

MICROSAR XCP

Technical Reference

Version 1.0.0

Authors Andreas Herkommer

Status Released

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 2
based on template version 6.0.1

Document Information

History

Author Date Version Remarks

Andreas Herkommer 2017-02-13 1.00.00 Initial Version

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_XCP.pdf 2.3.0

[2] AUTOSAR AUTOSAR_SWS_DET.pdf 3.4.1

[3] AUTOSAR AUTOSAR_SWS_DEM.pdf 5.2.0

[4] AUTOSAR AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[5] ASAM ASAM_XCP_Part2-Protocol-Layer-Specification_V1-1-
0.pdf

V1.1

Scope of the Document

This document describes the features, APIs, and integration of the XCP Protocol Layer.

This document does not cover the XCP Transport Layers for CAN, FlexRay and Ethernet,
which are available at Vector Informatik.
Further information about XCP on CAN, FlexRay and Ethernet Transport Layers can be
found in their documentation.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

The XCP Protocol Layer is a hardware independent protocol that can be ported to almost
any hardware. Due to there are numerous combinations of micro controllers, compilers
and memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP.

The API of the functions is described in a separate chapter at the end of this document.

Info
The source code of the XCP Protocol Layer, configuration examples and
documentation are available on the Internet at www.vector-informatik.de in a functional
restricted form.

http://www.vector-informatik.de/

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 3
based on template version 6.0.1

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 4
based on template version 6.0.1

Contents

1 Component History .. 10

2 Introduction... 11

2.1 Architecture Overview .. 11

3 Functional Description ... 13

3.1 Features .. 13

3.1.1 Deviations .. 13

3.1.2 Additions/ Extensions ... 15

3.2 Initialization .. 15

3.3 States .. 15

3.4 Main Functions .. 16

3.5 Block Transfer Communication Model .. 16

3.6 Slave Device Identification ... 17

3.6.1 XCP Station Identifier ... 17

3.6.2 XCP Generic Identification ... 17

3.7 Seed & Key .. 17

3.8 Checksum Calculation ... 18

3.8.1 Custom CRC calculation .. 18

3.9 Memory Access by Application ... 18

3.9.1 Memory Read and Write Protection ... 18

3.9.2 Special use case “Type Safe Copy” ... 19

3.10 Event Codes .. 19

3.11 Service Request Messages ... 20

3.12 User Defined Command ... 20

3.13 Synchronous Data Transfer ... 20

3.13.1 Synchronous Data Acquisition (DAQ) ... 20

3.13.2 DAQ Timestamp ... 21

3.13.3 Power-Up Data Transfer .. 21

3.13.4 Data Stimulation (STIM) ... 22

3.13.5 Bypassing .. 22

3.13.6 Data Acquisition Plug & Play Mechanisms 22

3.13.7 Event Channel Plug & Play Mechanism ... 23

3.13.8 Send Queue ... 23

3.13.9 Data consistency .. 23

3.14 The Online Data Calibration Model .. 24

3.14.1 Page Switching .. 24

3.14.2 Page Switching Plug & Play Mechanism .. 24

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 5
based on template version 6.0.1

