
 

 

 

 

 

 

 
 
 

 

 

 

 

MICROSAR WDGIF 

Technical Reference 
 

  

Version 1.2.0 

 

 

 

 

 

 

 
 
 
 
 

Authors Christian Leder, Rene Isau 

Status Released 

 
 
 
 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 2 
based on template version 5.12.0 

Document Information 

History 

Author Date Version Remarks 

Christian Leder, 

Rene Isau 

2016-03-16 1.0.0 First version of the migrated WdgIf 
Technical Reference 

Christian Leder 2016-07-13 1.1.0 Update after introduction of native CFG5 
generator 

Christian Leder 2017-01-09 1.2.0 Update after removing state combiner 
automatic mode 

Reference Documents 

No. Source Title Version 

[1]  AUTOSAR AUTOSAR_SWS_WatchdogInterface.pdf V2.3.0 

[2]  Vector 
Informatik 

Safety Manual  

[3]  AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.4.0 

 
  

 

Caution 
We have configured the programs in accordance with your specifications in the 
questionnaire. Whereas the programs do support other configurations than the one 
specified in your questionnaire, Vector´s release of the programs delivered to your 
company is expressly restricted to the configuration you have specified in the 
questionnaire. 

  

 
 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 3 
based on template version 5.12.0 

Contents 

1 Component History ...................................................................................................... 6 

2 Introduction................................................................................................................... 7 

2.1 Architecture Overview ........................................................................................ 8 

2.2 Basic Functionality of the WdgIf ....................................................................... 10 

3 Functional Description ............................................................................................... 11 

3.1 Features .......................................................................................................... 11 

3.1.1 Deviations ........................................................................................ 11 

3.1.2 Additions/ Extensions ....................................................................... 12 

3.2 Operation in Multi-Core Systems ..................................................................... 12 

3.2.1 Independent Watchdog Devices ....................................................... 13 

3.2.2 WdgIf with a State Combiner ............................................................ 14 

3.2.2.1 Checking the Slave Trigger Pattern ................................ 16 

3.2.2.2 Operation of the State Combiner.................................... 17 

3.2.2.2.1 Synchronous Mode .................................... 17 

3.2.2.2.2 Asynchronous Mode .................................. 19 

3.2.2.3 Worst Case Delay .......................................................... 21 

3.2.2.4 Worst Case Evaluations ................................................. 23 

3.2.2.5 Optimal Timing ............................................................... 27 

3.2.2.6 Start-up Phase ............................................................... 28 

3.2.2.7 Changing the Monitoring Period During Runtime ........... 28 

3.2.2.7.1 Changing the Monitoring Period in 
Synchronous Mode .................................... 28 

3.2.2.7.2 Changing the Monitoring Period in 
Asynchronous Mode .................................. 29 

3.2.2.8 Shared Memory ............................................................. 29 

3.2.2.9 Limitations of the State Combiner Implementation ......... 29 

3.3 Memory Sections ............................................................................................. 30 

3.3.1 Code and Constants ........................................................................ 30 

3.3.2 Module Variables ............................................................................. 30 

3.3.2.1 Module Variables with MICROSAR Os Gen6 / 
AUTOSAR Os version 4.0 .............................................. 30 

3.3.2.2 Module Variables with MICROSAR Os Gen7 / 
AUTOSAR Os version 4.2 .............................................. 31 

3.4 Error Handling .................................................................................................. 32 

3.4.1 Development Error Reporting ........................................................... 32 

4 Integration ................................................................................................................... 33 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 4 
based on template version 5.12.0 

4.1.1 Static Files ....................................................................................... 33 

4.1.2 Dynamic Files .................................................................................. 33 

5 API Description ........................................................................................................... 34 

5.1 Type Definitions ............................................................................................... 34 

5.2 State Combiner Type Definitions ...................................................................... 35 

5.3 Services provided by WdgIf ............................................................................. 38 

5.3.1 WdgIf_SetMode ............................................................................... 38 

5.3.2 WdgIf_SetTriggerCondition .............................................................. 38 

5.3.3 WdgIf_SetTriggerWindow ................................................................ 39 

5.3.4 WdgIf_GetVersionInfo ...................................................................... 39 

5.4 Services used by WdgIf ................................................................................... 40 

6 Configuration .............................................................................................................. 42 

6.1 Configuration Variants ...................................................................................... 42 

6.2 Integration with MICROSAR / fully AUTOSAR compliant Wdg drivers .............. 42 

6.3 Configuring the State Combiner ....................................................................... 43 

6.3.1 Configuration for Synchronous Mode ............................................... 43 

6.3.2 Configuration for Asynchronous Mode ............................................. 44 

7 Glossary and Abbreviations ...................................................................................... 45 

7.1 Glossary .......................................................................................................... 45 

7.2 Abbreviations ................................................................................................... 46 

8 Contact ........................................................................................................................ 47 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 5 
based on template version 5.12.0 

Illustrations 

Figure 2-1 AUTOSAR 4.x Architecture Overview ......................................................... 8 
Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment ............................ 9 
Figure 2-3 Layered structure of the Watchdog Interface ............................................ 10 
Figure 3-1 WdgM Stack on a multi-core system using WdgIf to address 

independent watchdogs for each core ...................................................... 13 
Figure 3-2 WdgM Stack on a multi-core system using the State Combiner for a 

combined core reaction ............................................................................ 14 
Figure 3-3 Master and slave run synchronously with a sufficient offset to avoid jitter 

effects (example 1) ................................................................................... 18 
Figure 3-4 Master and slave run synchronously with a sufficient offset (example 2)... 18 
Figure 3-5 Master and slave run synchronously with a sufficient offset (example 3)... 19 
Figure 3-6 Master and slave drifting apart although they have the same configured 

period (Pm = Ps) ........................................................................................ 20 
Figure 3-7 Master and slave do not drift from each other but jitter effects occur......... 21 
Figure 3-8 Slave skipping one trigger is not necessarily detected by master in 

asynchronous mode ................................................................................. 21 
Figure 3-9 Worst case delay of the State Combiner ................................................... 23 
Figure 3-10 Worst case evaluation Case 2 .................................................................. 24 
Figure 3-11 Worst case evaluation Case 4 .................................................................. 26 
Figure 3-12 Start-up phase, master starts before slave ............................................... 28 
Figure 3-13 Start-up phase, master starts before slave ............................................... 29 

Tables 

Table 1-1 Component history...................................................................................... 6 
Table 3-1  Supported AUTOSAR standard conform features ..................................... 11 
Table 3-2  Not supported AUTOSAR standard conform features ............................... 11 
Table 3-3  Features provided beyond the AUTOSAR standard .................................. 12 
Table 3-4  Combinations for worst case evaluation .................................................... 23 
Table 3-5  Code and Constants ................................................................................. 30 
Table 3-6  WdgIf constants ........................................................................................ 30 
Table 3-7  Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0 . 30 
Table 3-8  Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2 ........ 31 
Table 3-9  Service IDs ............................................................................................... 32 
Table 3-10  Errors reported to DET ............................................................................. 32 
Table 4-1  Static files ................................................................................................. 33 
Table 4-2  Generated files ......................................................................................... 33 
Table 5-1  WdgIf Type Definitions .............................................................................. 35 
Table 5-2  State Combiner Type Definitions ............................................................... 37 
Table 5-3  WdgIf_SetMode ........................................................................................ 38 
Table 5-4  WdgIf_SetTriggerCondition ....................................................................... 39 
Table 5-5  WdgIf_SetTriggerWindow ......................................................................... 39 
Table 5-6  WdgIf_GetVersionInfo ............................................................................... 40 
Table 5-7  Services used by the WdgIf ...................................................................... 41 
Table 7-1  Glossary ................................................................................................... 45 
Table 7-2  Abbreviations ............................................................................................ 46 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 6 
based on template version 5.12.0 

1 Component History 

The component history gives an overview over the important milestones that are 
supported in the different versions of the component.  

Component Version New Features 

1.00 Migration of the WdgIf to Vector Informatik GmbH 

2.00 Introduction of native CFG5 generator 

2.01 Removing manual state combine mode 

Table 1-1 Component history 
 
 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 7 
based on template version 5.12.0 

2 Introduction 

This document describes the functionality, API and configuration of the AUTOSAR BSW 
module WdgIf as specified in [1]. 

