

MICROSAR PDU Router

Technical Reference

DaVinci Configurator

Version 3.00.00

Authors Erich Schondelmaier, Gunnar Meiss, Sebastian
Waldvogel, Florian Röhm

Status Released

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 2
based on template version 4.9.2

Document Information

History

Author Date Version Remarks

Erich Schondelmaier 2012-12-20 1.00.00 Initial version based on PduR Technical
Reference

Erich Schondelmaier 2012-07-12 2.00.00 Adapted to AUTOSAR 4.0.3

Erich Schondelmaier 2012-10-15 2.01.00 TP Gateway

IF Gateway

Gunnar Meiss 2012-11-21 2.02.00 AR4-285: Support PduRRoutingPathGroups

Erich Schondelmaier 2013-02-07 2.02.01 Adapted Tp- API description

Erich Schondelmaier 2013-02-15 2.02.02 Added some ASR deviations

ESCAN00064126

Erich Schondelmaier 2013-03-19 2.03.00 ESCAN00064364 AR4-325: Post-Build
Loadable

Added Cancel- Receive/ Transmit Support

Erich Schondelmaier 2014-04-15 2.04.00 Added TP routing with variable addresses

(MetaData Handling)

Added Threshold “0” support

Erich Schondelmaier 2014-04-15 2.04.01 Support the StartOfReception API (with the
PduInfoType),

TxConfirmation and RxIndication according
ASR4.1.2

Erich Schondelmaier 2014-09-01 2.05.00 Added SecOC to the Interface Overview

Extended Tp Gateway Routing behavior
description

Updated Configuration Variant

Sebastian Waldvogel 2015-02-23 2.06.00 FEAT-1057: Added documentation about
configuration of range routing paths and
functional requests gateway

Sebastian Waldvogel 2015-05-11 2.06.01 FEAT-1057: Improvements of documentation

Florian Röhm 2015-07-30 2.07.00 FEAT-109: Added documentation for PduR
switching feature and N:1 routing paths

Florian Röhm 2016-01-16 2.08.00 FEAT-1485: Added documentation for 1:N
and N:1 transport protocol routing paths

Gunnar Meiss 2016-02-25 2.08.00 FEAT-1631: Trigger Transmit API with
SduLength In/Out according to ASR4.2.2

Erich Schondelmaier 2016-03-17 2.08.00 added limitation:

- The Polling Mode cannot be used for N:1
routings.

- Cancel Transmit for N:1 routing paths is
only supported if a Tx Confirmation is
enabled.

- Removed limitation: N:1 interface routing
paths suppport only for lower layer CanIf.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 3
based on template version 4.9.2

Florian Röhm 2016-04-01 2.08.01 Removed empty chapters

Erich Schondelmaier,
Florian Röhm

2016-08-10 3.00.00 Shared/Dedicated Buffer support

Memory mapping extension

Sebastian Waldvogel 2016-11-24 3.00.00 Smart Learning (Switching)

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 4
based on template version 4.9.2

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_PDURouter.pdf 4.0.3

[2] AUTOSAR AUTOSAR_SWS_PDURouter.pdf. 4.1.1

[3] AUTOSAR AUTOSAR_SWS_PDURouter.pdf 4.1.2

[4] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[5] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[6] AUTOSAR AUTOSAR_SWS_SAEJ1939TransportLayer.pdf 1.5.0

[7] Vector TechnicalReference_CanIf.pdf 6.02.00

[8] Vector TechnicalReference_<CAN Driver>.pdf -

[9] AUTOSAR TechnicalReference_CanTp.pdf 2.00.00

This technical reference describes the general use of the PduR basis software module.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 5
based on template version 4.9.2

Contents

1 Component History .. 10

2 Introduction... 11

2.1 Architecture Overview .. 12

3 Functional Description ... 14

3.1 Features .. 14

3.2 Interfaces to adjacent modules of the PDUR .. 15

3.3 Initialization .. 15

3.4 States .. 15

3.5 Error Handling .. 15

3.5.1 Development Error Reporting ... 15

3.6 Interface Layer Gateway .. 15

3.6.1 Data Provision .. 15

3.6.1.1 Direct data provision .. 15

3.6.1.2 Trigger transmit data provision 16

3.6.2 FIFO Queue ... 16

3.6.3 Buffer Configurations ... 16

3.6.3.1 No Buffer ... 16

3.6.3.2 Direct Data Provision FIFO .. 16

3.6.3.3 Trigger Transmit Data Provision FIFO 16

3.6.3.4 Trigger Transmit Data Provision Single Buffer 16

3.6.4 Shared Tx Buffer Pool support ... 17

3.6.5 Timing aspects ... 17

3.6.6 Dynamic DLC Routing .. 17

3.6.7 Transport protocol low level routing .. 17

3.6.8 Smart Learning (Switching) .. 19

3.6.8.1 Configuration ... 20

3.6.8.2 Example ... 23

3.6.9 Queue overflow notification callback .. 24

3.7 Transport Protocol Gateway ... 26

3.7.1 Multi-Routing .. 26

3.7.2 TP Threshold ... 26

3.7.2.1 Restrictions .. 27

3.7.2.2 Threshold “0” ... 27

3.7.3 Tx Buffer Handling ... 27

3.7.3.1 Tx Buffer Usage Types ... 28

3.7.3.1.1 Dedicated Tx Buffer 28

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 6
based on template version 4.9.2

3.7.3.1.2 Shared Tx Buffer .. 28

3.7.3.1.3 Local Tx Buffer Pool 29

3.7.3.1.4 Global Tx Buffer Pool 29

3.7.3.2 Example Configuration ... 29

3.7.3.3 Tx Buffer Length Configuration 30

3.7.3.4 Amount of Tx Buffer ... 30

3.7.3.5 Tx Buffer Selection Algorithm ... 31

3.7.4 TP Queue .. 31

3.7.5 Error Handling .. 31

3.7.6 Meta Data Handling ... 32

4 Integration ... 33

4.1 Scope of Delivery ... 33

4.1.1 Static Files ... 33

4.1.2 Dynamic Files .. 33

4.2 Critical Sections ... 34

4.3 Memory Section ... 34

4.4 Type Definitions ... 34

5 API Description ... 35

5.1 Services provided by PDUR ... 35

5.1.1 PduR_Init ... 35

5.1.2 PduR_InitMemory .. 35

5.2 Services ... 36

5.2.1 PduR_GetVersionInfo .. 36

5.2.2 PduR_GetConfigurationId .. 36

5.2.3 PduR_EnableRouting ... 36

5.2.4 PduR_DisableRouting .. 37

5.3 Communication Interface ... 38

5.3.1 PduR_<GenericUp>Transmit ... 38

5.3.2 PduR_<GenericLo>RxIndication .. 38

5.3.3 PduR_<GenericLo>TriggerTransmit ... 39

5.3.4 PduR_<GenericLo>TxConfirmation ... 40

5.4 Transport Protocol ... 41

5.4.1 PduR_<GenericUpTp>ChangeParameter .. 41

5.4.2 PduR_<GenericUpTp>CancelReceive ... 41

5.4.3 PduR_<GenericUpTp>CancelTransmit .. 42

5.4.4 PduR_<GenericLoTp>StartOfReception .. 43

5.4.5 PduR_<GenericLoTp>CopyRxData ... 43

5.4.6 PduR_<GenericLoTp>CopyTxData .. 44

5.4.7 PduR_<GenericLo>TpTxConfirmation ... 45

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 7
based on template version 4.9.2

5.4.8 PduR_<GenericLo>TpRxIndication .. 46

5.4.9 PduR_<GenericUpTp>Transmit ... 47

5.5 Service Ports ... 48

5.5.1 Complex Device Driver Interaction ... 48

6 Configuration .. 49

6.1 Use Case Configuration: Communication interface range gateway 49

6.1.1 Step-by-step configuration ... 50

6.1.2 Optional configuration variants / options ... 54

6.2 Use Case Configuration: Functional requests gateway routing 56

6.2.1 Step-by-step configuration ... 57

6.3 Use Case Configuration: N:1 routing path .. 63

7 AUTOSAR Standard Compliance... 65

7.1 Deviations .. 65

7.2 Limitations.. 66

7.2.1 General .. 66

8 Glossary and Abbreviations .. 67

8.1 Glossary .. 67

8.2 Abbreviations ... 68

9 Contact .. 70

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 8
based on template version 4.9.2

Illustrations
Figure 2-1 AUTOSAR 4.1 Architecture Overview ... 12
Figure 2-2 Interfaces to adjacent modules of the PDUR .. 13
Figure 3-1 Example routing path configurations: Every ECU transmits to every other

ECU (via N:M routing paths) or ECU0 can exclusively broadcast to all
other ECUs. Other ECUs can only reach ECU0 .. 19

Figure 3-2 Network specific assignment of PduRRouting path sources and
destinations to a PduRConnection .. 20

Figure 3-3 Example Extended CAN ID layout .. 21
Figure 3-4 Example switching network topology .. 23
Figure 3-5 Example Standard CAN ID layout ... 23
Figure 3-6 Example switching EcuC configuration - PduRConnection 23
Figure 3-7 Example switching EcuC configuration -

PduRSaTaFromMetaDataCalculationStrategy .. 24
Figure 3-8 Overflow notification callback configuration ... 25
Figure 3-9 Configured Tp Buffer with possible Threshold ranges 27
Figure 10 Buffer pool configuration .. 29
Figure 11 Shared buffer pool .. 29
Figure 6-1 Meta data routing with CanIf ... 49
Figure 6-2 CanIf / PduR range routing example overview .. 50
Figure 6-3 Example functional requests gateway network architecture 56
Figure 6-4 Functional request gateway architecture ... 56
Figure 6-5: example N:1 routing path configuration .. 63
Figure 6-6 EcuC configuration of (mixed) N:1 / 1:N routing paths 64

Tables

Table 1-1 Component history.. 10
Table 3-1 Supported AUTOSAR standard conform features 14
Table 3-2 Not supported AUTOSAR standard conform features 15
Table 3-3 Features provided beyond the AUTOSAR standard 15
Table 3-4 Example FIB content after reception of Pdus from source 0x00 and 0x02 19
Table 3-5 How to get the associated gateway routing path ... 25
Table 4-1 Static files ... 33
Table 4-2 Generated files ... 34
Table 4-3 Type definitions ... 34
Table 5-1 PduR_Init .. 35
Table 5-2 PduR_InitMemory ... 36
Table 5-3 PduR_GetVersionInfo ... 36
Table 5-4 PduR_GetConfigurationId ... 36
Table 5-5 PduR_EnableRouting ... 37
Table 5-6 PduR_DisableRouting .. 37
Table 5-7 PduR_<GenericUp>Transmit .. 38
Table 5-8 PduR_<GenericLo>RxIndication... 39
Table 5-9 PduR_<GenericLo>TriggerTransmit ... 39
Table 5-10 PduR_<GenericLo>TxConfirmation .. 40
Table 5-11 PduR_<GenericUpTp>ChangeParameter .. 41
Table 5-12 PduR_<GenericUpTp>CancelReceive.. 42
Table 5-13 PduR_<GenericUpTp>CancelTransmit ... 42
Table 5-14 PduR_<GenericLoTp>StartOfReception ... 43
Table 5-15 PduR_<GenericLoTp>CopyRxData .. 44
Table 5-16 PduR_<GenericLoTp>CopyTxData .. 45
Table 5-17 PduR_<GenericLo>TpTxConfirmation .. 46

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 9
based on template version 4.9.2

Table 5-18 PduR_<GenericLo>TpRxIndication .. 46
Table 5-19 PduR_<GenericUpTp>Transmit .. 47
Table 6-1 Example range routings .. 50
Table 6-2 Example functional diagnostic request routing .. 57
Table 8-1 Glossary ... 68
Table 8-2 Abbreviations .. 69

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 10
based on template version 4.9.2

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00  MICROSAR 4 Base

2.00  AUTOSAR 4.0.3

2.01  TP Gateway

 IF Gateway

2.02  Routing Path Groups

2.03  Post-Build Loadable

5.00  Changed StartOfReception, TpRxIndication and
TpTxConfirmation APIs according to AUTOSAR 4.1.2

 Added TP routing with variable addresses

 Meta-Data support

6.00  Post-Build Selectable

7.00  CAN-FD

8.00  PduR Switching

 N:1 Interface routing path support

9.00  1:N/N:1 transport protocol routing path support

Table 1-1 Component history

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 11
based on template version 4.9.2

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module PDUR as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: PRE-COMPILE [SELECTABLE]

POST-BUILD-LOADABLE [SELECTABLE]

Vendor ID: PDUR_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: PDUR_MODULE_ID 51 decimal

(according to ref. [5])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The main task of the PDU Router module is to abstract from the type of bus
access (Interface layer and TP layer) and from the bus type itself.