3.14.3 Calibration Data Page Copying .. 24

3.14.4 Freeze Mode Handling ... 24

3.15 Flash Programming .. 25

3.15.1 Flash Programming by the ECU’s Application 25

3.15.2 Flash Programming Plug & Play Mechanism 25

3.15.3 Flash Programming with a Flash Kernel ... 26

3.16 Multi Core Support ... 26

3.16.1 Type Safe Copy ... 26

3.16.2 DAQ/STIM with Multi Core ... 27

3.17 En- / Disabling the XCP module ... 27

3.18 XCP measurement during the post event time ... 28

3.19 Error Handling .. 28

3.19.1 Development Error Reporting ... 28

3.19.2 Production Code Error Reporting ... 30

4 Integration ... 31

4.1 Scope of Delivery ... 31

4.1.1 Static Files ... 31

4.1.2 Templates – user modifiable ... 31

4.1.3 Dynamic Files .. 31

4.1.4 Generated a2l files ... 31

4.2 Critical Sections ... 32

4.2.1 XCP_EXCLUSIVE_AREA_0 .. 32

4.2.2 XCP_EXCLUSIVE_AREA_1 .. 32

4.2.3 XCP_EXCLUSIVE_AREA_2 .. 32

5 API Description ... 33

5.1 Type Definitions ... 33

5.2 Services provided by XCP ... 33

5.2.1 Xcp_InitMemory ... 33

5.2.2 Xcp_Init .. 34

5.2.3 Xcp_Event ... 34

5.2.4 Xcp_StimEventStatus .. 35

5.2.5 Xcp_MainFunction ... 36

5.2.6 Xcp_SendEvent ... 36

5.2.7 Xcp_PutChar.. 37

5.2.8 Xcp_Print ... 38

5.2.9 Xcp_Disconnect ... 38

5.2.10 Xcp_SendCrm .. 39

5.2.11 Xcp_GetVersionInfo ... 39

5.2.12 Xcp_ModifyProtectionStatus .. 40

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 6
based on template version 6.0.1

5.2.13 Xcp_GetSessionStatus .. 40

5.2.14 Xcp_GetXcpDataPointer .. 41

5.3 Services provided by the XCP Protocol Layer and called by the XCP
Transport Layer .. 42

5.3.1 Xcp_TlRxIndication .. 42

5.3.2 Xcp_TlTxConfirmation .. 42

5.3.3 Xcp_SetActiveTl ... 43

5.3.4 Xcp_GetActiveTl .. 43

5.4 XCP Transport Layer Services called by the XCP Protocol Layer 44

5.4.1 <Bus>Xcp_Send .. 44

5.4.2 <Bus>Xcp_SendFlush ... 45

5.4.3 <Bus>Xcp_TlService .. 45

5.5 Application Services called by the XCP Protocol Layer 46

5.5.1 XcpAppl_GetTimestamp .. 46

5.5.2 XcpAppl_GetPointer... 47

5.5.3 XcpAppl_GetIdData ... 48

5.5.4 XcpAppl_GetSeed ... 48

5.5.5 XcpAppl_Unlock ... 49

5.5.6 XcpAppl_CalibrationWrite .. 50

5.5.7 XcpAppl_MeasurementRead ... 50

5.5.8 XcpAppl_CheckReadAccess .. 51

5.5.9 XcpAppl_CheckProgramAccess... 51

5.5.10 XcpAppl_UserService .. 52

5.5.11 XcpAppl_OpenCmdIf ... 52

5.5.12 XcpAppl_SendStall .. 53

5.5.13 XcpAppl_DisableNormalOperation ... 54

5.5.14 XcpAppl_StartBootLoader .. 54

5.5.15 XcpAppl_Reset .. 55

5.5.16 XcpAppl_ProgramStart .. 55

5.5.17 XcpAppl_FlashClear .. 56

5.5.18 XcpAppl_FlashProgram ... 57

5.5.19 XcpAppl_DaqResume .. 57

5.5.20 XcpAppl_DaqResumeStore ... 58

5.5.21 XcpAppl_DaqResumeClear ... 59

5.5.22 XcpAppl_CalResumeStore... 59

5.5.23 XcpAppl_GetCalPage .. 60

5.5.24 XcpAppl_SetCalPage ... 60

5.5.25 XcpAppl_CopyCalPage .. 61

5.5.26 XcpAppl_SetFreezeMode .. 62

5.5.27 XcpAppl_GetFreezeMode .. 62

5.5.28 XcpAppl_CalculateChecksum .. 63

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 7
based on template version 6.0.1

5.5.29 XcpAppl_ConStateNotification ... 64

5.5.30 XcpAppl_MemCpy ... 64

5.6 Services used by XCP ... 65

6 Configuration .. 66

6.1 Configuration Variants .. 66

7 Glossary and Abbreviations .. 67

7.1 Abbreviations ... 67

8 Contact .. 69

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 8
based on template version 6.0.1

