

MICROSAR WDGM

Technical Reference

Version 1.2.0

Authors Christian Leder, Daniel Richter

Status Released

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 2
based on template version 5.12.0

Document Information

History

Author Date Version Remarks

Daniel Richter,
Christian Leder

2016-02-12 1.0.0 First version of the migrated WdgM Technical
Reference

Christian Leder 2016-07-13 1.1.0 Update after introduction of native CFG5 generator

Christian Leder 2017-03-01 1.2.0 Mode Port functionality added

Timebase source OsCounter added

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_WatchdogManager.pdf V2.0.0

[2] AUTOSAR AUTOSAR_SWS_WatchdogInterface.pdf V2.3.0

[3] AUTOSAR AUTOSAR_SWS_WatchdogDriver.pdf V2.3.0

[4] Vector
Informatik

TechnicalReference_WdgIf.pdf V1.0.0

[5] Vector
Informatik

Safety Manual

[6] ISO Road vehicles – Functional safety ISO
26262-
1:2011(E)

[7] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.4.0

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 3
based on template version 5.12.0

Contents

1 Component History .. 8

2 Introduction... 9

2.1 Architecture Overview .. 10

2.2 Use Cases ... 13

2.3 Basic Functionality of the WdgM .. 14

2.3.1 Supervised Entity and Program Flow Supervision 14

2.3.2 Program Flow Supervision ... 15

2.3.3 Deadline Supervision ... 16

2.3.4 Alive Supervision ... 20

2.3.5 More Details on Checkpoints and Transitions................................... 23

2.3.6 Global Transitions .. 24

2.3.7 Global Transitions and Program Flow .. 26

2.3.7.1 Example of an Incorrect Global Transition Split 26

2.3.7.2 Example of an Incorrect Program Split in the Middle of
an Entity ... 26

2.3.8 WdgM Supervision Cycle ... 27

2.3.9 Fault Detection Time Evaluation ... 29

2.3.9.1 Alive Supervision Fault Detection Time 30

2.3.9.2 Deadline Supervision Fault Detection Time 31

2.3.9.3 Program Flow Supervision Fault Detection Time 32

2.3.10 Fault Reaction Time Evaluation .. 34

2.3.10.1 Alive Supervision Fault Reaction Time 34

2.3.10.2 Deadline Supervision Fault Reaction Time 35

2.3.10.3 Program Flow Supervision Fault Reaction Time 35

2.3.11 Reset Path and Safe State ... 36

2.3.12 WdgM Local Entity State .. 37

2.3.13 WdgM Global State .. 39

2.3.14 Basic Operation of the WdgM Stack ... 39

2.4 WdgM in Multi-Core Systems ... 41

2.4.1 State Combiner .. 44

2.4.2 AUTOSAR Debugging ... 45

3 Functional Description ... 47

3.1 Features .. 47

3.1.1 Deviations from the AUTOSAR 4.0.1 Watchdog Manager 48

3.1.1.1 Entities, Checkpoints and Transitions 48

3.1.1.2 Watchdog and Reset ... 50

3.1.1.3 API ... 50

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 4
based on template version 5.12.0

3.1.2 Additions/ Extensions ... 50

3.2 Initialization .. 51

3.3 Memory Sections ... 53

3.3.1 Memory Sections Details ... 54

3.3.2 Code and Constants .. 55

3.3.3 Module Variables ... 55

3.3.3.1 Module Variables with MICROSAR Os Gen6 /
AUTOSAR Os version 4.0 .. 55

3.3.3.2 Module Variables with MICROSAR Os Gen7 /
AUTOSAR Os version 4.2 .. 56

3.3.4 Supervised Entity Variables .. 57

3.3.4.1 Supervised Entity Variables with MICROSAR Os
Gen6 / AUTOSAR Os version 4.0 57

3.3.4.2 Supervised Entity Variables with MICROSAR Os
Gen7 / AUTOSAR Os version 4.2 57

3.4 Timing Setup .. 58

3.4.1 Deadline Measurement and Tick Counter .. 60

3.5 Using Checkpoints in Interrupts ... 62

3.6 Integration into a Multi-Core System .. 63

3.7 States .. 63

3.8 Main Functions .. 63

3.9 Error Handling .. 63

3.9.1 Development Error Reporting ... 63

3.9.2 Production Code Error Reporting ... 65

4 Integration ... 66

4.1 Scope of Delivery ... 66

4.1.1 Static Files ... 66

4.1.2 Dynamic Files .. 66

4.2 Critical Sections ... 67

5 API Description ... 68

5.1 Type Definitions ... 68

5.2 Services provided by WdgM .. 69

5.2.1 WdgM_Init .. 69

5.2.2 WdgM_GetVersionInfo ... 70

5.2.3 WdgM_SetMode .. 70

5.2.4 WdgM_ActivateSupervisionEntity ... 71

5.2.5 WdgM_DeactivateSupervisionEntity .. 72

5.2.6 WdgM_MainFunction ... 73

5.2.7 WdgM_GetMode .. 74

5.2.8 WdgM_GetLocalStatus .. 75

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 5
based on template version 5.12.0

5.2.9 WdgM_GetGlobalStatus .. 75

5.2.10 WdgM_CheckpointReached ... 76

5.2.11 WdgM_PerformReset ... 76

5.2.12 WdgM_GetFirstExpiredSEID .. 77

5.2.13 WdgM_GetFirstExpiredSEViolation .. 78

5.2.14 WdgM_UpdateTickCount ... 78

5.3 Services used by WdgM .. 79

5.4 Configurable Interfaces .. 81

5.4.1 Notifications ... 81

5.4.1.1 Global state callback .. 81

5.4.1.2 Local state change notification 83

5.5 Service Ports ... 84

5.5.1 Client Server Interface ... 84

5.5.1.1 Provide Ports on WdgM Side ... 84

5.5.1.1.1 Port Prototype for
WdgM_AliveSupervision 84

5.5.1.1.2 Port Prototype for WdgM_LocalStatus 85

5.5.1.1.3 Port Prototype for WdgM_General 85

5.5.1.2 Require Ports on WdgM Side ... 86

5.5.1.2.1 Port Prototype for
WdgM_LocalStatusCallbackInterface......... 86

5.5.1.2.2 Port Prototype for
WdgM_GlobalStatusCallbackInterface 86

5.5.1.3 Mode Ports on WdgM for Status Reporting 86

6 Configuration .. 87

6.1 Configuration Variants .. 87

6.2 WdgM Configuration Verification .. 87

6.2.1.1 Installing the WdgM Verifier ... 89

6.2.1.2 Creation of WdgM Info Files ... 89

6.2.1.3 Verifier Compilation .. 90

6.2.1.4 Verifier Run .. 91

7 Glossary and Abbreviations .. 93

7.1 Glossary .. 93

7.2 Abbreviations ... 96

8 Contact .. 97

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 6
based on template version 5.12.0

Figures

Figure 2-1 AUTOSAR 4.x Architecture Overview .. 10
Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment 11
Figure 2-3 Layered structure of the Watchdog Manager ... 12
Figure 2-4 Example of a simple supervised entity with a control flow 15
Figure 2-5 Example of a simple supervised entity with deadlines 17
Figure 2-6 Example of multiple outgoing transitions with deadlines 18
Figure 2-7 Example of a the case where only one of several outgoing transitions

has a deadline .. 19
Figure 2-8 A task being monitored during one WdgM supervision cycle (20ms) 22
Figure 2-9 A task being monitored during two WdgM supervision cycles (40ms)....... 23
Figure 2-10 Global transition between two supervised entities 25
Figure 2-11 Incorrect global transition split ... 26
Figure 2-12 Incorrect program split in the middle of an entity 27
Figure 2-13 WdgM supervision cycle .. 28
Figure 2-14 Alive supervision fault detection time ... 31
Figure 2-15 Deadline supervision fault detection time ... 32
Figure 2-16 Program flow supervision fault detection time .. 33
Figure 2-17 Primary and secondary reset path of the WdgM 36
Figure 2-18 Modified state machine .. 38
Figure 2-19 Example of an WdgM Stack configuration ... 40
Figure 2-20 Behavior of the WdgM Stack ... 41
Figure 2-21 WdgM Stack on a multi-core system configured for independent core

reaction ... 43
Figure 2-22 WdgM Stack on a multi-core system using the State Combiner for a

combined core reaction .. 44
Figure 2-23 Dynamic Behavior on a multi-core system using the State Combiner for

a combined core reaction.. 45
Figure 3-1 Start phase of the WdgM ... 51
Figure 3-2 Memory usage of the WdgM .. 54
Figure 3-3 Time base of WdgM ... 59
Figure 3-4 WdgM Tick source selection for deadline supervision 61
Figure 5-1 Expected interfaces to external modules ... 80
Figure 6-1 Workflow of the WdgM Configuration Verifier build 87

Tables

Table 1-1 Component history.. 8
Table 2-1 WdgM Local Entity Stats ... 37
Table 2-2 Names of configuration fields .. 38
Table 3-1 Supported AUTOSAR standard conform features 48
Table 3-2 Features provided beyond the AUTOSAR standard 50
Table 3-3 Code and Constants ... 55
Table 3-4 WdgM constants ... 55
Table 3-5 Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0 . 56
Table 3-6 Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2 57
Table 3-7 Supervised Entity Variables MICROSAR Os Gen6 / AUTOSAR Os

version 4.0 .. 57
Table 3-8 Supervised Entity Variables MICROSAR Os Gen7 / AUTOSAR Os

version 4.2 .. 57
Table 3-9 Configuration Parameters ... 60
Table 3-10 Service IDs ... 64

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 7
based on template version 5.12.0

Table 3-11 Errors reported to DET ... 65
Table 3-12 Errors reported to DEM ... 65
Table 4-1 Static files ... 66
Table 4-2 Generated files ... 66
Table 5-1 Type definitions ... 69
Table 5-2 WdgM_Init .. 70
Table 5-3 WdgM_GetVersionInfo .. 70
Table 5-4 WdgM_SetMode ... 71
Table 5-5 WdgM_ActivateSupervisionEntity ... 72
Table 5-6 WdgM_DeactivateSupervisionEntity ... 73
Table 5-7 WdgM_MainFunction .. 74
Table 5-8 WdgM_GetMode .. 75
Table 5-9 WdgM_GetLocalStatus ... 75
Table 5-10 WdgM_GetGlobalStatus ... 76
Table 5-11 WdgM_CheckpointReached ... 76
Table 5-12 WdgM_PerformReset ... 77
Table 5-13 WdgM_GetFirstExpiredSEID .. 78
Table 5-14 WdgM_GetFirstExpiredSEViolation .. 78
Table 5-15 WdgM_UpdateTickCount .. 79
Table 5-16 Services used by the WdgM ... 79
Table 5-17 Global state callback ... 82
Table 5-18 Local state change notification .. 83
Table 5-19

alive_<WdgMSupervisedEntityShortname>_<WdgMCheckpointShortname> 84
Table 5-20 alive_<WdgMSupervisedEntityShortname> .. 85
Table 5-21 individual_<WdgMSupervisedEntityShortname> 85
Table 5-22 global_<WdgMGlobalMemoryAppTaskRefShortname> / global_WdgM 86
Table 5-23 localStateChangeCbk_<WdgMSupervisedEntityShortname> 86
Table 5-24 localStateChangeCbk_<WdgMSupervisedEntityShortname> 86
Table 7-1 Glossary ... 95
Table 7-2 Abbreviations .. 96

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 8
based on template version 5.12.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00 Migration of the WdgM to Vector Informatik GmbH

2.00 Introduction of native CFG5 generator

2.01 Support mode ports and OsCounters as timebase

Table 1-1 Component history

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 9
based on template version 5.12.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module WdgM as specified in [1].

Supported AUTOSAR Release*: 4.0.1

Supported Configuration Variants: pre-compile

Vendor ID: WDGM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: WDGM_MODULE_ID 13 decimal

(according to ref. [7])

* For the detailed functional specification please also refer to the corresponding AUTOSAR SWS.

The Watchdog (Wdg) Stack provides software modules to monitor the correct functioning
of safety-relevant activities in systems with software modules of mixed criticality, such as

> newly developed safety-related functions,

> legacy functions, and

> basic software.

The Wdg Stack is designed to be used in automotive ECUs.

The Wdg Stack has three software modules:

> Watchdog Manager (WdgM)

> Watchdog Interface (WdgIf)

> Watchdog Driver (Wdg)

The WdgM can run on single-core and multi-core systems.

This user manual describes the WdgM, which is an AUTOSAR basic software module that
is part of the AUTOSAR service layer. The WdgM checks the logical program flow and
temporal behavior of the program flow of safety-relevant functions. Safety-relevant
functions use checkpoint calls to send life signs to the WdgM. Internal or external
watchdog hardware is used independently from the system CPU to monitor

> if the system is still alive,

> if the system functions properly, and

> if the system shows the correct temporal behavior and logical program flow.

The WdgM was developed according to AUTOSAR version 4.0.1 [1]. The WdgM is
compatible with this AUTOSAR version, but not fully compliant. For the deviations, see
section Deviations from the AUTOSAR 4.0.1 Watchdog Manager. If the WdgM is used in
safety-related systems with AUTOSAR 4.0.1 or another version, all requirements
described in the Safety Manual [5] must be fulfilled.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 10
based on template version 5.12.0

This user manual does not cover safety-related topics. For safety-related requirements for
the integration and the application of the WdgM, refer to the Safety Manual [5].

2.1 Architecture Overview

The following figure shows where the WdgM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.x Architecture Overview

The WdgM Stack consists of the hardware-independent modules Watchdog Manager (blue
rectangle) and Watchdog Interface and a hardware-dependent module Watchdog Driver.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 11
based on template version 5.12.0

Figure 2-2 shows the WdgM Stack with its modules in an AUTOSAR environment.

Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment

The WdgM controls, through the WdgIf and the Wdg, the hardware-implemented
watchdogs, which can be one or more internal or external watchdog devices.

Note
A watchdog device requires a hardware-dependent Wdg driver.

Figure 2-3 shows the layered structure of the WdgM Stack. The attached watchdog device
can be internal or external.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 12
based on template version 5.12.0

Figure 2-3 Layered structure of the Watchdog Manager

The WdgM monitors the program flow and timing constraints of so-called supervised
entities (SE). The SEs are software entities (like application software) that are supervised
by the WdgM. When the WdgM detects a violation of the preconfigured program flow or
the timing constraints, it takes a number of configurable actions to log that violation and/or
go to a safe state (for details, see Section Basic Functionality of the WdgM).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 13
based on template version 5.12.0

2.2 Use Cases

The WdgM monitors the user software at runtime and compares the preconfigured logical
and temporal constraints with the actual logical and temporal behavior. The WdgM can
monitor the following violations:

> timing violation (checked by deadline supervision and alive supervision)

> program flow violation (checked by logical monitoring)

The WdgM periodically triggers the watchdog device through its interface (WdgIf) and
driver layer (Wdg). When the WdgM detects a fault in the program flow or timing then it
stops the watchdog triggering, or it initiates a reset of the microcontroller immediately or
after a delay, depending on the WdgM configuration.

The WdgM monitors the following software and hardware faults:

> The supervised entity is executed, but the execution was not requested.

> The supervised entity was not executed, but the execution was requested.

> The execution of the supervised entity started too early or too late.

> The execution time of a supervised entity or part of a supervised entity or many
supervised entities is longer or shorter than expected.

> The program flow of a supervised entity or part of a supervised entity or many
supervised entities differs from expected program flow.

The reaction of the WdgM to detected faults can be configured as follows:

> WdgM sends information about the detected fault.

> WdgM initiates a reset of the microcontroller after a watchdog timeout.

> WdgM initiates an immediate reset of the microcontroller.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 14
based on template version 5.12.0

2.3 Basic Functionality of the WdgM

As described in AUTOSAR [1], the WdgM is a basic software module that monitors the
program flow of supervised entities (SE).

2.3.1 Supervised Entity and Program Flow Supervision

A supervised entity is a software part that is monitored by the WdgM. There is no fixed
relationship between supervised entities and the architectural building blocks in
AUTOSAR.

The checkpoints mark important steps during the execution of an algorithm. At the

checkpoint, a supervised entity calls the function WdgM_CheckpointReached() directly

(if no runtime environment is present) or with a wrapper function (if a runtime environment
is present) being provided by the runtime environment. The checkpoints are connected by
transitions. Local transitions bind Checkpoints to a closed graph. These graphs represent
the program flow.

The WdgM knows which program flow is correct and decides if a supervised entity
behaves as expected or violates the predefined rules.