Since the PDU Router module has to route Rx and Tx PDUs to and from the upper- and
lower- layers and any software component uses its own handle space, multiple
routing tables are required. The PDU Router uses the input handle as an index to
the related routing table.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 12
based on template version 4.9.2

2.1 Architecture Overview

 Figure 2-1 shows where the PDUR is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.1 Architecture Overview

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 13
based on template version 4.9.2

Figure 2-2 shows the interfaces to adjacent modules of the PDUR. These interfaces are
described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the PDUR

Applications do not access the services of the BSW modules directly. They use the service
ports provided by the BSW modules via the RTE. The service ports provided by the PDUR
are listed in chapter 0 and are defined in [1].

 class Architecture

<LoIf>

J1939Rm

DoIp J1939TpCanTp

FrTp
CanNm

J1939Dcm

Det

<UpTp>

IpduM

PduR

LinIf

FrNm

FrArTp

CddPduRUpperLayerContribution

J1939Nm

Dcm

<LoTp>

SoAd

CanIf

Com

<UpIf>

FrIf CddPduRLowerLayerContribution

LdCom

SecOC

BswM

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 14
based on template version 4.9.2

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
PDUR.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

 Table 3-1 Supported AUTOSAR standard conform features

 Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 0.

Vector Informatik provides further PDUR functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

 Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Pre compile and Post build time configuration variant

I-PDU transmission and reception

Cancel-Receive/Transmit support

Change Parameter support

1:1 routing between upper- and lower-layer communication interface modules

1:1 routing between upper- and lower-layer transport protocol modules

1:1 Interface Gateway Routing

1:N Interface Gateway Routing

1:1 Transport protocol Gateway Routing

1:N Transport protocol Gateway Routing (single and multiframe Tp messages)

Complex device driver (CDD) support

Routing Path Groups

Debugging support (optional feature)

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Link time configuration

1:N fan-out from the same upper layer PDU (IF/ Tp)

Zero cost operation

Minimum Routing (Reduced state)

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 15
based on template version 4.9.2

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

N:1 Interface routing path capability

PduR Switching: Smart learning of routing path destinations depending on received Pdus

1:N and N:1 transport protocol single- and multiframe routing path capability

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Interfaces to adjacent modules of the PDUR

The PDU Router provides generic communication interfaces and transport protocol APIs
for any lower and upper layer module.

3.3 Initialization

Before the PduR can be used it has to be initialized by PduR_Init() which performs the
basic initialization. Initialization is normally driven by the Communication Manager. If this
software component is not available a similar component has to be provided by the
integrator.

3.4 States

The PduR is initially not activated. Basic RAM arrays are initialized with the call of
PduR_InitMemory or with the startup code of your ECU. If PduR_Init() is called with valid
parameters, the PduR is in the state “PduR_IsInitialized” and the communication can start.

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [4], if development error reporting is enabled (i.e.

pre-compile parameter PDUR_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported PDUR ID is 51.

3.6 Interface Layer Gateway

3.6.1 Data Provision

3.6.1.1 Direct data provision

For Direct Data Provision routing paths the data will be copied by the PduR to the
destination module in the transmit API call. If a FIFO queue is configured, the data might
be queued and will then be transmitted in the Tx Confirmation context.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 16
based on template version 4.9.2

3.6.1.2 Trigger transmit data provision

For Trigger Transmit Data Provision routing paths the data will be copied by the
destination module in the trigger transmit API call. This is useful if the destination module
always wants to fetch the latest data available (single buffer configuration) or it has specific
timing requirements when it needs to provide the data.

3.6.2 FIFO Queue

A FIFO is used if loss of I-PDU instances is critical. In case of several parallel transmitting
FIFO queues, the order of transmission depends upon the bus access of the lower layer
and not on the relative order of I-PDU reception. One FIFO queue therefore only cares for
a FIFO based sorting of the instances of its own queued I-PDUs.

The queue depth can be configured for each routing path independently.

If the transmission of an I-PDU failed (negative return value of the interface layer transmit
request), the PDU Router removes the I-PDUs instance from the queue and retries the
transmission with the next instance – until the queue is empty or the transmission request
is accepted.

In case of a buffer overrun, all queued I-PDU instances of the affected queue are removed
and the newly received I-PDU is transmitted.

EcuC structural changes with PduR version 9.00.00
The PduRTxBufferDepth has been removed and was replaced by the
PduRDestPduQueueDepth parameter.

3.6.3 Buffer Configurations

3.6.3.1 No Buffer

No buffering will be used if the PduRDestPduQueueDepth is not configured.

3.6.3.2 Direct Data Provision FIFO

A FIFO queue will be used if the data provision is set to direct transmission and the
PduRDestPduQueueDepth is larger than zero.

3.6.3.3 Trigger Transmit Data Provision FIFO

A FIFO will be used if the data provision is set to trigger transmit and the
PduRDestPduQueueDepth is larger than one.

3.6.3.4 Trigger Transmit Data Provision Single Buffer

A single buffer will be used if the data provision is set to trigger transmit and the
PduRDestPduQueueDepth is one.

Last is best semantics apply. Values in the buffer will be overwritten so that a Trigger
Transmit call always gets the latest data from the buffer. It is necessary to specify default
values for the buffer, as the Trigger Transmit API can be called before any new data was
written to the buffer.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 17
based on template version 4.9.2

3.6.4 Shared Tx Buffer Pool support

The Interface Layer Gateway supports shared Tx Buffer. Tx Buffer can be assigned to
multiple routing paths at once. This is useful for routing paths which are not active at the
same time. Thus, RAM consumption can be reduced.

3.6.5 Timing aspects

The PDU Router triggers the transmission of I-PDU instances to be routed as soon as
possible. If the queue is empty, a reception will directly cause a transmission request to the
interface layer. If the queue is occupied, the I-PDU instance will be added to the queue.
Queued I-PDU instances are transmitted within the Tx confirmation of the preceding
instance. This queuing behavior can cause bursts on the destination channel (especially
CAN) if several queue instances are queued and if the driver layer does not free the
hardware queue.

The PDU Router does not provide a mechanism to implement a rate conversion (e.g.
change the cycle time from the source to the destination channel). A rate conversion can
be implemented (at extra runtime costs) by signal routing paths using the COM signal
gateway.

3.6.6 Dynamic DLC Routing

With PduR version 9.00.00 and later there is no restriction for the dynamic length routing
for gateway routing paths. All lengths between 0 and the configured PDU length can be
routed. The length can be adapted dynamically during runtime.

Caution
A Pdu with a DLC larger than the configured Pdu length will be truncated to the length
of the smallest available buffer of this routing path.

3.6.7 Transport protocol low level routing

If the TP segments (N-PDUs) on the source and the destination network are identical, it is
possible to route TP I-PDUs using the interface layer gateway (“low-level” routing). If low-
level routing is used, the (former) N-PDU is no longer accessible to the TP layer and
therefore seen as an I-PDU by the PDU Router module.

The advantage of low-level routing is that it is executed in the context of the interface layer
RxIndication and therefore introduces a minimal routing latency.

Low-level routing has, however, several drawbacks which might cause that a high-level TP
routing is more adequate:

 TP protocol conversion is not possible as the frame-layout and the flow-control
handling must be the same on the source and the destination network.

 No forwarding of routed TP I-PDUs to the local DCM is possible as it may be required
for functional requests.

 Eventual loss of TP parameters, such as the STmin timing and the block size, due to
bursts on the destination bus. Bursts are a result of queued I-PDUs which were
transmitted in the TxConfirmation of the previous I-PDU.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 18
based on template version 4.9.2

 A buffer overrun in the FiFo queue causes the queue to be flushed and therefore
corrupts the TP communication. The TP layer gateway can avoid buffer overflows if the
receiving TP connection supports a dynamic block size adaptation.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 19
based on template version 4.9.2

3.6.8 Smart Learning (Switching)

The PduR routing path relations are statically configured and cannot be modified during
runtime. In case ECUs will be attached to different networks during assembly or a huge
amount of possible routing relations will be required, the dynamic learning of routing
relations can be used.

The switching functionality is based on a dynamic RAM table, the forwarding information
base (FIB) inside the PduR. This RAM table stores the location (network) of the different
ECUs and will be used to direct the routings to the correct destination. The identification of
the communication partners is done by a source- and target address which is determined
based on the PDU meta data. The FIB is updated with the related location (called
connection) on reception of every participating PDU.

Source address Learned destination location/connection

0x00 Connection 2

0x01 <not yet learned>

0x02 Connection 0

… …

Table 3-4 Example FIB content after reception of Pdus from source 0x00 and 0x02

On reception of every PDU a lookup in the FIB is done to check whether the
location/connection of the target address is already known. If the target address
destination (FIB source address) is not yet known, the PDU will be broadcasted to all
destinations of the respective routing path. In case the target address destination was
already learned by the gateway, the PDU will be routed to the learned destination instead
of the broadcasting.

From the technical point of view the switching functionality is an add-on for the static PduR
routing path relations. The standard PduR routing paths are used to describe all required
routing relations which are necessary if no dynamic learning is available. This means that
the routing paths must be configured in a way that the PDUs are broadcasted to all desired
networks which have possible destination ECUs connected. This is typically a 1:N routing
path which performs a broadcasting of the PDU. The switching add-on suppresses the
routing to the individual destinations based on the FIB information. In case the destination
of a single PDU / target address is not yet known, the PDU will be routed to all destinations
of the 1:N routing path. In case the destination is already learned, the routing to all
destinations except the learned one is suppressed.

Figure 3-1 Example routing path configurations: Every ECU transmits to every other ECU (via N:M routing paths)

or ECU0 can exclusively broadcast to all other ECUs. Other ECUs can only reach ECU0

Gateway ECU

ECU0

CAN0

ECU1

CAN1

ECU2

CAN2

Gateway ECU

ECU0

CAN0

ECU1

CAN1

ECU2

CAN2

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 20
based on template version 4.9.2

An important concept for the smart learning functionality is the usage of communication
interface range routing paths where multiple PDUs can be routed with a single routing
path. For the examples this means that only three N:M or 1:N/N:1 routing paths have to be
configured between the networks. The range filters of the Rx CAN range Pdus can be
used to define the concrete CAN ID range to be routed via the routing paths. For further
information see chapter 6.1.

The memorization of the source / target address locations/networks is done on the basis of
the actual extracted source / and target addresses which are based on the CAN ID of the
routed range PDUs.