Illustrations

Figure 2-1 AUTOSAR 4.1 Architecture Overview ... 11
Figure 2-2 Interfaces to adjacent modules of the XCP ... 12
Figure 3-1 Connection State Machine .. 16
Figure 3-2 Data consistency .. 23
Figure 3-3 Application of Xcp_Event function on Multi Core systems 27

Tables

Table 1-1 Component history.. 10
Table 3-1 Supported AUTOSAR standard conform features 13
Table 3-2 Deviations from AUTOSAR standard conform features 13
Table 3-3 Deviations from ASAM standard conform features 15
Table 3-4 Features provided beyond the AUTOSAR standard 15
Table 3-5 States ... 15
Table 3-6 Event codes .. 20
Table 3-7 Service IDs ... 29
Table 3-8 Errors reported to DET ... 29
Table 3-9 Errors reported to DEM ... 30
Table 4-1 Static files ... 31
Table 4-2 Templates ... 31
Table 4-3 Generated files ... 31
Table 5-1 Type definitions ... 33
Table 5-2 Xcp_ChannelStruct ... 33
Table 5-3 Xcp_InitMemory .. 34
Table 5-5 Xcp_Event .. 35
Table 5-6 Xcp_StimEventStatus ... 36
Table 5-7 Xcp_MainFunction .. 36
Table 5-8 Xcp_SendEvent .. 37
Table 5-9 Xcp_PutChar .. 38
Table 5-10 Xcp_Print .. 38
Table 5-11 Xcp_Disconnect .. 39
Table 5-12 Xcp_SendCrm .. 39
Table 5-13 Xcp_GetVersionInfo .. 40
Table 5-14 Xcp_ModifyProtectionStatus ... 40
Table 5-15 Xcp_GetSessionStatus ... 41
Table 5-16 Xcp_GetXcpDataPointer ... 41
Table 5-17 Xcp_TlRxIndication ... 42
Table 5-18 Xcp_TlTxConfirmation .. 43
Table 5-19 Xcp_SetActiveTl ... 43
Table 5-20 Xcp_GetActiveTl ... 44
Table 5-21 <Bus>Xcp_Send ... 45
Table 5-22 <Bus>Xcp_SendFlush .. 45
Table 5-23 <Bus>Xcp_TlService .. 46
Table 5-24 XcpAppl_GetTimestamp ... 47
Table 5-25 XcpAppl_GetPointer ... 48
Table 5-26 XcpAppl_GetIdData .. 48
Table 5-27 XcpAppl_GetSeed .. 49
Table 5-28 XcpAppl_Unlock ... 50
Table 5-29 XcpAppl_CalibrationWrite ... 50
Table 5-30 XcpAppl_MeasurementRead .. 51
Table 5-31 XcpAppl_CheckReadAccess .. 51

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 9
based on template version 6.0.1

Table 5-32 XcpAppl_CheckProgramAccess ... 52
Table 5-33 XcpAppl_UserService ... 52
Table 5-34 XcpAppl_OpenCmdIf .. 53
Table 5-35 XcpAppl_SendStall ... 54
Table 5-36 XcpAppl_DisableNormalOperation ... 54
Table 5-37 XcpAppl_StartBootLoader .. 55
Table 5-38 XcpAppl_Reset ... 55
Table 5-39 XcpAppl_ProgramStart ... 56
Table 5-40 XcpAppl_FlashClear ... 57
Table 5-41 XcpAppl_FlashProgram .. 57
Table 5-42 XcpAppl_DaqResume .. 58
Table 5-43 XcpAppl_DaqResumeStore .. 59
Table 5-44 XcpAppl_DaqResumeClear .. 59
Table 5-45 XcpAppl_CalResumeStore ... 60
Table 5-46 XcpAppl_GetCalPage ... 60
Table 5-47 XcpAppl_SetCalPage ... 61
Table 5-48 XcpAppl_CopyCalPage .. 62
Table 5-49 XcpAppl_SetFreezeMode ... 62
Table 5-50 XcpAppl_GetFreezeMode... 63
Table 5-51 XcpAppl_CalculateChecksum ... 64
Table 5-52 XcpAppl_ConStateNotification .. 64
Table 5-53 XcpAppl_MemCpy .. 65
Table 5-54 Services used by the XCP .. 65
Table 7-1 Abbreviations .. 68

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 10
based on template version 6.0.1

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

[1.00.xx] Initial Version of re-factored AR4 Protocol Layer
Table 1-1 Component history

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 11
based on template version 6.0.1

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module XCP as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile

Vendor ID: XCP_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: XCP_MODULE_ID 26 decimal

(according to ref. [4])

* For the detailed functional specification please also refer to the corresponding AUTOSAR SWS.

