RepairRedundantBlocks functionality

SafeBSW

5.01.xx Interaction with BswM added.

Defined Block Write Order (descending IDs) during write all

5.xx.xx AUTOSAR4.0.

 Changed API (return types)

 New service: NvM_CancelJobs

 New DEM Errors

 “Write Block during WriteAll” configurable

 Explicit Synchronization Mechanism

4.xx.xx Skipped/Reserved.

3.09.xx Removed AUTOSAR Version Check for DEM

NvM_Mainfunction runnable is always generated into SWC descripion

Generation of SWC Interface Names according to AUTOSAR

3.08.xx NVM provides information about error codes for MICROSAR Dem to automate
configuration.

3.07.xx Service NvM_KillWriteAll added.

Significant changes in internal handling (CRC/internal buffer)

3.06.xx Never released; no new features.

3.05.xx Calculated CRC32 value does not depend anymore on configuration of
parameter NvmCrcNumOfBytes.

Added RAM and ROM block size checks: The NVM can be configured to check
each RAM block’s and/or each ROM block’s size against the configured NV
block length, considering CRC setting, internal buffering, etc.

3.04.xx Crc Handling is configurable: Either the internal buffer, available since
component version 3.02, is used or Crc is stored at the end of RAM Block.

3.03.xx At processing a redundant NVRAM Block NVM determines an appropriate write
order, depending on the NV Block’s current state/content. A defect NV block is
written in preference to a valid one.

NVM provides possibility for DCM to access NV data concurrently with NVM’s
applications.

3.02.xx Update to AUTOSAR 3 specification.

Additional API NvM_SetBlockLockStatus.

Storing each NVRAM block’s CRC internally: RAM Blocks provided by the
application don’t have to allocate additional space for CRC.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 14
based on template version 3.01

Component
Version
(Implementation)

New Features

Configurability, whether the NVM shall create the RAM Block associated with the
ConfigID NVRAM Block on its own, or the user creates the RAM block.

Table 2-1 Component history

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 15
based on template version 3.01

3 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module NVM as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: link-time

Vendor ID: NVM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: NVM_MODULE_ID 20 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 3.x please see the release specific documentation.

The module NVM is created to abstract the usage of non-volatile memory, such as
EEPROM or Flash, from application. All access to NV memory is block based. To avoid
conflicts and inconsistent data the NVM shall be the only module to access non-volatile
memory.

The NVM accesses the module MEMIF (Memory Abstraction Interface) which abstracts
the modules FEE (Flash EEPROM Emulation) and EA (EEPROM Abstraction). Thus, the
NVM is hardware independent. The modules FEE and EA abstract the access to Flash or
EEPROM driver. To select the appropriate device (FEE or EA) the NVM uses a handle that
is provided by the MEMIF.

Caution
MICROSAR FEE and MICROSAR EA are different products that are not part of
MICROSAR NVM!

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 16
based on template version 3.01

3.1 Architecture Overview

The following figure shows where the NVM is located in the AUTOSAR architecture.

Figure 3-1 AUTOSAR 4.x Architecture Overview

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 17
based on template version 3.01

The next figure shows the interfaces to adjacent modules of the NVM. These interfaces
are described in chapter 6.

Figure 3-2 Interfaces to adjacent modules of the NVM

Applications normally do not access the services of the BSW modules directly. They use
the service ports provided by the BSW modules via the RTE. The service ports provided
by the NVM are listed in chapter 6.8 and are defined in [1].

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 18
based on template version 3.01

4 Functional Description

4.1 Features

The features listed in this chapter cover the complete functionality specified in [1].

The supported and not supported features are presented in the following two tables. For
further information on not supported features also see chapter 8.

The following features described in [1] are supported:

Supported Feature

Complete API

Block Management Types (Native, Redundant, Dataset)

CRC handling (CRC16, CRC32)

Priority handling, including Immediate (Crash) Data write

Job queuing

ROM defaults (ROM defaults block, Init callback)

Config Id handling

RAM block valid/modified handling

Re-Validation of RAM blocks during start up using CRC

Job end notifications

Skipping Blocks during Start-Up

API Configuration Classes

Service Ports – Generation of Software Component Description

Concurrent access to NV data for DCM

Explicit Synchronization mechanism between application and NVM

Interaction with BswM

Table 4-1 Supported SWS features

The following features described in [1] are not supported:

Not Supported Feature

Dataset ROM blocks (Management Type Dataset, multiple ROM blocks)

Disabling Set/Get_DataIndex API

Static Block ID Check during read

Write Verification

Read Retries

Table 4-2 Not supported SWS features

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 19
based on template version 3.01

4.1.1 Safety Features

4.1.1.1 Block Id check

NvM provides a feature to ensure the underlying devices deliver data for the currently
processing NvM block – Block Id Check.

Note
Since the Block Id Check is implemented via extension in CRC calculation, the feature
is only working for NvM block configured with CRC.
Since the feature uses the NvM Block Id, during configuration update the user has to
ensure the Block Id remains the same for each NvM Block. Otherwise the check will fail
though the correct data was read.

To check the data to belong to currently processing NvM Block, the NvM calculates the
NvM Block Id and the current Dataindex into its CRC. That means in fact that the NvM
calculates the CRC over the Block Id (2 bytes), Dataindex (1 byte) and the actual data –
NvM needs one CRC calculation function call more that without the Block Id check.

Caution
The NvM is not able to distinguish between wrong CRC and CRC calculated for
another NvM Block! In case the underlying modules deliver data belonging to wrong
NvM Block, the NvM behaves in same way as in case of CRC mismatch.

4.1.2 Automatic Block Length

Since the block length might be unknown during configuration time, the feature Automatic
Block Length can be enabled for NvM blocks with permanently configured RAM.

The feature changes the meaning of block length from actual length to maximum length -
the actual block length is set via size of permanent RAM within generated structures. The
configured length is used by underlying modules to initialize their structures, therefore it
must not be less than the actual length. To check the configured length to be valid, Block
Length Check (see 4.5.3) shall be enabled.

Caution
After the system is running and the actual block lengths are known, the configuration
shall be adjusted to the actual length. Since the configured lengths are used by
underlying modules, there might be a lot of unused space in Flash or EEPROM.

4.2 Initialization

Before the module NVM can be used it has to be initialized. All modules, NVM depends
on, need to be initialized before. The initialization of all these modules should be done by
the ECU State Manager. If the NVM is not used in an AUTOSAR environment it should be
done by a different entity. Pay attention that the NVM will not initialize the used modules
by its own.

Depending on the configuration of the NVM stack, different modules might need to be
initialized. It is advised to use a bottom up strategy for initialization:

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 20
based on template version 3.01

> NV device drivers for internal devices (FLS/EEP)

> Low level driver that an external NV device driver might depend on (e.g. DIO, SPI)

> Drivers for external NV devices (e.g. external EEP or FLS)

> NV device abstraction modules (EA/FEE)

> Non-Volatile Manager (NVM)

Initializing the modules in this sequence ensures that, as soon as a module is used, the
modules it depends on are ready.

Basic Knowledge
NvM initialization consists of two steps

1. NvM_Init() (see 4.2.1)

2. NvM_ReadAll() (see 4.2.2)

Indenpendently from SelectBlockForReadAll NvM uses the NvM_ReadAll() to

initialize all its blocks. Therefore it is not possible to access any NvM block until it was

initialized during NvM_ReadAll().

4.2.1 Start-up

The basic initialization of the NVRAM Manager is done by the request NvM_Init(). It

shall be invoked e.g. by the ECU State Manager exclusively. Due to strong constraints

concerning the ECU start-up time the NvM_Init() request does not contain the basic

initialization of the configured NVRAM blocks. The NvM_Init() request resets the

internal variables of the NVM such as the queue and the state machine.

4.2.2 Initialization of the Data Blocks

The initialization of the single blocks is normally also initiated by the ECU State Manager

by calling NvM_ReadAll(). All blocks that have no valid RAM data anymore and have

SelectBlockForReadAll set will be reloaded from NV memory or from ROM (if

available). All other blocks won’t be reloaded, they must be loaded manually by the

application calling NvM_ReadBlock(), but they will be initialized, e.g. their write

protection and status.

Block 1 (the configuration ID) has a special role. It is stored in NV memory and also as a

constant (NvM_CompiledConfigId_t) that is externally visible and link-time

configurable. During NvM_ReadAll() the NV value of block 1 is compared against the

constant NvM_CompiledConfigId_t. In case of a match all NV blocks are presumed to

be valid and NVM tries to read them from NV memory. In case of a mismatch or if the
configuration ID cannot be read the system behaves as following:

> If the configuration switch Dynamic Configuration Handling is OFF, the mismatch is
ignored. It will be tried to read all blocks from NV memory (also called ‘normal runtime
preparation’).

> If the Dynamic Configuration Handling is ON, the normal runtime preparation is
processed for all blocks having been configured with the option ‘Resistant to Changed
SW’. For all other blocks an ‘extended runtime preparation’ will take place.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 21
based on template version 3.01

> All blocks that will be processed with the ‘extended runtime preparation’ will be treated
as invalid or blank. Thus, it is possible to rewrite a block having been marked as ‘Write
Once’. If available, ROM defaults are loaded or the initialization callback is invoked.

4.3 States

The NVRAM Manager is internally organized with a state machine which is shown in the
following chapters.

4.4 Main Functions

4.4.1 Hardware Independence

The NVRAM Manager is independent from its underlying memory hardware. It accesses
the API of the MEMIF (Memory Abstraction Interface). The MEMIF abstracts the modules
FEE (Flash EEPROM Emulation) and EA (EEPROM Abstraction) for the NVM. FEE and
EA are used for storing data blocks in Flash or EEPROM devices. For selecting at which
FEE or EA instance a block shall be stored, the NVM uses a device handle (device ID) that
is provided by the MEMIF.

4.4.2 Synchronous Requests

The NVM API services are divided into synchronous and asynchronous requests.

The synchronous services are executed immediately when called. They are executed in
the context of the calling task. This means, that behavior depends on the characteristics of
the calling task and not on the NVM. For example, if the calling task is a non-preemptive
one, the synchronous NVM request will be executed until it has finished. Otherwise, if the
calling task is a preemptive one, the synchronous NVM request can be preempted by
another higher prioritized task.

Following NVM API services initiate synchronous requests:

> NvM_Init()

> NvM_SetDataIndex()

> NvM_GetDataIndex()

> NvM_SetBlockProtection()

> NvM_SetBlockLockStatus()

> NvM_SetRamBlockStatus() (for not CRC protected blocks)

> NvM_GetErrorStatus()

> NvM_GetVersionInfo()

4.4.3 Asynchronous Requests

Following NVM API services initiate asynchronous requests:

> NvM_ReadBlock()

> NvM_WriteBlock()

> NvM_RestoreBlockDefaults()

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 22
based on template version 3.01

> NvM_EraseNvBlock()

> NvM_InvalidateNvBlock()

> NvM_SetRamBlockStatus() (for CRC protected blocks)

> NvM_ReadAll()

> NvM_WriteAll()

> NvM_CancelWriteAll()

> NvM_CancelJobs()

The API call is handled in the context of the calling task. Here the service is queued and
will be processed asynchronously. The processing of the queued requests is done in the

context of the caller of the cyclic function NvM_MainFunction().

Caution
RAM blocks must not be accessed by any user while a request to its associated
NVRAM Block is pending!

There are some exceptions to this limitation:

> NvM_InvalidateNvBlock and NvM_EraseNvBlock don’t access any RAM

blocks. Thus access is still possible without limitations

> While the NVM processes an NvM_WriteBlock request, the RAM block may still

read.

> Though applications are not expected to be running while NVM processes

NvM_WriteAll, RAM blocks may be read, as during NvM_WriteBlock

processing.

4.4.4 API Configuration Classes and additional API Services

Depending on the needs of the customer, the extent of the NVM can be tailored. Three
configuration classes are specified that offer a different amount of functionality/functions of
the NVM:

API configuration class 1:

A minimum set of API services is used. Queuing and job prioritization are not implemented.
Following functions are available:

> NvM_Init()

> NvM_GetErrorStatus()

> NvM_SetRamBlockStatus()

> NvM_ReadAll()

> NvM_WriteAll()

> NvM_CancelWriteAll()

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 23
based on template version 3.01

API configuration class 2:

Intermediate set of API services. Queuing and job prioritization are implemented. Following
functions are available additionally according to API configuration class 1:

> NvM_SetDataIndex()

> NvM_GetDataIndex()

> NvM_ReadBlock()

> NvM_WriteBlock()

> NvM_RestoreBlockDefaults()

> NvM_CancelJobs()

API configuration class 3:

All API services are available. Following functions can be used additionally to API
configuration class 2:

> NvM_SetBlockProtection()

> NvM_EraseNvBlock()

> NvM_InvalidateNvBlock()

The functions NvM_SetRamBlockStatus() and NvM_GetVersionInfo() can be

enabled/disabled additionally via the configuration tool. The function

NvM_SetBlockLockStatus() is always available independent of API configuration

class.