Caution
The PduR switching feature is only supported for MetaData Pdus. Therefore the
referenced routing paths in a PduR Connection must be MetaData routing paths.
Currently only the CanIf supports the MetaData feature.

The switching functionality is automatically enabled for all PDUs associated to a

PduRDataPlane (see chapter 3.6.8.1).

All entries of the FIB will be set to ‘not yet learned’ during initialization of the PduR. This is
the only way to completely ‘unlearn’ the FIB table. A relearning is possible by receiving
messages with the corresponding source address on some other channel. The PduR will
then update the connection/location of this address.

3.6.8.1 Configuration

The configuration and activation of the switching functionality is done within the EcuC

container /MICROSAR/PduR/PduRRoutingTables/PduRDataPlaneTable. By adding a new

PduRDataPlane an independent FIB RAM table will be instantiated. Therefore it is possible
to configure multiple different independent smart learning / switching behaviors in a single
gateway.

Within a PduRDataPlane the PduRDataPlane/PduRConnection containers are used to assign
the static PduR routing path sources and destinations to a network (location). A

PduRConnection represents a single network.

Figure 3-2 Network specific assignment of PduRRouting path sources and destinations to a PduRConnection

Gateway ECU

Connection_CAN1 Connection_CAN1Connection_CAN0

ECU0

CAN0

ECU1

CAN1

ECU2

CAN2

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 21
based on template version 4.9.2

Reference all related PduRRoutingPath/PduRSrcPdu and PduRRoutingPath/PduRDestPdu of

a single network to the PduRConnection by the references PduRConnection/PduRSrcPduRef

and PduRConnection/PduRDestPduRef.

The behavior of the switching logic itself is configured in the

PduRDataPlane/PduRSwitchingStrategy/PduRSaTaSwitchingStrategy container. The
currently available strategy is based on source- and target addresses as described above.

Within the PduRSaTaSwitchingStrategy different strategies are supported to determine the
source- and target address of the PDUs:

 PduRLinearTaToSaCalculationStrategy

The target address is the CAN ID (contained in the Pdu meta data). The source
address is calculated by masking the target address and adding a linear offset.

For PDUs referenced by PduRAddOffsetSrcPduRef:
 source address = (target address + offset) & mask

For PDUs referenced by PduRSubtractOffsetSrcPduRef:
 source address = (target address - offset) & mask

 PduRSaTaFromMetaDataCalculationStrategy

The source and target address is directly read from the CAN ID contained in the meta
data. The bit access will occur on the logical CAN ID extracted from the meta data.

The source address bit position is defined by the PduRSaStartBitPosition and

PduRSaEndBitPosition parameters. The target address bit position is defined by the

PduRTaStartBitPosition and PduRTaEndBitPosition parameters.

Example bit position configuration of the CAN ID layout shown in Figure 3-3:

PduRSaStartBitPosition: 0

PduRSaEndBitPosition: 9

PduRTaStartBitPosition: 10

PduRTaEndBitPosition: 19

 Figure 3-3 Example Extended CAN ID layout

Message ID (29 bit)

<Reserved>

9bit

Target Address

10bit

Source Address

10bit

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 22
based on template version 4.9.2

EcuC structural changes with PduR version 9.00.00

PduRConnection

In the previous versions the PduRConnection/PduRSrcPduRef and

PduRConnection/PduRDestPduRef parameters were used to separate between

request and response routing paths. A separation between request and response
routing paths does not exist anymore. Instead the references are now just used for

network to PduRSrcPdu / PduRDestPdu mapping.

An automated migration of the PduRConnection references is not possible. Please

add missing references manually.

PduRLinearMappingStrategy

In the previous versions the mapping between request and response PDUs was
configured in the
PduRDataPlane/PduRDataPlaneMappingStrategy/PduRLinearMappingStrategy

container. This container will be automatically migrated to the new location
PduRDataPlane/PduRSwitchingStrategy/PduRSaTaSwitchingStrategy/PduRSaTa

CalculationStrategy/PduRLinearTaToSaCalculationStrategy. As described

above the separation between request and response routing paths by the

PduRConnection/PduRSrcPduRef and PduRConnection/PduRDestPduRef does not

exist anymore. Rather the new references

PduRLinearTaToSaCalculationStrategy/PduRAddOffsetSrcPduRef and

PduRLinearTaToSaCalculationStrategy/PduRSubtractOffsetSrcPduRef were

introduced. PduRAddOffsetSrcPduRef must reference all PduRSrcPdus where the

offset shall be added to the target address to determine the related source address.
PDUs where the offset shall be subtracted must be referenced with the

PduRSubtractOffsetSrcPduRef references.

The AddOffset- and SubtractOffsetSrcPduRef references are automatically

migrated. Former PduRSrcPdu referenced by PduRConnection/PduRDestPduRef are

migrated to PduRAddOffsetSrcPduRef. Former PduRSrcPdu referenced by

PduRConnection/PduRSrcPduRef are migrated to PduRSubtractOffsetSrcPduRef.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 23
based on template version 4.9.2

3.6.8.2 Example

Network topology is as shown in Figure 3-4. The CAN ID layout is as shown in Figure 3-5.

Strategy PduRSaTaFromMetaDataCalculationStrategy used (see chapter 3.6.8.1). Routing
path configuration as shown in Figure 3-1 (every ECU can broadcast to the other ECUs).

Figure 3-4 Example switching network topology

Figure 3-5 Example Standard CAN ID layout

Figure 3-6 Example switching EcuC configuration - PduRConnection

Gateway ECU

ECU0

address = 0x4

CAN 0 CAN 1

CAN 2

Routing logic

FIB

ECU1

address = 0x2 ECU2

address = 0x3

Message ID (11 bit)

<Reserved>

3bit

Target Address

4bit

Source Address

4bit

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 24
based on template version 4.9.2

Figure 3-7 Example switching EcuC configuration - PduRSaTaFromMetaDataCalculationStrategy

Example communication sequence and FIB contents:

1. ECU0 transmits the range Pdu with CAN ID 0x034.
This means ECU0 uses its address as source
address (0x4), and addresses ECU2 with the target
address 0x3. The PDU will be broadcasted to
CAN1 and CAN2 and the location of ECO0 address
is updated in the FIB.

Source Address Learned location

… …

0x02 <not yet learned>

0x03 <not yet learned>

0x04 Connection_CAN0

… …

2. ECU2 responds to the initial PDU of ECU0 with a
PDU with CAN ID 0x043. The PDU will only be
routed to CAN0 because the location of the target
address (0x4) was already learned by the first PDU
of ECU0. Additionally the location of ECU2 is
updated in the FIB.

Source Address Learned location

… …

0x02 <not yet learned>

0x03 Connection_CAN2

0x04 Connection_CAN0

… …

3. Finally ECU1 transmits a PDU with CAN ID 0x032.
The PDU will only be routed to CAN2 because the
location of the target address (0x3) was already
learned. The FIB gets updated with the location of
ECU1.

Source Address Learned location

… …

0x02 Connection_CAN1

0x03 Connection_CAN2

0x04 Connection_CAN0

… …

3.6.9 Queue overflow notification callback

The PDU Router supports a Queue overflow notification callback. In case of a
communication interface routing with unfavorable FIFO configuration or if the destination
bus is not available (e.g. bus off) a buffer overflow can occur. In this case the FIFO is
flushed.

Additionally a callback could be configured to capture this event and perform error
handling. See Figure 3-8 Overflow notification callback configuration.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 25
based on template version 4.9.2

Enable Feature overflow notification callback

> PduR_QueueOverflowNotification activates / deactivates a PduR
communication interface TxBuffer overflow notification.

> Set an individual error notification module name by using
PduR_ErrorNotificationModuleName parameter. This parameter is optional
and can be left empty. ‘ErrorNotification’ is used as default value.

If the feature is enabled two additional source files are generated to the Gendata folder.
A <ErrorNotification>_Cbk.h file and a _<ErrorNotification>_Cbk.c template file. The
template contains the error notification function which must be implemented.

> Implement the error notification function and remove the template
underscore.

Figure 3-8 Overflow notification callback configuration

During runtime the error notification is called by the PDU Router in case of a FIFO
overflow. The lower layer interface handle is passed to the notification callback.

How to get the associated gateway routing path

> Open the Find view and enter the destination PDU name with the
associated handle. Syntax: value == destination PDU name

> Right click on the PDU Router destination container in the result view and
open the reference using the “Show referenced item in” dialog.

Table 3-5 How to get the associated gateway routing path

Caution
The error notification function is called in the interrupt context! Please keep the error
handling short.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 26
based on template version 4.9.2

3.7 Transport Protocol Gateway

The TP layer gateway allows high-level routing of TP I-PDUs.

In order to reduce runtime and memory consumption, the gateway supports the so called
routing on-the-fly (for 1:1, 1:N and N:1 single and multiframe routing paths). Depending on
the “Threshold” configuration of each routing path, the gateway starts with the
transmission on the destination network before the reception has completed on the source
network.

Since AUTOSAR 4 the PduR copies the data within the PduR_<LoTp>_CopyRxData() call.
So the PduR module always knows how much buffer is still available and provides the
complete size to the Tp module. The PduR is not limited to linear buffer boundaries like in
AUTOSAR 3, so the PduR data rate is very efficient.

The Tp module will never get more buffer within one PduR_<LoTp>_CopyRxData() call
than the PduR provides to the Tp module. Therefore the Tp modules should not try to copy
more data than the provided buffer length.

3.7.1 Multi-Routing

The PduR supports N:1 and 1:N routing paths for both single- and multiframes. Each of
these routing paths will only occupy a single Tx Buffer at runtime (if no FIFO behavior is
required). For details on the queuing behavior refer to chapter 3.7.4.

Note
1:N gateway routing paths which involve an upper layer destination must be configured
as a store and forward routing path.

3.7.2 TP Threshold

The Threshold value is used to…

 … define the fill level of the buffer where the transmission is triggered on the
destination bus.

 … exclude buffers from the selection during runtime. This could be helpful to ensure
that small buffers which are configured for single frames are not taken into account for
long multi messages. If the Threshold is larger than the buffer size it is ensured that
the PduR will not use this buffer to perform the routing.

Note
Small buffers can also be excluded from the selection at runtime using the
dedicated/shared Tx Buffer pool support. All suitable buffers can be assigned to the
respective routing paths. Only these assigned buffers will be used at runtime. The
assigned buffers can also be shared between multiple other routing paths.

See chapter 3.7.3 for details.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 27
based on template version 4.9.2

3.7.2.1 Restrictions

The setting of the TP Threshold is restricted for CanTp, LinTp and FrArTp routing paths.
Threshold values in the shaded sections of Figure 3-9 are not allowed to be configured for
these kind of gateway routings.

Each PduR_<LoTp>_CopyRxData() call requires that a complete consecutive frame (CF)
will be copied to the buffer. If not enough buffer is available the Tp tries again to get more
buffer. But the PduR still cannot dequeue data because the threshold is not reached. In
this situation there will never be enough buffer space and the routing will be aborted with a
timeout.

The DaVinci Configurator validates this and provides appropriate Solving-Actions to set a
suitable Threshold. The recommended values are adapted to the boundaries.

If just the largest buffer of Figure 3-9 should be used for a routing the Threshold must be
set to Section 2. If the routing should have both buffer options the Threshold level must be
set somewhere in Section 1.