2.1 Architecture Overview

The following figure shows where the XCP is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.1 Architecture Overview

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 12
based on template version 6.0.1

The following figure shows the interfaces to adjacent modules of the XCP. The interfaces
of the XCP Protocol Layer and the application call-back header are described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the XCP

 class Module Structure Adjacency

Application

XCP

XcpOnCan XcpOnFr XcpOnTcpIp

CanIf FrIf SoAd

XcpAppl

Must be implemented

by the user

DET

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 13
based on template version 6.0.1

3 Functional Description

3.1 Features

The Universal Measurement and Calibration Protocol (XCP) is standardized by the
European ASAM working committee for standardization of interfaces used in calibration
and measurement data acquisition. XCP is a higher level protocol used for communication
between a measurement and calibration system (MCS, i.e. CANape) and an electronic
control unit (ECU). The implementation supports the ASAM XCP 1.1 Specification.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Deviations from AUTOSAR standard conform features

> Table 3-3 Deviations from ASAM standard conform features

Vector Informatik provides further XCP functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-4 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

ASAM XCP Version 1.1
Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations

The following features specified in [1] are not or only partly supported:

Category Description ASR
Version

Functional The following features are not supported:

 The command GET_SLAVE_ID

 A CDD as transport layer

4.2.2

API The following APIs are not provided by XCP:

 Xcp_SetTransmissionMode

4.2.2

API The API Xcp_<Module>TriggerTransmit is only supported for
transport layer FrIf.

4.2.2

Table 3-2 Deviations from AUTOSAR standard conform features

Category Description ASAM
Version

Functional 1.6.4.1.2.4 Get general information on DAQ processor: 1.1

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 14
based on template version 6.0.1

 Bitwise stimulation is not supported

Functional 1.6.4.2 Static DAQ list configuration (stat):

 Static DAQ lists are not supported; only dynamic DAQ lists are
supported

1.1

Functional 1.7.2.3 Interleaved Communication Model:

 Multiple request messages are not allowed to be transmitted by the
XCP master before receiving the corresponding response
message

1.1

Functional 1.6.5.2.4 Set Data Format before Programming:

 Only the default programming format is supported, therefore the
command PROGRAM_FORMAT is not supported

1.1

Functional 1.6.5.2.2 Get specific information for a sector:

 The command GET_SECTOR_INFO does not return a Program

Sequence Number

1.1

Functional 1.6.5.2.7 Program Verify:

 The command PROGRAM_VERIFY is not supported

1.1

Functional Daq configuration:

 Number of DAQ lists is limited to 0xFF

 Maximum DTO length is limited to 0xFF

 DAQ does not support address extension

 DAQ-list and event channel prioritization is not supported

 DAQ bit offset not supported

 The resume bits in DAQ lists are not set (no indication in response
of command GET_DAQ_LIST_MODE)

1.1

Functional 5.1.10 ODT Optimization:

 The ODT Optimization is not supported

1.2

Functional 1.2 Table of Event Codes:

 XCP does not send any event packet natively. If required, the
implementation has to be added to application

1.1

Functional Overload indication by an event is not supported 1.1

Functional 1.3 Table of Service Request Codes (SERV):

 The Service Request SERV_RESET is not supported

1.1

Functional 1.6.1.2.9 Build Checksum over memory range:

 The checksum type XCP_CRC_16 or XCP_CRC_32 is only supported

if the checksum calculation is forwarded to a AUTOSAR CRC
module

 Maximum checksum block size is 0xFFFF

1.1

Functional 1.6.3 Page Switching Commands (PAG):

 The command GET_PAGE_INFO is not supported

 The command GET_SEGMENT_INFO is not supported

 Only one segment and two pages are supported

1.1

Functional Seed and Key:

 The seed size and key size must be equal or less MAX_CTO-2

1.1

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 15
based on template version 6.0.1

Functional Consistency only supported on ODT level. 1.1

Functional No other identification field type supported than “absolute ODT number”. 1.1

Table 3-3 Deviations from ASAM standard conform features

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Support of CAN-FD

Support transmission and reception of DTO on multiple cores simultaneously.