 

Supported AUTOSAR Release*: 4.0.1 

Supported Configuration Variants: pre-compile 

Vendor ID: WDGIF_VENDOR_ID 30 decimal 

(= Vector-Informatik, 
according to HIS) 

Module ID: WDGIF_MODULE_ID  43 decimal 

(according to ref. [3]) 

* For the detailed functional specification please also refer to the corresponding AUTOSAR SWS. 
 

This user manual describes the Watchdog Interface (WdgIf), which is part of the Watchdog 
Manager Stack, which is part of the AUTOSAR ECU Abstraction Layer. The main WdgIf 
functionality consists of linking one or more Watchdog drivers (Wdg) to the overlying 
Watchdog Manager module (WdgM). 

For multi-core systems, the WdgIf additionally offers the State Combiner functionality to 
allow several WdgM instances, each running on a separate processor core, to share and 
trigger a single watchdog device. The WdgIf was developed according to AUTOSAR 
version 4.0.1 [1].  

The WdgIf is compatible with this AUTOSAR version, but not fully compliant. For the 
deviations, see section Deviations. In any case, if the WdgIf is used with AUTOSAR 4.0.1 
or another version, all requirements described in the Safety Manual [2] must be fulfilled. 

This user manual does not cover safety-related topics. For safety-related requirements for 
the integration and the application of the WdgIf, refer to the Safety Manual [2]. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 8 
based on template version 5.12.0 

2.1 Architecture Overview 

The following figure shows where the WdgIf is located in the AUTOSAR architecture. 

 
Figure 2-1 AUTOSAR 4.x Architecture Overview  

The WdgM Stack consists of the hardware-independent modules Watchdog Manager and 
Watchdog Interface (blue rectangle) and a hardware-dependent module Watchdog driver. 
Figure 2-2 shows the WdgM Stack with its modules in an AUTOSAR environment. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 9 
based on template version 5.12.0 

 
Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment 

The WdgM controls, through the WdgIf and the Wdg, the hardware-implemented 
watchdogs, which can be one or more internal or external watchdog devices. 

  

 

Note 
A watchdog device requires a hardware-dependent Wdg driver. 

  

 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 10 
based on template version 5.12.0 

2.2 Basic Functionality of the WdgIf 

The WdgIf is a platform-independent software module and provides an interface to one or 
more Watchdog driver modules for the WdgM. The WdgM addresses the watchdog 

devices through the WdgIf using a device index parameter (DeviceIndex). The 

DeviceIndex is used by the WdgIf to refer to a specific Wdg driver instance. 

Figure 2-3 shows the layered structure of the Wdg Stack. The attached watchdog device 
can be internal or external. 

 

 

Figure 2-3 Layered structure of the Watchdog Interface 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 11 
based on template version 5.12.0 

3 Functional Description 

3.1 Features 

The features listed in the following tables cover the complete functionality specified for the 
WdgIf. 

The AUTOSAR standard functionality is specified in [1], the corresponding features are 
listed in the tables 

> Table 3-1  Supported AUTOSAR standard conform features  

> Table 3-2  Not supported AUTOSAR standard conform features 

Vector Informatik provides further WdgIf functionality beyond the AUTOSAR standard. The 
corresponding features are listed in the table 

> Table 3-3  Features provided beyond the AUTOSAR standard 

The following features specified in [1] are supported: 

Supported AUTOSAR Standard Conform Features 

The WdgIf provides uniform access to services of the underlying watchdog drivers like mode 
switching and setting trigger conditions. 

Table 3-1  Supported AUTOSAR standard conform features 

3.1.1 Deviations 

The following features specified in [1] are not supported: 

Not Supported AUTOSAR Standard Conform Features 

No deviations. 

Table 3-2  Not supported AUTOSAR standard conform features 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 12 
based on template version 5.12.0 

3.1.2 Additions/ Extensions 

The following features are provided beyond the AUTOSAR standard: 

Features Provided Beyond The AUTOSAR Standard 

The WdgIf module checks for development errors independently from the configuration 

parameter WdgIfDevErrorDetect but reports to the AUTOSAR module Development Error 

Tracer (DET) only if WdgIfDevErrorDetect is set to true. 

In case of multi-core systems, the WdgIf supports the State Combiner functionality which is not 
specified by AUTOSAR. 

If the State Combiner functionality is used, then the WdgIf calls the functions GetSpinlock() 

/ ReleaseSpinlock() (if configuration parameter 

WdgIfStateCombinerUseOsSpinlock is true) or the functions 

Appl_GetSpinlock() / Appl_ReleaseSpinlock() (if configuration parameter 

WdgIfStateCombinerUseOsSpinlock is false) in order to use spinlock functionality for 

inter-core synchronization. For details, see section Services used by WdgIf. 

Table 3-3  Features provided beyond the AUTOSAR standard 

3.2 Operation in Multi-Core Systems 

The WdgIf can also be integrated into multi-core systems. During the configuration of the 
WdgIf on several cores, it is important to consider how to connect each WdgM instance 
running on a processor core to the correct Wdg driver module or modules via the WdgIf. 
There are two possible approaches for configuring the WdgIf for a multi-core system: 

> Independent watchdog devices  

Configuring the WdgIf module so, that the WdgM instances running on different 
processor cores trigger its own watchdog device independently from the other cores. 
An example of such a system is a multi-core processor which has one internal 
watchdog device for each core. A fault on a certain core results in a watchdog reaction 
from the core's own watchdog device. Depending on its setup this might be a 
processor reset or only a single core reset. 

> WdgIf with a State Combiner  

Configuring the WdgIf module with a State Combiner so that the WdgM instances 
running on different processor cores can share one watchdog device and use it to 
cause a reset in case of an irreparable error. The watchdog device will be triggered 
only if no WdgM instance reports any error.  

An example is a multi-core processor with an external watchdog connected to it. A 
fault on any processor core results in a watchdog reset. 

  

  

 

Note 
A combination of the two approaches above is also possible. 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 13 
based on template version 5.12.0 

3.2.1 Independent Watchdog Devices 

The WdgIf is configured to enable each Watchdog stack instance running on a separate 
processor core to trigger its own watchdog device independently from the Watchdog stack 
instances running on the other cores. Whether the watchdog device causes a processor 
reset or a core reset depends on the device's configuration. In this case, the Watchdog 
stack instance running on each processor core is acting as if it is running on an 
independent single-core system. Configuring this scenario is also very similar to the single-
core configuration. However, it needs to be ensured that the watchdog device for a certain 
core is connected to the correct WdgM instance. Furthermore, the configuration parameter 

WdgIfUseStateCombiner must be set to false. 

 
Figure 3-1 WdgM Stack on a multi-core system using WdgIf to address independent watchdogs for each core 

 deployment WdgM stack on multi-core - independent core reaction

«device»

Microcontroller - independent core reaction

«device»

core 0

«device»

core 1

WdgM

WdgIf

Wdg

«device»

int Wdg 0

«device»

int Wdg 1

WdgM

WdgIf

Wdg

independet core reaction



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 14 
based on template version 5.12.0 

3.2.2 WdgIf with a State Combiner 

The State Combiner is a platform-independent piece of software that is implemented as 
an optional feature of the WdgIf module. Its purpose is to enable WdgM instances running 
on different processor cores to share one watchdog device. The State Combiner acts as 
following: 

> If an error during the WdgM supervision is detected on a core, then the WdgM 
instance on this core requests a reset, which the State Combiner retransmits to the 
watchdog device. 

> Furthermore, the State Combiner monitors the trigger pattern of the WdgM instances 
in order to detect runtime errors such as trigger omissions (e.g. one of the processor 
cores stopped working) or too frequent triggers (e.g. due to scheduling problems, an 
WdgM instance is invoked too frequently). 

> The State Combiner triggers the watchdog device only if none of the WdgM instances 
requests a reset and the trigger patterns of all WdgM instances are correct. 

> The State Combiner feature can be enabled by setting the configuration parameter 

WdgIfUseStateCombiner to true. 

 
Figure 3-2 WdgM Stack on a multi-core system using the State Combiner for a combined core reaction 

 deployment WdgM stack on multi-core - combined core reaction

«device»

Microcontroller - combined core reaction

«device»

core 0

WdgM

WdgIf

Wdg ext.