The question of how to identify the checkpoints for an algorithm is a trade-off between
performance and code block size per checkpoint:

> The more checkpoints an algorithm has, the better is the representation of the code
structure. But this has an adverse effect on performance.

> However, if an algorithm has only a few checkpoints, then there are code segments
and program flow branches that are not represented. In this case, performance will be
better, but not everything will be monitored.

A supervised entity can represent an algorithm, a function, or – in the case of an operating
system – an entire task. In the AUTOSAR definition, a supervised entity can be distributed
over more than one task or application. There can be several supervised entities for the
same task. However, the WdgM implementation does not support the distribution of one
supervised entity over more than one task or application when they run in different
contexts. The WdgM expects that at least one supervised entity and at least one
checkpoint are defined.

Figure 2-4 shows the example of a simple supervised entity called

temperature_control:

> Supervised entity temperature_control has six checkpoints (illustrated by oval

boxes), which are connected by directed transitions (illustrated by arrows).

> As can be seen in Figure 2-4, it is possible to reach the checkpoint

temperature_needs_correction after the checkpoint read_temperature.

> However, reaching the checkpoint heater_adjusted_successfully after the

checkpoint read_temperature would be a violation of the program flow.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 15
based on template version 5.12.0

Figure 2-4 Example of a simple supervised entity with a control flow

2.3.2 Program Flow Supervision

Note

Program Flow Supervision can only be used if the WDG add-on for program flow and

deadline supervision is licensed.

(“WdgM_ProgramFlowAndDeadlineMonitoring”)

Control (program) flow supervision is highly recommended by ISO 26262-6 (7.4.14). Apart
from its main feature, which is to detect logical errors in the monitored algorithms, program
flow supervision increases the probability of detecting illegal program counter jumps within
the whole system.

In addition to the specification by AUTOSAR, it is possible to tolerate program flow
violations within a supervised entity for a certain amount of supervision cycles. It is
possible to define a program flow reference cycle (a multiple of the WdgM supervision
cycle) and a tolerance, which is a number of program flow reference cycles, during which
program flow violations should be tolerated for the supervised entity. If a program flow
violation is detected for more program flow reference cycles than the defined tolerance,

then the supervised entity changes its status from FAILED to EXPIRED.

The necessary configuration parameters to tolerate program flow violations of a
supervised entity are:

> WdgMFailedProgramFlowRefCycleTol: This parameter contains the acceptable

amount of program flow violations for this supervised entity.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 16
based on template version 5.12.0

> WdgMProgramFlowReferenceCycle: This parameter contains the amount of

supervision cycles to be used as reference by the program flow supervisions of this
supervised entity.

Note
The program flow reference cycle for a supervised entity starts with the first detected
program flow violation and not with the WdgM startup. Hence, the first program flow
reference cycle starts with the transition of the supervised entity from status OK to
FAILED. If no program flow violation is detected for a whole program flow reference
cycle within the tolerance then the supervised entity recovers and changes its status
from FAILED to OK. Otherwise, if the tolerance is exhausted and the program flow
violations continue, then the supervised entity changes its status to EXPIRED. It can be
said that the program flow reference cycle is processed only during the status FAILED
– it starts with the first detected program flow violation. The program flow reference
cycle is restarted with each following transition from OK to FAILED, and it is not
processed during the status OK, EXPIRED or DEACTIVATED.

2.3.3 Deadline Supervision

Note
Deadline Supervision can only be used if the WDG add-on for program flow and
deadline supervision is licensed.

(“WdgM_ProgramFlowAndDeadlineMonitoring”)

The main purpose of deadline supervision is to check the temporal, dynamic behavior of
the supervised entity. However, it would also strongly increase the probability of detecting
random jumps or irregular updates of the timebase tick counter, which might otherwise
degrade system integrity without being discovered.

The temporal behavior of the supervised entities can be monitored by assigning deadlines
to transitions.

> A deadline is defined through a maximum deadline (parameter WdgMDeadlineMax)

and a minimum deadline (parameter WdgMDeadlineMin). The destination checkpoint

of a transition should not be reached before the minimum time or after the maximum
time after which the source checkpoint of that transition was reached. Otherwise the
WdgM will detect a deadline violation. Apart from a maximum deadline time it is
strongly recommended to use a minimum deadline time as well, where applicable. This
allows discovering timebase tick counter errors implicitly. Deadlines are good for
discovering crashed tasks or infinite loops. If the destination checkpoint is never
reached because the task ended with an error or is stuck in a loop, this would cause a
deadline violation.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 17
based on template version 5.12.0

> A deadline is assigned to an already defined transition by specifying the same source
and destination checkpoints as for the transition. The corresponding deadline

parameters are WdgMDeadlineStartRef and WdgMDeadlineStopRef.

> For local transitions, the source and destination checkpoints belong to the same
supervised entity.

> For global transitions, the source and destination checkpoints belong to different
supervised entities.

An example of a supervised entity with deadlines defined for its transitions is given below.
The first deadline is defined to have a minimum of 0 and a maximum of 2 (seconds).
Hence, CP1 must be reached no later than 2 seconds after CP0. The second deadline
implies that CP2 must be reached no earlier than 1 and no later than 3 seconds after CP1.
Otherwise a deadline violation will be detected.

Figure 2-5 Example of a simple supervised entity with deadlines

Note
Deadline violation is detected

> when the next checkpoint is reached outside the defined deadline or

> within the WdgM_MainFunction() if the next checkpoint is not reached at all (or

has not been reached yet) and the maximum deadline has already expired

A slightly more complex situation is when several transitions go out of the same
checkpoint. In this case, deadline violations are detected in the same manner when the
next checkpoint is reached outside the defined deadlines. However, if none of the next

checkpoints is reached, the WdgM_MainFunction() detects a deadline violation only

after the maximum of maximum deadlines of all outgoing transitions has elapsed, which is

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 18
based on template version 5.12.0

seconds after reaching CP0, shown in Figure 2-6. If the program gets stuck after CP0, the
deadline violation is detected within the next main function that is executed not earlier than
5 seconds after reaching CP0.

Figure 2-6 Example of multiple outgoing transitions with deadlines

A special case is a hybrid situation when some of the outgoing transitions have deadlines
and others do not. In this case, the main function detects a deadline violation if none of the
next checkpoints is reached within the maximum of configured deadlines in order to detect
blocked supervised entities. No deadline violation will be detected after the maximum has
expired, however, if the checkpoint without deadline is reached before the main function. If
none of the CP1, CP2 is reached after CP0 (Figure 2-7), then the next

WdgM_MainFunction() (executed at least 2 seconds after CP0 is reached) detects a

deadline violation. If, however, CP1 is reached after 2 seconds, but before the next

WdgM_MainFunction(), no deadline violation would be detected.

Note
To avoid this ambiguous situation it is a good practice to define deadlines for all
outgoing transitions of a checkpoint (or for none of them).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 19
based on template version 5.12.0

Figure 2-7 Example of a the case where only one of several outgoing transitions has a deadline

The rules for deadline violation detection also apply to global transitions or to the case of
local transitions mixed with global transitions at a checkpoint.

In addition to the specification by AUTOSAR, it is possible to tolerate also deadline
violations within a supervised entity for a certain amount of supervision cycles. It is
possible define a deadline reference cycle (a multiple of the WdgM supervision cycle) and
a tolerance, which is a number of deadline reference cycles, during which deadline
violations should be tolerated for the supervised entity. If a deadline violation is detected
for more deadline reference cycles than the defined tolerance, then the supervised entity

changes its status from FAILED to EXPIRED.

The necessary configuration parameters to tolerate deadline violations of a supervised
entity are:

> WdgMFailedDeadlineRefCycleTol: This parameter contains the acceptable

amount of violated deadlines for this supervised entity.

> WdgMDeadlineReferenceCycle: This parameter contains the amount of

supervision cycles to be used as reference by the deadline supervisions of this
supervised entity.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 20
based on template version 5.12.0

Note
The deadline reference cycle for a supervised entity starts with the first detected
deadline violation and not with the WdgM start up. Hence, the first deadline reference

cycle starts with the transition of the supervised entity from the status OK to FAILED. If

no deadline violation is detected for a whole deadline reference cycle within the

tolerance, then the supervised entity recovers and changes its status from FAILED to

OK. Otherwise, if the tolerance is exhausted and the deadline violations continue, then

the supervised entity changes its status to EXPIRED. It can be said that the deadline

reference cycle is processed only during the status FAILED – it starts with the first

detected deadline violation. The deadline reference cycle is restarted with each

following transition from OK to FAILED, and it is not processed during the status OK,

EXPIRED or DEACTIVATED.

2.3.4 Alive Supervision

Aliveness monitors the frequency of hits of checkpoints. For example, the algorithm could
expect a sensor to report its measurements on a regular basis, and a certain task needs to
process this data periodically. If a task stops reporting (alive sign is lost or too infrequent)
or starts reporting too often, then the aliveness of that task is violated.

Alive supervision is associated with a checkpoint in a supervised entity. If you need to
monitor only the frequency with which a task is called, you can define a supervised entity
that contains only one checkpoint with the corresponding aliveness parameters.

Note
Irregular calls of the WdgM main function or the omission of calls of

WdgM_CheckPointReached() would most likely result in aliveness violation. When

alive supervision for a checkpoint is activated, then that checkpoint must be regularly
called for the entire period during which the supervised entity is active, otherwise
aliveness violation will be detected. In the first supervision cycle, the alive counter
evaluation can be suppressed by the parameter

WdgMFirstCycleAliveCounterReset.

It is important to consider which aliveness parameters are better for a specific situation.
The example below shows how to choose the appropriate alive supervision parameters:

> WdgMExpectedAliveIndications:

Defines how many alive indications (checkpoint reached calls) are expected within one
supervision reference cycle.

> WdgMSupervisionReferenceCycle:

Defines the supervision reference cycle length as a number of supervision cycles

(WdgMSupervisionCycle).

> WdgMMinMargin:

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 21
based on template version 5.12.0

Defines the lower tolerance of expected alive indications.

> WdgMMaxMargin:

Defines the upper tolerance of expected alive indications.

> Hence, the allowed number of indications is in the range
[WdgMExpectedAliveIndications - WdgMMinMargin,

WdgMExpectedAliveIndications + WdgMMaxMargin]

Note
In contrast to the deadline and program flow reference cycle the alive supervision cycle
begins with the WdgM startup. The alive supervision in the very first cycle can be

influenced by the parameter WdgMFirstCycleAliveCounterReset. This is

because each alive counter is evaluated once per supervision reference cycle. This
means that the supervision reference cycle is processed from the system startup on

and during the status OK and FAILED of the corresponding supervised entity. If the

supervised entity is in the status EXPIRED, then the supervision reference cycle is not

needed anymore. If the supervised entity is in the status DEACTIVATED, then the

supervision reference cycle is frozen. It is restarted if the supervised entity is activated
again.

There are several ways for monitoring the task given in the example above. Below, one
variant is given:

Set

> WdgMExpectedAliveIndications=1

> WdgMSupervisionReferenceCycle=1

> WdgMMinMargin=1

> WdgMMaxMargin=0

This means the WdgM should expect 1 or 0 (WdgMExpectedAliveIndications -

WdgMMinMargin) occurrences within one supervised reference cycle, which is fixed to

20ms (which is one WdgM supervision cycle).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 22
based on template version 5.12.0

Figure 2-8 A task being monitored during one WdgM supervision cycle (20ms)

However, if the task stops being executed it will not be detected, because zero alive
indications per supervised reference cycle are tolerated. Therefore, this choice of setting
aliveness parameters is not very good.

Below, a second variant is given:

Set

> WdgMExpectedAliveIndications=2

> WdgMSupervisionReferenceCycle=2

> WdgMMinMargin=1

> WdgMMaxMargin=0

This means the WdgM should expect 1 or 2 alive indications within one supervised
reference cycle, which is fixed to 40ms (and which is two WdgM supervision cycles).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 23
based on template version 5.12.0

Figure 2-9 A task being monitored during two WdgM supervision cycles (40ms)

This configuration solves the problem of detecting the disappearance of the task. However,
the reaction time for error detection doubles from 20 to 40ms.

A third variant would be to set the supervision reference cycle to the least common
multiple of the WdgM supervision cycle and the task period. In the example given above
this would be 60ms (three WdgM supervision cycles). In this case, we expect exactly 2

alive indications. Hence, the minimum and maximum margins are both 0.

Note
The task period and the WdgM supervision cycle must be synchronized and started
with an offset to each other (e.g. scheduled in an operating system).

2.3.5 More Details on Checkpoints and Transitions

Every supervised entity has one initial checkpoint. The number of end checkpoints can be
zero, one or more than one. If the supervised entity contains only one single checkpoint,
then it should be both an initial and an end checkpoint. Local transitions are defined by
their source and destination checkpoints, which must belong to the same supervised
entity. Those local transitions are specified in the parameters

WdgMInternalTransitionSourceRef and WdgMInternalTransitionDestRef.

After initialization of the WdgM, all supervised entities are passive.

Note
This has nothing to do with the supervised entity state
WDGM_LOCAL_STATUS_DEACTIVATED.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 24
based on template version 5.12.0

A supervised entity becomes active when its local initial checkpoint has been called. In the

example of the supervised entity temperature_control (see Section Supervised Entity

and Program Flow Supervision and Figure 2-4), the initial checkpoint is read_temperature.
Only if the supervised entity is active, its checkpoints (other than the initial checkpoint)
may be reached, otherwise a program flow violation occurs. Reaching an end checkpoint,
the supervised entity is set to passive state, and it can be activated again only through the
initial checkpoint.

Reaching the initial checkpoint again after the supervised entity has been activated is a
program flow violation.

Local reflexive transitions (from a checkpoint to itself) are allowed only if configured. The
reflexive transitions cannot be defined for local initial or local end checkpoints.

Local initial checkpoints are not allowed to have local incoming transitions.

Local end checkpoints are not allowed to have local outgoing transitions.

2.3.6 Global Transitions

It is possible to represent program flow dependencies between supervised entities by
using so-called global transitions. Global transitions are defined for the WdgM
configuration by their source and destination checkpoints, which must belong to different
supervised entities and which are specified by the parameters

WdgMExternalCheckpointInitialRef and WdgMExternalCheckpointFinalRef.

The end checkpoint of a supervised entity is usually connected to the initial checkpoint of
another supervised entity, expressing a logical dependency between them. However,
global transitions are allowed between any two checkpoints of any two supervised entities.

One must keep in mind several things when defining a global transition between two
arbitrary checkpoints:

> If the source of the global transition is not a local end checkpoint, then the source
entity will remain active. Program flow violation would occur if its initial checkpoint
were reached again.

> If the destination checkpoint of the global transition is not a local initial checkpoint, the
destination entity may not be active. Program flow violation would occur if a non-initial
checkpoint of an inactive supervised entity were reached.

> Exactly one global initial checkpoint must be defined. The first global transition passed
must have that checkpoint as a source.

> It is possible to define one or several global end checkpoints or none. Once the global
end checkpoint served as a destination checkpoint of a global transition, no more
global transitions are allowed (unless they are started with the global initial
checkpoint).

Figure 2-10 shows a global transition between two supervised entities:

> The pressure_sensor_task gets the pressure value.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 25
based on template version 5.12.0

> The control_pressure_task calculates a reaction and reacts to the measured

pressure. However, it can start only after the first task (pressure_sensor_task)

has finished and after the pressure value has been obtained. This relation is shown by
a global transition (see dotted arrow).

> Some transitions in Figure 2-10 have comments that show deadlines in milliseconds.

> Deadlines can also be defined for global transitions (see dotted arrow), where 1..5ms

means that the second task (control_pressure_task) should start not later than

5ms, but not earlier than 1ms after the first task has finished.

Figure 2-10 Global transition between two supervised entities

Note
Global transitions between supervised entities that are assigned to different processor
cores are not supported.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 26
based on template version 5.12.0

2.3.7 Global Transitions and Program Flow

In general the, program flow does not differ between local and global transitions. But what
seems intuitive for local transitions might not be so obvious for global transitions. This
section gives examples that show the usage of local and global transitions with a focus on
program flow split.

From the perspective of the WdgM, the program flow is the consecutive reaching of
checkpoints. The start of each program flow must be a local initial checkpoint. The
program flow propagates through local transitions within the boundaries of a supervised
entity and through global transitions within the boundaries of the whole system. The
program flow might eventually come to an end at a local end checkpoint, or never come to
an end if a program flow loop occurs.

A very important feature is that it is not allowed to split the program flow. This means that
the program flow is allowed to take only one transition at each checkpoint from which more
than one local or global transition comes out.