Figure 3-9 Configured Tp Buffer with possible Threshold ranges

3.7.2.2 Threshold “0”

Since ASR 4.1.2 the PduR module supports a Threshold of “0”. This means that the
transmission will be triggered immediately. The first frame of some Transport Protocol
modules (J1939Tp and FrTp) does not contain data but it is required that the transmission
will be triggered nevertheless. For further details refer for example the J1939Tp
specification [6].

3.7.3 Tx Buffer Handling

Diagnostic communication usually does not take place within all ECUs at the same time.
Therefore a TP routing path typically has no dedicated assigned buffer. In order to reduce
the amount of RAM required for queues, the Tx buffers are assigned dynamically to active
TP routing paths and can be reused in different routing paths automatically.

CFs CF size- 1 MetaData FF

Section 1 Section 2

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 28
based on template version 4.9.2

If a buffer is assigned to a routing path during runtime, this buffer is exclusively reserved
for this routing. If all available buffers are occupied, no further routing is possible and the
PduR signalizes the state “BUFREQ_E_NOT_OK” towards the TP module. It will then
create an appropriate flow-control frame depending on its capabilities.

The PduR supports a ring buffer mechanism. Due to the AUTOSAR 4 architecture long TP

messages can now be routed through a small PduRTxBuffer, especially if the source

and destination bus have the same data rate.

The PduRTxBuffer will be released during initialization of the PduR module and after a

routing has terminated either successfully or with an error. They can then be allocated by

other PduRDestPdus again.

The PduR supports multiple Tx Buffer assignment strategies to support different usecases.

3.7.3.1 Tx Buffer Usage Types

A PduRTxBuffer can either be referenced by zero, one or multiple PduRDestPdus.

Note
If a PduRDestPdu references at least one PduRTxBuffer, it has only access to this pool
of buffers and cannot use the global Tx Buffer pool of unassigned PduRTxBuffers.

3.7.3.1.1 Dedicated Tx Buffer

If a PduRTxBuffer is referenced by only one PduRDestPdu, it is called a dedicated Tx

Buffer. The buffer can only be used by this PduRDestPdu.

Dedicated Tx Buffers accelerate the buffer search algorithm as the amount of available
PduRTxBuffer is more limited compared to a global Tx Buffer Pool use case.

Dedicated Tx Buffer can be used to ensure the availability of suitable Tx Buffers and
optimize the buffer for certain bus architectures.

Expert Knowledge
Routing of a functional request is a typical use case for a dedicated buffer. For a short
diagnostic request it is required to avoid searching for a buffer in the global Tx buffer

pool. If a dedicated buffer is assigned to the PduRDestPdu, this buffer will be used

during runtime.

Note
Dedicated Tx Buffers raise the RAM consumption. Every Tx Buffer allocates its needed
memory in RAM. This memory will not be shared with any other routing path.

3.7.3.1.2 Shared Tx Buffer

If a PduRTxBuffer is referenced by multiple PduRDestPdus, it is a shared Tx buffer

which can be used by all corresponding PduRDestPdus.

If the Tx buffer is currently used by a PduRDestPdu, it can’t be used by any other

PduRDestPdu until the processing of the active routing path is finished.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 29
based on template version 4.9.2

Expert Knowledge
A buffer pool configuration avoids that a non-suitable buffer is used for a routing during
runtime.

It is also possible to share Tx Buffers between communication interface and transport
protocol routings. Keep in mind that an allocated buffer is locked until the routing is
finished.

3.7.3.1.3 Local Tx Buffer Pool

If one PduRDestPdu references more than one PduRTxBuffer, it is called a local Tx

Buffer Pool. These can either be dedicated PduRTxBuffer or they can be shared with

other PduRDestPdus. A mix of dedicated and shared PduRTxBuffers is supported.

The corresponding routing path can only request the referenced PduRTxBuffers.

3.7.3.1.4 Global Tx Buffer Pool

A PduRTxBuffer which is not referenced by any PduRDestPdu is part of the global Tx

Buffer pool. It can be used by any PduRDestPdu which has not referenced any

PduRTxBuffer.

3.7.3.2 Example Configuration

In the example shown in Figure 10 the buffer 3 belongs to the global Tx Buffer Pool and
Buffer 1 and 2 are dedicated Tx Buffers of Routing 1 (local Tx Buffer Pool). Routing 2 does
not have a buffer reference. This routing will use buffer 3 from the global Tx Buffer Pool.

Figure 10 Buffer pool configuration

Figure 11 shows a shared buffer pool configuration. Buffer 1 and 2 are shared between
Routing 1 and 2.

Figure 11 Shared buffer pool

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 30
based on template version 4.9.2

Caution
If Routing 1 uses Buffer 1 and Buffer 2, Routing 2 will not get a buffer until Buffers are
released. Use shared buffer pool configurations carefully.

3.7.3.3 Tx Buffer Length Configuration

The length of each buffer element is configured individually and therefore allows fine
adaptations according to the use case. First of all, the length of the configured buffer
depends on the Threshold of the configured routing paths. If the gateway assigns a buffer
element to a routing path it is required that the buffer has at least the size of the Threshold.

Increase the PduRTxBuffer length to adapt a high bus load on the reception side to a lower
bandwidth on the transmit side.

Due to the ring-buffer mechanism it is not required that a buffer element with the size of
the largest expected TP I-PDU is configured. A buffer smaller than the routed I-PDU can
result in wait-frames or a buffer-overflow if the destination connection is slower than the
source connection. A buffer overflow can be avoided if the receiving TP connection allows
dynamic adaptation of the block size (BS) (e.g. CanTp connection with BS greater 0). If a
BS of 0 is used by some of the source TP connections, the configured buffer length should
be dimensioned in a way that buffer overflows are avoided.

Note
It might make sense to configure a small Tp buffer (e.g. 7 bytes) to allow single
frame routings without occupying a larger and therefore more “expensive” buffer
for this task. This is applicable for both local and global Tx Buffer Pool
configuration. Dedicated assigned TxBuffer can be used to avoid this problem.

Note
If Meta Data Support is enabled please consider that the MetaDataLength must be
copied to the Tp Buffer additionally. The MetaDataLength should be taken into account
during the Tp buffer configuration.

3.7.3.4 Amount of Tx Buffer

The Tp gateway requires at least one buffer element to allow the routing of Tp I-PDUs.

The number of buffer elements that have to be configured depends on the number of TP I-
PDUs that shall be routed at the same time.

For each 1:N and N:1 routing path only one buffer element is occupied at runtime. More
than one buffer element will be occupied if a FIFO behavior is desired.

As the buffer elements are not assigned to a routing path statically, the number of
configured buffer elements can be smaller than the number of routing paths.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 31
based on template version 4.9.2

3.7.3.5 Tx Buffer Selection Algorithm

The PduR uses the following rules to choose one of the configured Tx buffers:

 If the size of the incoming I-PDU is smaller than the configured TP Threshold the
smallest available buffer is used that can hold the entire I-PDU.

 If the size of the incoming I-PDU is larger than the configured TP Threshold it uses the
smallest Tx buffer which can hold the entire I-PDU. If such a buffer is not availabe it
will use the largest available buffer which has a size larger than the TpThreshold.

 If all buffer are occupied, the buffer request is rejected and the TP I-PDU is not routed.

3.7.4 TP Queue

Every destination PDU can be configured to use a queue to buffer the TP I-PDUs. The
amount of I-PDUs which will be buffered can be configured with the Dest PDU Queue
Depth parameter.

The Queue supports FIFO behavior. This means that the first started source TP
connection is transmitted to the destination first.

TP Queues are supported for the following routing paths:

 1:1 routing path

 1:N routing path (Queue Depth must be equal for all destinations)

 N:1 routing path (Queue Depth must be equal for all DestPdus which reference the
one common destination global PDU)

Multiple I-PDUs from different source connections can be received at once on N:1 routing
paths, as long as the TP Queue is not full. For routing paths with only one possible source
Tp connection (1:1, 1:N), only one I-PDU can be received at once. If the transmission on
the destination side is delayed, multiple I-PDU instances which were received on the
source Tp connection are stored in the queue.

The default value for the Dest Pdu Queue Depth is 2. This corresponds to the back-to-
back routing behavior. After one TP I-PDU was received successfully it is transmitted to the
destination and another instance of the I-PDU can be received on the same TP
connection. Basically every queue with a depth greater than one can store multiple TP I-
PDUs.

A TP queue does not reserve the actual memory location for the Pdu. This is done
dynamically at runtime. TP buffer will be assigned to the queue, if it requests to store a
new I-PDU. In case there are no suitable TP buffer available, the StartOfReception call will
be rejected.

3.7.5 Error Handling

If one of the source or destination TP components that are involved in a TP data transfer
stops its transmission or reception due to an error (e.g. a timeout has occurred), the
corresponding TP-routing relation and buffer-element will be released. The next buffer
request on the not yet aborted Tp connection will return "BUFREQ_E_NOT_OK" and will
release the Tp connection.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 32
based on template version 4.9.2

Info
There is no AUTOSAR mechanism which notifies the other TP component side of an
error during the reception or transmission.

3.7.6 Meta Data Handling

Since ASR 4.1.2 the StartOfReception() API was extended by the “PduInfoPtr”. This
parameter can be used to transmit Meta Data.

In case of a gateway routing the payload provided in the “PduInfoPtr” will be ignored by the
PduR. Just Meta Data are buffered and transmitted via the <LL>_Transmit function. In
case of forwarding to an upper layer module (e.g. DCM or CDD) the payload and Meta
Data will be forwarded and the upper layer must extract the Meta Data according the
configured Meta Data length.

Caution
The length of the “PduInfoPtr” does not contain the “MetaDataLength” information. The
length parameter represents the I-PDU total length. Each module must copy the
MetaData from the ”PduInfoPtr” according the configured “MetaDataLength”. Do not
use the length of the “PduInfoPtr” to copy “MetaData” from the “PduInfoPtr”.

Caution
The lower layer module must provide the complete payload in the CopyRxData()
function

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 33
based on template version 4.9.2

4 Integration

This chapter gives necessary information for the integration of the MICROSAR PDUR into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the PDUR contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File
Name

Source Code
Delivery

Description

PduR.c  This is the source file of the PDUR

PduR.h  This is the header file of PDUR

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

PduR_Cfg.h This file contains:

 global constant macros

 global function macros

 global data types and structures

 global data prototypes

 global function prototypes

of CONFIG-CLASS PRE-COMPILE data.

PduR_Lcfg.h This file contains:

 global constant macros

 global function macros

 global data types and structures

 global data prototypes

 global function prototypes

of CONFIG-CLASS LINK data.

PduR_Lcfg.c This file contains:

 local constant macros

 local function macros

 local data types and structures

 local data prototypes

 local data

 global data

of CONFIG-CLASS LINK and PRE-COMPILE data.

PduR_PBcfg.h This file contains:

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 34
based on template version 4.9.2

File Name Description

 global constant macros

 global function macros

 global data types and structures

 global data prototypes

 global function prototypes

of CONFIG-CLASS POST-BUILD data.

PduR_PBcfg.c This file contains:

 local constant macros

 local function macros

 local data types and structures

 local data prototypes

 local data

 global data

of CONFIG-CLASS POST-BUILD data.

PduR_Types.h This file contains types and defines for the PduR.

PduR_<Up>.h This is the interface header of the PduR to an Upper Layer Module.

PduR_<Lo>.h This is the interface header of the PduR to a Lower Layer Module

Table 4-2 Generated files

4.2 Critical Sections

The critical section PDUR_EXCLUSIVE_AREA_0 has to lock global interrupts to protect
common critical sections.

4.3 Memory Section

With PDUR_START_SEC_BUFFER_VAR_NOINIT_8BIT and
PDUR_STOP_SEC_BUFFER_VAR_NOINIT_8BIT large Tx buffer can be mapped into an
own memory section.