4.4.5 Block Handling

4.4.5.1 NV Blocks and Block Handles

Every application’s data packet that is intended for storage in NV memory is seen as a
block. For each block a unique block handle (block ID) is used. For the application the
(RAM) block is just one of its variables associated with the block. To write this variable to

NV memory it calls the NvM_WriteBlock() service with the block handle that is mapped

to this variable. The block handle names are given during configuration of the NVM. They

are published to the application by including NvM.h.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 24
based on template version 3.01

Note
The block handle names are automatically prefixed according to the AUTOSAR
Specification EcucConfiguration:
 <Module Definition>Conf_<Container Definition Short Name>_<Container Instance
Short Name>
The prefixing has no influence on RTE.

Caution
The actual processing of an asynchronous job (such as a write job) is done in

NvM_MainFunction. Therefore it needs to be called cyclically. Usually this is done by

the Basic Software Scheduler (SCHM).

4.4.5.2 Different Types of NV Blocks

The application data can be stored in different types of blocks in the NV memory.

4.4.5.2.1 Native Blocks

This is the standard block type. The data is stored once in the NV area.

4.4.5.2.2 Redundant Blocks

This type is intended to increase availability of data, in case of errors, i.e. it is not
intended to provide additional error detection. The main focus lies on write aborts,
especially resets due to under-voltage conditions.

The user data is stored twice in the NV area. While relying on lower layers’ (FEE/EA)
detection of aborted write accesses, NVM makes sure that a readable data block remains
readable, even in case of write aborts.

For that purpose, before starting a write access, NVM checks primary and secondary NV
blocks to determine the adequate write order (which NV block to write first): If it detects a
defective NV Block, it is written in preference to a valid NV Block. If writing to one single
NV Block failed, the NVM reports the error NVM_E_REQ_FAILED (see chapter 4.5.2) to
the DEM. If writing to primary NV block failed, NVM ends the request always with a
negative job result. If the primary NV block was written successfully, the request always
ends with a positive job result, even when the secondary NV block failed.

Note
It is recommended to configure CRC usage for Redundant Blocks, because CRC
provides adequate error detection, beyond the scope of aborts.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 25
based on template version 3.01

Expert Knowledge
NVM does not check any data to determine the write order. Rather, it just checks
whether lower layers would find valid data instances (i.e. whether they successfully
read a block’s first data byte). At this point, NVM relies on lower layers’ abort detection
capabilities.

Note
NVM always attempts writing both NV blocks, regardless of errors reported by lower
layers.

 A read request is successful even if one block is corrupted but the other block could be
read. An erase or invalidate request is only successful if both blocks could be erased
respectively invalidated.

4.4.5.2.3 Dataset Blocks

A dataset block can be seen as an array. A configurable number of instances of this block
are stored in NV-memory. In the RAM area there is only one RAM buffer. The appropriate
NV block instance is selected by the so called data index. The data index can be read and

set by synchronous API services NvM_GetDataIndex() and NVM_SetDataIndex().

Concept Description

Block General notion of the structure composed of data, state and CRC. It is
spread over RAM, ROM and NVRAM.

NV Block One block in NVRAM – CRC is optional.

NV Block of

> Native type

> Redundant type

> Dataset type

One NV Block of specified type.

RAM Block One data Block in RAM. The data is shared by NVRAM Manager and
application. E. g. application writes data to this block and requests
NVRAM Manager to write it into NVRAM.

ROM Block One data block in ROM. Default data supplied by application.

NVRAM Block A logical composition of one RAM block and its corresponding NV and
ROM Block.

NV = NVRAM Non-volatile memory. Actually a synonym for Flash or EEPROM devices.

Table 4-3 Block concept

Expert Knowledge
After a write abort, the “age” of data is not defined. NVM may deliver previous or recent
data; in fact it does not distinguish them. Before NVM completed the result with
NVM_REQ_OK, clients shall make no assumption on “age” of data in NV memory.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 26
based on template version 3.01

4.4.5.3 Permanent and non-permanent RAM Blocks

The RAM block (application variable) can be either permanent or non-permanent. A
permanent RAM block belongs to a NV block that is accessed only by one application. The
address of the RAM block is fixed and is stored in the configuration of the NVM.

It is also possible to have multiple applications accessing the same NV block. Each
application uses its own RAM block. In this case the RAM block is called non-permanent.
As the RAM address is not stored (and may vary) a pointer must be given for reading and
writing a non-permanent block.

Caution
Asynchronous API functions can be reentered by different tasks. So it is possible that
several tasks queue for example a write job at the same time (a task with higher priority
might interrupt a lower one). But it is not possible to queue the same block multiple
times (neither by different tasks nor for different jobs). So if for instance a read job for
block 5 is queued, an erase job for this block can’t be queued before the read job is
finished.

If one block is used by multiple tasks, which is a common task for non-permanent RAM
blocks, the application is responsible for synchronization. Of course if, for example, an
erase request is in process the RAM block could be read or written without any effect to
the result of the erase job. The only problem is that the NVM does not offer any
information to an application what service is currently processed for a block. The
application that initiated the service of course does know, but a different application that
also uses the block does not. So the safest way for block access is not to use the RAM
block as long as it is pending. This way RAM inconsistency can be avoided definitively.

4.4.5.4 ROM Defaults

ROM defaults can be assigned to any NVRAM block. The ROM defaults block is provided
by the application. Alternatively, an initialization callback (see 4.4.13) can be used. These
features are selected during configuration. It is only possible to configure either ROM
defaults or an initialization callback for a block.

ROM defaults can be read explicit (by a call of NvM_RestoreBlockDefaults()). ROM

defaults will also be read implicitly during a read request, if no valid data could be read
from NV-memory, either due to a CRC error or because of a failure reported by the
underlying MemHwA via MEMIF.

4.4.5.5 Checksum

For each block an optional checksum can be configured. This checksum can be either
CRC16 or CRC32. The checksum will be appended to user data; in NV memory they will
be stored consecutively in one single NV block.

If Internal Buffer for CRC Handling is disabled, Storage for CRC must be provided by
every single user; otherwise NVM provides an internal buffer. In this case it copies user
data (associated with NVRAM blocks configured with CRC) into an internal buffer, instead
of directly passing them down to lower layers. Here, data gets appended with CRC, in
order to keep both within one NV block, which requires NVM to pass both down with one
single write request.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 27
based on template version 3.01

If “Calc RAM CRC” was additionally enabled, NVM will internally store CRC values in

RAM, in order to check against them during NvM_ReadAll processing. Without internal

buffering, additional space in RAM block serves for this purpose.

4.4.6 Prioritized or non-prioritized Queuing of asynchronous Requests

As mentioned before, asynchronous services are not processed immediately but queued

and processed asynchronously by the NvM_MainFunction(). This is necessary to

decrease the runtime of application tasks and to increase the predictability of their duration
(synchronous write jobs on an EEPROM or Flash would block your task for multiple
milliseconds up to one second).

Jobs can be queued either prioritized or non-prioritized, depending on the user
configuration.

If job prioritization is configured, the priorities 0 (immediate priority) until 255 (lowest
priority) can be selected for a block. It is important that the priority depends on the block,
rather than the request. Multi block requests always have a priority value greater than 255,
i.e. their priority is less than the lowest block specific priority; they will be processed after
all single block requests have been completed.

If block prioritization is not selected, the job queue works as a FIFO buffer.

4.4.7 Asynchronous Job-End Polling

As alluded before, asynchronous requests are processed in the background. The
application has the possibility to poll the NVM for the end of the service by calling

NvM_GetErrorStatus(). NVM_REQ_PENDING will be returned as long as the job is

queued or in process. Once the job is finished NvM_GetErrorStatus() will return the

job result.

4.4.8 Single Block Job End Notifications

Alternatively to poll for the job-end, a job end notification can be implemented and
configured for every block. NvM invokes the notification each time a job was processed for
the block and informs about the finished job and its result via parameter.

The return value of the functions is specified but will not be used by the NVM.

Note
There are two different exceptions where the NvM does not invoke the job end
notification:

> During NvM_WriteAll() the single block job end notification won’t be called

> During NvM_ReadAll() the single block job end notification won’t be called, if

the block is configured with enabled NvMUseServicePorts. This will be done

because during the NvM_ReadAll() the RTE is not initialed yet and callback

invocations could lead to DET error. For all blocks with disabled

NvMUseServicePorts the callbacks will be invoked during NvM_ReadAll()

without restrictions.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 28
based on template version 3.01

4.4.9 Immediate Priority Jobs and Cancellation of current Jobs

If job prioritization is selected, blocks of different priority exist. A new queued, higher prior
job, (e.g. priority 5) does not cancel/suspend a lower prioritized job (e.g. priority 10) if this
job is already processed.

The only exceptions for this are immediate priority jobs (priority 0) which can suspend a
running job that priority is less. The suspended job will be restarted after all jobs with
higher priority are finished.

Caution
Pay attention that only blocks with high priority (0) can be erased (by using API

NvM_EraseNvBlock)!

4.4.10 Asynchronous CRC Calculation

The (re-)calculation of a block’s CRC is done asynchronously by the

NvM_MainFunction(). A CRC protected block’s CRC value is calculated every time the

block shall be written to NV memory. If a block is read from NV memory the CRC value is
recalculated and compared to the one that was just read from NV memory. If configuration
option ‘Calculate RAM CRC’ was enabled for a block, its recently calculated CRC value
will be stored in RAM for later use.

If NvM_SetRamBlockStatus(TRUE) is called, the re-calculation of the CRC value over

the RAM block’s data will also be initiated, if ‘Calculate RAM CRC’ was enabled for this
block.

Note
The purpose of requesting recalculation of the RAM CRC with every call to

NvM_SetRamBlockStatus is to provide the possibility to re-use the RAM data even if

a reset (short power-loss, watchdog-reset) occurred.

NvM attempts so during NvM_ReadAll processing for all NVRAM blocks having ‘Read

during ReadAll’ and ‘Calc RAM CRC’ enabled in their configuration: If the block is
internally still marked as VALID, NVM calculates the CRC value over current RAM
block’s contents and compares it with the value stored elsewhere. If thy match it does
not touch RAM contents; rather NVM pretends having successfully read those values
from NV.

The CRC calculation is done in the cyclically called service NvM_MainFunction(). To be

able to split a CRC calculation job, the number of CRC bytes to be calculated during one
cycle can be configured via the configuration tool.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 29
based on template version 3.01

Note
If an AUTOSAR compliant CRC library implementation is used, the NVM ensures for all
supported CRC types that calculated values do not depend on the number of cycles
needed for calculation, i.e. for any number of calculation steps any CRC value is
guaranteed to be equal to the CRC value calculated over same data with one single
call to the appropriate library function.

For CRC32 this is a feature in NvM, beyond the requirements of AUTOSAR.

4.4.11 Write Protection

The NVM supports write protection of any NV Block. The API services

NvM_SetBlockProtection() is used for locking and unlocking a NV block. The initial

write protection (after reset) can be configured. It will be set during NvM_ReadAll().

A block can also be configured to be written once. The write protection of such a block
cannot be removed by an API call. Nevertheless, it is possible to rewrite such a block by

using the extended runtime preparation during NvM_ReadAll().

Caution
Pay attention, for a dataset block configured as write once only one dataset can be
written. The other datasets can’t be written any more. The whole block is protected
after first write.

4.4.12 Erase and Invalidate

There are two services specified for making a NV block unreadable:

NvM_EraseNvBlock() and NvM_InvalidateNvBlock().

Invalidating a block is much faster than erasing the block because only the status
information will be invalidated.

4.4.13 Init Block Callbacks

For any block ROM defaults (see 4.4.5.4) or an initialization callback can be configured.
The initialization callback is called every time the default values of the block have to be
loaded, e.g. during a restore block defaults service or for failed read jobs.

In contrast to ROM defaults NvM does not update the RAM data itself, this shall be done
within the initialization callback.

The return value of the functions is specified but will not be used by the NVM.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 30
based on template version 3.01

Note

> Init callback is invoked when the related block is still busy, so no request shall
be issued until the block isn’t busy any more.

> During NvM_ReadAll() the initialization callback won’t be called, if the block is

configured with enabled NvMUseServicePorts. This will be done because

during the NvM_ReadAll() the RTE is not initialed yet and callback

invocations could lead to DET error. For all blocks with disabled

NvMUseServicePorts the callbacks will be invoked during NvM_ReadAll()

without restrictions.

4.4.14 Define Locking/ Unlocking Services

In preemptive systems, it is necessary to protect some actions of preemption. That means
that a few NVM internal actions need to be atomic. So for protecting these sequences
functions for entering and leaving such a critical section can be configured. By default the
Operating System (OS) services are used.