2.3.7.1 Example of an Incorrect Global Transition Split

Figure 2-11 shows that after checkpoint cp0_1 the program flow must decide to take either
the global transition cp1_0 or cp2_0. Reaching cp2_0 immediately after reaching cp1_0
would result in a program flow violation.

Figure 2-11 Incorrect global transition split

2.3.7.2 Example of an Incorrect Program Split in the Middle of an Entity

Figure 2-12 shows another example. Let us assume that the program flow reaches cp0_0
and then cp0_1. Afterward the program flow decides to take the global transition reaching
cp1_0 instead of taking the local transition. Now, if the local transition took place afterward
(by reaching cp0_2), a program flow violation would occur. However, cp0_2 can be
reached via the global transition if the program flow comes from cp1_1.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 27
based on template version 5.12.0

Figure 2-12 Incorrect program split in the middle of an entity

Note
It is easy to create configurations with complex global transitions that do not make
much sense in a real system. For example, if "jumping out" of a supervised entity from
a checkpoint that is not a local end checkpoint, one must keep in mind that this

supervised entity is still active (local activity flag is still true), and it cannot be

restarted by reaching its local initial checkpoint again. Thus, it is recommended to use
global transitions carefully and let them start only at local end checkpoints of a
supervised entity and end at a local initial checkpoint of some other entity. Exceptions
to this must be analyzed thoroughly, with respect to the program flow and the local
activity of both supervised entities.

2.3.8 WdgM Supervision Cycle

The supervision cycle is the time period in which the cyclic supervision algorithm is
executed. At the end of each supervision cycle, the main function,

WdgM_MainFunction(), is called. This function evaluates the checkpoint data gathered

in the previous period and triggers the Watchdog if no violation has been detected.

Function WdgM_MainFunction() also checks for violations depending on the reference

cycle defined for the respective monitoring feature.

Example: If WdgMProgramFlowReferenceCycle=3, then the check for program flow

violation is done in every third call of WdgM_MainFunction().

The shorter this period and the reference cycles, the shorter the reaction time of the
WdgM, but the more processor time is consumed.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 28
based on template version 5.12.0

Note
Aliveness supervision is strongly connected to this period. The expected number of
alive indications for a certain checkpoint refers to the last supervision cycle
(configurable for the checkpoint), which is expressed in the number of supervision
cycles.

Figure 2-13 shows a time span with 3 supervision cycles. In each cycle, CP1 and CP2 are
hit once. Once the WdgM main function is called, the window for the next watchdog trigger

is defined by WdgMTriggerWindowStart and WdgMTriggerConditionValue.

Figure 2-13 WdgM supervision cycle

Note
For the scheduling of WdgM_MainFunction() calls, the integrator shall set

> WdgMTicksPerSecond,

> WdgMSupervisionCycle,

> WdgMTriggerWindowStart (per Wdg Trigger Mode), and

> WdgMTriggerConditionValue (per Wdg Trigger Mode)

according to the system requirements.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 29
based on template version 5.12.0

2.3.9 Fault Detection Time Evaluation

The WdgM distinguishes between the fault detection time and the fault reaction time.

> The fault detection time spans from the occurrence of an error to the point in time
when that error is detected and communicated to the system (via DET or callback
functions).

> The fault reaction time spans from the detection of an error to the actual system reset.

If a program flow violation or a deadline violation occurs, the source checkpoint and the
destination checkpoint report to the WdgM when hit. At the end of the current supervision

cycle, the WdgM main function, WdgM_MainFunction(), is called and the violation is

detected (i.e. the configured destination checkpoint was hit too late or not at all) and
communicated to the system.

If an alive counter violation occurs, it is also the main function that detects and
communicates the violation at the end of the supervision reference cycle of the alive
supervision.

The shortest fault detection and reaction time can be achieved by configuring an
immediate reset. However, the time still depends on what occurs first in a supervision
cycle, the fault or the hit of the checkpoint.

Note
The time from fault occurrence to the system's safety reaction is the sum of

> WdgM Fault Detection Time,

> WdgM Fault Reaction Time,

> WdgIf Fault Reaction Time and

> Wdg Fault Reaction Time.

The WdgM fault detection time is evaluated differently for the various monitoring features
as shown in this section.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 30
based on template version 5.12.0

2.3.9.1 Alive Supervision Fault Detection Time

Assume that a fault occurs that leads to an alive counter violation. The WdgM fault
detection time is the sum of the time spans

> from the fault to the scheduled call of the next checkpoint that is monitored and

> from this checkpoint to the next call of WdgM_MainFunction() with alive

supervision.

Note
The multiple of supervision cycle that performs an alive supervision is defined by

WdgMSupervisionReferenceCycle.

Note
If zero calls of a checkpoint within an alive supervision interval are allowed, then
missing checkpoint calls cannot be detected. The fault detection time is then infinite.

The worst case for a given configuration happens when

> the time between the calls of WdgM_MainFunction() is always

WdgMTriggerConditionValue,

> WdgM_MainFunction() with alive supervision is called,

> all checkpoints scheduled for the alive supervision interval are passed immediately
afterwards, and

> the fault happens immediately after the last checkpoint.

Note
Then the maximum fault detection time is almost:

2 ∗ WdgMTriggerConditionValue ∗ WdgMSupervisionReferenceCycle

For WdgMSupervisionReferenceCycle = 2, the fault detection time is (almost) 4 *

WdgMTriggerConditionValue.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 31
based on template version 5.12.0

Figure 2-14 Alive supervision fault detection time

2.3.9.2 Deadline Supervision Fault Detection Time

Assume that a fault occurs that leads to a deadline violation. The WdgM fault detection
time is the sum of the time spans

> from the fault to the end of the current deadline interval set by the previous checkpoint
and

> from the end of the current deadline interval to the next call of

WdgM_MainFunction() at the end of a supervision cycle.

The worst case for a given configuration happens when

> the time between the calls of WdgM_MainFunction() is always

WdgMTriggerConditionValue,

> a new supervision cycle starts and

> a checkpoint is passed immediately afterwards (setting a new deadline interval for the
next checkpoint), and

> the fault happens immediately after the checkpoint.

Then the fault detection time comprises

> (almost all of) the supervision cycle where the fault occurred,

> all supervision cycles up to the supervision cycle where the deadline interval ends,

W
d

gM
_M

ai
n

Fu
n

ct
io

n
W

it
h

al
iv

e
su

p
er

vi
si

o
n

TriggerCondition
Value (1st

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

alive supervision interval

WdgM fault detection time

TriggerCondition
Value (3rd

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

TriggerCondition
Value (2nd

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n
W

it
h

al
iv

e
su

p
er

vi
si

o
n

W
d

gM
_M

ai
n

Fu
n

ct
io

n
W

it
h

al
iv

e
su

p
er

vi
si

o
n

TriggerCondition
Value (4th

supervision cycle)

alive supervision interval

Passed
checkpoint

Missed
checkpoint

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 32
based on template version 5.12.0

> including the complete supervision cycle where the deadline interval ends, because
the fault is detected at the end of this supervision cycle.

Note
Then the maximum fault detection time is almost:

(𝑛𝑟 + 1) ∗ WdgMTriggerConditionValue

Where the end of the deadline interval is 𝑛𝑟 supervision cycles after the successfully

passed checkpoint.

For 𝑛𝑟 = 3, the Fault Detection Time is (almost) 4 * WdgMTriggerConditionValue.

Figure 2-15 Deadline supervision fault detection time

2.3.9.3 Program Flow Supervision Fault Detection Time

Assume that a fault occurs that leads to a program flow violation. The WdgM fault
detection time is the sum of the time spans

> from the fault to the call of the next but unscheduled checkpoint and

> from this checkpoint to the next call of WdgM_MainFunction() at the end of the

current supervision cycle.

The worst case for a given configuration happens when

TriggerCondition
Value (1st

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

WdgM fault detection time

TriggerCondition
Value (3rd

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

TriggerCondition
Value (2nd

supervision cycle)

TriggerCondition
Value (4th

supervision cycle)

Passed
checkpoint

W
d

gM
_M

ai
n

Fu
n

ct
io

n

W
d

gM
_M

ai
n

Fu
n

ct
io

n

W
d

gM
_M

ai
n

Fu
n

ct
io

n

End of
deadline
interval

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 33
based on template version 5.12.0

> the time between the calls of WdgM_MainFunction() is always
WdgMTriggerConditionValue,

> a new supervision cycle starts,

> a scheduled checkpoint is passed immediately afterwards and

> the fault happens immediately afterwards.

Note
Then the maximum fault detection time is almost:

(𝑠𝑐 + 1) ∗ WdgMTriggerConditionValue

Where the unscheduled checkpoint is passed 𝑠𝑐 supervision cycles after the scheduled

checkpoint.

For 𝑠𝑐 = 2, the fault detection time is (almost) 3 * WdgMTriggerConditionValue.

Figure 2-16 Program flow supervision fault detection time

TriggerCondition
Value (1st

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

WdgM fault detection time

TriggerCondition
Value (3rd

supervision cycle)

W
d

gM
_M

ai
n

Fu
n

ct
io

n

TriggerCondition
Value (2nd

supervision cycle)

Scheduled
checkpoint

W
d

gM
_M

ai
n

Fu
n

ct
io

n

W
d

gM
_M

ai
n

Fu
n

ct
io

n

Unscheduled
checkpoint

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 34
based on template version 5.12.0

2.3.10 Fault Reaction Time Evaluation

The WdgM fault reaction time is evaluated differently for the various monitoring features as
shown in this section.

Note
This section does not discuss Wdg device resets due to a WdgM error (like DET

errors). The section does also not discuss resets using Appl_Mcu_PerformReset().

The WdgM fault reaction time spans

> from the end of the WdgM fault detection time

> to the error escalation to the WdgIf (excluding the processes performed in WdgIf).

The error is escalated to the WdgIf through

> a call of WdgIf_SetTriggerWindow(DeviceIndex, 0,0) (if

WDGM_IMMEDIATE_RESET is STD_ON) or

> discontinuing of the Wdg device triggers (if WDGM_IMMEDIATE_RESET is STD_OFF).

The following assumptions take place here:

> A violation from a fault continues until the error is escalated. Discontinuing a violation
before error escalation results in a recovery to OK.

> Each monitored supervised entity is active all the time. Deactivation of a supervised
entity aborts the monitoring of this supervised entity. Activation of a supervised entity
resumes the monitoring with OK.

The WdgM fault reaction times of the different monitoring features do not affect each other
(except that the error escalation of one monitoring violation aborts all other monitoring
violations).

2.3.10.1 Alive Supervision Fault Reaction Time

If a call of WdgM_MainFunction()ends the fault detection time and starts the fault

reaction time, then

the error is escalated by WdgM_MainFunction() i supervision cycles later,

where

 i = (WdgMSupervisionReferenceCycle *

WdgMFailedSupervisionRefCycleTol) +

WdgMExpiredSupervisionCycleTol.

In the worst case, every supervision cycle has the length of

WdgMTriggerConditionValue. The fault reaction time is then

WdgMTriggerConditionValue * i, where i is as defined above.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 35
based on template version 5.12.0

2.3.10.2 Deadline Supervision Fault Reaction Time

If a call of WdgM_MainFunction() ends the fault detection time and starts the fault

reaction time, then

the error is escalated by WdgM_MainFunction() i supervision cycles later,

where

 i = (WdgMDeadlineReferenceCycle * WdgMFailedDeadlineRefCycleTol) +

WdgMExpiredSupervisionCycleTol.

In the worst case, every supervision cycle has the length of

WdgMTriggerConditionValue. The fault reaction time is then

WdgMTriggerConditionValue * i, where i is as defined above.

2.3.10.3 Program Flow Supervision Fault Reaction Time

If a call of WdgM_MainFunction() ends the fault detection time and starts the fault

reaction time, then

the error is escalated by WdgM_MainFunction() i supervision cycles later,

where

i = (WdgMProgramFlowReferenceCycle *

WdgMFailedProgramFlowRefCycleTol) +

WdgMExpiredSupervisionCycleTol.

In the worst case, every supervision cycle has the length of

WdgMTriggerConditionValue. The fault reaction time is then

WdgMTriggerConditionValue * i, where i is as defined above.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 36
based on template version 5.12.0

2.3.11 Reset Path and Safe State

The safe state is entered as a result of an MCU reset. The WdgM builds its functionality on
a reliable and robust reset path. The WdgM default reset path uses the Watchdog Device
itself through the WdgIf. The Watchdog Device can be either an external chip or an MCU-
internal controller. The system integrator can additionally set a secondary path by adding

the parameter WDGM_SECOND_RESET_PATH = STD_ON. The secondary reset path is

used when the Watchdog Interface returns an error response. This error response can be
caused by communication errors to the external Watchdog device.

Figure 2-17 Primary and secondary reset path of the WdgM

The WdgM uses the primary reset path for a regular Watchdog-initiated reset and also for
an immediate MCU reset. The primary reset path is the preferred path, because it is part of
the WdgM software and thus safe. The MCU driver with the AUTOSAR function

Appl_Mcu_PerformReset() must guarantee freedom from interference.

The secondary reset path is optional. It is used when the primary reset path signals a fault.
The WdgM safe state is the MCU reset state.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 37
based on template version 5.12.0

Note
The WdgM safe state is not necessarily the system safe state.

The WdgM can invoke the safe state in two ways:

> MCU reset after watchdog timeout by discontinuing watchdog triggering.

> Immediate MCU reset by an immediate watchdog reset. The immediate reset can be
configured.

2.3.12 WdgM Local Entity State

Every supervised entity has a local state that expresses the occurrence of detected
violations:

State Description

OK No violation has been detected

FAILED A violation has been detected, the reset is pending within a delay time (maybe 0
ticks) and the violation repeats.

EXPIRED A violation has repeated throughout the delay time. A reset is inevitable.

Table 2-1 WdgM Local Entity Stats

AUTOSAR allows configuring a tolerance delay after an alive counter violation has been
detected. See [1] for detailed information. AUTOSAR does not allow configuring such
tolerances for program flow and deadline violations. The WdgM allows configuring such
tolerances for all three monitoring features described below:

> Once a violation has been detected, the WdgM changes its state from OK to FAILED

and starts a so-called tolerance time, which is configured as follows:

The tolerance time is the supervision reference cycle (according to the monitoring feature)
multiplied by a supervision reference cycle tolerance value.

> As long as the violation repeats within the tolerance time at least every supervision

reference cycle, the WdgM stays in the state FAILED.

> If the violation does not occur in a supervision reference cycle within the tolerance

delay, the WdgM returns to the state OK as if no violation had happened. Only the

status change is logged.

> If the violation has repeated to the end of the tolerance time, the WdgM enters the

state EXPIRED.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 38
based on template version 5.12.0

Figure 2-18 Modified state machine

Note
The AUTOSAR implementation can be simulated for deadline and program flow
violations with

reference cycle = reference cycle tolerance = 0

The exact names of the configuration fields for the tolerance delay are:

Monitoring Reference Cycle Reference Cycle Tolerance

Alive Supervision WdgMSupervisionReferenceCycle WdgMFailedSupervisionRefCycleTol

Program Flow
Supervision

WdgMProgramFlowReferenceCycle WdgMFailedProgramFlowRefCycleTol

Deadline Supervision WdgMDeadlineReferenceCycle WdgMFailedDeadlineRefCycleTol

Table 2-2 Names of configuration fields

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 39
based on template version 5.12.0

2.3.13 WdgM Global State

The local states are periodically summarized in a WdgM global state. If all supervised

entities have the state OK, then the global state is OK. When at least one supervised entity

changes to the state FAILED, then the global state becomes FAILED. When at least one

supervised entity changes to the state EXPIRED, the global state becomes EXPIRED.

Once the global state is EXPIRED, the WdgM continues the delay until it enters the state

STOPPED. This is when the WdgM stops triggering the Watchdog (or resets it). The delay

is the supervision cycle multiplied by the configurable expired supervision cycle tolerance

(parameter WdgMExpiredSupervisionCycleTol).

Once in the state STOPPED, the WdgM brings the system to the safe state by performing a

system reset through the WdgIf module and, thus, through the watchdog device(s) in the

system. If the preprocessor option WDGM_SECOND_RESET_PATH is set to STD_ON and the

WdgIf reports a failure, then the system goes into a safe state through the MCU module.

Note
In a multi-core system, each Watchdog Manager instance running on a particular
processor core builds a separate global state independently of the other processor
cores.

2.3.14 Basic Operation of the WdgM Stack

The WdgM is the upper layer of the WdgM Stack. As described above, the WdgM is
responsible for monitoring applications through preconfigured supervised entities. The
result of this monitoring is usually translated into servicing one or more watchdog devices
through the rest of the WdgM Stack – the Watchdog Interface (WdgIf) and one or more
Watchdog Drivers (Wdg).