State Combiner 

(master)

«device»

core 1

WdgM

WdgIf

State Combiner 

(slav e)

combined core reaction

«device»

core 2

WdgM

WdgIf

State Combiner 

(slav e)

«device»

core 3

WdgM

WdgIf

Wdg int.

«device»

Wdg ext.

«device»

Wdg int.

«device»

Shared Memory

write core

2 state
write core 1

state

read state of

slave cores



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 15 
based on template version 5.12.0 

If enabled, the State Combiner instance on one processor core is configured to work in 
master mode, which triggers the actual watchdog device, while State Combiner instances 
on the other processor cores are configured to work in slave mode. In the following the 
State Combiner instance configured to work in master mode is referred to as master and 
the State Combiner instance(s) configured to work in slave mode as slave(s). The slaves 
do not trigger a watchdog device but only communicate with the master via shared 
memory. The master triggers the actual watchdog device if the global status of the WdgM 

instances on all cores is other than STOPPED. Therefore, as soon as the WdgM instance 

on at least one core has reached the global status STOPPED (i.e. an irreparable error was 

detected), the watchdog device is – depending on the configuration – reset or not triggered 
anymore. 

  

 

Note 
The State Combiner is not visible to the upper layer, i.e. the WdgM instances on each 
processor core. 

  

The trigger process in case of a State Combiner is as follows: 

> The WdgM instance on a processor core sends a trigger request to its underlying 
WdgIf instance. No watchdog device is triggered, but the corresponding State 
Combiner instance is invoked - either the master or a slave. 

> The slave does not trigger but rather signals to the master the trigger request from the 
upper layer. 

> If the slave detects an error, it will send a reset request to the State Combiner.  

> Based on the trigger pattern of the slave (the sequence of the slave's trigger request 
signals over a certain period of time), the master evaluates whether the slave is 
running correctly. 

> The master triggers the actual watchdog device if: 

> the master's overlying WdgM instance requested a valid watchdog trigger, 

> no slave requested a reset (no error reported by the slave's overlying WdgM 
instance), and  

> the trigger pattern of each slave is correct (based on the configuration). 

 

The following must be configured so that the State Combiner is used by the overlying 
WdgM instances to trigger a single watchdog device for all processor cores: 

> The WdgM instance running on the processor core that controls the physical watchdog 
device must be configured to send a trigger request to the master. (In the WdgIf’s ECU 

configuration, the WdgIfDeviceRef parameter must be linked to a 

WdgIfStateCombinerMaster container of WdgIf instead of a WdgIfDevice 

container.) The trigger condition value of the WdgM needs to be set up according to 
the actual watchdog device. 

> The WdgM instances running on the other processor cores must be configured to send 

a trigger request to a slave. (In the WdgIf’s ECU configuration, the WdgIfDeviceRef 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 16 
based on template version 5.12.0 

parameter must be linked to a WdgIfStateCombinerSlave container of WdgIf 

instead of a WdgIfDevice container.)  

  

 

Note 
The trigger condition value for a slave can be configured arbitrary. The only 
requirement is not configuring the value with 0. 

  

> The master must be configured to trigger the watchdog device. (In the WdgIf’s ECU 

configuration the parameter WdgIfStateCombinerMasterWdgRef must reference 

the watchdog device’s driver.) The trigger condition value with which the driver will be 
triggered is given by the overlying WdgM and retransmitted to the watchdog device by 
the master. 

> Following this configuration, the master checks the trigger requests of each slave and 
triggers the watchdog device only if each slave triggers correctly, no slave explicitly 
requested a reset, and the master was triggered correctly. 

> A reset occurs in the following cases: 

> The WdgM instance triggering the master requests a reset – the reset request is 
immediately retransmitted to the watchdog device. 

> The WdgM instance triggering a slave requests a reset – the reset request is 
retransmitted to the watchdog device with the next invocation of the master. 

> The master detects a shared memory corruption – it checks the shared memory 
each time it is invoked – then the master immediately sends a reset request to the 
watchdog device. 

3.2.2.1 Checking the Slave Trigger Pattern 

Checking the trigger pattern of the slaves by the master is based on slave trigger counters 
which are stored in shared memory. Each counter contains the number of triggers for a 
specific slave. The slave increases its trigger counter each time it is being invoked with a 
valid trigger request by its overlying WdgM instance. The master checks the slave trigger 
counter once per master period or once per a multiple of the master period. This 
multiplicity factor is called reference cycle and the duration of time in which the master 
checks a slave once is called check interval. E.g., if the master checks a slave each time 
the master is invoked, then the reference cycle is 1 and the check interval is one master 
period; if the master checks the slave every other time the master is invoked, then the 
reference cycle is 2 and the check interval is 2 times the master period. 

The master expects that the slave increases its trigger counter in every check interval by a 
certain number. This number depends on the master period, the slave period and their 
ratio to one another. The increase of the slave trigger counter must be at least 1. 
Otherwise the error case of a total slave outage cannot be detected. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 17 
based on template version 5.12.0 

  

 

Note 
The reference cycle as well as the number of expected slave triggers might be different 
for each slave. 

  

 

3.2.2.2 Operation of the State Combiner 

There are two possible operation modes – synchronous or asynchronous mode. In the 
synchronous mode a check interval exists such that the number of slave invocations in 
one check interval is always constant. Therefore the master can be configured to expect a 
constant number of slave trigger counter increments. In the asynchronous mode no such 
constant check interval exists and the number of slave invocations in one check interval is 
variable. Therefore the master can only expect that the number of slave counter 
increments lies within a configured interval. 

3.2.2.2.1 Synchronous Mode 

Synchronous mode is given if a check interval can be chosen in which the number of slave 
triggers is always constant. This is the case if both following conditions apply: 

> No drifting. The master and slave invocations do not drift apart. The ratio between 
master and slave period remains constant. 

> Sufficient invocation offset. The slave invocation is done with a sufficient offset from 
the master invocation so that their invocation order is not affected by jitter (jitter effects 
are avoided).  

The jitter effects can be avoided if the offset between master and slave invocations is 
greater than the sum of the maximum possible jitter of the master invocation (jm) and 
the maximum possible jitter of the slave invocation (js). Note that these are the jitters of 
the respective WdgM main functions invoking master and slave. Two offsets need to 
be considered: 

> The offset from the master invocation in which the master checks the slave to the 
next slave invocation must be greater than jm + js. 

> The offset from the slave invocation to the next master invocation in which the 
master checks this slave must be greater than jm + js as well. 

The benefit of the synchronous mode is the shorter interval in which the master can check 
the number of slave triggers (leading to a shorter reaction time) as well as the guaranteed 
detection of all slave trigger errors. Furthermore, if the jitter becomes bigger than the 
configured offset, this will be detected as an error. 

The drawback of the synchronous mode is that if the timing of the system must be 
changed during runtime (e.g. low power mode), then the ratio between master and slave 
invocation period must remain the same. 

Following scenarios illustrate typical examples of the synchronous mode. 

Figure 3-3 depicts an example of a scenario where master and slave have the same 
period (Pm = Ps). The master checks the slave once in each master period (reference cycle 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 18 
based on template version 5.12.0 

is 1) and it expects exactly one slave triggering. The offset is sufficient to avoid jitter 
effects. 

 
Figure 3-3 Master and slave run synchronously with a sufficient offset to avoid jitter effects (example 1) 

Figure 3-4 shows an example of a scenario where the slave's period is a multiple of the 
master's period (in the example Ps = 2*Pm). As a consequence, the number of slave 
triggers within the check interval (reference cycle is 2) is always constant – one in this 
example. The offset is sufficient to avoid jitter effects. 

  

 

Note 
When master and slave periods are referred in this text, the configured periods are 
meant. Due to jitter, the actual periods might, of course, be slightly different. However, it 
is important that the conditions for synchronous mode apply. 

  

 

 
Figure 3-4 Master and slave run synchronously with a sufficient offset (example 2) 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 19 
based on template version 5.12.0 

Figure 3-5 shows an example of a scenario where the master's period is a multiple of the 
slave's period (in the example Pm = 2*Ps). Again, the number of slave triggers within a 
master's check interval (reference cycle is 1) is always constant – two in this example. 

 

 
Figure 3-5 Master and slave run synchronously with a sufficient offset (example 3) 

The Synchronous Mode is strongly recommended, because it results in the most accurate 
slave monitoring that can be reached with a software State Combiner as well as in the 
shortest worst case reaction time in case of slave trigger errors. Furthermore, it detects 
every kind of trigger error because the exact number of expected triggers is known. 