The configuration tool can be used to define or configure services such as the OSEK

services GetResource(…) and ReleaseResource(…) to lock and unlock resources. To

use these services of your Operating System, you must also publish the header file of the
Operating System via configuration tool (in the ‘MyECU’ window and the included tab ‘OS
Services’).

4.4.15 Interrupts

When interrupts occur during write accesses, they do not corrupt already saved data or
data to be written. To ensure this, these critical sections have to be locked, which is
configurable via configuration tool.

4.4.16 Data Corruption

Write operations to non-volatile memories are non-atomic operations. A power supply
failure during write accesses may lead to corrupted/invalid data. Assuring that corrupted
data will not be signaled as valid is no more the task of the NVM but of the FEE or EA.

4.4.17 Concurrent access to NV data for DCM

NVM provides possibility to access NV data concurrently with NVM’s applications.
Therefore each configured NVRAM block has an additional alias, the “DCM block”.

Aliases have following differences to normal NvM blocks:

 Aliases have the same configuration as the origin NvM blocks (e.g CRC or length)

 Aliases are treated as NVRAM blocks without permanent RAM block

 Aliases are neither read at start-up (during NvM_ReadAll processing) nor written at

shut-down (during NvM_WriteAll processing)

 explicit read or write requests must supply a reference to a temporary RAM block

 NvM_SetRamBlockStatus invoked for an alias does not have any influence on

processing

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 31
based on template version 3.01

 Only one asynchronous request for an alias can be queued at a time

 If one is already queued, the request will be rejected (API returns E_NOT_OK)

 NvM_GetErrorStatus works for all aliases, no matter which alias ID is given to the

function.

 There is only one job result for all aliases which is valid until the next alias is
requested

 NvM_SetDataIndex and NvM_GetDataIndex work for all aliases, no matter which

alias ID is given to the functions

 NvM_SetBlockProtection works for all aliases, no matter which alias ID is given to

the function

All jobs of DCM are always put into Standard Job Queue, even if blocks with immediate
priority are requested and job prioritization was enabled. So cancellation of pending jobs
by an immediate DCM-Block is avoided. The original priority itself is kept.

For accessing the alias of a NVRAM block, NVM provides the global macro

NvM_GetDcmBlockId(<NvMBlockId>) which expects the origin NVRAM BlockId as

parameter and returns the block’s alias of type NvM_BlockIdType.

Note
It is recommended that DCM accesses NVRAM data only via aliases. Otherwise the
DCM would be responsible for synchronization with every single NVM client (blocks’
owners).

Caution

DCM should lock the block using NvM_SetBlockLockStatus (see chapter 6.4.8)

before requesting jobs (via the alias, especially write requests). In case of an error
during job processing, DCM should also unlock the block again. If job processing
completes successfully the block should remain locked; it will be automatically

unlocked after next start-up (NvM_ReadAll processing).

A lock itself only affects the original block (i.e. the alias cannot be locked).

4.4.18 Explicit synchronization mechanism between application and NVM

NvM supports an optional explicit synchronization mechanism between application and
NvM. It is realized by a RAM mirror in the NvM module. The data is transferred by the
application in both directions via callback routines, called by the NvM module.

The synchronization mechanism can be configured for every NVRAM block separately. If
the synchronization mechanism is configured NvM uses the internal buffer as RAM mirror
between NvM and application. It is the same internal buffer which is used for Crc
calculation (see chapter 4.4.5.1). The size of the internal buffer is the size of the biggest
configured block plus configured Crc bytes.

If the synchronization mechanism is configured, both NvMWriteRamBlockToNvM and
NvMReadRamBlockFromNvM must be configured.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 32
based on template version 3.01

It is not useful to configure a permanent RAM block for a block which uses the
synchronization mechanism. In this case the RAM block will be ignored. It is also not
recommended to configure an Init callback for a block using synchronization mechanism.

Note
If Explicit Synchronization was configured for a block, clients may modify RAM contents
(which are not visible to NVM) while block is pending. In this case take care they may
get overwritten when a pending read completes.

Basic Knowledge
By definition, this mechanism serves as permanent RAM block.

Expert Knowledge

Calculate RAM CRC and related fast re-validation of RAM data during NvM_ReadAll

processing cannot be used along with explicit synchronization mechanism.

4.4.18.1 Explicit synchronization mechanism during write requests

After application issued NvM_WriteBlock, application might modify the RAM block until

callback NvMWriteRamBlockToNvM is called by NvM. If NvMWriteRamBlockToNvM is
called, application has to provide a consistent copy of the RAM block to the internal RAM
mirror.

Note
During calling NvMWriteRamBlockToNvM callback related block is still busy. No
request for it shall be issued as long as block is busy.

4.4.18.2 Explicit synchronization mechanism during read requests

After application issued NvM_ReadBlock, application might modify the RAM block until

the routine NvMReadRamBlockFromNvM is called by the NvM. If
NvMReadRamBlockFromNvM is called, then application has to copy the data from the
internal RAM mirror to the RAM block.

Note
During calling NvMReadRamBlockFromNvM callback related block is still busy. No
request for it shall be issued as long as block is busy.

4.5 Error Handling

4.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [2], if development error reporting is enabled (i.e.

pre-compile parameter NVM_DEV_ERROR_DETECT == STD_ON).

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 33
based on template version 3.01

The reported NVM ID can be seen here [chapter 3].

The reported service IDs identify the services which are described in 6.4. The following
table presents the service IDs and the related services:

Service ID Service

0x00 NvM_Init()

0x01 NvM_SetDataIndex()

0x02 NvM_GetDataIndex()

0x03 NvM_SetBlockProtection()

0x04 NvM_GetErrorStatus()

0x05 NvM_SetRamBlockStatus()

0x06 NvM_ReadBlock()

0x07 NvM_WriteBlock()

0x08 NvM_RestoreBlockDefaults()

0x09 NvM_EraseNvBlock()

0x0A NvM_CancelWriteAll()

0x0B NvM_InvalidateNvBlock()

0x0C NvM_ReadAll()

0x0D NvM_WriteAll()

0x0E NvM_MainFunction()

0x0F NvM_GetVersionInfo()

0x10 NvM_CancelJobs()

0x13 NvM_SetBlockLockStatus()

Table 4-4 Mapping of service IDs to services

The errors reported to DET are described in the following table:

Error Code Description

0x14 NVM_E_NOT_INITIALIZED Every API service, except NvM_Init() and

NvM_GetVersionInfo(), may check if NVM has

already been initialized.

0x15 NVM_E_BLOCK_PENDING As long as an asynchronous operation on a certain
Block has not been completed, no further requests
belonging to this Block are allowed.

0x18 NVM_E_BLOCK_CONFIG This service is not possible with this configuration.

0x0A NVM_E_PARAM_BLOCK_ID NVM API services may check, whether the passed

BlockId is in the allowed range.

0x0B NVM_E_PARAM_BLOCK_ TYPE NvM_SetDataIndex() and

NvM_GetDataIndex() are restricted to Dataset

bocks. If these functions are called with any other
bock type, this error code is produced.

NvM_RestoreBlockDefaults() is restricted to

blocks configured with ROM defaults or an init
callback.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 34
based on template version 3.01

Error Code Description

0x0C NVM_E_PARAM_BLOCK_DATA_

IDX

NvM_SetDataIndex() may check the range of the

passed DataIndex.

0x0D NVM_E_PARAM_ADDRESS A wrong pointer parameter was passed. (NULL_PTR

passed in an asynchronous call, e.g.

NvM_WriteBlock() for a non-permanent block)

0x0E NVM_E_PARAM_DATA A NULL_PTR was passed in one of the synchronous

functions NvM_GetDataIndex(),

NvM_GetErrorStatus() or
NvM_GetVersionInfo().

Table 4-5 Errors reported to DET

4.5.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. The checks in
Table 4-6 are internal parameter checks of the API functions.

The following table shows which parameter checks are performed on which services:

Check

Service

M
o
d
u

le
’s

in
it
ia

liz
a

ti
o

n

S
ta

tu
s
 c

h
e
c
k

B
lo

c
k
’s

 M
a

n
a
g

e
-

m
e
n
t
T
y
p

e
 c

h
e
c
k

B
lo

c
k
’s

 P
e
n
d

in
g

S
ta

te
 c

h
e
c
k

B
lo

c
k
 I
d

 c
h
e
c
k

D
a
ta

In
d
e
x
 c

h
e
c
k

P
o
in

te
rs

 c
h
e
c
k

NvM_Init()

NvM_SetDataIndex()     

NvM_GetDataIndex()    

NvM_SetBlockProtection()   

NvM_GetErrorStatus()   

NvM_GetVersionInfo() 

NvM_SetRamBlockStatus()    

NvM_SetBlockLockStatus()  

NvM_ReadBlock()    

NvM_WriteBlock()    

NvM_RestoreBlockDefaults()    

NvM_EraseNvBlock()   

NvM_CancelWriteAll() 

NvM_InvalidateNvBlock()   

NvM_ReadAll()  

NvM_WriteAll()  

NvM_MainFunction() 

NvM_CancelJobs()  

Table 4-6 Development Error Checking: Assignment of checks to services

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 35
based on template version 3.01

4.5.2 Production Code Error Reporting

NvM checks and reports following error codes to DEM:

Error Code Description

NVM_E_INTEGRITY_FAILED API request integrity failed

NVM_E_REQ_FAILED API request failed

NVM_E_WRITE_PROTECTED NvM_WriteBlock, NvM_EraseNvBlock and

NvM_InvalidateNvBlock check, if the

block with specified BlockId is write-protected,
before it is written (or erased or invalidated).

NVM_E_QUEUE_OVERFLOW All asynchronous requests can only be en-
queued if the queue is not full.

NVM_E_LOSS_OF_REDUNDANCY One single block of a redundant block is
invalid.

Table 4-7 Errors reported to DEM

According to AUTOSAR component specific DEM error codes must be configured in DEM,
NvM configuration references them.

To report production errors to DEM, NvM uses the Dem_ReportErrorStatus API which

has to be published via Dem.h (included if NvM references at least one DEM error code).

NvM invokes the DEM API with configured error code and the status

DEM_EVENT_STATUS_FAILED. NvM never uses the status
DEM_EVENT_STATUS_PASSED.

Caution
NvM does not report DEM errors without reference to DEM. If any DEM error reporting
is required, the NvM error code has to point to a DEM error code.

For more information about DEM see [3]

4.5.3 Compile-time Block Length Checks

For each block with permanent RAM or ROM, NvM provides the Block Length Check to
ensure the configured block length and the permanent RAM’s/ROM’s length fits to each
other.

There are three different checks for permanent RAM

> Automatic Block Length enabled (see 4.1.2): size of permanent RAM must not
exceed the configured block length

> Strict Block Length: configured block length has to match the size of permanent
RAM exactly

> Non-strict Block Length: configured block length must not exceed the size of
permanent RAM

And one for permanent ROM

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 36
based on template version 3.01

> Non-strict Block Length: configured block length must not exceed the size of
permanent ROM

Basic Knowledge
To check the block length during compile time, NvM uses bitfields – those have to be
initialized with positive length. Once a bitfield is initialized with negative length (block
length check failed), compiler error shall occur and mark the corresponding line.

Each length check shows all required information: block name, RAM symbol and what
is wrong with the block (depends on strict, non-strict or automatic block length)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 37
based on template version 3.01

5 Integration

This chapter gives necessary information for the integration of the MICROSAR NVM into
an application environment of an ECU.

5.1 Scope of Delivery

The delivery of the NVM contains the files which are described in the chapters 5.1.1 and
5.1.2:

5.1.1 Static Files

File Name Description

NvM.h This file must not be modified by user.

Defines the interface of NVM. Only this file shall be included by the
application.

NvM_Cbk.h This file must not be modified by user.

Contains the declarations of the callback functions being invoked by
EEPROM driver

NvM_Types.h This file must not be modified by user.

Defines general types used by NVM.

NvM.c /
NvM.lib/NvM.a

This file must not be modified by user.

Implementation of NVM, delivered as object library.

NvM_Act /
NvM_Crc /
NvM_JobProc /
NvM_Qry /
NvM_Queue.c *.h

These are files for internal use of the NvM.

If NVM is delivered as object then this parts are content of NvM.lib.

Table 5-1 Static files

5.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator. Do not
modify them manually.

File Name Description

NvM_Cfg.c It contains configuration parameters of NVM which can be modified after

compilation of NvM.c.

NvM_Cfg.h Contains public configuration parameters of NVM. They are (or might be)
also important to NvM’s user(s), or they may affect NvM’s API

It contains also public types and symbol declarations to be used by NVM as
well as its user(s).

NvM_PrivateCfg.h Contains parameters as well as type and symbol declarations, which are
private to the NvM, i.e. they only affect internal behavior.