4.4 Type Definitions

The types defined by the PDUR are described in this chapter.

Type Name C-Type Description Value Range

PduR_RoutingPathGroupIdType uint16 Identification of the routing path
group. Routing path groups are
defined in the

PDU router configuration.

unsigned int

Table 4-3 Type definitions

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 35
based on template version 4.9.2

5 API Description

5.1 Services provided by PDUR

5.1.1 PduR_Init

Prototype

void PduR_Init (const PduR_PBConfigType* ConfigPtr)

Parameter

ConfigPtr > NULL_PTR in the PDUR_CONFIGURATION_VARIANT_PRECOMPILE

> Pointer to the PduR configuration data in the
PDUR_CONFIGURATION_VARIANT_POSTBUILD_LOADABLE and
PDUR_CONFIGURATION_VARIANT_POSTBUILD_SELECTABLE

Return code

void none

Functional Description

This function initializes the PDU Router and performs configuration consistency checks. If the initialization
is performed successfully the PDU Router is in the state PduR_IsInitialized else not PduR_IsInitialized.

Particularities and Limitations

The function is used by the Ecu State Manager

Caution

PduR_Init shall not pre-empt any PDU Router function.

Call Context

The function must be called on task level. To avoid problems calling the PDU Router module uninitialized it
is important that the PDU Router module is initialized before interfaced modules.

Table 5-1 PduR_Init

5.1.2 PduR_InitMemory

Prototype

void PduR_InitMemory (void)

Parameter

void none

Return code

void none

Functional Description

The function initializes variables, which cannot be initialized with the startup code.

Particularities and Limitations

The function is called by the application.

Call Context

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 36
based on template version 4.9.2

The function must be called on task level.

Table 5-2 PduR_InitMemory

5.2 Services

5.2.1 PduR_GetVersionInfo

Prototype

void PduR_GetVersionInfo (Std_VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to where to store the version information of the PDU Router.

Return code

void none

Functional Description

Returns the version information of the PDU Router.

Particularities and Limitations

The function is called by the application.

Call Context

The function can be called on interrupt and task level.

Table 5-3 PduR_GetVersionInfo

5.2.2 PduR_GetConfigurationId

Prototype

uint32 PduR_GetConfigurationId (void)

Parameter

void none

Return code

uint32 uint32

Functional Description

Provides the unique identifier of the PDU Router configuration.

Particularities and Limitations

The function is called by the application.

Call Context

The function can be called on interrupt and task level.

Table 5-4 PduR_GetConfigurationId

5.2.3 PduR_EnableRouting

Prototype

void PduR_EnableRouting (PduR_RoutingPathGroupIdType id)

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 37
based on template version 4.9.2

Parameter

id Identification of the routing path group. Routing path groups are defined in the
PDU router configuration.

Return code

void none

Functional Description

This function enables a routing path group. If the routing path group does not exist or is already enabled,
the function returns with no action.

Particularities and Limitations

The function is called by the BSW Mode Manager.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_EnableRouting or PduR_DisableRouting calls for the same id.

Table 5-5 PduR_EnableRouting

5.2.4 PduR_DisableRouting

Prototype

void PduR_DisableRouting (PduR_RoutingPathGroupIdType id)

Parameter

id Identification of the routing path group. Routing path groups are defined in the
PDU router configuration.

Return code

void none

Functional Description

This function disables a routing path group. If the routing path group does not exist or is already disabled,
the function returns with no action.

Particularities and Limitations

The function is called by the BSW Mode Manager.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_EnableRouting or PduR_DisableRouting calls for the same id.

Table 5-6 PduR_DisableRouting

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 38
based on template version 4.9.2

5.3 Communication Interface

5.3.1 PduR_<GenericUp>Transmit

Prototype

Std_ReturnType PduR_<GenericUp>Transmit (PduIdType id, PduInfoType*

info)

Parameter

id ID of the <GenericUp> I-PDU to be transmitted

info Payload information of the I-PDU (pointer to data and data length)

Return code

Std_ReturnType Std_ReturnType

E_OK The request was accepted by the PDU Router and by the destination
layer.

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the destination layer.

Functional Description

The function serves to request the transmission of a Communication Interface I-PDU. The PDU Router
evaluates the upper layer I-PDU handle and performs appropriate handle and port conversion. The call is
routed to a lower communication interface module using the appropriate I-PDU handle of the destination
layer.

Particularities and Limitations

The function is called by an upper layer.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUp>Transmit calls for the same upper layer id.

Table 5-7 PduR_<GenericUp>Transmit

5.3.2 PduR_<GenericLo>RxIndication

Prototype

void PduR_<GenericLo>RxIndication (PduIdType id, const PduInfoType*

info)

Parameter

id Handle ID of the received <GenericLo> I-PDU.

info Payload information of the received I-PDU (pointer to data and data length).

Return code

void none

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 39
based on template version 4.9.2

Functional Description

The function is called by a lower communication interface to indicate the complete reception of a lower
communication interface I-PDU. The PDU Router evaluates the lower communication interface I-PDU
handle and performs appropriate handle and port conversion. The call is routed to an upper communication
interface module using the appropriate I-PDU handle of the destination layer.

Particularities and Limitations

The function is called by a lower communication interface module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>RxIndication calls for the same a lower communication interface id.

Table 5-8 PduR_<GenericLo>RxIndication

5.3.3 PduR_<GenericLo>TriggerTransmit

Prototype

void PduR_<GenericLo>TriggerTransmit (PduIdType id, PduInfoType* info)

Parameter

id Handle ID of the <GenericLo> I-PDU that will be transmitted.

info Contains a pointer to a buffer (SduDataPtr) to where the SDU data shall be
copied, and the available buffer size in SduLengh. On return, the service will
indicate the length of the copied SDU data in SduLength.

Return code

Std_ReturnType E_OK: The SDU has been copied and the SduLength indicates the number of
copied bytes.

E_NOT_OK: No data has been copied, because PduR is not initialized or
TxPduId is not valid or PduInfoPtr is NULL_PTR or SduDataPtr is NULL_PTR
or SduLength is too small.

Functional Description

The function is called by a lower layer communication interface to request the TX I-PDU data before
transmission. The PDU Router evaluates the lower layer communication interface I-PDU handle and
performs appropriate handle and port conversion. The call is routed to an upper IF module using the
appropriate I-PDU handles of the destination layer.

Particularities and Limitations

The function is called by a lower layer communication interface

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TriggerTransmit calls for the same id.

Table 5-9 PduR_<GenericLo>TriggerTransmit

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 40
based on template version 4.9.2

5.3.4 PduR_<GenericLo>TxConfirmation

Prototype

void PduR_<GenericLo>TxConfirmation (PduIdType id)

Parameter

id Handle ID of the transmitted lower layer communication interface I-PDU.

Return code

void none

Functional Description

The function is called by a lower communication interface to confirm the complete transmission of a lower
communication interface I-PDU. The PDU Router evaluates the lower communication interface I-PDU
handle and performs appropriate handle and port conversion. The call is routed to an upper layer
communication interface module using the appropriate I-PDU handle of the destination layer.

Particularities and Limitations

The function is called by a lower communication interface module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TxConfirmation calls for the same lower layer communication interface id.

Table 5-10 PduR_<GenericLo>TxConfirmation

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 41
based on template version 4.9.2

5.4 Transport Protocol

This chapter describes the interfaces provided to Upper Layers (e.g. Dcm, ApplTp and
Cdds). Replace the tag <UpTp> by the MSN of the Upper Layer.

5.4.1 PduR_<GenericUpTp>ChangeParameter

Prototype

Std_ReturnType PduR_<GenericUpTp>ChangeParameter (PduIdType id,

TPParameterType parameter, uint16 value)

Parameter

id ID of the <UpTp> I-PDU where the parameter has to be changed

parameter The TP parameter that shall be changed.

value The new value for the TP parameter.

Return code

Std_ReturnType Std_ReturnType

E_OK: The parameter was changed successfully.

E_NOT_OK: The parameter change was rejected.

Functional Description

The function serves to change a specific transport protocol parameter (e.g. block-size).

The PDU Router evaluates the <UpTp> I-PDU handle and performs appropriate handle and port
conversion. The call is routed to a lower TP module using the appropriate I-PDU handle of the destination
layer.

Particularities and Limitations

The function is called by <UpTp>.

Call Context

This function can be called on interrupt and task level and has not to be interrupted by other
PduR_<UpTp>ChangeParameter calls for the same id.

Table 5-11 PduR_<GenericUpTp>ChangeParameter

5.4.2 PduR_<GenericUpTp>CancelReceive

Prototype

Std_ReturnType PduR_<GenericUpTp>CancelReceive (PduIdType id)

Parameter

 id ID of the RX <GenericUp> I-PDU to be cancelled

Return code

Std_ReturnType Std_ReturnType

E_OK: Cancellation was executed successfully by the destination module.

E_NOT_OK: Cancellation was rejected by the destination module.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 42
based on template version 4.9.2

Functional Description

The function serves to cancel the reception of a TP layer I-PDU.

The PDU Router evaluates the upper layer transport protocol I-PDU handle and performs appropriate
handle and port conversion. The call is routed to a lower TP module using the appropriate I-PDU handle of
the destination layer.

Particularities and Limitations

The function is called by an upper layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>CancelReceive calls for the same upper layer id.

Table 5-12 PduR_<GenericUpTp>CancelReceive

5.4.3 PduR_<GenericUpTp>CancelTransmit

Prototype

Std_ReturnType PduR_<GenericUpTp>CancelTransmit (PduIdType id)

Parameter

id ID of the TX upper layer I-PDU of the routing that must be cancelled in the
lower layer

Return code

Std_ReturnType Std_ReturnType

E_OK The cancellation request was accepted by the PDU Router and by the
TP layer.

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the request was not accepted by the TP layer.

Functional Description

The function serves to cancel the transmission of a TP layer I-PDU.

The PDU Router evaluates the upper layer transport protocol I-PDU handle and performs appropriate
handle and port conversion. The call is routed to a lower TP module using the appropriate I-PDU handle of
the destination layer.

Particularities and Limitations

The function is called by an upper layer transport protocol module

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>CancelTransmit calls for the same upper layer id.

Table 5-13 PduR_<GenericUpTp>CancelTransmit

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 43
based on template version 4.9.2

5.4.4 PduR_<GenericLoTp>StartOfReception

Prototype

BufReq_ReturnType PduR_<GenericLoTp>StartOfReception (PduIdType id,

PduInfoType info, PduLengthType TpSduLength, PduLengthType*

bufferSizePtr)

Parameter

id ID of the <GenericLo> I-PDU that will be received.

info Pointer to the buffer (SduDataPtr) contains MetaData if this feature is enabled.

TpSduLength Length of the entire <GenericLo> TP SDU which will be received

bufferSizePtr Pointer to the receive buffer in the receiving module.

 This parameter will be used to compute Block Size (BS) in the transport
protocol module.

Return code

BufReq_ReturnType BufReq_ReturnType BUFREQ_OK Connection has been accepted.
bufferSizePtr indicates the available receive buffer.

BUFREQ_E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the upper layer.

or no buffer is available

Functional Description

This function will be called by the lower layer at the start of receiving an I-PDU. The I-PDU might be
fragmented into multiple N-PDUs (FF with one or more following CFs) or might consist of a single N-PDU
(SF).

Particularities and Limitations

The function is called by lower layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>StartOfReception calls for the same lower layer transport protocol id.