Figure 2-19 shows a possible WdgM Stack configured to run on a microcontroller with two
watchdog devices, an internal and an external one.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 40
based on template version 5.12.0

Figure 2-19 Example of an WdgM Stack configuration

Figure 2-20 shows the behavior of the WdgM Stack.

First, the Wdg drivers configured in the system are initialized. Then the WdgM is initialized,

and it calls the SetMode functions of each configured driver during its initialization. During

runtime, the monitored applications report to the WdgM by calling the function

WdgM_CheckpointReached() or directly via RTE. During this call, the program flow and

part of the deadline supervision is evaluated (see compute SE local state #1 in Figure

2-20). In each supervision cycle, WdgM_MainFunction() is called. It evaluates the

status of each supervised entity, the rest of deadline supervision and alive supervision
(see compute SE local states #2 in Figure 2-20) and, based on this, it computes the global
state. Depending on the global state, the configured watchdogs are either serviced, or a
reset is deliberately caused. The latter is done either by omitting the servicing or by
instructing the watchdog to make a reset right away (for more information refer to

parameter WdgMImmediateReset).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 41
based on template version 5.12.0

Figure 2-20 Behavior of the WdgM Stack

2.4 WdgM in Multi-Core Systems

The WdgM can be used in single-core and multi-core systems. Each processor core to be
monitored by the WdgM runs a separate WdgM instance. This is as if we had several
independent WdgM Stacks running on the processor cores. It is not necessary that the
WdgM Stack runs on each processor core. It can be configured to run on a subset of them
only where monitoring of supervised entities is required.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 42
based on template version 5.12.0

Each WdgM instance runs independently of the others and must be initialized with its own

configuration. It has its own time base and calls the WdgM_MainFunction() separately.

If the WdgM is configured to run on a multi-core system, then an internal preprocessor

option (WDGM_MULTICORE_USAGE) is automatically set to STD_ON. Thus, the embedded

code can handle several processor cores. Otherwise, this option is set to STD_OFF, which

optimizes the code for a single-core system. The optimizations are done even if the WdgM
is configured to run only on one core in a multi-core environment.

In order to configure the WdgM (ECU description file) to run on several processor cores in

a multi-core system, a separate WdgMConfigSet container needs to be configured for

each core. The WdgMConfigSet container has a WdgMMode subcontainer (note, that only
one is allowed), which identifies the processor core that it is configured to run on only one
core of a multi-core system.

Note, that the WdgMGeneral container which contains general configuration parameters
as well as the supervised entities in the system is one for all configured cores. Each
supervised entity can be used on one core only and must have a unique ID in the system.

As the WdgM instances run independently on the different processor cores, each
supervised entity in the system is configured for one processor core and can be used only
on that core. Global transitions between supervised entities are allowed only for
supervised entities running on the same processor core.

There are 2 different concepts on how the WdgM Stack can react to detected violations,
the independent and combined core reaction concept.

The independent core reaction concept says that each WdgM instance controls one or
more watchdogs. It builds an independent global state and decides on triggering its
watchdog(s) or causing a deliberate reset. Whether a processor core reset or system reset
is issued, depends on the hardware configuration and not on the WdgM.

Figure 2-21 shows the operation of the WdgM on a multi-core system (independent core
reaction).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 43
based on template version 5.12.0

Figure 2-21 WdgM Stack on a multi-core system configured for independent core reaction

The combined core reaction concept declares, that each WdgM instance independently
builds a global state of its processor core and the several global states are then combined

> either by hardware (e.g. a special hardware module in the microcontroller reading the
states of the internal watchdog devices of each processor core)

> by software (e.g. a special watchdog driver that is called on each processor core and
that combines the status of each core into a single reaction)

Combining the WdgM status on each core in hardware is strongly hardware- dependent,
and its applicability can vary from microcontroller to microcontroller.

Combining the WdgM status on each core in software can be done with the feature State
Combiner of the underlying WdgIf module.

 deployment WdgM stack on multi-core - independent core reaction

«device»

Microcontroller - independent core reaction

«device»

core 0

«device»

core 1

WdgM

WdgIf

Wdg

«device»

int Wdg 0

«device»

int Wdg 1

WdgM

WdgIf

Wdg

independet core reaction

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 44
based on template version 5.12.0

2.4.1 State Combiner

The State Combiner is a special hardware-independent peace of software that is
implemented as an additional feature of the WdgIf module. On one core, the State
Combiner is configured to work in master mode in order to control the actual watchdog
device. The instances of the State Combiner on the other cores are configured to work in
slave mode. They do not trigger but communicate with the master State Combiner only via
shared memory. The State Combiner on the master core will only allow triggering the
actual watchdog device if the global status of the WdgM instances on all cores is other

than STOPPED. In other words, as soon as at least one core has detected an irreparable

error and requests a reset, the actual watchdog device will not be serviced anymore (or an
explicit reset will be initiated depending on the ECUC description parameter

WdgMImmediateReset).

Figure 2-22 WdgM Stack on a multi-core system using the State Combiner for a combined core reaction

Figure 2-23 shows the dynamic behavior of a WdgM running on 2 cores with a State
Combiner for a combined core reaction.

 deployment WdgM stack on multi-core - combined core reaction

«device»

Microcontroller - combined core reaction

«device»

core 0

WdgM

WdgIf

Wdg ext.

State Combiner

(master)

«device»

core 1

WdgM

WdgIf

State Combiner

(slav e)

combined core reaction

«device»

core 2

WdgM

WdgIf

State Combiner

(slav e)

«device»

core 3

WdgM

WdgIf

Wdg int.

«device»

Wdg ext.

«device»

Wdg int.

«device»

Shared Memory

write core

2 state
write core 1

state

read state of

slave cores

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 45
based on template version 5.12.0

Figure 2-23 Dynamic Behavior on a multi-core system using the State Combiner for a combined core reaction

For more information on the State Combiner refer to the WdgIf User Manual [4].

2.4.2 AUTOSAR Debugging

AUTOSAR Debugging allows debugging the WdgM module by granting it access to certain
module internal variables. This AUTOSAR feature is extended for the WdgM by adding
special functions that make the debugging process or tracing detected by the WdgM
violations easier.

Variables accessible for debugging:

> The local monitoring status of each supervised entity is accessible through the API
WdgM_GetLocalStatus()

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 46
based on template version 5.12.0

> WdgMConfigPtr -> WdgMSupervisedEntityRef[SEID]

.EntityStatusGRef -> LocalMonitoringStatus

> The global monitoring status: accessible through the API

WdgM_GetGlobalStatus() or WdgMConfigPtr -> DataGRef ->
GlobalMonitoringStatus

> The alive counters of each checkpoint of a supervised entity: WdgMConfigPtr ->
WdgMSupervisedEntityRef[SEID].WdgMCheckpointRef[CPID].

WdgMAliveLRef -> AliveCounter

> The time when the initial CP of an SE has been reached: WdgMConfigPtr->
WdgMSupervisedEntityRef[SEID].EntityStatusLRef ->

RememberedInitialCheckpointTime

> The time when the most recent CP of an SE has been reached: WdgMConfigPtr ->
WdgMSupervisedEntityRef[SEID].EntityStatusLRef ->

RememberedCheckpointTime

> The most recently reached CP of an SE: WdgMConfigPtr ->
WdgMSupervisedEntityRef[SEID].EntityStatusLRef -> RememberedCheckpointId

Note
SEID is the ID of an SE. CPID is the ID of a CP. WdgMConfigPtr is a pointer to the
configuration with which the WdgM was initialized.

Additional debugging feature (not defined in AUTOSAR):

> The function WdgM_ WdgM_GetFirstExpiredSEViolation() provides a way to detect
what kind of violation caused the first SE in the system to change its local status to
WDGM_LOCAL_STATUS_EXPIRED: program flow, deadline, alive supervision or a
combination between them.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 47
based on template version 5.12.0

3 Functional Description

The WdgM monitors safety-relevant applications on the ECU. The WdgM is a basic
software module at the service layer of the standardized basic software architecture of
AUTOSAR. The WdgM monitors the program flow of a configurable number of so-called
supervised entities (SE). When the WdgM detects a violation of the preconfigured
temporal or logical constraints in the program flow, it takes a number of configurable
actions to log the fault and to go to a safe state after a configurable time delay. The safe
state is reached by resetting the watchdog or by omitting watchdog triggering.

Every supervised entity has a defined control flow. Significant points in this control flow are
represented by checkpoints (CP). This means the control flow can be modeled as a graph,
with the checkpoints being the nodes and the pieces of code in between being the
transitions (see Figure 2-4 for an example).

The WdgM configuration defines the allowed transitions between the checkpoints, and the
timing constraints for these transitions

> within every supervised entity (local transitions)

> between checkpoints of different supervised entities (global transitions)

The supervised entities have to report to the WdgM when they have reached a checkpoint.
Thus, the developer has to insert calls at the checkpoints that pass this information to the
WdgM.

The WdgM functionality partially deviates from the AUTOSAR requirements. For details,
refer to Section Deviations from the AUTOSAR 4.0.1 Watchdog Manager.

3.1 Features

The features listed in the following tables cover the functionality specified for the WdgM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

Vector Informatik provides further WdgM functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-2 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

> Services to initialize the WdgM

> Functionality for:

> Alive Supervision

> Deadline Supervision

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 48
based on template version 5.12.0

Supported AUTOSAR Standard Conform Features

> Program Flow Supervision

Table 3-1 Supported AUTOSAR standard conform features

Caution
Deadline Supervision and Program Flow Supervision can only be used if the additional
feature “WdgM_ProgramFlowAndDeadlineMonitoring” is licensed.

(See also sections Deadline Supervision and Program Flow Supervision)

3.1.1 Deviations from the AUTOSAR 4.0.1 Watchdog Manager

The WdgM is compatible with the AUTOSAR 4.0.1 Watchdog Manager, but not fully
compliant. This has the following reasons:

> The AUTOSAR specification does not define functionality comprehensively and
precisely enough for implementation (e.g. global transitions).

> The AUTOSAR specification does not contain certain functionality (e.g. program flow,
deadline supervision recovering).

> The AUTOSAR specification defines an approach that is very complex to be handled
by the user or consumes too much run time (WdgM mode switching).

> The AUTOSAR specification does not fully consider safety requirements (e.g.
windowed Watchdog Trigger).

Below you can find the deviations from the AUTOSAR 4.0.1 Watchdog Manager in detail:

3.1.1.1 Entities, Checkpoints and Transitions

> For periodical watchdog triggering at least one supervised entity and one checkpoint
should be defined.

> In contrast to AUTOSAR, local activity flags of the supervised entities are set back to

FALSE every time an end checkpoint of this supervised entity is reached as specified

in later versions of the WdgM. Analogously, the global activity flag is set back to FALSE

as soon as a global end checkpoint is reached.

> Local initial checkpoints cannot have incoming local transitions, but they can have
incoming global transitions.

> Local end checkpoints cannot have outgoing local transitions, but they can have
outgoing global transitions.

> If global transitions are used, then there must be exactly one global initial checkpoint.

> The global initial checkpoint should be called before any other global checkpoint is
invoked.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 49
based on template version 5.12.0

> If a non-initial checkpoint of a supervised entity is reached and this supervised entity is
not active, then this is considered to be a program flow violation in this supervised
entity.

> If a checkpoint is the source for a local and a global transition, then only one of the two
transitions can occur. The other one is considered a program flow violation. This is
because the program flow cannot split into 2 paths. If, for example, a new task is
started from a CP1 (global transition to CPnew) and the original task continues (local
transition to CP2), then the sequence following the sequences of checkpoint hits is not
allowed:

> CP -> CPnew -> CP2 and

> CP -> CP2 -> CPnew.

> If a local initial checkpoint is the destination checkpoint for a global transition, then the
checkpoint must be hit by following the global transition. There is a dilemma, though: If
several supervised entities form a cycle of transitions, with each supervised entity
entered via a global transition from the previous supervised entity, then there is no way
to start the cycle, because no local initial checkpoint is allowed to be hit in a way other
than via the global transition. The solution is an exception in the WdgM: A local initial
checkpoint can be hit, not coming through the global transition, if it is also the global
initial checkpoint.

> As in AUTOSAR, the WdgM needs a time source in order to measure transition
deadlines. Whereas AUTOSAR does not define the source for ticks, the WdgM allows
the user to choose between three tick sources:

> Internal software source

> External tick source

> OsCounter source

For details see Section Deadline Measurement and Tick Counter.

The checkpoint and entity identifiers are zero-based and increase the list of integer
numbers without gaps.

> Deadline supervision is bound to program flow. Only if program flow transitions are
configured, it is possible to configure transition deadlines.

> The local/global end checkpoint does not need to be defined.

> Either zero or maximum one global initial checkpoint can be configured. So there can
be zero or one global graph.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 50
based on template version 5.12.0

3.1.1.2 Watchdog and Reset

> For safety reasons, the WdgM uses the primary watchdog reset as an immediate reset

(WDGM_IMMEDIATE_RESET = STD_ON). In contrast, the AUTOSAR Watchdog

Manager uses the external function Mcu_PerformReset().

The WdgM does not support a partition reset with

BswM_WdgM_RequestPartitionReset().

3.1.1.3 API

> The WdgM function WdgM_SetMode() switches the trigger mode only. This relates to

the fields

> WdgMTriggerConditionValue

> WdgMTriggerWindowStart (not used – shall be configured with 0)

> WdgMWatchdogMode

> It does not change the set of supervised entities. This can be simulated by activating
and deactivating different sets of supervised entities for different modes.

> For safety and complexity reasons, the function WdgM_DeInit() is not implemented.

> The status reporting mechanism is configurable.
On one hand mode ports can be used to notify applications / SWCs etc. about status
changes as specified in AUTOSAR. On the other hand the WdgM can be configured to
use direct callback notification to report a local and global state change.

> The WdgM checks the configuration independently of the WdgMDevErrorDetect

parameter. This parameter enables/disables only the DET reporting.

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Functionality for multi-core handling

The WdgM allows tolerance delay for all three monitoring features. In AUTOSAR, this is
restricted to alive supervision. Tolerance delay allows recovering from program flow and deadline
violations as well as from alive counter violations.

The interpretation of the AUTOSAR parameter WdgMExpiredSupervisionCycleTol

implements a delay of (WdgMExpiredSupervisionCycleTol + 2) supervision cycles. The

WdgM implements a delay of WdgMExpiredSupervisionCycleTol supervision cycles. This

allows configuring no delay, with the tolerance value set to 0.

The WdgM provides the following function in addition to the AUTOSAR Debugging features:

WdgM_GetFirstExpiredSEViolation().

The WdgM provides the functions WdgM_DeactivateSupervisionEntity() and

WdgM_ActivateSupervisionEntity() for deactivating and activating of the SE. These

functions are not AUTOSAR 4.0.1 compatible.

Table 3-2 Features provided beyond the AUTOSAR standard

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 51
based on template version 5.12.0

3.2 Initialization

In a safety-related system, the initialization of the Watchdog device should be done as
soon as possible after system start (at least before a QM task may compromise the
initialization process). The Watchdog device starts the counter for the next expected
trigger.

Note
The ways how the Watchdog device is initialized, configured, and how it reacts are
platform-dependent and can be different. See the corresponding Watchdog Driver User
Manual

The time between the initialization of the Wdg and the first triggering in function

WdgM_MainFunction() (supervision cycle 0) must match the Watchdog requirements.

This time can be adapted in the Wdg configuration by changing the initial Wdg trigger
window to meet the operating system start time requirements (see Figure 3-1).

Figure 3-1 Start phase of the WdgM

The y-axis in Figure 3-1 shows the Wdg counter value, which is reset after each trigger.
Then the countdown runs until the Wdg is triggered again (within the Wdg initial trigger

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 52
based on template version 5.12.0

window or Trigger window) or 0 (Wdg reset level) is reached (i.e. the window has been
missed) so that a reset is performed.

Note

> Not all hardware platforms can configure a different trigger time for the first
supervision cycle (cycle 0).

> In the first supervision cycle, the alive counter evaluation can be suppressed by

the parameter WDGM_FIRSTCYCLE_ALIVECOUNTER_RESET.

> The functions WdgM_Init() and WdgM_MainFunction() functions can be

placed inside a task, too.

> The function Wdg_<...>_Init() can be placed before main().

> For a multi-core system the WdgM_Init() function must be called on each

processor core once, with the valid configuration for this processor core.