Table 3-4 Features provided beyond the AUTOSAR standard

3.2 Initialization

The XCP gets initialized by call of the following services:

 5.2.1 Xcp_InitMemory

 5.2.2 Xcp_Init

Xcp_InitMemory has to be called if memory is not initialized by start-up code.

The EcuM takes care of initialization, if no EcuM is used these functions have to be called
by application in correct order.

3.3 States

The XCP’s connection state machine is shown in Figure 3-1, comprises the following
states:

State Name Description

XCP_CON_STATE_DISCONNECTED In this state neither CTO nor DTO messages can be received or
transmitted, except of the Connect CTO.

XCP_CON_STATE_CONNECTED

In this state communication is fully supported.

XCP_CON_STATE_RESUME

In this state CTO messages (except of Connection CTO) are
rejected, whereas DTO messages can be received and
transmitted.

Table 3-5 States

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 16
based on template version 6.0.1

Figure 3-1 Connection State Machine

The states can be changed by the XCP master by sending the CTOs Connect and

Disconnect. Additionally, the connection can be broken by the service:

 5.2.9 Xcp_Disconnect

3.4 Main Functions

The Xcp provides a MainFunction:

 5.2.5 Xcp_MainFunction

It must be called cyclically and performs the following tasks:

> Checksum calculation which is done asynchronously in configurable chunks to prevent
extensive runtime

> Resume Mode Handling

The Xcp MainFunction is normally called by the SchM. If you use a 3rd party SchM you
must configure it accordingly such that the function is called cyclically.

3.5 Block Transfer Communication Model

In the standard communication model, each request packet is responded by a single
response packet or an error packet. To speed up memory uploads, downloads and flash

programming the XCP commands UPLOAD, DOWNLOAD and PROGRAM support a block transfer
mode similar to ISO/DIS 15765-2.

In the Master Block Transfer Mode can the master transmit subsequent (up to the
maximum block size MAX_BS) request packets to the slave without getting any response
in between. The slave responds after transmission of the last request packet of the block.

 stm Connection State Machine

Resume Mode

Initial

DISCONNECTED CONNECTED RESUME

Xcp_CmdStd_Connect

Xcp_Disconnect

Xcp_CmdStd_Connect

[ON][OFF]

Xcp_Init

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 17
based on template version 6.0.1

In Slave Block Transfer Mode the slave can respond subsequent (there is no limitation) to
a request without additional requests in between.

The Block Transfer Mode is limited to a block size of 255 Bytes. On bus systems with a
large max CTO (e.g. 254 Bytes) this Mode might be counterproductive and should stay
disabled.

3.6 Slave Device Identification

3.6.1 XCP Station Identifier

The XCP station identifier is an ASCII string that identifies the ECU’s software program
version.

The MCS can interpret this identifier as file name for the ECU database. The ECU
developer should change the XCP station identifier with each program change. This will
prevent database mix-ups and grant the correct access of measurement and calibration
objects from the MCS to the ECU. Another benefit of the usage of the XCP station
identifier is the automatic assignment of the correct ECU database at program start of the
MCS via the plug & play mechanism. The plug & play mechanism prevents the user from
selecting the wrong ECU database.

3.6.2 XCP Generic Identification

The XCP provides a generic mechanism for identification by the GET_ID command. For this
purpose a call-back exist which can be implemented by the user to provide the requested
information (see 5.5.3 XcpAppl_GetIdData).

3.7 Seed & Key

The seed and key feature allows individual access protection for calibration, flash
programming, synchronous data acquisition and data stimulation. The MCS requests a
seed (a few data bytes) from the ECU and calculates a key based on a proprietary
algorithm and sends it back to the ECU.