3.2.2.2.2 Asynchronous Mode 

Asynchronous mode is given if the synchronous mode cannot be applied – in 
asynchronous mode no check interval can be chosen such that the number of slave 
triggers is constant in each check interval. This is the case if at least one of the following 
applies: 

> Drifting. Master and Slave invocations drift from one another. 

> Insufficient invocation offset resulting in jitter effects. The offset between master and 
slave invocations is such that the jitter effects result in a variable invocation pattern 
(number of slave triggers changes between check intervals). 

As a consequence, the master can only check whether the actual number of slave triggers 
is within a certain interval. 

The benefit of the asynchronous mode is that if the timing of the system must be changed 
during runtime, then the ratio between master and slave invocation period need not remain 
the same. In this case, the State Combiner is usually configured to compute the expected 
number of slave triggers dynamically. 

The drawback of the asynchronous mode is the necessity of introducing a tolerance when 
checking the slaves – the number of expected slave triggers lies within an interval. This 
results in a greater reference cycle and in potentially overlooking slave trigger errors. 

Simple scenarios for each of the two reasons that lead to asynchronous mode are 
discussed below. After that, one examples illustrating the drawback of the asynchronous 
mode – the potential overlooking of trigger errors – are presented. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 20 
based on template version 5.12.0 

Scenario 1: Asynchronous Mode due to Drifting 

Master and slave invocations drift from each other. 

 
Figure 3-6 Master and slave drifting apart although they have the same configured period (Pm = Ps) 

In this example, the master period and the slave period have the same configured length 
but their clocks drift with some rate Δ (positive or negative). The master must check once 

in n master periods whether the number of slave triggers is within an interval [tr1; 

tr2]. 

  

 

Note 
The exact reference cycle n and the interval of the number of expected slave triggers 
depend on the master and slave periods. With increasing jitter the reference cycle also 
increases. 

  

Scenario 2: Asynchronous Mode due to Insufficient Offset (Jitter) 

Master and slave do not drift apart. But they are invoked at the same points of time or 
close enough to one another so that the jitter affects their sequence. This is illustrated in 
Figure 3-7. 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 21 
based on template version 5.12.0 

Figure 3-7 Master and slave do not drift from each other but jitter effects occur 

In this case, the master and slave are running synchronously, but due to the jitter and the 
insufficient offset between master and slave invocations the trigger pattern is 
unpredictable. For the master and a slave running with the same period the same values 
are derived as for the asynchronous scenario with drifting above – the master checks the 
slave once in every second master period (reference cycle is 2) and the number of 
expected slave triggers lies in the interval between 1 and 3 inclusively.  

Example of Overlooking Trigger Errors: Slave Trigger Omissions 

Figure 3-8 shows an example of how a trigger omission can be overlooked by the master. 

Let the expected slave trigger counter interval be [1; 2]. During the first check interval, 

the slave is invoked correctly (as expected by the master). During the second check 
interval, the slave should have triggered two times, but one trigger is omitted – the master 
cannot detect this trigger error, since the trigger counter interval is not violated. The third 
check interval shows zero triggers and this is out of the interval, hence the trigger error is 
detected. 

  

 

Note 
In this example, a minimum of two consecutive slave invocation omissions will always 
be detected by the master. 

  

 

 
Figure 3-8 Slave skipping one trigger is not necessarily detected by master in asynchronous mode 

 

Note 
Due to the drawbacks, using the asynchronous mode should be avoided and, if 
possible, the synchronous mode should be used! 

  

3.2.2.3 Worst Case Delay 

The delay of the State Combiner is defined as the duration from the point in time when a 
failure occurs on the slave and the point in time when this failure is escalated to the 
watchdog device by the master. The failure on the slave can be a failure detected by the 
WdgM running on the slave’s core or a failure which results in erroneous triggering of the 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 22 
based on template version 5.12.0 

slave. Here, a failure on the slave is a slave trigger outage, i.e. discontinuation of the slave 
triggers, and the worst case delay refers to this slave trigger error only. 

  

 

Note 
Drifting of the slave triggering might lead to a longer detection time (in both, 
synchronous and asynchronous mode) or might be overlooked by the master (in 
asynchronous mode only). Occasional slave trigger omissions might be overlooked by 
the master only in asynchronous mode, but they are detected in synchronous mode. 

  

 

Note 
Reset requests from the slave are detected by the master at the end of the current 
master period (and not at the end of the current check interval) in both, synchronous 
and asynchronous mode. 

  

 

The upper limit for the worst case delay of the State Combiner (WCD) in synchronous 

mode is the double maximum duration of the check interval: WCD < 2*n*Tm, where Tm is 

the WdgM configuration parameter WdgMTriggerWindowCondition set on the master 

core and n is the reference cycle with which the master checks the slave.  

  

 

Note 

Tm is the worst case actual period of invocation of the master’s 

WdgM_MainFunction(), and it is limited by the watchdog device. Tm can also 

be expressed as the configured master invocation period plus the maximum 

possible jitter of this invocation: Tm = Pm + jm. 

  

The worst case scenario happens under the following conditions (illustrated in Figure 
3-9). The slave is triggered shortly after the master has successfully checked the slave 
triggers. However, the slave fails right afterwards and is not being triggered anymore, it is 
not able to directly inform the master of a failure either. At the end of the current check 
interval the master still evaluates the slave as OK if the number of slave triggers is within 
the expected interval despite the trigger error. Yet, the next time the master core checks 
the slave core, it detects that the slave has stopped triggering (at the end of the third check 
interval shown in the figure). 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 23 
based on template version 5.12.0 

Figure 3-9 Worst case delay of the State Combiner 

 

Note 

Slave trigger errors that do not lead to violation of the expected number of slave 
triggers interval cannot be detected by the master! 

  

3.2.2.4 Worst Case Evaluations 

The WdgIf Fault Reaction Time does not depend on the monitoring feature, but on the 
following three aspects: 

> whether a State Combiner is used or not, 

> whether an immediate reset or discontinuing of triggers is configured, 

> whether the fault is detected in the master application SW or a slave application SW (if 
a State Combiner is used). 

There exist 6 different combinations of the three aspects listed above: 

Case  State Combiner used  Escalation kind  Fault occurs in  

1  Yes  Immediate Reset  Master SW application 

2  Yes  Immediate Reset  Slave SW application 

3  Yes  Discontinuing of Triggers Master SW application 

4  Yes  Discontinuing of Triggers Slave SW application 

5  No  Immediate Reset  n/a 

6  No  Discontinuing of Triggers n/a  

Table 3-4  Combinations for worst case evaluation 

The WdgIf Fault Reaction Time of every combination is discussed in the following: 

 
Case 1 - State Combiner, immediate reset, fault in master, Case 5 - No State Combiner, 
immediate reset: 

The WdgIf escalates the reset request immediately to the Wdg device. The WdgIf Fault 
Reaction Time for case 1 and case 5 is always 0 (in any case, there is no more cycle 
consumed - not counting the code execution). 

Case 2 - State Combiner, immediate reset, fault in slave: 

> The slave writes an immediate reset request to the shared memory of the State 
Combiner. 

> The master reads the request at the next call of WdgM_MainFunction() and initiates 

the immediate reset. 

The worst case happens 

> when the master calls its WdgM_MainFunction(), 

> the slave writes the reset request immediately afterwards and 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 24 
based on template version 5.12.0 

> the master calls its WdgM_MainFunction() with max. possible delay 

(WdgMTriggerConditionValue(master)). 

> As Figure 3-10 shows, the WdgIf Fault Reaction Time is 

WdgMTriggerConditionValue(master). 

 
Figure 3-10 Worst case evaluation Case 2 

Case 3 - State Combiner, discontinuing of triggers, fault in master, Case 6 - No State 
Combiner, discontinuing of triggers:  

There is no action or delay on the WdgIf level. The WdgIf Fault Reaction Time for case 3 
and case 6 is always 0 (in any case, there is no more cycle consumed - not counting the 
code execution). 

  

Master

Slave

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

W
d

gM
_M

ai
n

Fu
n

ct
io

n
Sl

av
e

WdgMTriggerConditionValue(master)

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

WdgIf Fault Reaction TimeWdgM Fault Reaction Time

Slave writes
reset request Master

initiates reset



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 25 
based on template version 5.12.0 

Case 4 - State Combiner, discontinuing of triggers, fault in slave: 

> The slave discontinues triggering. 