This file is intended to be included only by NvM’s sources.

Table 5-2 Generated files

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 38
based on template version 3.01

5.2 Critical Sections

To protect critical code against interruptions NvM uses following critical section:

> NvM_NVM_EXCLUSIVE_AREA_0

5.3 Include Structure

The following figure illustrates the hierarchy of included files. It also shows that
Std_Types.h and Nvm.h must be included by the application.

Figure 5-1 The file structure of the NVM sections module

5.4 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions of NVM and illustrates the relationship among each them.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 39
based on template version 3.01

Compiler Abstraction
Definitions

Memory Mapping
Sections

N
V

M
_
P

R
IV

A
T

E
_
C

O
D

E

N
V

M
_
P

R
IV

A
T

E
_
C

O
N

S
T

N
V

M
_
P

R
IV

A
T

E
_
D

A
T
A

N
V

M
_
F
A

S
T

_
D

A
T
A

N
V

M
_
P

U
B

L
IC

_
C

O
D

E

N
V

M
_
P

U
B

L
IC

_
C

O
N

S
T

N
V

M
_
A

P
P

L
_
C

O
D

E

N
V

M
_
A

P
P

L
_
C

O
N

S
T

N
V

M
_
A

P
P

L
_
D

A
T
A

N
V

M
_
C

O
N

F
IG

_
C

O
N

S
T

N
V

M
_
C

O
N

F
IG

_
D

A
T
A

NVM_START_SEC_CODE   

NVM_START_SEC_
VAR_NOINIT_UNSPECIFIED

  

NVM_START_SEC_VAR_NOINIT_8 

NVM_START_SEC_VAR_UNSPECIFIED 

NVM_START_SEC_VAR_FAST_8 

NVM_START_SEC_
CONST_UNSPECIFIED

 

NVM_START_SEC_CONST_8 

NVM_START_SEC_CONST_16  

NVM_START_SEC_
CONST_DESCRIPTOR_TABLE

  

NVM_START_SEC_VAR_POWER_ON_I
NIT_UNSPECIFIED 

Table 5-3 Compiler abstraction and memory mapping

For each start keyword, there is a stop keyword. As these stop keywords are used to
restore the default section, the stop keywords do not need to be configured.

Caution
The size of the section NVM_START_SEC_CONST_DESCRIPTOR_TABLE depends
on the configuration settings. It makes sense to create an own section for this item if it
becomes too big to link it into the same page/section as the elements of the
MICROSAR NVM module. In this case the according memory modifier has to be used
in order to address the elements in this section.

Above listed section keywords are compiler dependent. They are set in the files
MemMap.h and Compiler.h/Compiler_Cfg.h. Compiler pragmas may be used to open and
close a special memory section. As these pragmas are already used when creating the
NVM library (object code) these parameters are not link-time configurable. Libraries with
different settings can be obtained at Vector Informatik GmbH. Please refer to the Software
release notes (SRN) (or to the delivered MemMap.h, Compiler.h/Compiler_Cfg.h) for the
settings made for your delivery.

NVM_START_SEC_VAR_POWER_ON_INIT_UNSPECIFIED shall be mapped to a section

that is guaranteed to be zeroed out after Power-On Reset (therefore it may be a normal

ZERO_INIT section, being zeroed out after any reset. Make sure this helds true for all

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 40
based on template version 3.01

kinds of variable data (esp. uninitialized). If necessary, create a special section (don’t map
to a common one).

NVM_START_SEC_VAR_UNSPECIFIED shall also be mapped to a section that is

guaranteed to be zeroed out. It holds the variable NvM_TaskState_t which has to be

zero since NvM is not initialized.

Note

The integrator has to make sure specific section related settings (#pragmas) cover all

(intended) variables defined within in a particular specific section. (It might be desired,
and possible with a compiler to further divide variables, e.g. by type/size/alignment
requirements).

Expert Knowledge
It is important to understand that a variable declaration lacking an initializer does not
actually mean an uninitialized variable (unless the variable has automatic storage
duration).
Instead, according to ANSI/ISO, every object that has static storage duration is not
initialized explicitly (ISO/IEC 9899:1999 chapter 6.7.8 clause 10) shall be initialized
(according to the rules defined there). Technically, they shall be initialized to 0
However, how a compiler achieves it, is beyond the standard. It is also beyond the
standard, how compilers map variables to sections, what default sections they define,
etc.
A compiler may treat a variable explicitly initialized to 0 like an “uninitialized” variable, it
may treat it like an initialized variable, or it may even treat it completely differently (e.g.
some compilers can be setup to emit all explicitly initialized variables to a section
“.zbss”, in contrast to “.data” and “.bss”, used for initialized, and uninitialized variables,
respectively”.

Therefore, any section definition (#pragmas) should consider all variables (regardless

of existence of an explicit initializer, and/or eventually other differentiations a compiler
might provide), unless there’s a good reason to exclude some of them.

Caution
The sections mentioned above have to fit to the linker configuration (linker command
file) as well as to the memory modifier settings in the Compiler Abstraction!

5.5 Dependencies on SW Modules

5.5.1 OSEK / AUTOSAR OS

An OS environment is not necessary unless it is used for interrupt or resource locking
issues.

5.5.2 DEM

NvM reports runtime errors to DEM. For more information see chapter 4.5.2.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 41
based on template version 3.01

5.5.3 DET

Module DET: Can be used in development mode. It records all development errors for
evaluation purposes. Its usage can be enabled/disabled via configuration tool by the
switch Development Error Reporting.

5.5.4 MEMIF

The NVM uses configuration parameters defined by the MEMIF.

5.5.5 CRC Library

For CRC calculations the NVM uses the services provided by an AUTOSAR compliant
CRC Library.

Note
Since the Configuration Id Block must be configured with either CRC16 or CRC32;
you will always need the CRC library.

5.5.6 Callback Functions

MICROSAR NVM offers the usage of notifications that can be mapped to callback
functions provided by other modules, in order to inform them about job completion. For
each NVRAM block a separate callback function may be defined by application. These
callback function declarations must be made within the application and be included by the
NVM.

5.5.7 RTE

When at least one Service Port is enabled and corresponding PIM (see Technical
Reference of RTE) is available, all additional necessary header files are included

automatically. SWC must not include NvM.h.

5.5.8 BSWM

If the switch BSWM Multi Block Job Status Information is enabled the NVM shall inform
the BSWM about the current state of a multi block job via

BswM_NvM_CurrentJobMode(). The multi job callback is not called.

Note

During calling BswM_NvM_CurrentJobMode(), if called with status

NVM_REQ_PENDING, callback related block is still busy. No request for it shall be

issued as long as block is busy.

If the switch BSWM Block Status Information for a single block is true, the NVM shall
inform the BSWM about the current state of the block via

BswM_NvM_CurrentBlockMode().

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 42
based on template version 3.01

Note

During calling BswM_NvM_CurrentBlockMode(),if called with status

NVM_REQ_PENDING, callback related block is still busy. No request for it shall be

issued as long as block is busy.

5.6 Integration Steps

To integrate MICROSAR NVM into your system, several steps beginning with configuration
have to be done:

> Configure MICROSAR NVM and MICROSAR MEMIF according to applications’
requirements using MICROSAR configuration tool or a GCE editor.

> Generate the configuration files of the modules NVM and MEMIF.

> Configure and generate the lower modules FEE/EA and the driver modules for
FLS/EEP.

> If a FEE or EA module is used that is not delivered by Vector, make sure that the
parameters that are exchanged between the two modules are consistent.

> Each application is responsible to make their RAM and ROM blocks available (do not
use the static modifier!). The MICROSAR NVM includes the file that declares these
blocks and defines memory modifier to address the blocks. This memory modifier can

be changed in the Compiler.h.

> Make sure all applications using MICROSAR NVM include Std_Types.h and NvM.h

(in that order).

> Check the initialization of the drivers FLS/EEP, FEE/EA and the MICROSAR NVM
(MICROSAR NVM does not initialize any other module).

> Make sure that the initialization sequence is correct. FEE/EA and FLS/EEP must be

initialized before any NVM request (usually NvM_ReadAll()) can be used. Take care

initialization sequence of FEE/EA must be finished until FEE/EA is able to accept a job
from NvM. In case Fee_MainFunction calls and/or Fls_MainFunction calls are
necessary to finish initialization process for FEE/EA the calls have to be executed
before NvM requests the first job to FEE/EA.

> Ensure that the main functions of the NVM, the FEE/EA and the FLS/EEP drivers are
called cyclically. This must be done within an application task running at sufficient
priority (to avoid starving).

> Ensure that a waiting task frees CPU to make it possible that the action for the task is
waiting for, can be done!

Finally: Compile and link your MICROSAR NVM together with your project.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 43
based on template version 3.01

5.7 Estimating Resource Consumption

Besides resources needed anyway when using NVM, there are some configuration options
influencing resource consumption of your system. In general these options affect usage
independently of the number of configured NVRAM blocks. Additionally each NVRAM
block requires resources in RAM, ROM and NV, respectively. The following sections will
summarize the options and give you hints, how to estimate their effects.

5.7.1 RAM Usage

In general, each NVRAM block consumes RAM – for the application-defined RAM-block as
well as for the internal block management structure, which holds information about request
results, blocks’ attributes and its current data index. The amount of RAM occupied by the
RAM block itself should be equal to the configured length. However, the actual size
depends on the size of the object (variable) the application declares. The size of each
management area is currently 3 bytes.

However, though they need to be considered when estimating (overall) RAM consumption,
RAM blocks technically belong to the clients of NVM.

The configuration options affecting RAM consumption pertain to size of the queue(s) and
the option job prioritization. The size of one queue entry depends on the target platform
and the compiler options used. It ranges from 8 bytes (16 bit platform, 16bit pointers) to 12
bytes (32bit architectures, aligned structure members).

Additionally the setting Internal Buffer for Crc Handling affects RAM usage: If enabled,
the NVM internally allocates a RAM buffer. Its size is at least the size of largest NVRAM
block configured with CRC, including CRC size. Sizes of NVRAM Blocks configured with
Use Synchronisation Mechanism, will also be considered in calculation of internal
buffer’s size.

Additionally, each NVRAM block with Calc RAM Block CRC gets a dedicated RAM area
for CRC storage, exactly matching CRC’s size. As a result, applications’ RAM blocks do
not need to provide additional space for CRC. Therefore it does not affect RAM
consumption.

5.7.2 ROM Usage

Because each NVRAM block’s configuration is compiled into a constant block descriptor,
the ROM needed is also affected by the whole number of configured NVRAM blocks.
Again, the size of one descriptor varies with the target platform and the compiler options
used.

There are some configuration options affecting NVM code size. The options

> Development mode

> API configuration class

> use Version Info API

> use Set Ram Block Status API

result in switching on/off complete code sections.

NVM’s ROM usage does not depend on block configured with ROM defaults. ROM
default blocks (defining default data) belong to the clients of NVM, as any callbacks do.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 44
based on template version 3.01

5.7.3 NV Usage

The requirements on NV memory space per device are affected by the NVRAM blocks and
their configuration. Basically, each NV block allocates as many bytes as specified for its
length, plus CRC bytes (if configured). Underlying components (FEE or EA) would also
add internal management information, as well as padding bytes to meet NV memory
device’s alignment requirements.

According to the management type of the NVRAM block, it consists of one or more blocks
consuming NV space:

> NATIVE 1 NV Block

> REDUNDANT 2 NV Blocks

> DATASET Count NV Blocks

5.8 How-To: Integrate NVM with AUTOSAR3 SWC’s

Embedded Interface of ASR4 NVM is NOT compatible with ASR3; especially return types
have been changed.
However, RTE encapsulates all of them: If an SWC calls a C/S-Interface’s operation (via

RTE), it always gets Std_ReturnType.

Finally, existing embedded code – SWCs as well as NVM itself – compiles against these
changed interfaces without modifications.
Unfortunately, to achieve this embedded compatibility, SWC-descriptions (which instruct
the RTE generator, how to create compatible code) slightly differ between AUTOSAR
services. Users will have to adapt their clients’ interface references in order to use
AUTOSAR4 BSW along with AUTOSAR3 SWCs.

5.8.1 NVM’s provided Interfaces/Ports.

Every interface used by client SWCs needs to be remapped.

5.8.1.1 NvMAdministration

The only operation – SetBlockProtection – changed from POSSIBLE-ERRORS() to
POSSIBLE-ERRORS(E_NOT_OK).

This definition may be exchanged at R-Port side, because the embedded software already

used Std_ReturnType (and E_OK/E_NOT_OK), due to RTE API. Code should have been

implemented in a defensive way, i.e. it should check return values.
However, this operation can only fail, if development error detection was enabled.