> The WdgM_MainFunction() called periodically on each processor core, on

which WdgM is running, with the configured period for this processor core.

After the execution of function WdgM_Init() the supervision of configured entities is

activated and the checkpoints can be executed (called).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 53
based on template version 5.12.0

3.3 Memory Sections

Memory segmentation into sections is especially important when memory protection is
used in the system.

The WdgM uses three basic RAM data sections:

1. Memory sections for local data of every SE: This section contains local information
about every supervised entity and, if defined, also the alive counters. These
variables are used by the WdgM_CheckpointReached() function and are part of the
private SWC (task, application) memory and written only in the context of this SWC.

Note

> The WdgM does not protect this memory section.

> For a multi-core system, the local data section for a SE must be
accessible from the core for which this SE is configured.

2. Memory sections for global data: This section contains the WdgM global data such
as WdgM global status and timebase tick counter. It is a WdgM private memory.

Note
In the AUTOSAR environment, where QM and safety-related modules are
used together, the WdgM global data should be placed in a so-called trusted
memory section to guarantee its safety and integrity.

> For a multi-core system, the global data section is configured per mode,
i.e. separately for each processor core, on which the WdgM is running.

3. Memory sections for global shared data: This section contains data such as the last
active entity. This memory must be writable for all SWCs using the

WdgM_CheckpointReached() function and for the WdgM_Init() function. As

this is a memory where all the QM SWCs could write, the WdgM variables are
protected (stored double-inverted) by the WdgM itself. The WdgM checks the
correctness of these variables with read operations. If a fault is detected, the WdgM
initiates a reset

Note
For a multi-core system, where several cores are configured for the WdgM,
the global shared section must be accessible by each of these cores.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 54
based on template version 5.12.0

Figure 3-2 Memory usage of the WdgM

3.3.1 Memory Sections Details

Local entity memory:

Local entity data is supervised entity private data. This is the data where the function

WdgM_CheckpointReached() writes. The WdgM configuration generator provides

defines so that the status variables of every supervised entity can be placed in a separate
RAM section. The declaration of every entity starts with defines

WDGM_SEi_START_SEC_VAR_* and ends with WDGM_SEi_STOP_SEC_VAR_*, where i is

the ID of the supervised entity. Theses defines are in the generated file

WdgM_OsMemMap.h. Hence, it must be included in the file MemMap.h.

If the entity is linked to an OS application (through its ECU description parameter

WdgMAppTaskRef), then the supervised entity data is placed in a section embedded in

appl_name_START_SEC_VAR_* and appl_name_STOP_SEC_VAR_* or

OS_START_appl_name_VAR_* and OS_STOP_appl_name_VAR (if MICROSAR OS as

of version Gen7), where appl_name is the name of the application. In this case, the

integrator must make sure to include the file Os_MemMap.h in file MemMap.h after the file

WdgM_OSMemMap.h.

Global memory: Global data are private WdgM variables. The memory mapping defines

are WDGM_GLOBAL_START_SEC_VAR_* and WDGM_GLOBAL_STOP_SEC_VAR_*.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 55
based on template version 5.12.0

This section can be mapped to an OS application (through its ECU description parameter

WdgMGlobalMemoryAppTaskRef). For this mapping, defines

appl_name_START_SEC_VAR_* and appl_name_STOP_SEC_VAR_* or

OS_START_appl_name_VAR_* and OS_STOP_appl_name_VAR (if MICROSAR OS as

of version Gen7) are used, where appl_name is the name of the application. In this case,

the integrator must make sure to include the file Os_MemMap.h in file MemMap.h after the

WdgM_OSMemMap.h.

As this section is internally not protected by the WdgM, it should be in a memory area
where it cannot be corrupted.

Global shared memory: Global shared data should be placed in a RAM section where all
tasks can read and write to that data. For a multi-core system, the global shared data
section must be accessible by each processor core.

The memory mapping defines are WDGM_GLOBAL_SHARED_START_SEC_VAR_* and

WDGM_GLOBAL_SHARED_STOP_SEC_VAR_*. These variables are internally protected by

the WdgM. For this mapping, defines

GlobalShared_START_SEC_VAR_NOINIT_UNSPECIFIED and

GlobalShared_STOP_SEC_VAR_NOINIT_UNSPECIFIED or OS

OS_START_SEC_GLOBALSHARED_VAR_NOINIT_UNSPECIFIED and

OS_STOP_SEC_GLOBALSHARED_VAR_NOINIT_UNSPECIFIED (if MICROSAR OS as of

version Gen7) are used.

3.3.2 Code and Constants

Following memory sections need to be set up for WdgM’s code:

Section Description

WDGM_START_SEC_CODE /

WDGM_STOP_SEC_CODE

Set up manually, e.g. in MemMap.h.

Table 3-3 Code and Constants

Following memory sections need to be set up for WdgM’s constants:

Section Description

WDGM_START_SEC_CONST_32BIT /

WDGM_STOP_SEC_CONST_32BIT

WDGM_START_SEC_CONST_UNSPECIFIED /

WDGM_STOP_SEC_CONST_UNSPECIFIED

Set up manually, e.g. in MemMap.h.

Table 3-4 WdgM constants

3.3.3 Module Variables

3.3.3.1 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0

Following memory sections need to be set up for WdgM’s module variables:

Section Description

WDGM_GLOBAL_START_SEC_VAR_32BIT_

COREn_PRIVATE /
If the ECU description parameter

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 56
based on template version 5.12.0

Section Description

WDGM_GLOBAL_STOP_SEC_VAR_32BIT_

COREn_PRIVATE

WDGM_GLOBAL_START_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE /

WDGM_GLOBAL_STOP_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE

WdgMGlobalMemoryAppTaskRef is set,

then these sections are renamed according to
the configured OS application (prefix

“WDGM_GLOBAL_” is converted to

“<OSApp>_”, where <OSApp> is the name of

the OS application; suffix “_COREn_PRIVATE”

is removed) and generated as part of

WdgM_OsMemMap.h. Otherwise they need to

be set manually, e.g. in MemMap.h.

The suffix ”_COREn_PRIVATE“ corresponds to

the processor core for which the OS
application is configured.

WDGM_GLOBAL_SHARED_START_SEC_VAR_

NOINIT_UNSPECIFIED /

WDGM_GLOBAL_SHARED_STOP_SEC_VAR_

NOINIT_UNSPECIFIED

These sections are always assigned in the

generated file WdgM_OsMemMap.h to OS

sections and renamed to:

GlobalShared_START_SEC_VAR_UNSPECI

FIED /

GlobalShared_STOP_SEC_VAR_UNSPECIF

IED

WDGM_START_SEC_VAR_NOINIT_16BIT /

WDGM_STOP_SEC_VAR_NOINIT_16BIT

WDGM_START_SEC_VAR_NOINIT_8BIT /

WDGM_STOP_SEC_VAR_NOINIT_8BIT

Set up manually, e.g. in MemMap.h. Used only

for AUTOSAR Debugging. Must be read/write
accessible from the WdgM main functions
executed on each processor core.

Table 3-5 Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0

3.3.3.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2

Following memory sections need to be set up for WdgM’s module variables:

Section Description

WDGM_GLOBAL_START_SEC_VAR_32BIT_

COREn_PRIVATE /

WDGM_GLOBAL_STOP_SEC_VAR_32BIT_

COREn_PRIVATE

WDGM_GLOBAL_START_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE /

WDGM_GLOBAL_STOP_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE

If the ECU description parameter

WdgMGlobalMemoryAppTaskRef is set,

then these sections are renamed according to
the configured OS application.

“WDGM_GLOBAL_START_SEC_ /

WDGM_GLOBAL_STOP_SEC_” is converted to

”OS_START_SEC_“<OSApp>_ /

OS_STOP_SEC_“<OSApp>_”, where <OSApp>

is the name of the OS application; suffix

“_COREn_PRIVATE” is removed. This is

generated as part of WdgM_OsMemMap.h.

WDGM_GLOBAL_SHARED_START_SEC_VAR_

NOINIT_UNSPECIFIED /

WDGM_GLOBAL_SHARED_STOP_SEC_VAR_

NOINIT_UNSPECIFIED

These sections are always assigned in the

generated file WdgM_OsMemMap.h to OS

sections and renamed to:

OS_START_SEC_GLOBALSHARED_VAR_NOIN

IT_UNSPECIFIED /

OS_STOP_SEC_GLOBALSHARED_VAR_NOINI

T_UNSPECIFIED

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 57
based on template version 5.12.0

Section Description

WDGM_START_SEC_VAR_NOINIT_16BIT /

WDGM_STOP_SEC_VAR_NOINIT_16BIT

WDGM_START_SEC_VAR_NOINIT_8BIT /

WDGM_STOP_SEC_VAR_NOINIT_8BIT

Set up manually, e.g. in MemMap.h. Used only

for AUTOSAR Debugging. Must be read/write
accessible from the WdgM main functions
executed on each processor core.

Table 3-6 Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2

3.3.4 Supervised Entity Variables

3.3.4.1 Supervised Entity Variables with MICROSAR Os Gen6 / AUTOSAR Os
version 4.0

Following memory sections need to be set up for WdgM’s supervised entity variables:

Section Description

WDGM_SEi_START_SEC_VAR_NOINIT

_32BIT_COREn_PRIVATE /

WDGM_SEi_STOP_SEC_VAR_NOINIT_

32BIT_COREn_PRIVATE

WDGM_SEi_START_SEC_VAR_NOINIT

_UNSPECIFIED_COREn_PRIVATE /

WDGM_SEi_STOP_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE

If the ECU description parameter

WdgMAppTaskRef corresponding to supervised

entity with ID “i” configured for core ID “n” is set,

then these sections are renamed according to the

configured OS application (prefix “WDGM_SEi_” is

converted to “<OSApp>_”, where <OSApp> is the

name of the OS application; suffix

“_COREn_PRIVATE” is removed) and generated as

part of WdgM_OsMemMap.h.

Table 3-7 Supervised Entity Variables MICROSAR Os Gen6 / AUTOSAR Os version 4.0

3.3.4.2 Supervised Entity Variables with MICROSAR Os Gen7 / AUTOSAR Os
version 4.2

Following memory sections need to be set up for WdgM’s supervised entity variables:

Section Description

WDGM_SEi_START_SEC_VAR_NOINIT

_32BIT_COREn_PRIVATE /

WDGM_SEi_STOP_SEC_VAR_NOINIT_

32BIT_COREn_PRIVATE

WDGM_SEi_START_SEC_VAR_NOINIT

_UNSPECIFIED_COREn_PRIVATE /

WDGM_SEi_STOP_SEC_VAR_NOINIT_

UNSPECIFIED_COREn_PRIVATE

If the ECU description parameter WdgMAppTaskRef

corresponding to supervised entity with ID “i”

configured for core ID “n” is set, then these sections

are renamed according to the configured OS
application.

“WDGM_SEi_START_SEC_ /

WDGM_SEi_STOP_SEC_” is converted to

”OS_START_SEC_“<OSApp>_/

OS_STOP_SEC_“<OSApp>_”, where <OSApp> is the

name of the OS application; suffix

“_COREn_PRIVATE” is removed. This is generated

as part of WdgM_OsMemMap.h.

Table 3-8 Supervised Entity Variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 58
based on template version 5.12.0

3.4 Timing Setup

This chapter describes the WdgM timing configuration parameters. The timing of the
WdgM is defined by

> the calling period of function WdgM_MainFunction()

> the count period of the WdgM tick counter (for deadline supervision)

Every time when the function WdgM_MainFunction() is invoked

> the alive counters are evaluated

> running deadlines are checked for violations

> checkpoint fault indications are evaluated and, finally

> the WdgM global status of all supervised entities is calculated

Note

The time period during which the function WdgM_MainFunction() is called, is the

WdgM supervision cycle. This cycle time is also used for the periodic setting of the
trigger condition of the Watchdog device. The period of this cycle determines the
shortest WdgM reaction time. For example: If the WdgM reaction time should be not
more than 10 ms, the supervision cycle time should be set to 10 ms or shorter.

Note
For a multi-core system, the calling period and the count period might be configured
differently for the WdgM instance running on each core. For reasons of simplicity, this
section covers the case for one processor core only. The WdgM instances in a multi-
core core setup act independently of each other.

Figure 3-3 shows the WdgM timing configuration parameters. The parameters can be set
by a Configuration Tool.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 59
based on template version 5.12.0

Figure 3-3 Time base of WdgM

Two configuration parameters shown in Figure 3-3 are used by the System Environment
only. The Scheduler uses these parameters and periodically calls

> function WdgM_MainFunction() and

> if defined, also function WdgM_UpdateTickCounter()

All the other parameters are used by the WdgM and Wdg.

Configuration Parameter Description

WdgMSupervisionCycle This parameter defines the time period in which the WdgM
performs cyclic supervision. This is the time period in which
function WdgM_MainFunction() is called. The user of this
parameter is the system environment that periodically calls
function WdgM_MainFunction().

WdgMTicksPerSecond This parameter defines the frequency by which the WdgM tick
counter is incremented.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 60
based on template version 5.12.0

Configuration Parameter Description

> If the external tick counter is selected, the user of this
parameter is the system environment that periodically calls
function WdgM_UpdateTickCount().

> If the OsCounter is selected, the user has to configure an
OsCounter and reference the OsCounter from the
WdgMOsCounterRef. The parameter WdgMTicksPerSecond
will be configured automatically according to the OsCounter
configuration.

> If the internal software timebase is selected, the user only
has to configure the WdgMSupervisionCylce. The parameter
WdgMTicksPerSecond will be configured automatically
according to the supervision cylce configuration.

> The parameter WdgMTicksPerSecond must not be zero.

WdgMTriggerWindowStart This parameter is actually not used and should be set to 0.

WdgMTriggerConditionValue This parameter defines, for all supervision cycles (except for the
first), the upper limit of the Watchdog trigger window. If the
Watchdog is not triggered in time, a reset is caused. This
parameter is in milliseconds. The user is the WdgM.

Table 3-9 Configuration Parameters

3.4.1 Deadline Measurement and Tick Counter

The transition time between two checkpoints is measured in ticks. The tick counter delivers
a time base for deadline supervision. The tick counter is the smallest deadline time unit for
the WdgM. There are three possible tick sources (see Figure 3-4 WdgM Tick source
selection for deadline supervision):

> Internal software tick source: The tick source is software-based where the internal
counter is incremented every time the WdgM main function

(WdgM_MainFunction()) is called. If the internal software tick source is selected, the

frequency (WdgMTicksPerSecond) is the same as WdgM_MainFunction() is called.

> External tick source: The tick must be counted externally by calling the WdgM function

WdgM_UpdateTickCount(). If the external tick source is selected, the system

integrator is responsible for calling this function on a regular basis. The WdgM
internally checks if the number of ticks corresponds with the supervision cycle.

> OsCounter: The Os is responsible for the counter. If the OsCounter is selected as
source, the system integrator is responsible for configuring the OsCounter properly.
The WdgM internally checks if the number of ticks corresponds with the supervision
cycle.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 61
based on template version 5.12.0

Note

The tick source can be selected by setting the parameter WdgMTimebaseSource. The

default parameter value is WDGM_INTERNAL_SOFTWARE_TICK.

Note
When you configure a multi-core system, it is possible to select only one tick source for
all the processor cores. However, ticks per second can be different.

Figure 3-4 WdgM Tick source selection for deadline supervision

The ticks per second must be configured for the WdgM to translate the monitored
deadlines from seconds (as stored in the AUTOSAR ECU description files) to WdgM ticks.
This conversion is done during configuration generation for the WdgM, with the deadlines
being stored in the generated configuration as WdgM ticks.

WdgM

Timebase

internal software

external software

OsCounterOs

System API:
WdgM_UpdateTickCount()

Parameter Switch
WdgM_TimebaseSource

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 62
based on template version 5.12.0

Note

> Non-integer ticks are not allowed. If a deadline cannot be converted into an integer
number of WdgM ticks, the WdgM configuration generator will report an error.

> For an internal software tick source and an external tick source the internal tick
counter is initialized to 1.

Examples

> Let a WdgM tick be 2 ms. If a deadline is 3 ms, it cannot be converted to WdgM
ticks without loss of accuracy. It will be between 1 and 2 WdgM ticks.

> Let a WdgM tick be 1 ms (i.e. the parameter WdgMTicksPerSecond is set to

1000). A deadline of 0.002s=2ms is then translated to 2 WdgM ticks. But a

deadline of 0.0005s=0.5ms cannot be translated to an integer number of WdgM

ticks.

Note
There is a trade-off between the WdgM tick resolution and performance. The shorter
the tick length, the finer the deadlines that can be monitored. However, the
performance gets worse due to more frequent calls to the

WdgM_UpdateTickCount() function.