> With every call of WdgM_MainFunction() on master side, the master checks how 

often the slave has triggered since the previous check. 

> As soon as the number of slave triggers is outside the expected range, the master 
initiates an immediate reset. (This is not necessarily with the next call of 

WdgM_MainFunction() on master side.) 

The worst case happens when 

> the master checks the number of triggers on slave side since the previous check, 

> the slave sends an allowed number of triggers (with respect to the next check on 
master side) immediately afterwards, 

> the WdgM Fault Reaction Time ends and the slave discontinues triggering immediately 
afterwards. 

  

 

Note 
Then the WdgIf Fault Reaction Time is (almost): 

        

         2 * WdgIfStateCombinerReferenceCycle * WdgMTriggerConditionValueMaster, 

 

where WdgIfStateCombinerReferenceCycle is the number of 

WdgMSupervisionCycle on master side between two checks of slave triggers. 

  

Figure 3-11 demonstrates this: 

> WdgIfStateCombinerReferenceCycle is 2, 

> the slave sends an allowed number of triggers for the 1st check interval (i.e. one 
trigger) before the end of the WdgIf Fault Reaction Time,  

> the master checks the slave triggers every 2nd call of WdgM_MainFunction (every 

2nd WdgMTriggerConditionValue (TM)), 

> the discontinuing of slave triggers is detected at the end of the 2nd check interval. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 26 
based on template version 5.12.0 

 

Figure 3-11 Worst case evaluation Case 4  

Master

Slave

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

W
d

gM
_M

ai
n

Fu
n

ct
io

n
Sl

av
e

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

TM

WdgM Fault Reaction Time

Trigger
discontinuation

Master checks
slave triggers
and initiates

reset

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

Master checks
slave triggers

(ok)

Master checks
slave triggers

TM TM TM

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

W
d

gM
_M

ai
n

Fu
n

ct
io

n
M

as
te

r

1st Check Interval 2nd Check Interval

WdgIf Fault Reaction Time



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 27 
based on template version 5.12.0 

3.2.2.5 Optimal Timing 

The optimal timing results in minimal worst case delay. It can be reached when the 
reference cycle is minimal – which is 1. This applies for both, synchronous and 
asynchronous mode. 

Following must apply so that the optimal reference cycle of 1 can be reached in 

synchronous mode. The period of the WdgM main function invoking the master (Pm) is a 

multiple of the period of the WdgM main function invoking the slave (Ps). If Pm = n * Ps, 

where n = 1, 2, 3,…, then the master can check the slave in each master period. 

> Example (synchronous mode): 

> Master: Pm = 20ms 

> Slave: Ps = 10ms 

Within one cycle of the master exactly 2 triggers of the slave are expected.  

The worst case delay WCD to a failure in the slave is 40 ms. 

The following must apply so that the optimal reference cycle of 1 can be reached in 
asynchronous mode. The master period must be longer than the slave period 

Example (asynchronous mode): 

> Master: Pm =  21ms  

> Slave: Pm 18ms 

Within n = 1 cycles of the master (at most 21 ms) are 1 to 2 ticks of the slave expected. 

The WCD for a failure in the slave is 2 * n * Tm = 42 ms. 

  

 

Note 
Even with the optimal ratio between periods the drawbacks of the asynchronous mode 
described in chapter Asynchronous Mode apply. 

  

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 28 
based on template version 5.12.0 

3.2.2.6 Start-up Phase 

If the slave starts together with or after the master, then the parameter 

WdgIfStateCombinerStartUpSyncCycles shall be set to some positive value n so 

that the master starts evaluating the slave triggering not from the first time the master is 
invoked after start up, but after the first n master periods. 

  

 

Note 

n must be big enough so that the master starts evaluating the slaves as soon as 

possible after the slaves started; and small enough so that the master does not start to 
evaluate before the slaves started. 

  

A typical start-up phase setup is illustrated in Figure 3-12: 

 
Figure 3-12 Start-up phase, master starts before slave 

The slave (running on some processor core B) starts later than the master (running on 

processor core A). The WdgIfStateCombinerStartUpSyncCycles parameter is set to 

2 so that the master starts checking the slave after the slave has started. Before the slave 
starts, the master triggers the watchdog device only according to the trigger requests of 
the master’s overlying main function. Note, however, that if a slave’s main function detects 
a failure and explicitly requests a reset, then the master reacts even during the start-up 
phase and retransmits the reset request to the watchdog device. 

3.2.2.7 Changing the Monitoring Period During Runtime 

Changing the monitoring period means that either the processor frequency or the period of 
invocation of master or slave is changed. 

3.2.2.7.1 Changing the Monitoring Period in Synchronous Mode 

If the monitoring period in a synchronous mode needs to be changed, several things need 
to be considered. The number of slave triggers within one check interval must remain the 
same and 

> the change of the monitoring period must be made simultaneously on master and 
slave. 

It is recommended that such a monitoring period change is not made while any instance of 
the WdgM Stack is being executed. 

Figure 3-13 shows an example of monitoring period change in synchronous mode. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 29 
based on template version 5.12.0 

 
Figure 3-13 Start-up phase, master starts before slave 

3.2.2.7.2 Changing the Monitoring Period in Asynchronous Mode 

If the monitoring period in asynchronous mode needs to be changed, several things have 
to be considered. 

If the State Combiner is configured in asynchronous mode, then for any change of the 
master period or slave period the following restriction applies: 

> After the change the slave must not violate the interval of expected number of triggers. 

In order to meet the previous restriction following recommendations apply: 

> It is recommended that the ratio between master and slave period remains the same. 

> It is recommended that the monitoring period change is done simultaneously for 
master and slave. 

> It is recommended that such a monitoring period change is not made while any 
instance of the WdgM Stack is being executed. 

3.2.2.8 Shared Memory 

The State Combiner instances use shared memory to communicate. Every counter 
increment of every slave is written to this memory area. The master reads out the shared 
memory in order to check the counter increments against the expected counter 
increments. The slave’s trigger requests increment the respective slave’s trigger counter in 
shared memory. A reset request from the slave is also stored in the shared memory to 
inform the master. All data in the shared memory is also stored with inverse value in order 
to ensure the detection of memory corruption. 

Access to the shared memory is protected against concurrent access. The shared memory 
is only written by the slaves and only read by the master. This is achieved by a 
mutex/semaphore that is configured for this shared memory block. 

3.2.2.9 Limitations of the State Combiner Implementation 

The State Combiner layer has the following limitations: 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 30 
based on template version 5.12.0 

> Only one watchdog device can be connected to the master and be triggered. Other 
watchdog devices can, however, be directly connected with any WdgIf instance (ECU 

description container WdgIfDevice) and not via State Combiner. 

3.3 Memory Sections 

3.3.1 Code and Constants 

Following memory sections need to be set up for WdgIf's code: 

Section Description 

WDGIF_START_SEC_CODE / 

WDGIF_STOP_SEC_CODE 

Set up manually, e.g. in MemMap.h. 

Table 3-5  Code and Constants 

Following memory sections need to be set up for WdgIf's constants: 

Section Description 

WDGIF_START_SEC_CONST_ 

UNSPECIFIED /  

WDGIF_STOP_SEC_CONST_ 

UNSPECIFIED 

Set up manually, e.g. in MemMap.h. 

Table 3-6  WdgIf constants 

3.3.2 Module Variables 

Following memory sections need to be set up for WdgIf’s module variables if the State 
Combiner functionality is used (otherwise the WdgIf uses no global variables): 

3.3.2.1 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0 

Section Description 

WDGIF_START_SEC_VAR_8BIT / 

WDGIF_STOP_SEC_VAR_8BIT, 

 

WDGIF_START_SEC_VAR_16BIT / 

WDGIF_STOP_SEC_VAR_16BIT 

If the configuration parameter 

WdgIfGlobalMemoryAppTaskRef is set, then these 

sections are renamed according to the configured OS 

application (the prefix "WDGIF_" is converted to 

"<OSApp>_", where <OSApp> is the name of the OS 

application) and generated as part of WdgIf_MemMap.h. 

Otherwise they need to be set up manually, e.g. in 

MemMap.h. 