5.8.1.2 NvMService_AC[1|2|3][_SRBS][_Defs]

For information about naming, please refer to 7.1.4

Return types (POSSIBLE-ERRORS) of following operations changed:
> GetErrorStatus

> GetDataIndex

> SetDataIndex

> SetRamBlockStatus

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 45
based on template version 3.01

Note

NvM_SetDataIndex and NvM_GetDataIndex may fail if “Development Error

Detection” is disabled.

Similar to NvMAdministration interface, clients’ R-Port Prototypes must be associated with
these new interfaces. The implications on Runnables’ implementations are the same as
above – no changes are necessary.

5.8.2 Callbacks (Ports provided by client SWCs)

Actually, callbacks specifications did not change from AUTOSAR3 to AUTOSAR4.

However, a recent feature added to DaVinci Developer and RTE Generator allows for
more flexibility in modeling and implementing callback’ signatures. Refer to chapter 7.1.5
for information the relationship between modelled callbacks (SWC’s P-Ports) and their
RUNNABLEs’ prototypes.

5.8.3 Request Result Types

In AUTOSAR4 new values for NvM_RequestResultType have been defined, namely

NVM_REQ_REDUNDANCY_FAILED and NVM_REQ_RESTORED_FROM_ROM.

However, since their actual usage is not specified, they will not be used by NVM; its
interface description omits them, and clients do not need to deal with them.
Finally, NvM uses the same set of request result values that was specified in AUTOSAR3.
Therefore, this change in specification does not require any actions.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 46
based on template version 3.01

6 API Description

6.1 Interfaces Overview

For an interfaces overview please see Figure 3-2.

6.2 Type Definitions

Type Name C-Type Description Value Range

NvM_RequestResult
Type

uint8 An asynchronous API
service can have following
results or status that can
be polled by
NvM_GetErrorStatus

().

NVM_REQ_OK (see chapter

4.5.1)

The last asynchronous request has
been finished successfully. This is the
default value after reset. This status
has the value 0.
Can be delivered by all asynchronous
APIs.

NVM_REQ_NOT_OK (see

chapter 4.5.1)

The last asynchronous request has
been finished unsuccessfully.
Can be delivered by all asynchronous
APIs.

NVM_REQ_PENDING (see

chapter 4.5.1)

An asynchronous request is currently
being processed by the task.
Can be delivered by all asynchronous
APIs.

NVM_REQ_INTEGRITY_FAILED

(see chapter 4.5.1)

A NV block was supposed to be valid
but it turned out that the data are
corrupted (either CRC mismatch or the
FEE or the EA reported an
inconsistency).
Can be delivered by NvM_ReadBlock
or NvM_ReadAll.

NVM_REQ_BLOCK_SKIPPED (see

chapter 4.5.1)

The block was skipped during a multi
block request.
Can be delivered by NvM_ReadAll and
NvM_WriteAll.

NVM_REQ_NV_INVALIDATED

(see chapter 4.5.1)

The NV block is marked as invalid.
Can be delivered by NvM_ReadBlock
or NvM_ReadAll.

NVM_REQ_CANCELLED (see

chapter 4.5.1)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 47
based on template version 3.01

Type Name C-Type Description Value Range

The last asynchronous

NvM_WriteAll() has been
cancelled by
NvM_CancelWriteAll().

NvM_BlockIdType uint16 It is the type of a block
handle that is used by the
application in order to
access a NVM block. There
are two reserved IDs:

> Block ID 0 for multi
block requests (Block ID
0 is only allowed for API
NvM_GetErrorStatus())
and

> Block ID 1 for the
configuration Id block

The block handles are
created as defines in an
ascending define list.

{
[0. .2𝑛[,]215. . 215 + 2𝑛[,

 𝑛 = 16 − NVM_DATASET_SELECTION_BITS
}

NVM_DATASET_SELECTION_BITS
is the maximum number of bits that are
needed in order to store the maximum
dataset value.

The second range describes each
block’s DCM alias. Block ID 0 does not
have such an alias.

Example:
The dataset block with the greatest
number of datasets has six of them. So
it is necessary to store the data index
0…5 to select the appropriate dataset
block. To store the value five, three bits
are necessary. So

NVM_DATASET_SELECTION_BITS has

the value 3.
This means that only the block IDs
0 … 8191 are available as block
handles. Additionally NVM provides
access to these IDs’ block aliases via
handles 32768+1 … 32768+8191

NvM_ServiceIdType uint8 Service Ids of the different
service routines of the
NVM.

NVM_INIT (0u)

NVM_SET_DATA_INDEX (1u)

NVM_GET_DATA_INDEX (2u)

NVM_SET_BLOCK_PROTECTION

(3u)

NVM_GET_ERROR_STATUS (4u)

NVM_SET_RAM_BLOCK_STATUS

(5u)

NVM_READ_BLOCK (6u)

NVM_WRITE_BLOCK (7u)

NVM_RESTORE_BLOCK_DEFAULTS

(8u)

NVM_ERASE_BLOCK (9u)

NVM_CANCEL_WRITE_ALL (10u)

NVM_INVALIDATE_NV_BLOCK

(11u)

NVM_READ_ALL (12u)

NVM_WRITE_ALL (13u)

NVM_MAINFUNCTION (14u)

NVM_GET_VERSION_INFO (15u)

NVM_SET_BLOCK_LOCK_STATUS

(16u)

The single values are applied as

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 48
based on template version 3.01

Type Name C-Type Description Value Range

defines.

See also chapter 4.5.1

Table 6-1 Type definitions

6.3 Global API Constants

These NVM specific constants are available through the inclusion of NvM.h. They are

configurable within DaVinci Configurator Pro.

> NVM_COMPILED_CONFIG_ID: configured identifier for the NV memory layout

> NVM_NO_OF_BLOCK_IDS: number of all defined NVRAM Blocks (including reserved

blocks)

> Name of the NVRAM blocks

6.4 Services provided by NVM

The NVM API consists of services, which are realized by function calls.

6.4.1 NvM_Init

Prototype

void NvM_Init (void)

Parameter

-- --

Return code

void --

Functional Description

Service for basic NVM initialization. The time consuming NVRAM block initialization and setup according to
the block descriptor is done by the NvM_ReadAll request.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> This service is expected to be called in application context.

> It is expected to be exclusively called by ECU State Manager (or a comparable component)

Table 6-2 NvM_Init

6.4.2 NvM_SetDataIndex

Prototype

Std_ReturnType NvM_SetDataIndex (NvM_BlockIdType BlockId,

 uint8 DataIndex)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 49
based on template version 3.01

Parameter

BlockId The Block identifier.

DataIndex Index position of a Block in the NV Block of Dataset type.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. Det error occurred.

Functional Description

The request sets the specified index to associate a dataset NV block (with/without ROM blocks) with its

corresponding RAM block. The DataIndex needs to have a valid value before a read/write/erase or

invalidate request is initiated.

If the dataset block has a set of ROM defaults, this function is used (prior to NvM_ReadBlock()) to select

the appropriate ROM set.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM manager shall have been initialized before this request is called.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-3 NvM_SetDataIndex

6.4.3 NvM_GetDataIndex

Prototype

Std_ReturnType NvM_GetDataIndex (NvM_BlockIdType BlockId,

 uint8* DataIndexPtr)

Parameter

BlockId The Block identifier.

DataIndexPtr Address where the current DataIndex shall be written to

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. Det error occurred.

Functional Description

The request passes the current DataIndex (association) of the specified dataset block.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 50
based on template version 3.01

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-4 NvM_GetDataIndex

6.4.4 NvM_SetBlockProtection

Prototype

Std_ReturnType NvM_SetBlockProtection(NvM_BlockIdType BlockId,

 boolean ProtectionEnabled)

Parameter

BlockId The Block identifier.

ProtectionEnabled This parameter is responsible for setting the write protection of a selected
NVRAM block:

TRUE: enable protection

FALSE: disable protection

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. Det error occurred.

Functional Description

The request sets the write protection for the NV block. Any further write/erase/invalidate requests to the
NVRAM block are rejected synchronously if the NV block-write protection is set. The data area of the RAM
block remains writable in any case.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is available if API configuration class 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. The protection
cannot be released for a write once block that has already been written.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-5 NvM_SetBlockProtection

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 51
based on template version 3.01

6.4.5 NvM_GetErrorStatus

Prototype

Std_ReturnType NvM_GetErrorStatus (NvM_BlockIdType BlockId,

 NvM_RequestResultType* RequestResultPtr)

Parameter

BlockId The Block identifier.

RequestResultPtr Pointer where the result shall be written to.

Result is of type NvM_RequestResultType. All possible results are

described in chapter 6.2.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. Det error occurred.

Functional Description

The request reads the block dependent error/status information and writes it to the given address. The
status/error information was set by a former or current asynchronous request.
This API can also be requested with BlockId 0 (multi block). Then the multi block error/status information

will be read to the given address. Only NvM_ReadAll() and NvM_WriteAll() are multi block requests

and change the status/error information of the multi block.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-6 NvM_GetErrorStatus

6.4.6 NvM_GetVersionInfo

Prototype

void NvM_GetVersionInfo (Std_VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to the address where the version info shall be written to.

Return code

void --

Functional Description

The request writes the version info (Vendor ID, module ID, SW major version, SW minor version, SW patch
version) to the given pointer.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is available if the pre-compile switch Use version info API is enabled.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 52
based on template version 3.01

Expected Caller Context

> This service is expected to be called in application context.

Table 6-7 NvM_GetVersionInfo

6.4.7 NvM_SetRamBlockStatus

Prototype

Std_ReturnType NvM_SetRamBlockStatus (NvM_BlockIdType BlockId,

 boolean BlockChanged)

Parameter

BlockId The block identifier.

BlockChanged Sets the new status of the RAM block:
TRUE: Validates the RAM block and marks it as changed. If the block has a
CRC and the option NVM_CALC_RAM_BLOCK_CRC is TRUE the CRC
calculation is initiated.
FALSE: Mark the block as unchanged

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. Det error occurred.

Functional Description

The request sets a block’s status to valid/changed respectively to unchanged. Setting a block to changed

marks it for writing it during NvM_WriteAll().

If the block shall be set to changed, it has a CRC and the option NVM_CALC_RAM_BLOCK_CRC is TRUE the

CRC calculation of the RAM block is initiated.

Note
Though this service is defined to operate synchronously, the CRC re-calculation will be
performed asynchronously. However, there is no restriction on accessing RAM block data, or
on calling other services. Consistency of data and CRC is ensured by WriteBlock/WriteAll,
which will unconditionally recalculate the CRC before writing. Requesting CRC re-calculation,

using NvM_SetRamBlockStatus again, will be recognized in a save way, the calculation

will be re-queued, if necessary..

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-8 NvM_SetRamBlockStatus

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 53
based on template version 3.01

6.4.8 NvM_SetBlockLockStatus

Prototype

void NvM_SetBlockLockStatus(NvM_BlockIdType BlockId,

 boolean BlockLocked)

Parameter

BlockId The Block identifier.

BlockLocked This parameter is responsible for setting the lock protection status of a
selected NVRAM block:

TRUE: Lock shall be enabled

FALSE: Lock shall be disabled

Return code

-

Functional Description

Service for setting/resetting the lock of a NV block.
If locked, the NV contents associated to the NVRAM block identified by BlockId, will not be modified by any

subsequent write request, i.e. the Block will be skipped during NvM_WriteAll; other requests, namely

NvM_WriteBlock, NvM_InvalidateNvBlock, NvM_EraseNvBlock, will be rejected without error

notification to Det or Dem; i.e. they just return E_NOT_OK.

During processing of NvM_ReadAll, a locked NVRAM block shall be loaded from NV memory, regardless

of RAM block’s state (see 4.4.10). After that the lock is disabled again.

If a block gets locked with NvM_SetBlockLockStatus, only the original NVRAM block is locked,

regardless which BlockId was passed - original or DCM (see chapter 4.4.17)

Expert Knowledge
It is allowed to use this service for an already pending block. However, setting a lock
affects only subsequent requests; an already pending write will be processed.
This is a deviation from AUTOSAR, which prohibits this request for a pending block.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is always available independent on API configuration class.

> The NVRAM Manager shall have been initialized before this request is called. The protection
cannot be released for a write once block that has already been written.

> The service is only usable by BSW components; it is not accessible via RTE.

Expected Caller Context

> This service is expected to be called by DCM.

Table 6-9 NvM_SetBlockLockStatus

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 54
based on template version 3.01

6.4.9 NvM_MainFunction

Prototype

void NvM_MainFunction (void)

Parameter

-- --

Return code

void --

Functional Description

This function has to be called cyclically. It is the entry point of the NVRAM Manager. In here the processing
of the asynchronous jobs (read/write/erase/invalidate/CRC calculation…) is handled.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-10 NvM_MainFunction

6.4.10 NvM_ReadBlock

Prototype

Std_ReturnType NvM_ReadBlock (NvM_BlockIdType BlockId,

 void* NvM_DstPtr)

Parameter

BlockId The Block identifier.