Table 5-14 PduR_<GenericLoTp>StartOfReception

5.4.5 PduR_<GenericLoTp>CopyRxData

Prototype

BufReq_ReturnType PduR_<GenericLoTp>CopyRxData (PduIdType id,

PduInfoType* info, PduLengthType* bufferSizePtr)

Parameter

id ID of the lower layer transport protocol I-PDU that will be received.

info Pointer to the buffer (SduDataPtr) and its length (SduLength) containing the
data to be copied by PDU Router module in case of gateway or upper layer
module in case of reception.

bufferSizePtr Available receive buffer after data has been copied.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 44
based on template version 4.9.2

Return code

BufReq_ReturnType BufReq_ReturnType

BUFREQ_OK Buffer request accomplished successful.

BUFREQ_E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the upper layer.

or the request length to copy is greater than the remaining buffer size

BUFREQ_E_OVFL The upper TP module is not able to receive the number of
bytes. The request was not accepted by the upper layer.

Functional Description

This function is called by the lower layer transport protocol if data has to be copied to the receiving module.
Parallel routing of several I-PDU is possible.

Particularities and Limitations

The function is called by lower layer transport protocol

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>CopyRxData calls for the same lower layer transport protocol id.

Table 5-15 PduR_<GenericLoTp>CopyRxData

5.4.6 PduR_<GenericLoTp>CopyTxData

Prototype

BufReq_ReturnType PduR_<GenericLoTp>CopyTxData (PduIdType id,

PduInfoType* info, RetryInfoType* retry, PduLengthType*

availableDataPtr)

Parameter

id ID of the lower layer I-PDU that will be transmitted.

info Pointer to the destination buffer and the number of bytes to copy.

In case of gateway the PDU Router module will copy otherwise the source
upper layer module will copy the data. If not enough transmit data is available,
no data is copied. The transport protocol module will retry.

A size of copy size of “0” can be used to indicate state changes in the retry
parameter.

retry retry not supported yet, is always a NULL_PTR.

availableDataPtr Indicates the remaining number of bytes that are available in the PDU Router
Tx buffer.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 45
based on template version 4.9.2

Return code

BufReq_ReturnType BufReq_ReturnType

BUFREQ_OK The data has been copied to the transmit buffer successful.

BUFREQ_E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the upper layer and no data has been
copied.

BUFREQ_E_BUSY The request cannot be processed because the TX data is
not available and no data has been copied. The TP layer might retry later the
copy process.

Functional Description

This function is called by a lower layer transport protocol module to query the transmit data of an I-PDU
segment.

Particularities and Limitations

The function is called by a lower layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>CopyTxData calls for the same a lower layer transport protocol module id.

Table 5-16 PduR_<GenericLoTp>CopyTxData

5.4.7 PduR_<GenericLo>TpTxConfirmation

Prototype

void PduR_<GenericLo>TpTxConfirmation (PduIdType id, Std_ReturnType

result)

Parameter

id ID of the <GenericLo> I-PDU that will be transmitted.

result Result of the TP transmission

E_OK The TP transmission has been completed successfully.

E_NOT_OK PduR_Init() has not been called

 or the transmission was aborted

 or the id is not valid

 or the id is not forwarded

 or the request was not accepted by the destination upper layer.

Return code

void none

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 46
based on template version 4.9.2

Functional Description

The function is called by a lower layer transport protocol module to confirm a successful transmission of a
lower layer transport protocol module TX SDU or to report an error that occurred during transmission. The
PDU Router evaluates the lower layer transport protocol module I-PDU handle and performs appropriate
handle and port conversion. The call is routed to an upper TP module using the appropriate I-PDU handle
of the destination layer.

Particularities and Limitations

The function is called by a lower layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TpTxConfirmation calls for the same the lower layer transport protocol module id.

Table 5-17 PduR_<GenericLo>TpTxConfirmation

5.4.8 PduR_<GenericLo>TpRxIndication

Prototype

void PduR_<GenericLo>TpRxIndication (PduIdType id, Std_ReturnType

result)

Parameter

id ID of the <GenericLo> I-PDU that will be received.

result Result of the TP reception

E_OK The TP reception has been completed successfully.

E_NOT_OK PduR_Init() has not been called

 or the reception was aborted

 or the id is not valid

 or the id is not forwarded

 or the request was not accepted by the destination upper layer.

Return code

void none

Functional Description

The function is called by the lower layer transport protocol module to indicate the complete reception of a
lower layer transport protocol module SDU or to report an error that occurred during reception. The PDU
Router evaluates the lower layer transport protocol module I-PDU handle and performs appropriate handle
and port conversion. The call is routed to an upper TP module using the appropriate I-PDU handle of the
destination layer.

Particularities and Limitations

The function is called by a lower layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TpRxIndication calls for the same lower layer transport protocol module.

Table 5-18 PduR_<GenericLo>TpRxIndication

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 47
based on template version 4.9.2

5.4.9 PduR_<GenericUpTp>Transmit

Prototype

Std_ReturnType PduR_<GenericUpTp>Transmit (PduIdType id, PduInfoType*

info)

Parameter

id ID of the upper layer I-PDU that have to be transmitted

info Payload information of the I-PDU (pointer to data and data length)

Return code

Std_ReturnType Std_ReturnType

E_OK The request was accepted by the PDU Router and by the destination
layer.

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the TP layer.

Functional Description

The function serves to request the transmission of a TP layer I-PDU.

The PDU Router evaluates the incoming I-PDU ID and performs appropriate ID and port conversion. The
call is routed to the TP layer using the appropriate I-PDU handle of the destination layer.

Particularities and Limitations

The function is called by an upper layer transport protocol module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>Transmit calls for the same an upper layer transport protocol module id.

Table 5-19 PduR_<GenericUpTp>Transmit

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 48
based on template version 4.9.2

5.5 Service Ports

5.5.1 Complex Device Driver Interaction

Besides the AUTOSAR modules, Complex Device Drivers (CDD) are also possible as
upper layer and lower transport protocol or communication interface modules for the
PduR. When a callout function of the PduR is invoked from a lower or upper layer module
for a PDU that is transmitted or received by a CDD, the PduR invokes the corresponding
target function of the CDD. If all PDUs transmitted or received by a CDD are referenced by
communication interface modules, the CDD requires a communication interface API. If all
PDUs transmitted or received by a CDD are referenced by transport protocol modules, the
CDD requires a transport protocol API.

A CDD can either require a communication interface API or it can require a transport
protocol API but not both. The API functions provided by the PduR for the CDD interaction
contain the CDD’s name.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 49
based on template version 4.9.2

6 Configuration

6.1 Use Case Configuration: Communication interface range gateway

The PduR routing paths configuration is typically focused on the routing of dedicated Pdus
and their bus-specific representation (e.g. the concrete CAN ID, DLC, …). For some
network and communication architectures it might be helpful to avoid the dedicated
configuration of all possible and required PduR routing paths. Especially if a huge amount
of Pdus shall be routed between networks, the PduR routing paths configuration gets
extensive, error-prone and requires a lot of hardware resources (ROM / RAM).

To overcome this situation, so called range-routings could be used. For the routing of a full
Pdu range between two networks just single PduR routing path needs to be configured.

Technically, the range-routing is based on the usage of MetaData information appended to
the Pdu data field. During Pdu reception the related bus interface module stores all
required Pdu meta information (the CAN ID) in the MetaData part of the Pdu data field.
The PduR itself performs the routing of the full Pdu data field, including the MetaData.
During transmission the related bus interface module uses the MetaData information for
dynamic adaptation (the CAN ID) of the transmitted bus Pdu. The range of the routed
Pdus is defined by the bus interface specific Rx Pdu range. In case of CanIf, the CAN ID
Rx filter is used to define the range. Figure 6-1 visualizes the range-routing technique.

Figure 6-1 Meta data routing with CanIf

Limitations
There are some limitations when using the described range-routing technique:

 Available for CAN only

 No CAN ID conversion possible

 No length conversion possible

 No dynamic PDU lengths possible

CanIf

PduR

MetaDataPayload CAN ID

Use stored CAN ID

from meta data for

transmission

Routed CAN ID is identical

Rx ID mask

filter

Pdu CAN ID

Store Rx

CAN ID in

meta data Pdu CAN ID

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 50
based on template version 4.9.2

6.1.1 Step-by-step configuration

Configuration Example

All following step-by-step instructions are based on this range-routing example:

CAN ID
code

CAN ID
mask

DLC Source network /
channel

Destination network(s) / channel(s)

0x700 0x708 8 CAN0 CAN1, CAN2

0x708 0x708 8 CAN1 CAN0

0x708 0x708 8 CAN2 CAN0

Table 6-1 Example range routings

The CAN ID range is defined by the condition
<received CAN-ID> & <mask> == <code> & <mask>

The following step-by-step configurations steps will result in the following CanIf / PduR
range routing architecture shown in Figure 6-2.

Figure 6-2 CanIf / PduR range routing example overview

Derived model elements / Validation and solving actions

During project setup the EcuC configuration will be automatically derived from the
provided input files. Therefore some of the following manual configuration steps are
redundant. In this case, please extend or adapt the existing configuration containers
and parameters to the described step-by-step configuration.

Parameters and containers which will be created and configured by background-
validations are not described explicitly. Please finalize all manual configuration steps
before solving the open validations results. Use the provided solving actions.

PduR

CanIf

CAN0 Rx

1:N routing path

CAN1 Tx CAN2 Tx CAN1 Rx CAN2 Rx CAN0 Tx

Tx FIFO

CAN1

Tx FIFO

CAN2

Tx FIFO
CAN2_to_C

AN0

Tx FIFO
CAN1_to_C

AN0

Rx range

ID

mask

0x700

0x708

Rx range

ID

mask

0x708

0x708

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 51
based on template version 4.9.2

Create global Pdus

 Create global Pdus for every required range routing source and destination channel.

Global Pdu container: /MICROSAR/EcuC/EcucPduCollection/Pdu

 Create and configure a MetaData length. 2 bytes are required for standard CAN IDs,
4 bytes are required for extended CAN identifiers.
MetaData length: /MICROSAR/EcuC/EcucPduCollection/Pdu/MetaDataLength

 Configure the Pdu length to the Pdu payload length.

Pdu length: /MICROSAR/EcuC/EcucPduCollection/Pdu/PduLength

For the example configuration this results in the following global Pdu configuration:

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 52
based on template version 4.9.2

Create CanIf Rx Pdus

 Create a CanIf Rx Pdu for every required range routing source channel.

CanIf Rx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg

 Configure the Rx CAN ID range by the CAN ID code and the CAN ID mask
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdMask

The CAN ID range is defined by the filter condition
<received CAN-ID> & <mask> == <code> & <mask>

 Configure the CAN ID type (standard or extended) and the DLC with the parameters
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdType

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduDlc

 Reference the related channel specific Rx global Pdu created in the previous steps
with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduRef

 Reference the related CAN channel hardware receive object (HRH) used for
reception of the range Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduHrhIdRef

 Assign the PduR as upper layer user with the parameter /MICROSAR/CanIf/
CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduUserRxIndicationUL

For the example configuration this results in the following CanIf Rx Pdu configuration:

Create CanIf Tx Pdus

 Create a CanIf Tx Pdu for every required range routing destination channel.
CanIf Tx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg

 Configure the Tx CAN ID used for prioritization of this dynamic Tx Pdu against other
static Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduCanId

Use the highest priority CAN ID of the routing range for this prioritization ID.