3.5 Using Checkpoints in Interrupts

Generally, the call of the function WdgM_CheckpointReached() is not restricted to a

specific context. However, if it is called from an interrupt, the system designer must be
aware of the following:

> All checkpoints of the supervised entity which runs in the interrupt context must be
called from the same interrupt and never outside of it. This is because the function

WdgM_CheckpointReached() is allowed to interrupt itself only if called for different

supervised entities.

> The runtime of the function WdgM_CheckpointReached() must be considered. Note

that the runtime can vary depending on the platform and the complexity of the
referenced supervised entity.

> The function WdgM_CheckpointReached() requests to disable/enable interrupts (by

calling e.g. SchM_Exit_WdgM()/SchM_Enter_WdgM()) – the usage of

disable/enable interrupt routines must be allowed out of the interrupt context.

> The interrupt context must have read/write access to the global shared memory

(memory mapping defines WDGM_GLOBAL_SHARED_START_SEC_VAR_NOINIT_*).

> The interrupt context must have read/write access to referenced supervised entity

local memory (memory mapping defines WDGM_SEn_START_SEC_VAR_NOINIT_*,

where n is the supervised entity ID provided to the function

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 63
based on template version 5.12.0

WdgM_CheckpointReached()). The same rules apply to this SE local memory – it

might be write accessible from contexts which have the same quality level as the
interrupt context or higher, but it must be protected from all other contexts.

3.6 Integration into a Multi-Core System

The WdgM can be used on a single core and on multiple cores simultaneously. In order to
achieve this task in a more generic and hardware-independent way inter-core
communication is avoided. Each processor core on which the WdgM needs to do its
monitoring runs a separate WdgM instance. Each WdgM instance controls one or more
watchdogs. It builds an independent global state and decides on triggering its watchdogs
or causing a deliberate reset. Everything that is valid for single-core integration is valid for
multi-core usage as well. However, each core must be handled as a separate processor.

The integration specifics for a multi-core system are as follows:

> Each processor core runs the WdgM_Init() function separately with its own

configuration.

> The configuration for each processor core (which contains only its settings, supervised
entities, etc.) is generated in a separate configuration structure. However, the
preprocessor options are common for all cores.

> Each processor core executes the WdgM_MainFunction() separately and

periodically. The period for each processor core might be different and depends on the
configuration.

> The global memory data is configured separately for each processor core and must be
accessible from this core and the application that is responsible for running the

WdgM_MainFunction().

> The global shared memory section must be accessible by all processor cores.

3.7 States

See WdgM Local Entity State (2.3.12) and WdgM Global State (2.3.13).

3.8 Main Functions

See WdgM Supervision Cycle (2.3.8).

3.9 Error Handling

3.9.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Appl_Det_ReportError() as specified in [2], if development error reporting is enabled

(i.e. pre-compile parameter WdgM_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Appl_Det_ReportError ().

The reported WdgM ID is 13.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 64
based on template version 5.12.0

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 WdgM_Init

0x02 WdgM_GetVersionInfo

0x03 WdgM_SetMode

0x05 WdgM_ActivateSupervisionEntity

0x06 WdgM_DeactivateSupervisionEntity

0x08 WdgM_MainFunction

0x0B WdgM_GetMode

0x0C WdgM_GetLocalStatus

0x0D WdgM_GetGlobalStatus

0x0E WdgM_CheckpointReached

0x0F WdgM_PerformReset

0x10 WdgM_GetFirstExpiredSEID

0x12 WdgM_UpdateTickCount

0x13 WdgM_GetFirstExpiredSEViolation

Table 3-10 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

(0x10u) API service called if WdgM uninitialized

(0x11u) API service WdgM_Init() called with wrong parameter

(0x12u) API service WdgM_SetMode() called with wrong parameter

(0x13u) API service WdgM_Init() called and no supervised entity is configured

API service called with wrong supervised entity id

(0x14u) API service called with NULL_PTR as parameter

(0x15u) API service WdgM_Init() called and a trigger mode is erroneously configured to
be OFF and OFF mode is not allowed

(0x16u) API service WdgM_Init() called and on checkpoint is configured in a supervised
entity

API service WdgM_CheckpointReached() called with wrong checkpoint id

(0x17u) Not used

(0x28u) API service WdgM_MainFunction() detected 'stuck-in' or 'negative jump' of
timebase tick counter or timebase tick counter is out of configured range

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 65
based on template version 5.12.0

Error Code Description

(0x29u) API services WdgM_MainFunction() or WdgM_CheckpointReached is called and
local / global status is undefined

(0x2Au) API services of WdgIf called and return value is E_NOT_OK

(0x2Bu) API service WdgM_MainFunction() detected memory corruption

(0x2Cu) API service WdgM_MainFunction() called while already invoked

(0x2Du) Supervised entity shall be deactivate while supervised entity is active

(0x2Eu) API service and invalid processor core id is determined within the service

Table 3-11 Errors reported to DET

3.9.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service

Appl_Dem_ReportErrorStatus() as specified in [3], if production error reporting is

enabled (i.e. pre-compile parameter WDGM_DEM_REPORT==STD_ON).

If another module is used for production code error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Appl_Dem_ReportErrorStatus ().

The errors reported to DEM are described in the following table:

Error Code Description

WDGM_E_IMPROPER_CALLER Service WdgM Set Mode called with invalid
caller id.

WDGM_E_MONITORING Monitoring has failed (a watchdog reset will
occur).

Table 3-12 Errors reported to DEM

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 66
based on template version 5.12.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR WdgM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the WdgM contains the files which are described in the chapters 4.1.1 and
4.1.2.

4.1.1 Static Files

File Name Description

WdgM.c Implementation of the WdgM, defines the API for the Service Layer of
the BSW-Layer.

WdgM_Checkpoint.c Implementation of the WdgM, defines the API for the Application
Layer.

WdgM.h Header file of the WdgM, provides API function declarations.

WdgM_Cfg.h Provides defines and declarations for the WdgM configuration
identifiers.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

WdgM_PBcfg.c This file contains the main configuration structure with the default
name WdgMConfig_Mode0. This configuration name should be used
by the initialization function, i.e. by call

WdgM_Init(&WdgMConfig_Mode0). If necessary, the non-

standard AUTOSAR name WdgMConfig_Mode0 can be renamed to
WdgMConfigSet in the Configuration Tool (e.g., DaVinci).

WdgM_PBcfg.h The file contains the declaration of the WdgM configuration.

WdgM_OSMemMap.h The file contains defines of all used / necessary memory sections.

WdgM_Cfg_Features.h The file contains WdgM precompile directives.

Table 4-2 Generated files

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 67
based on template version 5.12.0

4.2 Critical Sections

The WdgM implements the following critical section:

> WDGM_EXCLUSIVE_AREA_0: This critical section is used to protect all uninterruptable

sequences. It shall lock all interrupt sources and task switches.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 68
based on template version 5.12.0

5 API Description

The WdgM software module is the top level layer of the Watchdog Manager Stack. The
WdgM software module contains the core functionality with supervised entity state
machines and calculation of the WdgM global state. The WdgM communicates on one
side through its user API with the Application Layer (optionally using RTE) and through its
system API with the Basic Software Components (BSW) and, on the other side, with the
WdgIf layer.

5.1 Type Definitions

The types defined by the WdgM are described in this chapter.

Type Name C-Type Description Value Range

WdgM_ConfigType struct This is the type for the WdgM configuration
structure. This structure is generated by the
WdgM configuration generator.

N/A

WdgM_Supervised
EntityIdType

uint16 This is the type for an individual supervised
entity for the Watchdog Manager.

Note: If configuration parameter
WDGM_USE_RTE is set to STD_ON, then
this type is imported, otherwise it is
generated.

0...65534

WdgM_Checkpoint
IdType

uint16 This is the type for a checkpoint in the
context of a supervised entity for the WdgM.

Note: If configuration parameter
WDGM_USE_RTE is set to STD_ON, then
this type is imported, otherwise it is
generated.

0...65534

WdgM_ModeType uint8 This is the type for the ID of a trigger mode
that was configured for the WdgM. The
current trigger mode can be retrieved with
WdgM_GetMode().

Note: If configuration parameter

WDGM_USE_RTE is set to STD_ON, then this

type is imported, otherwise it is generated.

0...255

WdgM_LocalStatus
Type

uint8 This is the type for the local monitoring state
of a supervised entity. The current local state
of a supervised entity can be retrieved with
WdgM_GetLocalStatus().

Note: If configuration parameter
WDGM_USE_RTE is set to STD_ON, then
this type is imported, otherwise it is
generated.

WDGM_LOCAL_STATUS
_OK = 0

WDGM_LOCAL_STATUS
_FAILED = 1

WDGM_LOCAL_STATUS
_EXPIRED = 2

WDGM_LOCAL_STATUS
_DEACTIVATED = 4

WdgM_GlobalStatus
Type

uint8 This is the type for the global monitoring
state. It summarizes the local states of all
supervised entities. The current global state
can be retrieved with
WdgM_GetGlobalStatus().

WDGM_GLOBAL_STATU
S_OK = 0,

WDGM_GLOBAL_STATU
S_FAILED = 1,

WDGM_GLOBAL_STATU

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 69
based on template version 5.12.0

Type Name C-Type Description Value Range

Note: If configuration parameter
WDGM_USE_RTE is set to STD_ON, then
this type is imported, otherwise it is
generated.

S_EXPIRED = 2,

WDGM_GLOBAL_STATU
S_STOPPED = 3,

WDGM_GLOBAL_STATU
S_DEACTIVATED = 4

Std_VersionInfo
Type

struct This is the parameter type of function
WdgM_GetVersionInfo()

N/A

WdgM_Violation
Type

uint8 Used with AUTOSAR Debugging (parameter
WdgMAutosarDebugging). This parameter is
the parameter type of function
WdgM_GetFirstExpiredSEViolation()

WDGM_VIOLATION_NO
NE: No violations

WDGM_VIOLATION_PF:
Program flow violation

WDGM_VIOLATION_DM:
Deadline supervision
violation

WDGM_VIOLATION_AS:
Alive supervision violation

WDGM_VIOLATION_PF_
DM: Program flow and
deadline supervision
violations

WDGM_VIOLATION_PF_
AS: Program flow and
alive supervision violations

WDGM_VIOLATION_DM_
AS: Deadline supervision
and alive supervision
violations

WDGM_VIOLATION_PF_
DM_AS: Program flow,
deadline supervision and
alive supervision
violationsmonitoring and
alive supervision violations

Table 5-1 Type definitions

5.2 Services provided by WdgM

5.2.1 WdgM_Init

Prototype

void WdgM_Init(const WdgM_ConfigType* WdgMConfigPtr)

Parameter

WdgMConfigPtr Pointer to post-build configuration data

Return code

void

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 70
based on template version 5.12.0

Functional Description

The WdgM_Init() function initializes the WdgM. After the execution of this function, monitoring is

activated according to the configuration of ConfigPtr. This function can be used during monitoring, too,

but note that all pending violations are lost.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> This service is expected to be called in application context.

Table 5-2 WdgM_Init

5.2.2 WdgM_GetVersionInfo

Prototype

void WdgM_GetVersionInfo (Std_VersionInfoType* VersionInfo)

Parameter

VersionInfo Pointer to where to store the version information of the WdgM module.

Return code

void

Functional Description

The WdgM_GetVersionInfo() function returns information about the version of this module. This includes
the module ID, the vendor ID, and the vendor-specific version number.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is reentrant.

Table 5-3 WdgM_GetVersionInfo

5.2.3 WdgM_SetMode

Prototype

Std_ReturnType WdgM_SetMode (WdgM_ModeType Mode, uint16 CallerID)

Parameter

Mode The ID of the Trigger Mode to which the WdgM must be set.

CallerID ID of the caller allowed to call the function WdgM_SetMode(). The

allowed caller is defined in the configuration. The caller ID is checked if

WdgMDefensiveBehavior is true.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 71
based on template version 5.12.0

Return code

Std_ReturnType E_OK: The new Trigger Mode has been successfully set.

E_NOT_OK: The setting of the new Trigger Mode failed.

Functional Description

This functions sets the Trigger Mode of the WdgM. The WdgM Trigger Mode is a set of Watchdog trigger
times and Watchdog mode. The WdgM can have one or more Trigger Modes for every watchdog. In

contrast to AUTOSAR, where the Mode represents a set of entities with all entity-specific parameters, the

WdgM Trigger Mode only sets the following parameters:

> WdgMTriggerConditionValue

> WdgMTriggerWindowStart

> WdgMWatchdogMode

Note: A change to trigger mode with ID Mode sets all configured watchdogs to the trigger mode with ID
Mode. As a consequence, all watchdogs must have configured the same number of Trigger Modes.

This function can be used to increase the WdgM supervision cycle in an MCU sleep mode.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is asynchronous.

> This function is reentrant.

Table 5-4 WdgM_SetMode

5.2.4 WdgM_ActivateSupervisionEntity

Prototype

Std_ReturnType WdgM_ActivateSupervisionEntity (WdgM_SupervisedEntityIdType

SEID)

Parameter

SEID Supervised entity identifier.

Return code

Std_ReturnType E_OK: Marking the supervised entity for activation was successful.

E_NOT_OK: Marking the supervised entity for activation failed.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 72
based on template version 5.12.0

Functional Description

The function marks an entity for activation. An entity can only be activated when its local state is
WDGM_LOCAL_STATUS_DEACTIVATED. The activation itself happens at the end of the supervision cycle
inside the WdgM_MainFunction().

Note:

> This function can degrade system safety. The activation of entity supervision in safety-related products
needs special attention to avoid unintended supervised entity deactivation.

> In the same call of WdgM_MainFunction(), first the local states of all supervised entities and the

global state are set, then the supervised entity is activated.

> After SE activation the function WdgM_GetLocalStatus() can be used to check the SE local state.

> This function is only available if the preprocessor switch WdgMEntityDeactivationEnabled is set

to true and if the entity option WdgMEnableEntityDeactivation is set to true.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is asynchronous.

> This function is reentrant (for different SEID).

> This function is an extension of the AUTOSAR specification

Table 5-5 WdgM_ActivateSupervisionEntity

5.2.5 WdgM_DeactivateSupervisionEntity

Prototype

Std_ReturnType WdgM_DeactivateSupervisionEntity (WdgM_SupervisedEntityIdType

SEID)

Parameter

SEID ID of the supervised entity to be deactivated. Range [0...N]

Return code

Std_ReturnType E_OK: Marking the supervised entity for deactivation was successful.

E_NOT_OK: Marking the supervised entity for deactivation failed.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 73
based on template version 5.12.0

Functional Description

The function marks an entity for deactivation. An entity can only be deactivated when its local state is

WDGM_LOCAL_STATUS_OK or WDGM_LOCAL_STATUS_FAILED. The deactivation itself happens at the end

of the supervision cycle inside the WdgM_MainFunction(). When an entity is deactivated then its

checkpoints are not evaluated anymore and the entity local state is WDGM_LOCAL_STATUS_DEACTIVATED.

Note:

> When an entity is deactivated, the global transitions to this entity are not evaluated.

> Using this function can degrade system safety. The deactivation of entity supervision in safety-related
products needs special attention to avoid unintended supervised entity deactivation.

> The function WdgM_DeactivateSupervisionEntity() can deactivate a supervised entity only

before its initial checkpoint was passed or after its end checkpoint was passed. The focus here is on
entities that are spread over more than one supervision cycle.

Note: The local program flow of a supervised entity may span over more than one supervision cycle.
Those active entities cannot be deactivated while running. Deactivating active SEs leads to a DEM
error report.

> In the same call of WdgM_MainFunction(), first the supervised entity is deactivated, then the local

states of all supervised entities and the global state are set.

> After SE deactivation the function WdgM_GetLocalStatus() can be used to check the SE local

state.

> This function is only available if the preprocessor switch WdgMEntityDeactivationEnabled is set

to true and if the entity option WdgMEnableEntityDeactivation is set to true.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is asynchronous.

> This function is reentrant (for different SEID).

> This function is an extension of the AUTOSAR specification

Table 5-6 WdgM_DeactivateSupervisionEntity

5.2.6 WdgM_MainFunction

Prototype

void WdgM_MainFunction(void)

Parameter

void

Return code

void

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 74
based on template version 5.12.0

Functional Description

This function evaluates monitoring data gathered from the hit checkpoints in all supervised entities during
the supervision cycle. Depending on the violation found (if there is any), the

> local state of the supervised entities and

> the WdgM global state

are determined again.