If Seed & Key is enabled in the configuration tool the following APIs need to be
implemented by the user:

 5.5.4 XcpAppl_GetSeed

 5.5.5 XcpAppl_Unlock

The XcpAppl_GetSeed call-back function returns a seed that is transferred to the MCS.
The XcpAppl_Unlock call-back function has to verify a received key based on the seed
and then return the resource that shall be unlocked.

The protection state can also individually be modified by the application. The following
service can be used for this purpose:

 5.2.12 Xcp_ModifyProtectionStatus

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 18
based on template version 6.0.1

Note
Annotation for the usage of CANape:

The calculation of the key is done in a DLL, which is developed by the ECU
manufacturer and which must be located in the EXEC directory of CANape. CANape
can access the ECU only if the ECU accepts the key. If the key is not valid, the ECU
stays locked.

3.8 Checksum Calculation

The XCP Protocol Layer supports calculation of a checksum over a specific memory
range. The XCP Protocol Layer supports all XCP ADD algorithms and the CRC16CCITT
checksum calculation algorithm. If the AUTOSAR CRC Module is used also the XCP
CRC32 algorithm can be used.

If checksum calculation is enabled the background task has to be called cyclically.

3.8.1 Custom CRC calculation

The Protocol Layer also allows the calculation of the CRC by the application. For this the
call-back is called:

 5.5.28 XcpAppl_CalculateChecksum

This call-back can either calculate the checksum synchronously and return XCP_CMD_OK or

it can trigger the calculation and return XCP_CMD_PENDING for asynchronous calculation of
the checksum. In each case the response frame has to be assembled.

3.9 Memory Access by Application

Memory access to measure or to calibrate variables is performed by two call-backs that
can be modified by the user to his needs. Please note that these API are only used for
polling access by default. DAQ/STIM uses direct memory access out of performance
reasons. DAQ/STIM access via these call-backs can be enabled by
/MICROSAR/Xcp/XcpGeneral/XcpDAQMemAccessByApplication.

The following call-backs are called by the Protocol Layer whenever a memory access is
performed:

 5.5.6 XcpAppl_CalibrationWrite

 5.5.7 XcpAppl_MeasurementRead

These APIs can be used to perform the memory access synchronously, asynchronously
(e.g. for EEPROM access), and they can deny the memory access, depending on the
return value.

3.9.1 Memory Read and Write Protection

Memory protection can easily be performed by the two above mentioned call-backs

returning XCP_ERR_ACCESS_DENIED.

Additionally the configuration switch

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpMemoryReadProtection enables the call-
back:

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 19
based on template version 6.0.1

 5.5.8 XcpAppl_CheckReadAccess

This call-back is required for other services like CRC calculation to check the requested
memory size beforehand.

As Flash programming uses a different memory access mechanism, a different set of call-
backs is used.

The configuration switch

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming/XcpProgrammingWriteProtection enables
the call-back:

 5.5.9 XcpAppl_CheckProgramAccess

This call-back can be used to check the memory range whenever a flash segment is
cleared or programmed.

3.9.2 Special use case “Type Safe Copy”

The above mentioned APIs will also be used if the feature “Type Safe Copy” is enabled. If
this is the case polling as well as DAQ/STIM measurement will use these functions to
read/write data. The template code for these functions performs read/write access in an
atomic way for basic data types (e.g. uint16 / uint32).

3.10 Event Codes

The slave device may report events by sending asynchronous event packets (EV), which
contain event codes, to the master device. The transmission is not guaranteed due to the
fact that these event packets are not acknowledged.

The transmission of event codes is enabled with the configuration switch

/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpEventCodes. The transmission is done
by the service:

 5.2.6 Xcp_SendEvent.

The event codes can be found in the following table.

Event Code Description

XCP_EVC_RESUME_MODE 0x00 The slave indicates that it is starting in RESUME
mode.

XCP_EVC_CLEAR_DAQ 0x01 The slave indicates that the DAQ configuration in
non-volatile memory has been cleared.

XCP_EVC_STORE_DAQ 0x02 The slave indicates that the DAQ configuration has
been stored into non-volatile memory.