NvM_DstPtr Pointer where the data of a non-permanent RAM block shall be written to. If
the block is permanent NULL_PTR shall be passed.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. because of a list overflow.

Functional Description

Request to copy the data of the NV block to its corresponding RAM block. This function queues the read
request and returns the acceptance result synchronously.
The NVM can notify the application by callback when the service is finished.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 55
based on template version 3.01

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. In development
mode the service will not accept the call if the block is already queued (either for this or for a
different service).

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-11 NvM_ReadBlock

6.4.11 NvM_WriteBlock

Prototype

Std_ReturnType NvM_WriteBlock (NvM_BlockIdType BlockId,

 const void* NvM_SrcPtr)

Parameter

BlockId The Block identifier.

NvM_SrcPtr Pointer where the data of a non-permanent RAM block shall be read from. If

the block is permanent, NULL_PTR shall be passed.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. list overflow.

Functional Description

Request for copying data from the RAM block to its corresponding NV block. This function queues the write
request and returns the acceptance result synchronously.
If the block has a CRC, the RAM block CRC will be recalculated before the data and the CRC are written to

the NV memory, even if the service NvM_SetRamBlockStatus was called before and the configuration

was set that within this service, the CRC calculation should be done.
If writing the data to NV memory fails, the NVM will retry writing. The number of write retries is a
configuration option.
The NVM can notify the application by callback when the service is finished.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 56
based on template version 3.01

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. In development
mode the service will not accept the call if the block is already queued (either for this or for a
different service). If the block’s write protection is activated it can’t be written.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-12 NvM_WriteBlock

6.4.12 NvM_RestoreBlockDefaults

Prototype

Std_ReturnType NvM_RestoreBlockDefaults (NvM_BlockIdType BlockId,

 void* NvM_DstPtr)

Parameter

BlockId The Block identifier.

NvM_DstPtr Pointer where the data of a non-permanent RAM block shall be written to. If

the block is permanent, NULL_PTR shall be passed.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. list overflow.

Functional Description

Request to copy the ROM block default data to its corresponding RAM block. The selected block needs
either ROM defaults or an initialization callback.
This function queues the restore request and returns the acceptance result synchronously.
The NVM can notify the application by callback when the service is finished.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 57
based on template version 3.01

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. In development
mode the service will not accept the call if the block is already queued (either for this or for a
different service). This function is not intended for reading ROM sets of a dataset ROM block.

Use NvM_ReadBlock instead for these blocks.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-13 NvM_RestoreBlockDefaults

6.4.13 NvM_EraseNvBlock

Prototype

Std_ReturnType NvM_EraseNvBlock (NvM_BlockIdType BlockId)

Parameter

BlockId The Block identifier.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. list overflow.

Functional Description

Request to erase a specified NV block. This function queues the erase request and returns the acceptance
result synchronously.
The NVM can notify the application by callback when the service is finished.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 58
based on template version 3.01

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. In development
mode the service will not accept the call if the block is already queued (either for this or for a
different service). If the block’s write protection is activated it also can’t be erased.

Caution
Pay attention that only high priority jobs (priority 0) can be erased!

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-14 NvM_EraseNvBlock

6.4.14 NvM_InvalidateNvBlock

Prototype

Std_ReturnType NvM_InvalidateNvBlock (NvM_BlockIdType BlockId)

Parameter

BlockId The Block identifier.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. list overflow.

Functional Description

Request to invalidate a specified NV block. This function queues the invalidate request and returns the
acceptance result synchronously.
The NVM can notify the application by callback when the service is finished.

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called. In development
mode the service will not accept the call if the block is already queued (either for this or for a
different service). If the block’s write protection is activated it also can’t be invalidated.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 59
based on template version 3.01

Expected Caller Context

> This service is expected to be called in application context.

Table 6-15 NvM_InvalidateNvBlock

6.4.15 NvM_ReadAll

Prototype

void NvM_ReadAll (void)

Parameter

-- --

Return code

void --

Functional Description

Request to (re)load all RAM blocks that have the option NVM_SELECT_BLOCK_FOR_READALL

selected. The function queues the request that will be processed asynchronously in

NvM_MainFunction.

Before reloading a block’s NV data, it first checks if the RAM block data is still valid. This can only
be assured if the block has a checksum. In case of valid RAM data, the NV data will not be
reloaded.

Caution

Non-permanent blocks and dataset blocks are also skipped during a ReadAll job.

The first block that is read from NV memory is the configuration ID (block 1). The value is
compared to the compiled configuration ID. The result of this check affects the further processing
of the ReadAll job, depending on the setting of Dynamic Configuration Handling: If disabled, all
NVRAM blocks will be processed as described above, regardless of the result of
reading/checking the configuration ID (match/mismatch/block invalid/integrity error/read failure).
If Dynamic Configuration Handling is enabled, the NVM loads all NVRAM blocks as described
above, only if it detected a configuration ID match. Otherwise (including failures) those blocks
having option Resistant to Changed Software set will be loaded as if the configuration ID
matched. The NVRAM blocks having this option cleared will be restored with ROM defaults, if
available, and if Select for ReadAll was configured.
When the last block is reloaded the NVM can notify the application by callback (configurable multi
block callback).

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 60
based on template version 3.01

Particularities and Limitations

> This service is a multi block request.

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new
requests for a pending block.

Expected Caller Context

> This function is intended only to be called by the ECU State Manager during startup.

Table 6-16 NvM_ReadAll

6.4.16 NvM_WriteAll

Prototype

void NvM_WriteAll (void)

Parameter

-- --

Return code

void --

Functional Description

Request to write all blocks with changed RAM data that have the option

NVM_SELECT_BLOCK_FOR_WRITEALL selected to the NV memory. The function will queue the WriteAll job

that will be processed asynchronously.

Caution

Non-permanent and dataset blocks will not be written during NvM_WriteAll().

When the last block is written the NVM can notify the application by callback (configurable multiblock
callback).

Note
It is not recommended to make any assumption on the order in which blocks will be
processed.
It is only ensured that the ConfigID block (ID1) is the final block being processed, in
order to “commit” a Configuration Update and any related activity.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 61
based on template version 3.01

Particularities and Limitations

> This service is a multi block request.

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Note
Usage of Explicit Synchronization, does not permit NvM’s clients to issue new requests for a
pending block.

Expected Caller Context

> This function is intended only to be called by the ECU State Manager during shutdown.

Table 6-17 NvM_WriteAll

6.4.17 NvM_CancelWriteAll

Prototype

void NvM_CancelWriteAll (void)

Parameter

-- --

Return code

void --

Functional Description

Request to cancel a running NvM_WriteAll() request. This call en-queues the request that will be

processed asynchronously.

Particularities and Limitations

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.

> The NVRAM Manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-18 NvM_CancelWriteAll

6.4.18 NvM_KillWriteAll

Prototype

void NvM_KillWriteAll (void)

Parameter

-- --

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 62
based on template version 3.01

Return code

void --

Functional Description

Request to cancel a running NvM_WriteAll() request destructively. To keep required wake-up response

times in an ECU the ECUM has the possibility to time-out a non-destructive NvM_CancelWriteAll()

request.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is available if the pre-compile switch NvmKillWriteAllApi (only in Generic Editor
in container Nvm_30_CommonVendorParams) is enabled independent on API configuration
class.

> The NVRAM Manager shall have been initialized before this request is called.

Expected Caller Context

> This service is expected to be called by ECUM

Table 6-19 NvM_KilllWriteAll

6.4.19 NvM_CancelJobs

Prototype

Std_ReturnType NvM_CancelJobs (NvM_BlockIdType BlockId)

Parameter

BlockId The Block identifier.

Return code

E_OK Request has been accepted.

E_NOT_OK Request has not been accepted, e.g. because of a list overflow.

Functional Description

Request to cancel pending job for a NV Block.

Particularities and Limitations

> This service is asynchronous.

> This service is re-entrant.

> This service is available if API configuration class 2 or 3 is configured.

> The NVRAM Manager shall have been initialized before this request is called.

> Was Cancellation successful Block result is set to NVM_REQ_CANCELED.

Expected Caller Context

> This service is expected to be called in application context.

Table 6-20 NvM_CancelJobs

6.4.20 NvM_RepairRedundantBlocks

Prototype

void NvM_RepairRedundantBlocks (void)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 63
based on template version 3.01

Parameter

- -

Return code

- -

Functional Description

Request to check the redundancy within NV RAM for all configured redundant blocks. Write
protection or lock state does not matter – NvM do not change the data, it always overwrites
blocks with data from NV RAM.

If the NvM recognizes a lost redundancy, it will try to restore it via overwriting the defect block with
data from valid block.

Nothing to repair:

- Both sub-blocks are readable
- Both sub-blocks’ Crcs match the recalculates Crc

Repairable blocks:

- One sub-block isn’t readable, another is
- One sub-block’s Crc doesn’t match the recalculated one, another sub-block’s Crc does
- Both sub-blocks’ Crcs match the data, but their do not match each other (first block is

valid)

Non-repairable blocks:

- Both sub-blocks aren’t readable
- Block sub-blocks’ Crc does not match the recalculated Crc

NvM will report the error NVM_E_LOSS_OF_REDUNDANCY in case block isn’t stored in NV
RAM redundantly and the NvM could not restore the redundancy.

Particularities and Limitations

> This service is asynchronous

> This service is re-entrant

> This service is suspendable via all single and multi block requests – it will resume after the
requests are done

> This service can be enabled or disabled via configuration

> The NVRAM Manager shall have been initialized before this request is called

Call context

> This service is expected to be called in application context.

Table 6-21 NvM_RepairRedundantBlocks

6.5 Services used by NVM

In the following table services provided by other components, which are used by the NVM
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 64
based on template version 3.01

Component API

DET Det_ReportError

DEM Dem_SetEventStatus

MEMIF MemIf_Read

MEMIF MemIf_InvalidateBlock

MEMIF MemIf_GetJobResult

MEMIF MemIf_Write

MEMIF MemIf_EraseImmediateBlock

MEMIF MemIf_GetStatus

MEMIF MemIf_Cancel

MEMIF MemIf_SetMode

CRC Crc_CalculateCRC16

CRC Crc_CalculateCRC32

EA Used by MEMIF

FEE Used by MEMIF

Table 6-22 Services used by the NVM

6.6 Callback Functions

This chapter describes the callback functions that are implemented by the NVM and can be
invoked by other modules. The prototypes of the callback functions are provided in the header file

NvM_Cbk.h by the NVM.

6.6.1 NvM_JobEndNotification

Prototype

void NvM_JobEndNotification (void)

Parameter

- -

Return code

void -

Functional Description

Function to be used by the underlying memory abstraction to signal end of job without error.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

Expected Caller Context

 The callback function NvM_JobEndNotification is intended to be used by the underlying

memory abstraction (Fee/Ea) to signal end of job without error.

Table 6-23 NvM_JobEndNotification

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 65
based on template version 3.01

6.6.2 NvM_JobErrorNotification

Prototype

void NvM_JobErrorNotification (void)

Parameter

- -

Return code

void -

Functional Description

Function to be used by the underlying memory abstraction to signal end of job with error.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

Expected Caller Context

> The callback function NvM_JobErrorNotification is intended to be used by the

underlying memory abstraction (Fee/Ea) to signal end of job with error.

Table 6-24 NvM_JobErrorNotification

6.7 Configurable Interfaces

At its configurable interfaces the NVM defines notifications that can be mapped to callback
functions provided by other modules. The mapping is not statically defined by the BSW
module but can be performed at configuration time. The function prototypes that can be
used for the configuration have to match the signatures described in the following sub-
chapters.

6.7.1 SingleBlockCallbackFunction

Prototype

Std_ReturnType <SingleBlockCallbackFunction> (

NvM_ServiceIdType ServiceId,

NvM_RequestResultType JobResult)

Parameter

ServiceId The service identifier (see chapter 6.2) of the completed request.
NvM_ServiceIdType is of type uint8.

JobResult Result of the single block job.

Return code

E_OK Callback function has been processed successfully

E_NOT_OK Callback function has not been processed successfully.

Functional Description

Callback routine to notify the upper layer that an asynchronous single block request has been finished.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 66
based on template version 3.01

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

Caution
This description is limited to embedded code; it does not describe RUNNABLES
implementing a callback’s behavior in an SWC, but it describes the prototype to be
implemented/generated be the RTE or by a BSW component.

Call Context

> Called from NvM_MainFunction

> Asynchronous block processing completed (except NvM_WriteAll, for NvM_ReadAll it is

configurable)

Table 6-25 SingleBlockCallbackFunction

6.7.2 MultiBlockCallbackFunction

Prototype

void <MultiBlockCallbackFunction> (NvM_ServiceIdType ServiceId,

 NvM_RequestResultType JobResult)

Parameter

ServiceId The service identifier (see chapter 6.2) of the completed request.
NvM_ServiceIdType is of type uint8.