Depending on the resulting global state:

> the Wdg is triggered, or

> the Wdg trigger discontinues (safe state), or

> the Wdg is reset (safe state).

The function must run at the end of every supervision cycle. It may be called by the Basic Software
Scheduler or a task with a fixed period time.

The WdgM_MainFunction() function is not reentrant. To prevent data inconsistency when it is interrupted

by itself (e.g. due to schedule overload), the function checks if it is executed concurrently. If this function is
started before its last instance has finished, it raises a development error.

Note:

> Alive counter violations are detected at the end of every alive supervision reference cycle,

> Program flow violations are detected at the end of every supervision cycle,

> Continued program flow violations are detected at the end of every program flow supervision cycle.

> Deadline violations are detected at the end of every supervision cycle,

> Continued of deadline violations are detected at the end of every deadline supervision cycle.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

> This service is always available.

Table 5-7 WdgM_MainFunction

5.2.7 WdgM_GetMode

Prototype

Std_ReturnType WdgM_GetMode(WdgM_ModeType* Mode)

Parameter

Mode Pointer to the current Trigger Mode ID of the Watchdog Manager

Return code

Std_ReturnType E_OK: Current Trigger Mode successfully returned.

E_NOT_OK: Returning current Trigger Mode failed.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 75
based on template version 5.12.0

Functional Description

Returns the current Trigger Mode of the WdgM. The WdgM Trigger Mode represents one Watchdog trigger
time and mode setting.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is reentrant.

Table 5-8 WdgM_GetMode

5.2.8 WdgM_GetLocalStatus

Prototype

Std_ReturnType WdgM_GetLocalStatus (WdgM_SupervisedEntityIdType SEID,

WdgM_LocalStatusType* Status)

Parameter

SEID Identifier of the supervised entity whose monitoring state is returned.

Status Pointer to the local monitoring state of the given supervised entity.

Return code

Std_ReturnType E_OK: Current monitoring state successfully returned.

E_NOT_OK: Returning the current monitoring state failed.

Functional Description

Returns the monitoring state of the given supervised entity.

Note: The WdgM updates the state inside the WdgM_MainFunction() every supervision cycle.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is reentrant.

Table 5-9 WdgM_GetLocalStatus

5.2.9 WdgM_GetGlobalStatus

Prototype

Std_ReturnType WdgM_GetGlobalStatus (WdgM_GlobalStatusType* Status)

Parameter

Status Pointer to global monitoring state of the WdgM.

Return code

Std_ReturnType E_OK: Current global monitoring state successfully returned.

E_NOT_OK: Returning the current global monitoring state failed.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 76
based on template version 5.12.0

Functional Description

Returns the global monitoring state of the WdgM.

Note: The WdgM updates the state inside the WdgM_MainFunction() every supervision cycle.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is reentrant.

Table 5-10 WdgM_GetGlobalStatus

5.2.10 WdgM_CheckpointReached

Prototype

Std_ReturnType WdgM_CheckpointReached (WdgM_SupervisedEntityIdType SEID,

WdgM_CheckpointIdType CheckpointID)

Parameter

SEID Identifier of the supervised entity that reports a checkpoint.

CheckpointID Identifier of the checkpoint within a supervised entity that has been reached.

Return code

Std_ReturnType E_OK: Checkpoint monitoring successful.

E_NOT_OK: Checkpoint monitoring fault. Returned in the following cases

> WDGM_E_NO_INIT: Uninitialized WdgM (DET code 0x10)

> WDGM_E_PARAM_SEID: Wrong Id number of the supervised entity
(DET code 0x13)

> WDGM_E_CPID: Invalid checkpoint ID number (DET code 0x16)

> WDGM_E_PARAM_STATE: Invalid WdgM state. Reset will be invoked
(DET code 0x29).

Functional Description

Indicates to the WdgM that a checkpoint within a supervised entity has been reached.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is reentrant (in the context of a different supervised entity).

Table 5-11 WdgM_CheckpointReached

5.2.11 WdgM_PerformReset

Prototype

Std_ReturnType WdgM_PerformReset(void)

Parameter

void

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 77
based on template version 5.12.0

Return code

Std_ReturnType E_OK: This value will not be returned because the reset is activated, and the

routine does not return.

E_NOT_OK: The function has failed.

Functional Description

Instructs the WdgM to cause an immediate watchdog reset.

Note:

This function is hardware-dependent. Some watchdogs do not support an immediate reset. Check the Wdg
Driver documentation.

This function can require direct access to hardware registers. Access to hardware registers can be
dependent on hardware platforms and software architectures. Hence, the application that calls
WdgM_PerformReset() must have the corresponding access rights.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

> Other particularities, limitations, post-conditions, pre-conditions

Table 5-12 WdgM_PerformReset

5.2.12 WdgM_GetFirstExpiredSEID

Prototype

Std_ReturnType WdgM_GetFirstExpiredSEID (WdgM_SupervisedEntityIdType* SEID)

Parameter

SEID A pointer to a variable that stores the ID of the first SE which has made a

transition to the state WDGM_LOCAL_STATUS_EXPIRED or 0 if the function did

not execute correctly.

Return code

Std_ReturnType E_OK: The function could extract the record for the first expired supervised

entity successfully.

E_NOT_OK: An error was detected (input parameter or memory corruption of

the record)

Functional Description

This function returns the ID of the first SE that reached the expired state and, thus, is potentially
responsible for a system reset. It must be executed after at least one SE reached the expired state, e.g.
after a reset, otherwise the returned result might not be correct.

Note: The record for the first expired SE is stored double inverse (so that memory corruption can be
detected) and in a variable section that is not initialized (to preserve the data after a reset, but this also
means that there is initially no valid entry).

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 78
based on template version 5.12.0

Table 5-13 WdgM_GetFirstExpiredSEID

5.2.13 WdgM_GetFirstExpiredSEViolation

Prototype

Std_ReturnType WdgM_GetFirstExpiredSEViolation (WdgM_ViolationType*

ViolationType)

Parameter

ViolationType A pointer to a variable that stores the violation type that caused the first SE to

make a transition to state WDGM_LOCAL_STATUS_EXPIRED or 0 if the function

did not execute correctly. This parameter shows if the violation was a program
flow violation, a deadline supervision violation, an alive counter violation, or a
combination between them.

Return code

Std_ReturnType E_OK: The function was able to successfully extract the record for the first

violation type.

E_NOT_OK: An error was detected (input parameter or memory corruption of

the record).

Functional Description

This function returns the violation type of the first supervised entity which reached the expired state – and
thus is potentially responsible for a system reset. It must be executed after at least one supervised entity
reached the expired state, e.g. after a reset, otherwise the returned result might not be correct. Note, that
the record for the violation type is stored double inverse (so that memory corruption can be detected) and
in a variable section which is not initialized (to preserve the data after a reset, but this also means that
initially there is no valid entry).

This function is enabled with the configuration option WdgMAutosarDebugging.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Specify if it might be called from interrupt context

Table 5-14 WdgM_GetFirstExpiredSEViolation

5.2.14 WdgM_UpdateTickCount

Prototype

void WdgM_UpdateTickCount(void)

Parameter

void

Return code

void

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 79
based on template version 5.12.0

Functional Description

This function increments the WdgM timebase tick counter by one. When the precompile configuration

parameter WdgMTimebaseSource is set to WDGM_EXTERNAL_TICK, then this function needs to be called

periodically from outside the WdgM.

The timebase tick counter delivers the time base for deadline supervision. In the AUTOSAR environment.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

> This function can be called, for example, from a task with fixed time period and high priority.

Expected Caller Context

> Specify if it might be called from interrupt context

Table 5-15 WdgM_UpdateTickCount

5.3 Services used by WdgM

In the following table services provided by other components, which are used by the
WdgM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Component API

Det Det_ReportError()

Dem Dem_ReportErrorStatus()

Mcu Mcu_PerformReset()

Os GetCoreID()

SchM > SchM_Enter_WdgM_WDGM_EXCLUSIVE_AREA_0

> SchM_Exit_WdgM_WDGM_EXCLUSIVE_AREA_0

WdgIf > WdgIf_SetMode()

> WdgIf_SetTriggerCondition()

Table 5-16 Services used by the WdgM

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 80
based on template version 5.12.0

Figure 5-1 Expected interfaces to external modules

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 81
based on template version 5.12.0

Note
If the precompile switches

> WdgMDevErrorDetect

> WdgMDemReport

> WdgMUseOsSuspendInterrupt

> WdgMImmediateReset

> WDGM_SECOND_RESET_PATH

are set to FALSE, the WdgM module does not call the corresponding function(s).

Note
The functions listed in the table above may not meet the required quality level and,
thus, must be wrapped in order to ensure freedom from interference with the WdgM.
The integrator must implement the Appl_...() functions according to his safety
requirements.

Note
The system integrator must revise the necessity of the expected interfaces. A called
external function may degrade the quality level of the WdgM below the required quality
level.

5.4 Configurable Interfaces

5.4.1 Notifications

At its configurable interfaces the WdgM defines notifications that can be mapped to
callback functions provided by other modules. The mapping is not statically defined by the
WdgM but can be performed at configuration time. The function prototypes that can be
used for the configuration have to match the appropriate function prototype signatures,
which are described in the following sub-chapters.

5.4.1.1 Global state callback

Prototype

void WdgM_GlobalStateChangeCbk (WdgM_GlobalStatusType new_state);

Parameter

new_state Contains the global state after the global state change.

Note: In a multi-core system, the global state callback function can be set up
for each processor core separately.

Return code

void

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 82
based on template version 5.12.0

Functional Description

If WDGM_STATE_CHANGE_NOTIFICATION == STD_ON and the WdgM global state changes, then the

callback routine defined by the parameter WdgMGlobalStateChangeCbk is called. The name of the

function can be arbitrary.

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> May be called from task level.

Table 5-17 Global state callback

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 83
based on template version 5.12.0

5.4.1.2 Local state change notification

Prototype

void WdgM_LocalStateChangeCbk (WdgM_LocalStatusType new_state);

Parameter

new_state Contains the local state after the local state change.

Return code

void

Functional Description

If WDGM_STATE_CHANGE_NOTIFICATION == STD_ON and the local state of a supervised entity changes,

then the callback routine defined by the parameter WdgMLocalStateChangeCbk is called. The name of

the function can be arbitrary (but of course different for each supervised entity).

Particularities and Limitations

> Service ID: see table 'Service IDs' (chapter 3.9.1)

> This function is synchronous.

> This function is non-reentrant.

Call context

> May be called from task level.

Table 5-18 Local state change notification

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 84
based on template version 5.12.0

5.5 Service Ports

A single SWC description file (WdgM_swc.arxml) is generated by the WdgM configuration
generator. For each referenced OsApplication (referenced by

WdgMGlobalMemoryAppTaskRef and WdgMAppTaskRef) a separate component type

element is generated (named WdgM_<OsApplication>) within. If no OsApplication is
referenced at all, only one component type is generated (named WdgM).

5.5.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

The following client server interfaces with corresponding operations are available:

> WdgM_AliveSupervision

> WdgM_LocalStatus

> WdgM_General

If status reporting mechanism is configured to WDGM_USE_MODE_SWITCH_PORTS:

> WdgM_IndividualMode

> WdgM_GlobalMode

If status reporting mechanism is configured to WDGM_USE_NOTIFICATIONS:

> WdgM_LocalStatusCallbackInterface

> WdgM_GlobalStatusCallbackInterface

5.5.1.1 Provide Ports on WdgM Side

At the Provide Ports of the WdgM the API functions described in 5.2 are available as
Runnable Entities. The Runnable Entities are invoked via operations. The mapping from a
SWC client call to an operation is performed by the RTE. In this mapping the RTE adds
port defined argument values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the WdgM and the
operations defined for the Provide Ports, the API functions related to the operations and
the port defined argument values to be added by the RTE.

5.5.1.1.1 Port Prototype for WdgM_AliveSupervision

There are two possibilities for creation of a client server port prototype:

> For each checkpoint (if parameter

WdgMGenerateCPIdAsPortDefinedArgument is set to STD_ON)

alive_<WdgMSupervisedEntityShortname>_<WdgMCheckpointShortname>

With this client server port prototype the following operation can be invoked:

Operation API Function Port Defined Argument Values

CheckpointReached WdgM_CheckpointReached WdgM_SupervisedEntityIdType
SEID,

WdgM_CheckpointIdType CPID

Table 5-19 alive_<WdgMSupervisedEntityShortname>_<WdgMCheckpointShortname>

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 85
based on template version 5.12.0

> For each supervised entity (if parameter

WdgMGenerateCPIdAsPortDefinedArgument is set to STD_OFF)

alive_<WdgMSupervisedEntityShortname>

With this client server port prototype the following operation can be invoked:

Operation API Function Port Defined Argument Values

CheckpointReached WdgM_CheckpointReached WdgM_SupervisedEntityIdType
SEID

Table 5-20 alive_<WdgMSupervisedEntityShortname>

5.5.1.1.2 Port Prototype for WdgM_LocalStatus

For each supervised entity a client server port prototypes is created:

 localStatus_<WdgMSupervisedEntityShortname>

With this client server port prototype the following operation can be invoked:

Operation API Function Port Defined Argument Values

GetLocalStatus WdgM_GetLocalStatus WdgM_SupervisedEntityIdType
SEID

Table 5-21 individual_<WdgMSupervisedEntityShortname>

5.5.1.1.3 Port Prototype for WdgM_General

This client server port prototype is created only once per core.

If an OsApplication is referenced by WdgMGlobalMemoryAppTaskRef, the following port

prototype is created:

 general_Core< WdgMModeCoreAssignment >

If no OsApplication is referenced, the following port prototype is created

 general

The related client server interface is WdgM_GlobalMode. No port defined argument values
are added. With this client server port prototype the following operations can be invoked:

Operation API Function Condition

GetMode WdgM_GetMode -

GetGlobalStatus WdgM_GetGlobalStatus -

GetLocalStatus WdgM_GetLocalStatus -

PerformReset WdgM_PerformReset -

SetMode WdgM_SetMode

GetFirstExpiredSEID WdgM_GetFirstExpiredSEID -

GetFirstExpiredSEViolation WdgM_GetFirstExpiredSEViolation AUTOSAR Debugging enabled

ActivateSupervisionEntity WdgM_ActivateSupervisionEntity EntityDeactivation enabled

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 86
based on template version 5.12.0

Operation API Function Condition

DeactivateSupervisionEntity WdgM_DeactivateSupervisionEntity

UpdateTickCount WdgM_UpdateTickCount Timebase is EXTERNAL_TICK

Table 5-22 global_<WdgMGlobalMemoryAppTaskRefShortname> / global_WdgM

5.5.1.2 Require Ports on WdgM Side

At its Require Ports the WdgM calls operations. These operations have to be provided by
the SWCs by means of Runnable Entities. These runnable entities implement the callback
functions expected by the WdgM.

The following sub-chapter present the Require Ports defined for the WdgM, the operations
that are called from the WdgM and the related notifications, which are described in chapter
5.4.

5.5.1.2.1 Port Prototype for WdgM_LocalStatusCallbackInterface

If a callback function is configured for a supervised entity (WdgMLocalStateChangeCbk),

for each of those supervised entities a client server port prototypes is created:

 localStateChangeCbk_<WdgMSupervisedEntityShortname>

With this client server port prototype the following operation shall be invoked:

Operation Notification

LocalStatusCallback Local state change notification

Table 5-23 localStateChangeCbk_<WdgMSupervisedEntityShortname>

5.5.1.2.2 Port Prototype for WdgM_GlobalStatusCallbackInterface

If a callback function is configured for a mode (WdgMGlobalMemoryAppTaskRef), for

each of those modes (/ cores) a client server port prototypes is created:

 globalStateChangeCbk_Core<WdgMModeCoreAssignment>

With this client server port prototype the following operation shall be invoked:

Operation Notification

GlobalStatusCallback Global state change notification

Table 5-24 localStateChangeCbk_<WdgMSupervisedEntityShortname>

5.5.1.3 Mode Ports on WdgM for Status Reporting

If the WdgM has Mode Ports configured, the WdgM informs applications, SWCs, etc. via
these Mode Ports about status changes.

For each supervised entity a mode port prototypes is created:

 mode_<WdgMSupervisedEntityShortname>

For each ConfigSet / Core a mode prototype is created:

 globalmode_Core<WdgMModeCoreAssignment>

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 87
based on template version 5.12.0

6 Configuration

6.1 Configuration Variants

The WdgM supports the configuration variants

> VARIANT-PRE-COMPILE

The configuration classes of the WdgM parameters depend on the supported configuration
variants. For their definitions please see the WdgM_bswmd.arxml file.