XCP_EVC_STORE_CAL 0x03 The slave indicates that the calibration data has
been stored.

XCP_EVC_CMD_PENDING 0x05 The slave requests the master to restart the time-
out detection.

XCP_EVC_DAQ_OVERLOAD 0x06 The slave indicates an overload situation when
transferring DAQ lists.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 20
based on template version 6.0.1

XCP_EVC_SESSION_TERMINATED 0x07 The slave indicates to the master that it
autonomously decided to disconnect the current
XCP session.

XCP_EVC_TIME_SYNC 0x08 Transfer of externally triggered timestamp.

XCP_EVC_STIM_TIMEOUT 0x09 Indication of a STIM timeout.

XCP_EVC_SLEEP 0x0A Slave entering SLEEP mode.

XCP_EVC_WAKE_UP 0x0B Slave leaving SLEEP mode.

XCP_EVC_USER 0xFE User-defined event.

XCP_EVC_TRANSPORT 0xFF Transport layer specific event.
Table 3-6 Event codes

3.11 Service Request Messages

The slave device may request some action to be performed by the master device. This is
done by the transmission of a Service Request Packet (SERV) that contains the service
request code. The transmission of service request packets is asynchronous and not
guaranteed because these packets are not acknowledged.

The service request messages can be sent by the following functions:

 5.2.7 Xcp_PutChar

 5.2.8 Xcp_Print

3.12 User Defined Command

The XCP Protocol allows having a user defined command with an application specific
functionality. The user defined command is enabled by setting

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpUserDefinedCommand and upon reception of
the user command the following callback function is called by the XCP command
processor:

 5.5.10 XcpAppl_UserService

3.13 Synchronous Data Transfer

3.13.1 Synchronous Data Acquisition (DAQ)

The synchronous data transfer can be enabled with the container

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim. In this mode, the MCS configures tables of
memory addresses in the XCP Protocol Layer. These tables contain pointers to
measurement objects, which have been configured previously for the measurement in the
MCS. Each configured table is assigned to an event channel.

The function Xcp_Event(x) has to be called for each event channel with the corresponding
event channel number as parameter. The application has to ensure that Xcp_Event is
called with the correct cycle time. Note that the event channel numbers are given by the

GenTool by configuring /MICROSAR/Xcp/XcpConfig/XcpEventChannel. Symbolic name
values for each event channel are generated by the GenTool.

The ECU automatically transmits the current value of the measurement objects via
messages to the MCS, when the function Xcp_Event is executed in the ECU’s code with

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 21
based on template version 6.0.1

the corresponding event channel number. This means that the data can be transmitted at
any particular point of the ECU code when the data values are valid.

The data acquisition mode can be used in multiple configurations that are described within
the next chapters.

Note
Annotation for the usage of CANape:

It is recommended to enable both data acquisition plug & play mechanisms to detect
the DAQ settings.

3.13.2 DAQ Timestamp

There are two methods to generate timestamps for data acquisition signals.

1. By the MCS tool on reception of the message

2. By the ECU (XCP slave)

The time precision of the MCS tool is adequate for the most applications; however, some
applications like the monitoring of the OSEK operating system or measurement on
FlexRay with an event cycle time smaller than the FlexRay cycle time require higher
precision timestamps. In such cases, ECU generated timestamps are recommended.

The timestamp must be implemented in a call-back which returns the current value:

 5.5.1 XcpAppl_GetTimestamp

There are several possibilities to implement such a timestamp:

> 16bit Counter variable, incremented by software in a fast task (.e.g. 1ms task) for
applications where such a resolution is sufficient and returned in the above mentioned
call-back.

> 32bit General Purpose Timer of the used µC, configured to a certain repetition rate
(e.g. 1µs increment) for applications that require a high resolution of the timestamp
and returned in the above mentioned call-back.

The resolution and increment value of this timer must be configured in the configuration
tool accordingly.

3.13.3 Power-Up Data Transfer

Power-up data transfer (also called resume mode) allows automatic data transfer (DAQ) of
the slave directly after power-up. Automotive applications would e.g. be measurements
during cold start.