 Configure the CAN DLC with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduDlc

 Reference the related global Pdu created in the previous steps with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduRef

 Reference the related channel specific CanIf Tx buffer object used for transmission
of the range Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduBufferRef

For the example configuration this results in the following CanIf Tx Pdu configuration:

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 53
based on template version 4.9.2

Create PduR routing paths

Finally create the PduR routing paths connecting the CanIf Rx and Tx range Pdus. A
single PduR routing path for every channel specific range routing is required.

 Create a PduR routing path:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath

 Reference the related channel specific Rx global Pdu at the routing path source:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRSrcPdu/PduRSrcPduRef

 Reference the related channel specific Tx global Pdu at the routing path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRDestPdu/PduRDestPduRef

For the example configuration this results in the following PduR routing path
configuration:

RoutingPath RoutingPath Source
Global Pdu

RoutingPath Destination(s)
Global Pdu(s)

RP_RangeRouting_
CAN0_to_CAN1_2

RxRangePdu_CAN0 TxRangePdu_CAN0_to_CAN1,

TxRangePdu_CAN0_to_CAN2

RP_RangeRouting_
CAN1_to_CAN0

RxRangePdu_CAN1 TxRangePdu_CAN1_to_CAN0

RP_RangeRouting_
CAN2_to_CAN0

RxRangePdu_CAN2 TxRangePdu_CAN2_to_CAN0

For further details regarding the PduR communication interface gateway, please refer
to chapter 3.6.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 54
based on template version 4.9.2

6.1.2 Optional configuration variants / options

[Optional] Configure PduR FIFO routing

In case the sequence of successive routed range Pdus shall be retained, a
FIFO queue must be configured within the PduR.

 Create PduR Tx buffer (FIFO) for every range routing destination channel:
/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer

 Configure the Tx buffer length to the length of the routed global Pdu
(including the MetaData length):
/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer/Pdu

RPduMaxLength

 Configure the Tx buffer depth to the maximum expected amount of queued
Pdus (see also chapter 3.6.2):
/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer/Pdu

RTxBufferDepth

 Reference the created Tx buffers at the related PduR range routing paths:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/P

duRDestPdu/PduRDestTxBufferRef

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 55
based on template version 4.9.2

[Optional] CAN priority inversion

 Enable the CanIf feature „Cancellation of PDUs and requeueing” in order to
avoid inner priority inversion:
/MICROSAR/CanIf/CanIfCtrlDrvCfg/CanIfCtrlDrvTxCancellation

 Enable the CAN driver feature „Multiplexed Transmission“ in order to avoid
external priority inversion:
/MICROSAR/<CAN_Platform>/Can/CanGeneral/CanMultiplexedTransmission

If this feature is enabed, multiple hardware objects are used for
transmission of a single logical Tx object.

Hint: These features are not supported by all CAN controllers. Please refer to
[7] and [8].

[Optional] Alternative CanIf Rx range configuration method

Depending on the required CAN ID range, the range can also be configured using an
upper- and lower layer ID using the following container / parameters:

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdRange

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdRange/CanIfR

xPduCanIdRangeLowerCanId

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdRange/CanIfR

xPduCanIdRangeUpperCanId

In case of this alternative range configuration method, the previously used range
configuration parameters must not be used:
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdMask

For further details about the CanIf and CAN driver modules, please refer to [7] and [8].

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 56
based on template version 4.9.2

6.2 Use Case Configuration: Functional requests gateway routing

Gateway ECUs typically include diagnostic services, handling physical and functional
addressed requests used by external diagnostic tools during the development,
manufacturing and service.

Functionally addressed request messages are a kind of broadcast requests which shall be
processed by all (or a dedicated set of) ECUs. Typically this includes the gateway ECU
itself as well. In case the ECUs are distributed on multiple CAN networks, the gateway
ECU needs to handle the broadcasting of the request messages to the connected sub-
network as well as the handling of the functional requests by the gateway-own diagnostic
handler.

Figure 6-3 Example functional requests gateway network architecture

To realize the gateway behavior as visualized in Figure 6-3, a PduR 1:N transport protocol
gateway could be configured, as shown in Figure 6-4.

Figure 6-4 Functional request gateway architecture

Handling of physically addressed diagnostic messages
Routing of physically addressed diagnostic messages is not focus of this chapter.
Please refer to chapter 6.1 introducing range-routing paths which could be used for
efficient and simple routing of physically addressed diagnostic messages.

Gateway ECU

Diagnostic

Tool

Diagnostic handler

ECU A

CAN 0

Diagnostic

handler

CAN 1

functional requests

CAN 2

ECU B
Diagnostic

handler

CanIf

Dcm

CanTp

PduR

Physical request /

response message

Service handler

Physical request

handler
Functional request handler

1:N routing path

Functional request

message

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 57
based on template version 4.9.2

6.2.1 Step-by-step configuration

Configuration Example

All following step-by-step instructions are based on the following functional diagnostic
routing example:

Functional diagnostic
request ID

DLC Source network /
channel

Destination network(s) /
channel(s)

0x7DF 8 CAN0 CAN1, CAN2

Table 6-2 Example functional diagnostic request routing

Derived model elements / Validation and solving actions

During project setup the EcuC configuration will be automatically derived from the
provided input files. Therefore some of the following manual configuration steps are
redundant. In this case, please extend or adapt the existing configuration containers
and parameters to the described step-by-step configuration.

Parameters and containers which will be created and configured by background-
validations are not described explicitly. Please finalize all manual configuration steps
before solving the open validations results. Use the provided solving actions.

Create global Pdus / Sdus

 Create two global Pdus for the received functional request. The first global Pdu
interconnects the CanIf and CanTp receive paths. The second global Pdu (Sdu)
interconnects the CanTp, PduR and the related diagnostic handler (e.g. Dcm).

Global Pdu container: /MICROSAR/EcuC/EcucPduCollection/Pdu

This step is optional if the own functional request routing path was automatically
derived based on input files during project setup.

 Create a pair of global Pdus (Pdu and Sdu) for every destination channel where the
functional requests shall be routed to.

 Configure the Pdu length to the CAN frame length of the functional request
message. The length of the Sdu (interconnection between CanTp, PduR and the
related diagnostic handler) shall be the length of transport protocol payload.

Pdu length: /MICROSAR/EcuC/EcucPduCollection/Pdu/PduLength

For the example configuration this results in the following global Pdu configuration:

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 58
based on template version 4.9.2

Create CanIf Rx Pdus

The following steps are optional if the own functional request routing path was
automatically derived based on input files during project setup.

 Create a CanIf Rx Pdu for the functional diagnostic request message.
CanIf Rx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg

 Configure the static Rx CAN ID of the functional request message
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId

 Configure the CAN ID type (standard or extended) and the DLC with the parameters
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdType

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduDlc

 Reference the related functional request Rx global Pdu created in the previous
steps with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduRef

 Reference the related CAN channel hardware receive object (HRH) used for
reception of the functional request message with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduHrhIdRef

 Assign the CanTp as upper layer user with the parameter /MICROSAR/CanIf/
CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduUserRxIndicationUL

For the example configuration this results in the following CanIf Rx Pdu configuration:

Create CanIf Tx Pdus

 Create a CanIf Tx Pdu for every destination channel where the functional requests
shall be routed to:

CanIf Tx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg

 Configure the static Tx CAN ID of the functional request message with the
parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduCanId

 Configure the CAN DLC with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduDlc

 Reference the related functional request Tx global Pdu created in the previous steps
with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduRef

 Reference the related channel specific CanIf Tx buffer object used for transmission
of the functional request message with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduBufferRef

 Assign the CanTp as upper layer user with the parameter /MICROSAR/CanIf/
CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduUserTxConfirmationUL

For the example configuration this results in the following CanIf Tx Pdu configuration:

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 59
based on template version 4.9.2

Create CanTp Rx channel
The following steps are optional if the own functional request routing path was
automatically derived based on input files during project setup.

 Create a CanTp Rx channel for the functional request
CanTp Rx channel container: /MICROSAR/CanTp/CanTpConfig/CanTpChannel

 Create a CanTp Rx N-Sdu container below the previously created Rx channel:
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu

 Reference the related global Pdu (Sdu, interconnecting the CanTp, PduR and
diagnostic handler) created in the previous steps with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu/CanTpRxNSduRef

 Configure the Rx Sdu as functional communication type with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu/CanTpRxTaType

 Reference the related global Pdu (interconnecting the CanIf and CanTp) created in

the previous steps with the parameter /MICROSAR/CanTp/CanTpConfig/
CanTpChannel/CanTpRxNSdu/CanTpRxNPdu/CanTpRxNPduRef

For further information regarding the CanTp timing configuration parameters please
refer to [9].

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 60
based on template version 4.9.2

Create CanTp Tx channels

 Create a CanTp Tx channel for every destination channel where the functional
requests shall be routed to.
CanTp Tx channel container: /MICROSAR/CanTp/CanTpConfig/CanTpChannel

 Set the channel mode of the created Tx channel to half-duplex mode:
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpChannelMode

 Create a CanTp Tx N-Sdu container below the previously created Tx channel:

/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu

 Reference the related global Pdu (Sdu, interconnecting the CanTp, PduR and
diagnostic handler) created in the previous steps with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu/CanTpTxNSduRef

 Configure the Tx Sdu as functional communication type with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu/CanTpTxTaType

 Reference the related global Pdu (interconnecting the CanIf and CanTp) created in

the previous steps with the parameter /MICROSAR/CanTp/CanTpConfig
/CanTpChannel/CanTpTxNSdu/CanTpTxNPdu/CanTpTxNPduRef

For further information regarding the CanTp timing configuration parameters please
refer to [9].

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 61
based on template version 4.9.2

Create a PduR TP buffer

The following steps are optional if sufficient TP buffers are already configured.

 Create a new PduR TP buffer which will be used for the TP gateway routing of the
functional request messages.
/MICROSAR/PduR/PduRRoutingTables/PduRTpBufferTable/PduRTpBuffer

 Configure the size of TP buffer to the TP payload length of the functional requests.
In case of CanTp the buffer size must be at least 7 bytes.

Please refer to chapter 3.7.3 for further details regarding the TP buffer configuration.

Create / Extend PduR routing path

Finally create a PduR 1:N routing path. This 1:N routing path shall route the received
functional diagnostic requests to the gateway-own diagnostic application and all
connected destination channels.

In case the functional request routing path for the gateway-own diagnostic application
was derived automatically the first steps describing the creation of a routing path can
be skipped. Proceed with the configuration of the additional routing destinations.

 Create the PduR routing path:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath

 Reference the related functional request Rx global Pdu (Sdu, interconnecting the
CanTp, PduR and diagnostic handler) at the routing path source:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRSrcPdu/PduRSrcPduRef

and the routing path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRDestPdu/PduRDestPduRef

This step is optional if the own functional request routing path was automatically
derived based on input files during project setup.

 Add a new routing destination to the previously created routing path for every
destination channel the functional requests shall be routed to

PduR routing path destination: /MICROSAR/PduR/
PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/PduRDestPdu

and reference the related functional request Tx global Pdu (Sdu) at the new routing
path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRDestPdu/PduRDestPduRef

 Configure the TP threshold value of the created gateway routing path to the value 1.
Please refer to chapter 3.7.2 for further details of the TP threshold configuration.
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd

uRDestPdu/PduRTpThreshold

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 62
based on template version 4.9.2

For the example configuration this results in the following PduR routing path
configuration:

RoutingPath RoutingPath Source
Global Pdu

RoutingPath Destination(s) Global
Pdu(s)

RP_FuncReq_CAN
0_to_CAN1_2

RxSdu_FuncReq_CAN0 RxSdu_FuncReq_CAN0
(gateway-own diagnostic application),

TxSdu_FuncReq_CAN1,
TxSdu_FuncReq_CAN2

For further details about the CanIf and CanTp modules, please refer to [7] and [9].