JobResult Result of the multi block job.

Return code

void --

Functional Description

Common callback routine to notify the upper layer that an asynchronous multi block request has been
finished.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

Call Context

> Called from NvM_MainFunction.

> Called upon completion of NvM_ReadAll and NvM_WriteAll, respectively

Table 6-26 MultiBlockCallbackFunction

6.7.3 InitBlockCallbackFunction

Prototype

Std_ReturnType <InitBlockCallbackFunction> (void)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 67
based on template version 3.01

Parameter

-- --

Return code

Std_ReturnType NVM always returns E_OK.

Functional Description

Callback routine which shall be called by the NVM module to copy default data to a RAM block if
a ROM block is configured.

Note
During calling init block callback related block is still busy. No request for it shall be
issued as long as block is busy.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant

Call Context

> Called from NvM_MainFunction

> Called during processing of NvM_ReadAll, if application shall copy default values into the

corresponding RAM block.

Table 6-27 InitBlockCallbackFunction

6.7.4 Callback function for RAM to NvM copy

Prototype

Std_ReturnType <NvM_WriteRamBlockToNvm> (void* NvMBuffer)

Parameter

NvMBuffer Internal RAM mirror where Ram block data shall be written to

Return code

E_OK Callback function has been processed successfully

E_NOT_OK Callback function has not been processed successfully.

Functional Description

Block specific callback routine which shall be called in order to let the application copy data from
RAM block to internal NvM RAM mirror.

Note
During calling NvM_WriteRamBlockToNvM callback related block is still busy. No
request for it shall be issued as long as block is busy.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant

Call Context

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 68
based on template version 3.01

> Called from NvM_MainFunction

> Called during processing of NvM write requests, if application shall copy RAM block data into
the internal RAM mirror.

Table 6-28 Callback function for RAM to NvM copy

6.7.5 Callback function for NvM to RAM copy

Prototype

Std_ReturnType <NvM_ReadRamBlockFromNvm> (const void* NvMBuffer)

Parameter

NvMBuffer Internal RAM mirror where Ram block data can be read from

Return code

E_OK Callback function has been processed successfully

E_NOT_OK Callback function has not been processed successfully.

Functional Description

Block specific callback routine which shall be called in order to let the application copy data from
NvM module’s mirror to RAM block.

Note
During calling NvM_ReadRamBlockFromNvM callback related block is still busy. No
request for it shall be issued as long as block is busy.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant

Call Context

> Called from NvM_MainFunction

> Called during processing of NvM read requests, if application can copy data from internal RAM
mirror to RAM block.

Table 6-29 Callback function for NvM to RAM copy

6.8 Service Ports

Via Service Ports the software components (SWC) have the possibility to execute services
of the NVM with an abstract RTE interface. Hence, the software components are
independent from the underlying basic software stack.

6.8.1 Client Server Interface

A client server interface is related to a Provide Port (Pport) at the server side and a
Require Port (Rport) at client side.

Configuration dependent naming details are described in the chapters 7.1.3 and 7.1.4.

6.8.1.1 Provide Ports on NVM side

At the Pports of the NVM the API functions described in 6.4 are available as Runnable
Entities. The Runnable Entities are invoked via Operations. The mapping from a SWC

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 69
based on template version 3.01

client call to an Operation is performed by the RTE. In this mapping the RTE adds Port
Defined Argument Values to the client call of the SWC, if configured.

The following subchapters present the Pports defined for the NVM and their Operations,
the API functions related to those Operations and the Port Defined Argument Values to be
added by the RTE:

6.8.1.1.1 Padmin_<BlockName>

A port of type Padmin is a Pport of one NVRAM block, which is configured to use Service
Ports.

If the SWC setting Long Service Port Names is enabled, the name of the service ports is
Padmin_<BlockName>; if Long Service Port Names is disabled, the name is
Padmin_<BlockId>.

Available if API Config Class = 3

Operation API Function Port Defined Argument Values

SetBlockProtection
NvM_SetBlockProtection() NvM_BlockIdType

4
 1..n

Table 6-30 Operations of Port Prototype Padmin_<BlockName>

6.8.1.1.2 PS_<BlockName>

A port of type PS is a Pport of one NVRAM block, which is configured to use Service Ports.

If the SWC setting Long Service Port Names is enabled, the name of the service ports is
PS_<BlockName>; if Long Service Port Names is disabled, the name is PS_<BlockId>.

Operation API Function Port Defined Argument Values

GetErrorStatus
 1

NvM_GetErrorStatus() NvM_BlockIdType
4
 1..n

SetRamBlockStatus
1

NvM_SetRamBlockStatus() NvM_BlockIdType
4
 1..n

SetDataIndex
2,5

NvM_SetDataIndex() NvM_BlockIdType

4
 1..n

GetDataIndex
2,5

NvM_GetDataIndex() NvM_BlockIdType

4
 1..n

ReadBlock
2

NvM_ReadBlock() NvM_BlockIdType
4
 1..n

WriteBlock
2

NvM_WriteBlock() NvM_BlockIdType
4
 1..n

RestoreBlockDefaults
2, 6

NvM_RestoreBlockDefaults() NvM_BlockIdType

4
 1..n

EraseBlock
3

NvM_EraseNvBlock() NvM_BlockIdType
4
 1..n

InvalidateNvBlock
3

NvM_InvalidateNvBlock() NvM_BlockIdType
4
 1..n

Table 6-31 Operations of Port Prototype PS_<BlockName>

1. Always available

2. Available if API Config Class >= 2

3. Available if API Config Class = 3

4. Is derived from the block’s position in the configuration

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 70
based on template version 3.01

5. Only available for blocks of Management Type Dataset

6. Only available for blocks with Rom defaults configured

6.8.1.2 Require Ports

NVM invokes callbacks using Rports. These Operations have to be provided by the SWCs
by means of Runnable Entities using Pports. These Runnable Entities implement the
callback functions expected by the NVM.

The following subchapters present the Require Ports defined for the NVM, the Operations
that are called from the NVM and the related Notifications, which are described in chapter
6.7.

6.8.1.2.1 NvM_RpNotifyFinished_Id<BlockName>

A port of type NvM_RpNotifyFinished_Id is a Rport of one NVRAM block, which is
configured to use Service Ports.

If the SWC setting Long Service Port Names is enabled, the name of the service ports is
NvM_RpNotifyFinished_Id<BlockName>; if Long Service Port Names is disabled, the
name is NvM_RpNotifyFinished_Id<BlockId>.

Available in all API Config Classes but Use Callbacks must be enabled.

Operation Notification

JobFinished SingleBlockCallbackFunction

Table 6-32 Operation of Port prototype NvM_RpNotifyFinished_Id<BlockName>

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 71
based on template version 3.01

7 Configuration

7.1 Software Component Template

7.1.1 Generation

The definition of the Provide Ports is described in an XML file. This file describes the NVM
as a software component with ports to which other applications can connect. This XML file
is always saved consistent to the current ECUC file when the project in DaVinci
Configurator is saved. The target directory for SW-C files can be set in the Dpa file. For
more information see documentation of DaVinci Configurator.

7.1.2 Import into DaVinci Developer

For further processing the generated software component template file has to be imported
into DaVinci Developer. This can be done while a DaVinci-project is open by clicking File |
Import XML File.... Choose the correct file for the import.

Figure 7-1 Import a new software component into DaVinci Developer

After importing the NVM as software component there is a new component type in the
library view available. After double clicking the component NVM, all configured ports are
presented.

The DaVinci tool suite lets you design the complete architecture of a car, consisting of
several ECUs, each with its own NVM. Therefore it is desirable to import several NVM SW-
C descriptions, each containing the description of an NVM to be mapped to a particular
ECU. Using the ‘Service Component Name Parameter’ you can give your configurations

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 72
based on template version 3.01

meaningful unique names. All elements of the SW-C description are unique in this
particular configuration and are prefixed with this parameter’s value. However, most
elements are common to all SW-C descriptions, or are at least unique to the used
configuration (which is also expressed by the elements’ names) so that some elements are
contained in each different SW-C description. During import, DaVinci will warn you about
these doubled elements. You can ignore them (overwrite the existing elements); they are
identical.

7.1.3 Dependencies on Configuration of NVM Attributes

The configuration of the NVM attributes (described in chapter 7.1.5) highly influences the
resulting SW-C Description. So, the value of the parameter Service Component Name
influences the names of several elements in the description, especially the name of the
Service Component. It is also the prefix for several other names that belong to this
particular NVM configuration (and the resulting service component).

There is a couple of different port interfaces that will be generated, depending on the
particular configuration. Each generated interface that results from a specific configuration
has a unique name, i.e. in different SW-C descriptions port interfaces with the same name
are compatible; they provide the same operations, each with the same arguments of same
type.

7.1.3.1 Naming of Service Port Interfaces

The Service Port Interface provides the prototypes of the elementary block related
services of the NVM, such as read data from NV memory, write data to NV memory. It
generally contains the string Service.

As described above, port interfaces resulting from different configurations, have different
names. These names are given according to this scheme:

> Each Interface is prefixed by NvM

> Set Ram Block Status Api
If enabled, the interface name contains the string ‘SRBS’, and it contains the operation
SetRamBlockStatus.

> API Configuration Class
The interface name contains a short string that denotes the API configuration class it
belongs to: AC1, AC2 or AC3. The operations the interface describes in that
configuration class are described in Chapter 6.8.1.1.

> Availability of ROM default data
The interface contains the operation RestoreBlockDefaults; it contains the string Defs.
This interface will be used by all P-Port-Prototypes belonging to a NVRAM block that
was configured with ROM default data.

> Block Management Type DATASET
The interface provides the operations GetDataIndex and SetDataIndex. Its name
contains DS. This interface will be used by all NVRAM blocks of Management Type
DATASET

The first two possibilities are common within one SW-C Description. Only one combination
of them will occur. Unless API Configuration Class 1 was chosen, Port Interfaces
describing any combination of the latter two possibilities may be generated.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 73
based on template version 3.01

7.1.4 Service Port Prototypes

For each active NVRAM block (including the configuration ID block) that was configured
with Use Service Ports port, prototypes will be generated. The port interfaces they are
based on can differ. The interfaces depend on the block’s configuration, and hence on the
operations that are necessary for current block.

7.1.4.1 Port Prototype Naming

The short name uniquely identifying the prototype is based on the numeric block ID (which,
in turn, is derived from the block’s position in the configuration) and the port interface
class it corresponds to.

Each prototype is prefixed by the String NvM_; the next substring describes the
corresponding port interface, and whether it is a Provide Port (‘Pp’) or a Require Port
(‘Rp’):

> Padmin
Linked with port interface NvMAdministration (only in API Configuration Class 3)

> PS
Linked with Port Interface ‘NvMService_AC{1|2|3}[_SRBS][_Defs][_DS]’. The actual
interface depends on the possibilities described above.

> NvM_RpNotifyFinished
Linked with Port Interface NvMNotifyJobFinished that describes the interface used by
the NVM for single block job end notification

If SWC setting Long Service Port Names is disabled, each port prototype’s name is post
fixed by _Id{BlockId}. If SWC setting Long Service Port Names is enabled, each port
prototype’s name is post fixed by ‘_{BlockName}’.

Additionally each port prototype contains a long name as well as a description, which
describe it in a better, human readable form. They contain the logical block name, as
configured, instead of the block ID, and the used port interface’s short name.

7.1.5 Modelling SWC’s callback functions

According to AUTOSAR, the prototype of a SingleBlockCallbackFunction (Chapter 6.7.1),
differs from that of a RUNNABLE implementing SWC’s behavior of that callback. Therefore
the prototype describes the RTE function called by NVM.

The prototype of the RUNNABLE, which is actually called by RTE, must match model, i.e.
the return type must match the information given in callback’s interface description
(“Application Errors”). The correct modelling would be “no Application Errors”, which
requires a RUNNABLE implementation without return type:

void <init_cbk_runnable_name>(void)

void <jobend_cbk_runnable_name>(NvM_ServiceIdType ServiceId,

NvM_RequestResultType JobResult)

However, DaVinci Developer since Version 3.8 along with MICROSAR RTE version
4.04.00 and later enable NVM to support another different (actually incompatible) function
prototype:

Std_ReturnType <init_cbk_runnable_name>(void)

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 74
based on template version 3.01

Std_ReturnType <jobend_cbk_runnable_name>(NvM_ServiceIdType

ServiceId,

NvM_RequestResultType JobResult)

Both implementations require slightly different Interface definitions; they may be adapted
using DaVinci Developer. From a modeling point of view, the runnable must be
implemented according to the Interface associated with the related Pport-Prototype.