The WdgM can be configured using the following tool:

> DaVinci Configurator 5 (AUTOSAR 4 packages only). Parameters are explained within
the tool.

The outputs of the configuration and generation process are the configuration source files.

6.2 WdgM Configuration Verification

The WdgM Verifier is a tool for the verification of the generated WdgM configuration. The
WdgM Verifier is delivered as a DLL (wdgm_verifier.dll) that must be compiled with the
configuration files produced by the generator and the files produced by the XSLT
Processor. The compilation result is a Windows Verifier.exe program. Running the Verifier
generates a report file (verifier_report.txt) that contains the result of the verification.

Figure 6-1 shows the workflow of the WdgM Verifier build.

Figure 6-1 Workflow of the WdgM Configuration Verifier build

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 88
based on template version 5.12.0

Note
The WdgM generator is not ASIL D, therefore its output cannot be trusted, hence
additional checks are required by use of the WdgM Verifier.

Note
The Verifier is only content of the delivery if the WdgM is ordered in safe context.

Practical Procedure
The verification process consists of the following steps, which are explained in detail in
the following sections:

> creation of WdgM Info files out of the ECU Description file (for the Verifier
build),

> build (compilation) of the Verifier,

> Verifier run and manual check of the Verifier report,

> manual checks (which cannot be performed by the Verifier) and

> check of system specifications against the WdgM Info files.

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 89
based on template version 5.12.0

6.2.1.1 Installing the WdgM Verifier

To run the WdgM Verifier an XSLT Processor and a working gcc environment are required.

The XSLT Processor is part of the delivery and located at “external\Misc\Wdg\xsltproc” and
contains of following files:

> iconv.dll,

> libexslt.dll,

> libxml2.dll,

> libxslt.dll,

> zlib1.dll,

> xsltproc.exe.

The recommended way to install gcc is to install the MinGW environment with the provided

installer program (MinGW-5.1.6.exe – located at “external\Misc\Wdg\MinGW”) for

Windows 7. To install gcc proceed as follows:

1. Start the installer program, accept the license terms and click “Next” until you are
prompted to select a configuration.

2. When prompted, select Minimal configuration. There is no need to select any check
boxes.

3. Complete the installation process after accepting the default settings.

4. Having installed gcc, add the c:\MinGW\bin directory to your search path by

entering the command set PATH=%PATH%;c:\MinGW\bin in a command prompt

window. Alternatively you can edit Environment Variables in the System Properties
dialog (Start > Control Panel > System).

To verify that gcc is working, open a new command prompt window and enter gcc --

version to let gcc show its version number.

6.2.1.2 Creation of WdgM Info Files

This section describes how to extract the ECU description information for the verification.
The extraction results are the files

> wdgm_verifier_info.h and

> wdgm_verifier_info.c.

They contain the ECU description information. For extracting the ECU description
information, the integrator shall use the XSLT processor named "xsltproc.exe" (included in
the delivery). Further the following XSL stylesheets shall be applied for the information
extraction:

> verify_wdgm_header.xsl and

> verify_wdgm_source.xsl

The XSL stylesheets use XSLT 1.0 features only.

The integrator shall extract the ECU description information as follows:

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 90
based on template version 5.12.0

> apply verify_wdgm_header.xsl to the ECU description file and store the output to
wdgm_verifier_info.h.

> apply verify_wdgm_source.xsl to the ECU description file and store the output to the
file wdgm_verifier_info.c.

In case of xsltproc.exe, the syntax is:

> xsltproc.exe verify_wdgm_header.xsl ECU-description-file >wdgm_verifier_info.h

> xsltproc.exe verify_wdgm_source.xsl ECU-description-file >wdgm_verifier_info.c

Note
The verifier tool and all necessary files are located at
“external\Generators\Wdg\Wdgm_Verifier”.

6.2.1.3 Verifier Compilation

The WdgM Verifier executable Verifier.exe is created as follows.

The integrator shall use a compiler/linker that fulfills the requirements in [ISO26262], part
8, clause 11.4. Gcc 3.4.5 was tested, which fulfills the ISO26262 requirements.

The gcc compiler is part of the delivery if the WdgM was ordered in safe context. It is
highly recommended to use the delivered compiler.

For the compilation process, the following files must be compiled and linked:

> Generated C file: WdgM_PBcfg.c

> Generated WdgM “Info file” (XSLT result): wdgm_verifier_info.c

> Files from the WdgM verifier package:

> wdgm_verifier.dll

> libwdgm_verifierdll.a

The compiled files include the following files (more files may be required for compilation
depending on the environment and configuration options):

> WdgM header files:

> WdgM.h

> WdgM_Cfg.h

> WdgIf header file WdgIf_Types.h

> Created WdgM "Info file" (XSLT result): wdgm_verifier_info.h

> Generated WdgM header files:

> WdgM_Cfg_Features.h

> WdgM_OSMemMap.h

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 91
based on template version 5.12.0

> WdgM_PBcfg.h

> Files from the WdgM Stack package:

> wdgm_verifier.h

> wdgm_verifier_types.h

> wdgm_verifier_version.h

> List of platform specific files:

> Compiler.h

> Compiler_Cfg.h

> MemMap.h

> Os.h

> Os_MemMap.h

> Platform_Types.h

> Std_Types.h

> Rte_Compiler_Cfg.h (if RTE is used)

> Rte_MemMap.h (if RTE is used)

> Rte_Type.h (if RTE is used)

The set of include commands (-I path) for all include paths to these files is referred to as

verify-includes.

Expert Knowledge
The syntax for the compilation call is:

gcc -Wall wdgm_verifier_info.c WdgM_PBcfg.c verify-includes –L dll-path –l
wdgm_verifier -o Verifier.exe

where

> verify-includes is a placeholder for the path(s) of include files as described
above and

> dll-path is a placeholder for the path where wdgm_verifier.dll and
libwdgm_verifierdll.a are located.

In case of an error free application of the compiler/linker the output is a WdgM Verifier
executable named Verifier.exe.

6.2.1.4 Verifier Run

After the WdgM Verifier executable has been built, it has to be executed. The WdgM
Verifier writes a verification report to standard output 'stdout'. This report must be reviewed
as stated in this section and manual verification check hast to be performed as described
in the Safety Manual [5].

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 92
based on template version 5.12.0

The integrator shall run the WdgM Verifier executable as follows:

> Verifier.exe >verifier_report.txt.

Caution
All other steps listed in section 6.2 are described in the Safety Manual [5].

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 93
based on template version 5.12.0

7 Glossary and Abbreviations

7.1 Glossary

Term Description

Alive Indications An indication provided by a supervised entity alive counter to signal its
aliveness to the WdgM.

Alive Supervision A kind of WdgM monitoring (supervision) that checks if a Supervised
Entity is executed sufficiently often and not too often.

Checkpoint A point in the control flow of a supervised entity where the activity is
reported to the WdgM.

Closed Graph A closed graph is a directed graph where every checkpoint is reachable,
starting from the local initial Checkpoint.

Configuration Tool A tool used for creating a WdgM configuration, e.g., DaVinci Configurator
Pro.

Container Refers to the AUTOSAR term "container". Represents a structure with
different parameters.

Deadline Supervision Kind of WdgM monitoring (supervision) that checks if the execution time
between two Checkpoints is lower or higher as the configured limits.

Destination

Checkpoint

End point of a transition.

End Checkpoint The last checkpoint that is monitored for a supervised entity. After
passing the End Checkpoint, the WdgM expects that the entity is not
monitored. To start the monitoring again the Initial checkpoint must be
passed first. A supervised entity can have zero or more End Checkpoints.

Error Discrepancy between a computed, observed or measured value or
condition, and the true, specified or theoretically correct value or
condition.

Failure Termination of the ability of an element, to perform a function as required.

Fault Abnormal condition that can cause an element or an item to fail.

Fault Detection Time See. WdgM Fault Detection Time.

Fault Reaction Time The Fault Reaction Time is the WdgM Fault Reaction Time plus the Wdg
Fault Reaction Time.

Global Monitoring

Status

Status that summarizes the Local Monitoring Status of all supervised
entities.

Global Transition A global transition is a transition between two checkpoints in the logical
program flow (i.e. source and destination checkpoint), where the
checkpoints belong to different supervised entities.

Initial Checkpoint The first checkpoint that is monitored in the supervised entity. The
monitoring of a supervised entity must start at this Checkpoint. A
supervised entity has exactly one Initial Checkpoint.

Local Monitoring

Status

Status that represents the current result of supervision of a single
supervised entity.

Local Transition A Local Transition is the transition between two checkpoints (i.e. source

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 94
based on template version 5.12.0

and destination checkpoint) in the logical program flow in the same
supervised entity.

Program Flow

Monitoring

Kind of WdgM monitoring (supervision) that checks if the inspected
software is executed in a predefined sequence. This sequence is defined
by the user and collected in the WdgM configuration.

WdgM Fault

Detection Time

The time-span from the occurrence of a fault to the detection of the fault
by the WdgM. The detection of a fault is indicated by a change of the
state WDGM_LOCAL_STATE_OK or WDGM_GLOBAL_STATE_OK to a
different state.

WdgM Tick

(Counter)

Tick counter is used for deadline supervision time measurement.
Depending on the parameter WdgMTimebaseSource the tick counter is
incremented by 1 for each supervision cycle or, for higher precision, with
the API function WdgM_UpdateTickCounter() or with a hardware counter.

Safe State The Safe State is the operating mode of an item without an unreasonable
level of risk [6], part1).

Watchdog

Manager Stack

The software module consisting of Watchdog Manager, Watchdog
Interface and Watchdog Driver.

Watchdog

Manager

(WdgM)

The hardware-independent upper software layer of the Watchdog
Manager Stack.

Watchdog

Interface

(WdgIf)

The hardware-independent middle software layer of the Watchdog
Manager Stack.

Watchdog Driver

(Wdg)

The hardware-dependent lowest layer of the Watchdog Manager Stack.
Controls the Watchdog device.

Source Checkpoint Start point of a transition.

Supervised Entity A software entity that is monitored by the WdgM. Each supervised entity
has exactly one identifier. A supervised entity denotes a collection of
checkpoints within a software component or basic software module.
There may be zero, one or more supervised entities in a software
component or basic software module. Each entity has a state that is
based on the states reported from all its checkpoints. All checkpoints of
one entity belong to the same memory context.

Supervision Cycle The time period of the WdgM in which the cyclic supervision algorithm is
performed.

Supervision

Reference Cycle

The number of supervision cycles used as a reference by Alive, Deadline
and Program Flow Supervision for periodic supervision. Every kind of
supervision has its own reference cycle.

Timebase Tick The WdgM measures the deadline of a Transition in timebase ticks (In
the context of this document also referred to as WdgM tick).

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 95
based on template version 5.12.0

Note
The timebase tick can be provided by the following sources:

> WdgM itself (main function)

> Component OS

> External source

Trigger Mode The WdgM Trigger Mode is a set of Watchdog trigger times and
Watchdog mode. One Trigger Mode is a group of the following three
parameters:

> WdgMTriggerWindowStart

> WdgMTriggerConditionValue

> WdgMWatchdogMode

Each Watchdog device can have one or more Trigger Modes.

Watchdog Device The Watchdog Device is the hardware part which represents the
watchdog functionality. It can be an internal watchdog integrated on the
MCU chip, or it can be an external watchdog device outside the MCU.

Table 7-1 Glossary

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 96
based on template version 5.12.0

7.2 Abbreviations

Abbreviation Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BswM Basic Software Module

CP Checkpoint

CPID Checkpoint Id

DEM Diagnostic Event Manager

DET Development Error Tracer

EAD Embedded Architecture Designer

ECU Electronic Control Unit

EDF ECU Description File

HIS Hersteller Initiative Software

ISO International Organization for Standardization

MCU Microcontroller Unit

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

QM Quality Managed Software (software development process)

RTE Runtime Environment

SCHM Schedule Manager module (according AUTOSAR 4.0.1)

SE Supervised entity

SEID Supervised Entity Identifier

SW-C, SWC Software Component

Wdg Watchdog Driver

WdgIf Watchdog Interface

WdgM Watchdog Manager

SWS Software Specification

Wdg Watchdog

Table 7-2 Abbreviations

Technical Reference MICROSAR WDGM

© 2017 Vector Informatik GmbH Version 1.2.0 97
based on template version 5.12.0

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview
	2.2 Use Cases
	2.3 Basic Functionality of the WdgM
	2.3.1 Supervised Entity and Program Flow Supervision
	2.3.2 Program Flow Supervision
	2.3.3 Deadline Supervision
	2.3.4 Alive Supervision
	2.3.5 More Details on Checkpoints and Transitions
	2.3.6 Global Transitions
	2.3.7 Global Transitions and Program Flow
	2.3.7.1 Example of an Incorrect Global Transition Split
	2.3.7.2 Example of an Incorrect Program Split in the Middle of an Entity

	2.3.8 WdgM Supervision Cycle
	2.3.9 Fault Detection Time Evaluation
	2.3.9.1 Alive Supervision Fault Detection Time
	2.3.9.2 Deadline Supervision Fault Detection Time
	2.3.9.3 Program Flow Supervision Fault Detection Time

	2.3.10 Fault Reaction Time Evaluation
	2.3.10.1 Alive Supervision Fault Reaction Time
	2.3.10.2 Deadline Supervision Fault Reaction Time
	2.3.10.3 Program Flow Supervision Fault Reaction Time

	2.3.11 Reset Path and Safe State
	2.3.12 WdgM Local Entity State
	2.3.13 WdgM Global State
	2.3.14 Basic Operation of the WdgM Stack

	2.4 WdgM in Multi-Core Systems
	2.4.1 State Combiner
	2.4.2 AUTOSAR Debugging

	3 Functional Description
	3.1 Features
	3.1.1 Deviations from the AUTOSAR 4.0.1 Watchdog Manager
	3.1.1.1 Entities, Checkpoints and Transitions
	3.1.1.2 Watchdog and Reset
	3.1.1.3 API

	3.1.2 Additions/ Extensions

	3.2 Initialization
	3.3 Memory Sections
	3.3.1 Memory Sections Details
	3.3.2 Code and Constants
	3.3.3 Module Variables
	3.3.3.1 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0
	3.3.3.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2

	3.3.4 Supervised Entity Variables
	3.3.4.1 Supervised Entity Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0
	3.3.4.2 Supervised Entity Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2

	3.4 Timing Setup
	3.4.1 Deadline Measurement and Tick Counter

	3.5 Using Checkpoints in Interrupts
	3.6 Integration into a Multi-Core System
	3.7 States
	3.8 Main Functions
	3.9 Error Handling
	3.9.1 Development Error Reporting
	3.9.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections

	5 API Description
	5.1 Type Definitions
	5.2 Services provided by WdgM
	5.2.1 WdgM_Init
	5.2.2 WdgM_GetVersionInfo
	5.2.3 WdgM_SetMode
	5.2.4 WdgM_ActivateSupervisionEntity
	5.2.5 WdgM_DeactivateSupervisionEntity
	5.2.6 WdgM_MainFunction
	5.2.7 WdgM_GetMode
	5.2.8 WdgM_GetLocalStatus
	5.2.9 WdgM_GetGlobalStatus
	5.2.10 WdgM_CheckpointReached
	5.2.11 WdgM_PerformReset
	5.2.12 WdgM_GetFirstExpiredSEID
	5.2.13 WdgM_GetFirstExpiredSEViolation
	5.2.14 WdgM_UpdateTickCount

	5.3 Services used by WdgM
	5.4 Configurable Interfaces
	5.4.1 Notifications
	5.4.1.1 Global state callback
	5.4.1.2 Local state change notification

	5.5 Service Ports
	5.5.1 Client Server Interface
	5.5.1.1 Provide Ports on WdgM Side
	5.5.1.1.1 Port Prototype for WdgM_AliveSupervision
	5.5.1.1.2 Port Prototype for WdgM_LocalStatus
	5.5.1.1.3 Port Prototype for WdgM_General

	5.5.1.2 Require Ports on WdgM Side
	5.5.1.2.1 Port Prototype for WdgM_LocalStatusCallbackInterface
	5.5.1.2.2 Port Prototype for WdgM_GlobalStatusCallbackInterface

	5.5.1.3 Mode Ports on WdgM for Status Reporting

	6 Configuration
	6.1 Configuration Variants
	6.2 WdgM Configuration Verification
	6.2.1.1 Installing the WdgM Verifier
	6.2.1.2 Creation of WdgM Info Files
	6.2.1.3 Verifier Compilation
	6.2.1.4 Verifier Run

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