WDGIF_GLOBAL_SHARED_START_S

EC_VAR_ 

UNSPECIFIED / 

WDGIF_GLOBAL_SHARED_STOP_SE

C_VAR_ 

UNSPECIFIED 

These sections are always assigned in the generated file 

WdgIf_MemMap.h to OS sections and renamed to: 

GlobalShared_START_SEC_VAR_UNSPECIFIED / 

GlobalShared_STOP_SEC_VAR_UNSPECIFIED 

If other assignment is required, then they need to be set 

up manually, e.g. in MemMap.h. 

Table 3-7  Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 31 
based on template version 5.12.0 

3.3.2.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2 

Section Description 

WDGIF_START_SEC_VAR_8BIT / 

WDGIF_STOP_SEC_VAR_8BIT, 

 

WDGIF_START_SEC_VAR_16BIT / 

WDGIF_STOP_SEC_VAR_16BIT 

If the configuration parameter 

WdgIfGlobalMemoryAppTaskRef is set, then these 

sections are renamed according to the configured OS 

application (the prefix "WDGIF_START_SEC" is converted 

to "OS_START_SEC_<OSApp>” and "WDGIF_STOP_SEC" 

is converted to "OS_STOP_SEC_<OSApp> ", where 

<OSApp> is the name of the OS application) and 

generated as part of WdgIf_MemMap.h. Otherwise they 

need to be set up manually, e.g. in MemMap.h. 

WDGIF_GLOBAL_SHARED_START_S

EC_VAR_ 

UNSPECIFIED / 

WDGIF_GLOBAL_SHARED_STOP_SE

C_VAR_ 

UNSPECIFIED 

These sections are always assigned in the generated file 

WdgIf_MemMap.h to OS sections and renamed to: 

OS_START_SEC_GLOBALSHARED_VAR_UNSPECIFIED 

/ OS_STOP_SEC_GLOBALSHARED_VAR_UNSPECIFIED 

If other assignment is required, then they need to be set 

up manually, e.g. in MemMap.h. 

Table 3-8  Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 32 
based on template version 5.12.0 

3.4 Error Handling 

3.4.1 Development Error Reporting 

By default, development errors are reported to the DET using the service 

Det_ReportError() as specified in [1], if development error reporting is enabled (i.e. 

pre-compile parameter WdgIf_DEV_ERROR_DETECT==STD_ON). 

If another module is used for development error reporting, the function prototype for 
reporting the error can be configured by the integrator, but must have the same signature 

as the service Det_ReportError(). 

The reported WdgIf ID is 43 (decimal). 

The reported service IDs identify the services which are described in chapter 5.3. The 
following table presents the service IDs and the related services: 

Service ID Service 

0x01u WdgIf_SetMode 

0x02u WdgIf_SetTriggerCondition 

0x03u WdgIf_GetVersionInfo 

0x04u WdgIf_SetTriggerWindow 

Table 3-9  Service IDs 

The errors reported to DET are described in the following table: 

Error Code Description 

0x01u API service called with wrong device index parameter 

0x02u API service called with NULL_PTR as parameter 

Table 3-10  Errors reported to DET 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 33 
based on template version 5.12.0 

4 Integration 

The delivery of the WdgIf contains the files which are described in the chapters 4.1.1 and 
4.1.2: 

4.1.1 Static Files 

File Name Description 

WdgIf.c WdgIf implementation 

WdgIf.h WdgIf API definitions and function declarations 

WdgIf_Types.h WdgIf type definitions 

WdgIf_Cfg.h Type definitions for the configuration data in generated files 

Table 4-1  Static files 

4.1.2 Dynamic Files 

The dynamic files are generated by the WdgIf generator. 

File Name Description 

WdgIf_Lcfg.c Generated configuration of the component. 

WdgIf_Lcfg.h Generated header file for the configuration of the component. 

WdgIf_Cfg_Features.h This file contains all preprocessor options for the component. 

WdgIf_MemMap.h This file contains memory sections relevant for the State Combiner 
functionality . 

Table 4-2  Generated files 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 34 
based on template version 5.12.0 

5 API Description 

This section describes the types, functions and interfaces that are imported or provided by 
the WdgIf software layer. 

5.1 Type Definitions 

This section describes the types of the parameters passed to the API functions of the 
WdgIf. 

Type Name C-Type Description Value Range 

WdgIf_InterfaceFunctions
Type 

c-struct Provides 
pointers to the 
platform-
specific APIs. 

Std_ReturnType 

(*Wdg_SetMode_AR) 

(WdgIf_ModeType) 

void 

(*Wdg_SetTriggerCondition_AR) 

(uint16) 

WdgIf_InterfaceFunctions
PerWdgDeviceType 

c-struct Connects 
platform-
dependent 
functions to a 
physical 
watchdog in 
order to allow 
several 
watchdogs of 
the same 
platform to 
work 
simultaneousl
y (e.g., 
external 
watchdogs). 

const 

WdgIf_InterfaceFunctions 

Type* WdgFunctions 

 

Pointers to the platform-specific watchdog 
driver functions. 

Note: If the State Combiner is enabled, 
the NULL pointer is set instead of a 
pointer to the driver functions. 

uint8 WdgInstance  

 

Index of the physical watchdog instance 
within this platform. 

Note: If the State Combiner is enabled, 

the parameter WdgInstance is used to 

address the State Combiner instance 
instead of a physical watchdog device. 

Note: This parameter is used only if the 
State Combiner is used (preprocessor 

switch WDGIF_USE_STATECOMBINER is 

STD_ON). 

WdgIf_InterfaceType c-struct Main WdgIf 
configuration 
structure 

const uint8 NumOfWdgs 

 

Number of watchdogs supported in the 
WdgIf 

const 

WdgIf_InterfaceFunctions 

PerWdgDeviceType* 

WdgFunctionsPerDevice 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 35 
based on template version 5.12.0 

Reference to the watchdog driver 
functions and watchdog device instances 

const 

WdgIf_StateCombinerConfigType 

*WdgIfStateCombinerConfig 

 

Pointer to State Combiner common 
specific configuration data. 

Part of the structure only if State combiner 

is used (WDGIF_USE_STATECOMBINER is 

STD_ON). 

WdgIf_ModeType enum Mode of the 
Watchdog 

WDGIF_OFF_MODE 

 

Watchdog disabled 

WDGIF_SLOW_MODE 

 

Long timeout period (slow triggering) 

WDGIF_FAST_MODE 

 

Short timeout period (fast triggering) 

Table 5-1  WdgIf Type Definitions 

5.2 State Combiner Type Definitions 

This section describes the State Combiner types in case the State Combiner functionality 
is enabled. 

Type Name C-Type Description Value Range 

WdgIf_StateCombiner
SharedMemory 

c-struct State Combiner global 
shared data. Read by 
the master and written 
by all slave devices. 
Contains the current 

WindowStart and 

Timeout values of the 

slave devices and the 

Counter values. This is 

an array with an element 
for each slave. 

uint16 SlaveCounterValue 

 

Current slave’s trigger counter 
value. 

uint16 

SlaveCounterValue_INV 

 

Inverted value of the current 

Timeout of the slave’s trigger 

request. 

WdgIf_StateCombiner
SlaveTriggerPatternTy
pe 

c-struct Configuration structure 
for configuring State 
Combiner. This is an 
array with an element for 
each slave. 

uint16 

WdgIfStateCombinerReference

Cycle 

 

Defines the reference cycle with 
which the master will check the 
slave. 

uint16 

WdgIfStateCombinerSlaveIncr



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 36 
based on template version 5.12.0 

ementsMin 

 

Minimal number of expected slave 
triggers in one master check 
interval. 

uint16 

WdgIfStateCombinerSlaveIncr

ementsMax 

 

Maximal number of expected slave 
triggers in one master check 
interval. 

WdgIf_StateCombiner
ConfigType 

c-struct State Combiner 
configuration structure 

uint8 

WdgIfStateCombinerNumberOfS

laves 

 

Number of slaves configured for the 
State Combiner. 

WdgIf_StateCombinerSpinlock

IdType 

WdgIfStateCombinerSpinlockI

d 

 

Spinlock ID for synchronizing the 
access to the shared memory 
section. 

uint16 

WdgIfStateCombinerStartUpSy

ncCycles 

 

Number of master cycles during 
start-up in which the master does 
not check the slave triggers. 

const 

WdgIf_InterfaceFunctionsTyp

e 

*WdgIfStateCombinerFunction

s 

 

Pointer to the functions of the 
watchdog device driver connected to 
the master. 