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 63
based on template version 4.9.2

6.3 Use Case Configuration: N:1 routing path

N:1 routing paths are not specified by AUTOSAR. The multiplicity of a PduRSrcPdu

container is defined to one. Therefore N single 1:1/1:M routing paths (mixture of 1:M/N:1

routing paths is supported) referencing the same global Pdu in one of their PduRDestPdu

container must be configured. Every PduRSrcPdu container must reference their own

global PDU, duplicates are not allowed. Whereas more than one PduRDestPdu container

may reference the same global PDU to support the N:1 routing feature. An example
configuration is shown in Figure 6-5. Both configured routing paths are 1:2 routing paths,

but both routing paths refer to the same global PDU in one of their two PduRDestPdu

container. That makes them also a 2:1 routing path. The data flow is shown in Figure 6-6.
The names refer to the example configuration in Figure 6-5.

Cancel Transmit for N:1 routing paths is only supported if a Tx Confirmation is enabled.

Figure 6-5: example N:1 routing path configuration

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 64
based on template version 4.9.2

Figure 6-6 EcuC configuration of (mixed) N:1 / 1:N routing paths

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 65
based on template version 4.9.2

7 AUTOSAR Standard Compliance

7.1 Deviations

 The API PduR_<User:LoTp>StartOfReception is implemented according to
SWS_PduR_00507 ASR 4.1.2 [3]

 The PduR does not provide the return value “BUFREQ_E_BUSY” for the function
PduR_<User:LoTp>StartOfReception like specified in Requirement PDUR507 in [1].

 The parameter list contains a PduInfoType

 The API PduR_<User:LoTp>RxIndication is implemented according to
SWS_PduR_00375 ASR 4.1.2 [3]

 Result type changed to Std_ReturnType

 The API PduR_<User:LoTp>TxConfirmation is implemented according to
SWS_PduR_00381 ASR 4.1.2 [3]

 Result type changed to Std_ReturnType

 The PduR does not provide the return value “BUFREQ_E_BUSY” for the function
PduR_<User:LoTp>CopyRxData like specified in Requirement PDUR512 in [1]. The API
is implemented according to SWS_PduR_00512 ASR 4.1.1 [2]

 If the PduR_<Lo>StartOfReception is called with an I-PDU ID that is already in process,
the PDU Router does not forward the call to the upper module

 In case a transport protocol module reports PduR_<LoTp>TxConfirmation with result
other than NTFRSLT_OK the PDUR does not forward the result in the
<Up>_TpTxConfirmation to the source upper layer module due to optimization reason.

 The PduR does not support the retry parameter in the PduR_<LoTp>CopyTxData like
specified in Requirement PDUR518 in [1]

 State Management: PDUR_REDUCED is not used

 PduR does not return any value if a routing path group is disabled

 PduR does not clear the buffers if a routing path group is disabled

 The header files does not contain software and specification version number

 If the routing path group id does not exist, then the PDUR call the DET instate of return
with no action. [PDUR0716]

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 66
based on template version 4.9.2

7.2 Limitations

Since 8-bit micro controllers are out of scope in AUTOSAR, PDUR has been optimized for
the usage on 16- and 32-bit controllers. Therefore the target system must be able to
provide atomic read and write accesses to 16-bit variables.

7.2.1 General

 Link-time configuration support

 Multiple Configuration support

 1:N fan-out from the same upper layer PDU

 N:1 fan-in to the same upper layer PDU

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 67
based on template version 4.9.2

8 Glossary and Abbreviations

8.1 Glossary

Term Description

BSWMD The BSWMD is a formal notation of all information belonging to a certain
BSW artifact (BSW module or BSW cluster) in addition to the
implementation of that artifact.

Buffer A buffer in a memory area located in the RAM. It is an memory area
reserved by the application for data storage.

Callback function This is a function provided by an application. E.g. the CAN Driver calls a
callback function to allow the application to control some action, to make
decisions at runtime and to influence the work of the driver.

Cfg5 DaVinci Configurator

Channel A channel defines the assignment (1:1) between a physical
communication interface and a physical layer on which different modules
are connected to (either CAN or LIN). 1 channel consists of 1..X
network(s).

Component CAN Driver, Network Management ... are software COMPONENTS in
contrast to the expression module, which describes an ECU.

Confirmation A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
With the service primitive 'confirmation' a service provider informs a
service user about the result of a preceding service request of the service
user. Notification by the CAN Driver on asynchronous successful
transmission of a CAN message.

Critical section A critical section is a sequence of instructions where mutual exclusion
must be ensured. Such a section is called 'critical' because shared data is
modified within it.

Electronic Control
Unit

Also known as ECU. Small embedded computer system consisting of at
least one CPU and corresponding periphery which is placed in one
housing.

Event An exclusive signal which is assigned to a certain extended task. An
event can be used to send binary information to an extended task. The
meaning of events is defined by the application. Any task can set an
event for an extended task. The event can only be cleared by the task
which is assigned to the event.

Gateway A gateway is designed to enable communication between different bus
systems, e.g. from CAN to LIN.

Indication A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
With the service primitive 'indication' a service provider informs a service
user about the occurrence of either an internal event or a service request
issued by another service user. Notification of application in case of
events in the Vector software components, e.g. an asynchronous
reception of a CAN message.

Interrupt Processor-specific event which can interrupt the execution of a current
program section.

Interrupt service The function used for direct processing of an interrupt.

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 68
based on template version 4.9.2

routine

Network A network defines the assignment (1:N) between a logical communication
grouping and a physical layer on which different modules are connected
to (either CAN or LIN). One network consists of one channel, Y networks
consists of 1..Z channel(s). We say network if we talk about more than
one bus.

Overrun Overwriting data in a memory with limited capacity, e.g. queued message
object.

Post-build This type of configuration is possible after building the software module or
the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that
can be downloaded to the ECU separately, avoiding a re-compilation and
re-build of the ECU software modules. In order to make the post-build
time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of ECU storage area.

Schedule table Table containing the sequence of LIN message identifiers to be
transmitted together with the message delay.

Signal A signal is responsible for the logical transmission and reception of
information depending on the restrictions of the physical layer. The
definition of the signal contents is part of the database given by the
vehicle manufacturer. Signals describe the significance of the individual
data segments within a message. Typically bits, bytes or words are used
for data segments but individual bit combinations are also possible. In the
CAN data base, each data segment is assigned a symbolic name, a
value range, a conversion formula and a physical unit, as well as a list of
receiving nodes.

Transport Protocol Some information that must be transferred over the CAN/LIN bus does
not fit into individual message frames because the data length exceeds
the maximum of 8 bytes. In this case, the sender must divide up the data
into a number of messages. Additional information is necessary for the
receiver to put the data together again.

Use case A model of the usage by the user of a system in order to realize a single
functional feature of the system.

Table 8-1 Glossary

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BSWMD Basic Software Module Description

CAN Controller Area Network protocol originally defined for use as a
communication network for control applications in vehicles.

CDD Complex Device Driver

COM Communication

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 69
based on template version 4.9.2

DCM Diagnostic Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DLC Data Length Code, Number of data bytes of a CAN message

EAD Embedded Architecture Designer

ECU Electronic Control Unit

ECUC ECU Configuration

FIFO First In First Out

HIS Hersteller Initiative Software

ID Identifier (e.g. Identifier of a CAN message)

ISR Interrupt Service Routine

LIN Local Interconnect Network

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MSN Module shortname

PDU Protocol Data Unit

PDUR PDU Router

RAM Random Access Memory

ROM Read-Only Memory

RTE Runtime Environment

SDU Segmented Data Unit

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

TP Transport Protocol

Table 8-2 Abbreviations

Technical Reference MICROSAR PDU Router

© 2017 Vector Informatik GmbH Version 3.00.00 70
based on template version 4.9.2

9 Contact

Visit our website for more information on

 News

 Products

 Demo software

 Support

 Training data

 Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Interfaces to adjacent modules of the PDUR
	3.3 Initialization
	3.4 States
	3.5 Error Handling
	3.5.1 Development Error Reporting

	3.6 Interface Layer Gateway
	3.6.1 Data Provision
	3.6.1.1 Direct data provision
	3.6.1.2 Trigger transmit data provision

	3.6.2 FIFO Queue
	3.6.3 Buffer Configurations
	3.6.3.1 No Buffer
	3.6.3.2 Direct Data Provision FIFO
	3.6.3.3 Trigger Transmit Data Provision FIFO
	3.6.3.4 Trigger Transmit Data Provision Single Buffer

	3.6.4 Shared Tx Buffer Pool support
	3.6.5 Timing aspects
	3.6.6 Dynamic DLC Routing
	3.6.7 Transport protocol low level routing
	3.6.8 Smart Learning (Switching)
	3.6.8.1 Configuration
	3.6.8.2 Example

	3.6.9 Queue overflow notification callback

	3.7 Transport Protocol Gateway
	3.7.1 Multi-Routing
	3.7.2 TP Threshold
	3.7.2.1 Restrictions
	3.7.2.2 Threshold “0”

	3.7.3 Tx Buffer Handling
	3.7.3.1 Tx Buffer Usage Types
	3.7.3.1.1 Dedicated Tx Buffer
	3.7.3.1.2 Shared Tx Buffer
	3.7.3.1.3 Local Tx Buffer Pool
	3.7.3.1.4 Global Tx Buffer Pool

	3.7.3.2 Example Configuration
	3.7.3.3 Tx Buffer Length Configuration
	3.7.3.4 Amount of Tx Buffer
	3.7.3.5 Tx Buffer Selection Algorithm

	3.7.4 TP Queue
	3.7.5 Error Handling
	3.7.6 Meta Data Handling

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections
	4.3 Memory Section
	4.4 Type Definitions

	5 API Description
	5.1 Services provided by PDUR
	5.1.1 PduR_Init
	5.1.2 PduR_InitMemory

	5.2 Services
	5.2.1 PduR_GetVersionInfo
	5.2.2 PduR_GetConfigurationId
	5.2.3 PduR_EnableRouting
	5.2.4 PduR_DisableRouting

	5.3 Communication Interface
	5.3.1 PduR_<GenericUp>Transmit
	5.3.2 PduR_<GenericLo>RxIndication
	5.3.3 PduR_<GenericLo>TriggerTransmit
	5.3.4 PduR_<GenericLo>TxConfirmation

	5.4 Transport Protocol
	5.4.1 PduR_<GenericUpTp>ChangeParameter
	5.4.2 PduR_<GenericUpTp>CancelReceive
	5.4.3 PduR_<GenericUpTp>CancelTransmit
	5.4.4 PduR_<GenericLoTp>StartOfReception
	5.4.5 PduR_<GenericLoTp>CopyRxData
	5.4.6 PduR_<GenericLoTp>CopyTxData
	5.4.7 PduR_<GenericLo>TpTxConfirmation
	5.4.8 PduR_<GenericLo>TpRxIndication
	5.4.9 PduR_<GenericUpTp>Transmit

	5.5 Service Ports
	5.5.1 Complex Device Driver Interaction

	6 Configuration
	6.1 Use Case Configuration: Communication interface range gateway
	6.1.1 Step-by-step configuration
	6.1.2 Optional configuration variants / options

	6.2 Use Case Configuration: Functional requests gateway routing
	6.2.1 Step-by-step configuration

	6.3 Use Case Configuration: N:1 routing path

	7 AUTOSAR Standard Compliance
	7.1 Deviations
	7.2 Limitations
	7.2.1 General

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