Figure 7-2 A “Single Block Job End Notification” with return type Std_ReturnType

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 75
based on template version 3.01

Figure 7-3 A “Single Block Job End Notification” with return type void.

NVM itself provides interfaces as described by Figure 7-3. To make SWCs independent of
this definition, they may associate their PPort prototype to their own interface definitions,
according to their (planned) RUNNABLEs’ implementations. Of course, the interface must
be compatible according to AUTOSAR’s rules; which limits possible interface definitions to
exactly one of both mentioned here.

7.2 Configuration of NVM Attributes

The NVM attributes can be configured using the DaVinci Configurator. The outputs of the
configuration and generation process are the configuration source files.

The description of each used parameter is set in the NvM bswmd file.

Only additional information is given in this chapter.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 76
based on template version 3.01

Caution

Because sizeof-operator cannot be used during configuration in production code

because sizes also affect lower layers, the exact sizes of your NVRAM blocks, and
hence your data structures must be known at configuration time. Therefore you are
required to determine these values by yourself. This leads to some significant pitfalls:

> The sizes of basic data types are platform dependent. To handle this problem, you

should use only AUTOSAR data types as defined in Std_Types.h (respectively

Platform_Types.h). They are defined to have the same size on all platforms. The

enumeration type’s size also depends on your platform, the compiler and its options.

Be aware of the size the compiler actually chooses. Usually an enum equals to an

int by default, but you can force it to be the smallest possible type (e.g. char).

> Be aware of the composition of bit fields. It can be affected by compiler switches.

> The compiler may rearrange members of structures to save memory. The best
solution would be to arrange members according to their type manually. The
compiler may add unused padding bytes to increase accessibility to the members of
a structure. According to the previous fact, you should order your structure’s
members. Doing so, you should be aware of aligned start addresses for larger

integral data types (e.g. uint16 or uint32) according to the CPU’s requirements

for accessing them.

> As stated above, some compiler switches influence the sizes of data types. Keep in
mind that changing these ones may result in changed sizes of your data blocks,
leading to a reconfiguration of NVM.

A good way to determine the blocks’ sizes is to extract the required information from
the linker file or from the generated object.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 77
based on template version 3.01

8 AUTOSAR Standard Compliance

8.1 Deviations

> In contrast to AUTOSAR most configuration parameters are link-time parameters.

> Saving RAM CRC of current block is configuration dependent. Either it is saved behind
the block’s data or it is saved internally by NVM in an own variable.

> Unified handling of ROM defaults among all block management types is processed.
Rom defaults handling of blocks of type dataset is just like the handling of blocks of the
other management types.

> NVM is able to provide the Config Id’s RAM block on its own.

> NvM_WriteAll() does not write unchanged data, even if this would repair (redundant)

NV data.

> Attempts to write to a locked block (NvM_SetBlockLockStatus) are explicitly not

treated as Development Error; error NVM_E_BLOCK_LOCKED is not defined.

> NvM_SetBlockLockStatus is allowed for pending Blocks; no related Development

Error Check will be performed.

> Block CRC type CRC8 is not supported.

> Write retries can only be globally configured, rather than individually per NVRAM Block

> Calls to Explicit Synchronization callbacks (see chapter 4.4.18) cannot be limited by
configuration. Rather those functions are expected to succeed within few attempts.

8.2 Additions/ Extensions

8.2.1 Parameter Checking

The internal parameter checks of the API functions can be en-/disabled separately. The
AUTOSAR standard requires en-/disabling of the complete parameter checking only. For
details see chapter 4.5.1.1.

8.2.2 Concurrent access to NV data

NVM provides for DCM possibility to access NV data concurrently with NVM application.
(see chapter 4.4.17)

8.2.3 RAM-/ROM Block Size checks

NVM can be configured to check all RAM and ROM blocks’ lengths against corresponding

NV Block lengths, using sizeof operator; see chapter 4.5.3.

8.2.4 Calculated CRC value does not depend on number of calculation steps

Due to the specified CRC32 algorithm, and missing further requirements on NVM’s CRC
calculation, a calculated CRC32 value depends on the number of necessary calculation
steps (defined by block length and parameter CRC Bytes per Cycle). Unless the CRC
can be calculated with one step (i.e. the block is small enough), the CRC32 value will not
match the value resulting from calling the CRC32 library function once for the whole block.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 78
based on template version 3.01

The reason is the negation of the result, as specified for CRC32 (which in turn belongs to
standard/widely used Ethernet CRC). This behavior introduces some drawbacks on NVM,
especially:

> Changing parameter CRC Bytes per Cycle (for run-time optimization), in an existing
(already flashed) project. Data blocks with CRC32 could not be read after the update.

> CRC32 values cannot be verified outside NVM (e.g. for testing purposes), without
knowing the configuration – each single step would have to be reproduced.

> Valid data blocks along with their CRC32 cannot be pre-defined using standard CRC
algorithms.

NVM circumvents these restrictions by reverting the final negation of each single CRC32
calculation step, except the last one. This (quite simple) measure guarantees that the CRC
value does NOT depend on the number of calculation steps, as it is originally guaranteed
for CRC16 (since it will not be inverted by the CRC library).

8.3 Limitations

There are no limitations.

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 79
based on template version 3.01

9 Glossary and Abbreviations

9.1 Glossary

Term Description

DaVinci Configurator
Pro

Configuration and generation tool for MICROSAR.

DCM Diagnostic Communication Manager

GCE Generic Configuration Editor – generic tool for editing AUTOSAR
configuration files.

In DaVinci Configurator, the view can be switch to Generic Editor.

Per Instance Memory
(PIM)

Memory (RAM) to be used by an instance of an Softwar Component,
provide by RTE. It may also be used as permanent or tempary RAM
block.

Such a memory need is usually modeled using a tool like DaVinci
Developer.

Primary NV Block The first NV block of an NVRAM Block of type Redundant. During reads,
this block will always be tried first. During writes it will be preferred,
unless only secondary is defective.

Secondary NV Block The second NV block of an NVRAM Block of type Redundant. During
reads and this block will be accessed second; if primary is defective.

Table 9-1 Glossary

9.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CRC Cyclic Redundancy Check

DEM Diagnostic Event Manager

DET Development Error Tracer

DPA DaVinci Project Assistant

EA EEPROM Abstraction Module

ECU Electronic Control Unit

ECUC ECU Configuration

ECUM ECU State Manager

EEP EEPROM Driver

EEPROM Electrically Erasable Programmable Read Only Memory

FEE Flash EEPROM Emulation Module

FIFO First In First Out

FLS Flash Driver

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 80
based on template version 3.01

GCE Generic Configuration Editor

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MemHwA Memory Hardware Abstraction Layer

MEMIF Memory Abstraction Interface Module

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

NVM NVRAM Manager

NV, NVRAM Non Volatile Random Access Memory

OS Operating System

PPort Provide Port

RAM Random Access Memory

ROM Read Only Memory

RPort Require Port

RTE Runtime Environment

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

Table 9-2 Abbreviations

Technical Reference MICROSAR NVM

© 2017 Vector Informatik GmbH Version 5.06.02 81
based on template version 3.01

10 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

http://www.vector.com/

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Component History
	3 Introduction
	3.1 Architecture Overview

	4 Functional Description
	4.1 Features
	4.1.1 Safety Features
	4.1.1.1 Block Id check

	4.1.2 Automatic Block Length

	4.2 Initialization
	4.2.1 Start-up
	4.2.2 Initialization of the Data Blocks

	4.3 States
	4.4 Main Functions
	4.4.1 Hardware Independence
	4.4.2 Synchronous Requests
	4.4.3 Asynchronous Requests
	4.4.4 API Configuration Classes and additional API Services
	4.4.5 Block Handling
	4.4.5.1 NV Blocks and Block Handles
	4.4.5.2 Different Types of NV Blocks
	4.4.5.2.1 Native Blocks
	4.4.5.2.2 Redundant Blocks
	4.4.5.2.3 Dataset Blocks

	4.4.5.3 Permanent and non-permanent RAM Blocks
	4.4.5.4 ROM Defaults
	4.4.5.5 Checksum

	4.4.6 Prioritized or non-prioritized Queuing of asynchronous Requests
	4.4.7 Asynchronous Job-End Polling
	4.4.8 Single Block Job End Notifications
	4.4.9 Immediate Priority Jobs and Cancellation of current Jobs
	4.4.10 Asynchronous CRC Calculation
	4.4.11 Write Protection
	4.4.12 Erase and Invalidate
	4.4.13 Init Block Callbacks
	4.4.14 Define Locking/ Unlocking Services
	4.4.15 Interrupts
	4.4.16 Data Corruption
	4.4.17 Concurrent access to NV data for DCM
	4.4.18 Explicit synchronization mechanism between application and NVM
	4.4.18.1 Explicit synchronization mechanism during write requests
	4.4.18.2 Explicit synchronization mechanism during read requests

	4.5 Error Handling
	4.5.1 Development Error Reporting
	4.5.1.1 Parameter Checking

	4.5.2 Production Code Error Reporting
	4.5.3 Compile-time Block Length Checks

	5 Integration
	5.1 Scope of Delivery
	5.1.1 Static Files
	5.1.2 Dynamic Files

	5.2 Critical Sections
	5.3 Include Structure
	5.4 Compiler Abstraction and Memory Mapping
	5.5 Dependencies on SW Modules
	5.5.1 OSEK / AUTOSAR OS
	5.5.2 DEM
	5.5.3 DET
	5.5.4 MEMIF
	5.5.5 CRC Library
	5.5.6 Callback Functions
	5.5.7 RTE
	5.5.8 BSWM

	5.6 Integration Steps
	5.7 Estimating Resource Consumption
	5.7.1 RAM Usage
	5.7.2 ROM Usage
	5.7.3 NV Usage

	5.8 How-To: Integrate NVM with AUTOSAR3 SWC’s
	5.8.1 NVM’s provided Interfaces/Ports.
	5.8.1.1 NvMAdministration
	5.8.1.2 NvMService_AC[1|2|3][_SRBS][_Defs]

	5.8.2 Callbacks (Ports provided by client SWCs)
	5.8.3 Request Result Types

	6 API Description
	6.1 Interfaces Overview
	6.2 Type Definitions
	6.3 Global API Constants
	6.4 Services provided by NVM
	6.4.1 NvM_Init
	6.4.2 NvM_SetDataIndex
	6.4.3 NvM_GetDataIndex
	6.4.4 NvM_SetBlockProtection
	6.4.5 NvM_GetErrorStatus
	6.4.6 NvM_GetVersionInfo
	6.4.7 NvM_SetRamBlockStatus
	6.4.8 NvM_SetBlockLockStatus
	6.4.9 NvM_MainFunction
	6.4.10 NvM_ReadBlock
	6.4.11 NvM_WriteBlock
	6.4.12 NvM_RestoreBlockDefaults
	6.4.13 NvM_EraseNvBlock
	6.4.14 NvM_InvalidateNvBlock
	6.4.15 NvM_ReadAll
	6.4.16 NvM_WriteAll
	6.4.17 NvM_CancelWriteAll
	6.4.18 NvM_KillWriteAll
	6.4.19 NvM_CancelJobs
	6.4.20 NvM_RepairRedundantBlocks

	6.5 Services used by NVM
	6.6 Callback Functions
	6.6.1 NvM_JobEndNotification
	6.6.2 NvM_JobErrorNotification

	6.7 Configurable Interfaces
	6.7.1 SingleBlockCallbackFunction
	6.7.2 MultiBlockCallbackFunction
	6.7.3 InitBlockCallbackFunction
	6.7.4 Callback function for RAM to NvM copy
	6.7.5 Callback function for NvM to RAM copy

	6.8 Service Ports
	6.8.1 Client Server Interface
	6.8.1.1 Provide Ports on NVM side
	6.8.1.1.1 Padmin_<BlockName>
	6.8.1.1.2 PS_<BlockName>

	6.8.1.2 Require Ports
	6.8.1.2.1 NvM_RpNotifyFinished_Id<BlockName>

	7 Configuration
	7.1 Software Component Template
	7.1.1 Generation
	7.1.2 Import into DaVinci Developer
	7.1.3 Dependencies on Configuration of NVM Attributes
	7.1.3.1 Naming of Service Port Interfaces

	7.1.4 Service Port Prototypes
	7.1.4.1 Port Prototype Naming

	7.1.5 Modelling SWC’s callback functions

	7.2 Configuration of NVM Attributes

	8 AUTOSAR Standard Compliance
	8.1 Deviations
	8.2 Additions/ Extensions
	8.2.1 Parameter Checking
	8.2.2 Concurrent access to NV data
	8.2.3 RAM-/ROM Block Size checks
	8.2.4 Calculated CRC value does not depend on number of calculation steps

	8.3 Limitations

	9 Glossary and Abbreviations
	9.1 Glossary
	9.2 Abbreviations

	10 Contact