WdgIf_StateCombinerSharedMe

mory 

*WdgIfStateCombinerSData 

 

Pointer to the shared memory. 

   const  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 37 
based on template version 5.12.0 

WdgIf_StateCombinerSlaveTri

ggerPatternType 

Type  

**WdgIfStateCombinerSlaveTr

iggerPattern 

  

Pointer to an array of data for State 
Combiner configuration. One 
element for each slave.  

Table 5-2  State Combiner Type Definitions 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 38 
based on template version 5.12.0 

5.3 Services provided by WdgIf 

5.3.1 WdgIf_SetMode 

Prototype 

Std_ReturnType WdgIf_SetMode ( uint8 DeviceIndex, WdgIf_ModeType Mode) 

Parameter 

DeviceIndex Identifies the watchdog instance 

Mode WDGIF_OFF_MODE: Watchdog disabled 

WDGIF_SLOW_MODE: Long timeout period (slow triggering) 

WDGIF_FAST_MODE: Short timeout period (fast triggering) 

Return code 

Std_ReturnType E_OK:            API finished successfully 

E_NOT_OK: An error occurred during execution 

Functional Description 

This function maps the SetMode service to the corresponding physical watchdog implementation 

according to the parameter DeviceIndex. 

Particularities and Limitations 

> Service ID: see table 'Service IDs'  

> This function is synchronous. 

> This function is non-reentrant.  

Expected Caller Context 

> This service is expected to be called in task context. 

Table 5-3  WdgIf_SetMode 

5.3.2 WdgIf_SetTriggerCondition 

Prototype 

Std_ReturnType WdgIf_SetTriggerCondition ( uint8 DeviceIndex, uint16 Timeout) 

Parameter 

DeviceIndex Identifies the watchdog instance 

Timeout Timeout value in milliseconds for setting the trigger 

Return code 

Std_ReturnType E_OK:            API finished successfully 

E_NOT_OK: An error occurred during execution 

Functional Description 

This function maps the SetTriggerCondition service to the corresponding physical watchdog 

according to the parameter DeviceIndex. 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 39 
based on template version 5.12.0 

Particularities and Limitations 

> Service ID: see table 'Service IDs'  

> This function is synchronous. 

> This function is non-reentrant.  

Expected Caller Context 

> This service is expected to be called in task context. 

Table 5-4  WdgIf_SetTriggerCondition 

5.3.3 WdgIf_SetTriggerWindow 

Prototype 

Std_ReturnType WdgIf_SetTriggerWindow ( 

uint8 DeviceIndex, 

uint16 WindowStart, 

uint16 Timeout 

) 

Parameter 

DeviceIndex Identifies the watchdog instance 

WindowStart Minimum time until next watchdog service is allowed in milliseconds 

Timeout Timeout value in milliseconds for setting the trigger 

Return code 

Std_ReturnType E_OK:            API finished successfully 

E_NOT_OK: An error occurred during execution 

Functional Description 

This function maps the SetTriggerWindow service to the corresponding physical watchdog according to 

the parameter DeviceIndex. 

Particularities and Limitations 

> Service ID: see table 'Service IDs'  

> This function is synchronous. 

> This function is non-reentrant.  

Expected Caller Context 

> This service is expected to be called in task context. 

Table 5-5  WdgIf_SetTriggerWindow 

5.3.4 WdgIf_GetVersionInfo 

Prototype 

void WdgIf_GetVersionInfo ( Std_VersionInfoType* VersionInfoPtr) 

Parameter 

VersionInfoPtr Pointer to where to store the version information of this module 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 40 
based on template version 5.12.0 

Return code 

-- -- 

Functional Description 

WdgIf_GetVersionInfo returns the version information of this module. 

Particularities and Limitations 

> Service ID: see table 'Service IDs'  

> This function is synchronous. 

> This function is non-reentrant.  

> This function is only available if preprocessor switch WDGIF_VERSION_INFO_API set to 

STD_ON. 

Expected Caller Context 

> This service is expected to be called in task context. 

Table 5-6  WdgIf_GetVersionInfo 

5.4 Services used by WdgIf 

In Table 5-7 services provided by other components, which are used by the WdgIf are 
listed. For details about prototype and functionality refer to the documentation of the 
providing component. 

The external functions must not degrade the quality level of the WdgIf. Hence, the 
possibility to use wrapper functions is provided so that either: 

> the wrapper function calls the external function (e.g. context switch), or 

> the wrapper function provides an alternative implementation of the external function. 

  

 

Note 
In case of using wrapper functions, these must be implemented according to the 
required quality level of the system (e.g. ASIL D). 

All wrapper functions have the prefix “Appl_”. 

  

Component Function Description 

OS GetSpinlock() /  

ReleaseSpinlock() 
If the State Combiner functionality is used 
(preprocessor option 

WDGIF_USE_STATECOMBINER is STD_ON) 

and if the preprocessor option 
WDGIF_STATECOMBINER_USE_OS_SPIN_LO

CK is STD_ON, these OS functions are used in 

order to synchronize the State Combiner 
instances running on different processor 

cores. The declaration is included with Os.h. 

Note: If these functions do not meet the target 
quality level of the system, then the wrapper 

functions Appl_GetSpinlock() and 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 41 
based on template version 5.12.0 

Appl_ReleaseSpinlock() must be used. 

Note: These functions use the spinlock ID 
configured with the configuration parameter 

WdgIfStateCombinerSpinlockID. This 

spinlock must be initialized before the WdgIf is 
invoked for the first time (i.e. the overlying 
WdgM main function is invoked for the first 
time after system start-up). 

Appl_Spinlo

ck 

Appl_GetSpinlock() /  

Appl_ReleaseSpinlock() 
If the State Combiner functionality is used 
(preprocessor option 

WDGIF_USE_STATECOMBINER is STD_ON) 

and if the preprocessor option 
WDGIF_STATECOMBINER_USE_OS_SPIN_LO

CK is STD_OFF, these user defined functions 

are used in order to synchronize the State 
Combiner instances running on different 
processor cores.  

The expected declarations are included with 
Appl_Spinlock.h: Std_ReturnType 

Appl_GetSpinlock (uint32 ID); 

Std_ReturnType 

Appl_ReleaseSpinlock (uint32 int 

ID); 

Note: These functions use the spinlock ID 
configured with configuration parameter 

WdgIfStateCombinerSpinlockID. This 

spinlock must be initialized before the WdgIf is 
invoked for the first time (i.e. the overlying 
WdgM main function is invoked for the first 
time after system start-up). 

Table 5-7  Services used by the WdgIf 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 42 
based on template version 5.12.0 

6 Configuration 

This section describes the configuration of the WdgIf. Only link time configuration is used 
for the WdgIf. 

6.1 Configuration Variants 

The WdgIf supports the configuration variants 

> VARIANT-PRE-COMPILE 

The configuration classes of the WdgIf parameters depend on the supported configuration 
variants. For their definitions please see the WdgIf_bswmd.arxml file. 

The WdgIf can be configured using the following tool:  

> DaVinci Configurator 5 (AUTOSAR 4 packages only). Parameters are explained within 
the tool.  

The outputs of the configuration and generation process are the configuration source files. 

6.2 Integration with MICROSAR / fully AUTOSAR compliant Wdg drivers 

In order to integrate the WdgIf with a MICROSAR / fully AUTOSAR-compliant watchdog 

driver the WdgIfDevice must be configured as following: 

Driver-API as specified by AUTOSAR: 

> Only the AUTOSAR parameter WdgIfDriverRef has to be configured by referencing 

either a watchdog driver directly (WdgGeneral) or a WdgIfStateCombinerMaster 

or WdgIfStateCombinerSlave. All other parameters 

(WdgIfDeviceIncludeFile, WdgIfDeviceSetMode and 

WdgIfDeviceSetTriggerCondition) will be updated automatically. If a 

WdgIfStateCombinerSlave is referenced the parameters mentioned above does 

not have to be configured. 

Driver-API as not specified by AUTOSAR: 

> The parameters (WdgIfDeviceIncludeFile, WdgIfDeviceSetMode and 

WdgIfDeviceSetTriggerCondition) must be configured to satisfy the driver’s 

need.    

  

 

Note 

If the WdgM is the caller of the WdgIf (i.e. function WdgIf_SetTriggerWindow() is 

used to service the watchdog device), the parameter WindowStart 

(WdgMTriggerWindowStart) has no effect, because it cannot be passed to an 

AUTOSAR-compliant driver. It is then good practice to set it to 0, because this would 
be the functional meaning of its absence. 

  

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 43 
based on template version 5.12.0 

6.3 Configuring the State Combiner 

The State Combiner allows to configure the reference cycle and the expected counter 
increments interval for each slave. 

> Allows the user to determine and configure the values for reference cycle and number 
of expected triggers per trigger. Can be used to optimize reaction time. 

> Does not allow changing the master or slave period unless the ratio between them 
stays the same. 

> The State Combiner checks whether the number of slave triggers corresponds to the 
configuration – the system integrator must make sure that the configured values are 
correct! 

6.3.1 Configuration for Synchronous Mode 

In order to configure the State Combiner for synchronous mode following parameters must 
be configured in the ECU description: 

> Set WdgIfUseStateCombiner to true (enable State Combiner). 

> Set WdgIfStateCombinerReferenceCycle to the expected number of slave 

triggers. 

> Set WdgIfStateCombinerSlaveIncrementsMin to the constant number of 

expected slave triggers. 

> Set WdgIfStateCombinerSlaveIncrementsMax to the constant number of 

expected slave triggers as well. 

  

 

Note 
The last three parameters are set for each slave. 

  

  

 

Note 

WdgIfStateCombinerSlaveIncrementsMin and 

WdgIfStateCombinerSlaveIncrementsMax must have the same value for 

synchronous mode! 

  

Example scenario 1: Assume that the necessary conditions for synchronous mode apply, 
the master period is 20ms and the slave period is 20ms. The following configuration is 
recommended for the State Combiner: 

> WdgIfUseStateCombiner = true 

> WdgIfStateCombinerReferenceCycle = 1 

> WdgIfStateCombinerSlaveIncrementsMin = 1 

> WdgIfStateCombinerSlaveIncrementsMax = 1 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 44 
based on template version 5.12.0 

Example scenario 2: Assume that the necessary conditions for synchronous mode apply, 
the master period is 20ms and the slave period is 40ms. The following configuration is 
recommended for the State Combiner: 

> WdgIfUseStateCombiner = true 

> WdgIfStateCombinerReferenceCycle = 2 

> WdgIfStateCombinerSlaveIncrementsMin = 1 

> WdgIfStateCombinerSlaveIncrementsMax = 1 

Example scenario 3: Assume that the necessary conditions for synchronous mode apply, 
the master period is 30ms and the slave period is 10ms. The following configuration is 
recommended for the State Combiner: 

> WdgIfUseStateCombiner = true 

> WdgIfStateCombinerReferenceCycle = 1 

> WdgIfStateCombinerSlaveIncrementsMin = 3 

> WdgIfStateCombinerSlaveIncrementsMax = 3 

6.3.2 Configuration for Asynchronous Mode 

If the State Combiner is configured for asynchronous mode, then the reference cycle and 
the maximum and the minimum numbers of expected slave triggers are entered as part of 
the configuration. Following needs to be configured: 

> WdgIfUseStateCombiner to true (enable State Combiner). 

> WdgIfStateCombinerReferenceCycle to the required value. 

> WdgIfStateCombinerSlaveIncrementsMin to the required value. 

> WdgIfStateCombinerSlaveIncrementsMax to the required value. 

  

 

Note 

The last three parameters have to be set for each slave. 

  

Example scenario:  

Assume that the necessary conditions for asynchronous mode apply, the master period is 
20ms and the slave period is 20ms. Jitter for both master and slave is maximum 2ms. 
Following configuration is optimal for the State Combiner: 

> WdgIfUseStateCombiner = true 

> WdgIfStateCombinerReferenceCycle = 2 

> WdgIfStateCombinerSlaveIncrementsMin = 1 

> WdgIfStateCombinerSlaveIncrementsMax = 3 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 45 
based on template version 5.12.0 

7 Glossary and Abbreviations 

7.1 Glossary 

Term Description 

<infix> A placeholder with this name is interpreted as follows: 

> In case of AUTOSAR 4 compatible environment the <infix> 
placeholder consists of the vendor ID and device name string 
of the configured Watchdog driver. 

> In case of AUTOSAR 3 compatible environment the <infix> 
placeholder consists of the device name string of the 
configured Watchdog driver. 

Check interval The duration between two consecutive points in time when the master 
checks a slave trigger counter. It is the reference cycle multiplied by the 
master invocation period. 

Master State Combiner instance which is configured to work in master mode. 

Slave State Combiner instance which is configured to work in slave mode. 

Master / Slave 
invocation 

In the WdgM Stack, this is the point in time when the 
WdgM_MainFunction of the overlying WdgM is invoked – this main 
function eventually calls the master / slave. 

Reference cycle The number of master periods between two consecutive checks of the 
slave by the master. One means that the master checks a slave each 
time the master is invoked; two means that the master checks a slave 
every second time the master is invoked, etc. Note that for each slave the 
reference cycle can be different. See also check interval. 

Slave trigger errors They are: 

> slave invocation omissions, 

> slave invocation drifting, 

> too frequent slave invocations and 

> unscheduled triggers. 

Trigger counter A variable in shared memory for each slave which starts from 0 and is 
being incremented by its slave each time the slave is invoked with a 
trigger request. 

Number of slave 

triggers 

The number of trigger requests of a slave during a given period of time. 

Table 7-1  Glossary 

  



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 46 
based on template version 5.12.0 

7.2 Abbreviations 

Abbreviation Description 

API Application Programming Interface 

AUTOSAR AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide 
development partnership of car manufacturers, suppliers and other 
companies from the electronics, semiconductor and software industry. 

DEM Diagnostic Event Manager 

DET Development Error Tracer 

ECU Electronic Control Unit 

MCU Microcontroller Unit  

WCD Worst Case Delay 

Wdg Watchdog Driver 

WdgIf Watchdog Interface 

WdgM Watchdog Manager 

Table 7-2  Abbreviations 

 



Technical Reference MICROSAR WDGIF 

© 2017 Vector Informatik GmbH Version 1.2.0 47 
based on template version 5.12.0 

8 Contact 

Visit our website for more information on 
 
> News 

> Products 

> Demo software 

> Support 

> Training data 

> Addresses 

 
www.vector.com 

 
 


	1 Component History
	2 Introduction
	2.1 Architecture Overview
	2.2 Basic Functionality of the WdgIf

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions

	3.2 Operation in Multi-Core Systems
	3.2.1 Independent Watchdog Devices
	3.2.2 WdgIf with a State Combiner
	3.2.2.1 Checking the Slave Trigger Pattern
	3.2.2.2 Operation of the State Combiner
	3.2.2.2.1 Synchronous Mode
	3.2.2.2.2 Asynchronous Mode

	3.2.2.3 Worst Case Delay
	3.2.2.4 Worst Case Evaluations
	3.2.2.5 Optimal Timing
	3.2.2.6 Start-up Phase
	3.2.2.7 Changing the Monitoring Period During Runtime
	3.2.2.7.1 Changing the Monitoring Period in Synchronous Mode
	3.2.2.7.2 Changing the Monitoring Period in Asynchronous Mode

	3.2.2.8 Shared Memory
	3.2.2.9 Limitations of the State Combiner Implementation


	3.3 Memory Sections
	3.3.1 Code and Constants
	3.3.2 Module Variables
	3.3.2.1 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0
	3.3.2.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2


	3.4 Error Handling
	3.4.1 Development Error Reporting


	4 Integration
	4.1.1 Static Files
	4.1.2 Dynamic Files

	5 API Description
	5.1 Type Definitions
	5.2 State Combiner Type Definitions
	5.3 Services provided by WdgIf
	5.3.1 WdgIf_SetMode
	5.3.2 WdgIf_SetTriggerCondition
	5.3.3 WdgIf_SetTriggerWindow
	5.3.4 WdgIf_GetVersionInfo

	5.4 Services used by WdgIf

	6 Configuration
	6.1 Configuration Variants
	6.2 Integration with MICROSAR / fully AUTOSAR compliant Wdg drivers
	6.3 Configuring the State Combiner
	6.3.1 Configuration for Synchronous Mode
	6.3.2 Configuration for Asynchronous Mode


	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