The slave and the master have to store all the necessary communication parameters for
the automatic data transfer after power-up. Therefore the following functions have to be
implemented in the slave.

 5.5.19 XcpAppl_DaqResume

 5.5.20 XcpAppl_DaqResumeStore

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 22
based on template version 6.0.1

 5.5.21 XcpAppl_DaqResumeClear

To use the resume mode the compiler switch

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpResumeMode has to be enabled.

Keep also in mind that the Xcp_MainFunction has to be called cyclically in order for the
resume mode to work. If Resume Mode is enabled by the MCS tool the before mentioned
call-back XcpAppl_DaqResumeStore is called by the Xcp_MainFunction.

Note
Annotation for the use of CANape:

Start the resume mode with the menu command Measurement | Start and push the
button “Measure offline” on the dialog box.

3.13.4 Data Stimulation (STIM)

Synchronous Data Stimulation is the inverse mode of Synchronous Data Acquisition.

The STIM processor buffers incoming data stimulation packets. When an event occurs

(Xcp_Event is called), which triggers a DAQ list in data stimulation mode, the buffered

data is transferred to the slave device’s memory.

To use data stimulation (STIM) the configuration switch

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpSynchronousDataStimulation has to be
enabled.

3.13.5 Bypassing

Bypassing can be realized by making use of Synchronous Data Acquisition (DAQ) and
Synchronous Data Stimulation (STIM) simultaneously.

State-of-the-art Bypassing also requires the administration of the bypassed functions. This
administration has to be performed in a MCS like e.g. CANape.

Also the slave should perform plausibility checks on the data it receives through data
stimulation. The borders and actions of these checks are set by standard calibration
methods. No special XCP commands are needed for this.

3.13.6 Data Acquisition Plug & Play Mechanisms

The XCP Protocol Layer comprises two plug & play mechanisms for data acquisition:

> General information on the DAQ processor

> General information on DAQ processing resolution

The general information on the DAQ processor contains:

> General properties of DAQ lists

> Total number of available DAQ lists and event channels

The general information on the DAQ processing resolution contains:

> Granularity and maximum size of ODT entries for both directions

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 23
based on template version 6.0.1

> Information on the time stamp mode

3.13.7 Event Channel Plug & Play Mechanism

The XCP Protocol Layer supports a plug & play mechanism that allows the MCS to
automatically detect the available event channels in the slave. The associated service is

enabled by /MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpGetDAQEventInfo.

If this option is enabled the MCS can read the configured Event Channels from the XCP
Slave.

3.13.8 Send Queue

The Send Queue is used to store measurement values until they can be transmitted on the
bus. The Send Queue size can be configured in the configuration tool. It is defined by the

parameter /MICROSAR/Xcp/XcpConfig/XcpCoreDefinition/XcpSendQueueSize. Please be
aware that in a Multi Core system multiple Send Queues may be configured. Each Core
the Xcp_Event function is called on requires its own Send Queue. The sizes may vary,
depending on the number of measurement values on each Core. See chapter 3.16 Multi
Core Support.

3.13.9 Data consistency

The XCP supports a data consistency on ODT level. If a consistency on DAQ level is
required, interrupts must be disabled prior calling Xcp_Event and enabled again after the
function returns. The following example demonstrates the integrity on ODT level by
showing the XCP ODT frames as sent on the bus. Two Events (x, y) are configured with
DAQ list DAQ1 assigned to Event(x) and DAQ list DAQ2 assigned to Event(y). A call of the
Xcp_Event function with the respective event channel number will then trigger the
transmission of the associated DAQ list.

Example1: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(y). This is allowed
as long as the interrupt locks are provided by the Schedule Manager (default with
MICROSAR stack).

Example2: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(x). As a result a
DAQ list is interrupted by itself. This is not allowed and must be prevented by data
consistency on DAQ level. For this use a interrupt lock when calling Xcp_Event()

DAQ1

DAQ2

 ODT0

 ODT3

 ODT1

 ODT4

 ODT2

 Example1 ODT0 ODT1 ODT3 ODT4 ODT2

 Example2 ODT0 ODT1 ODT0 ODT1 ODT2 ODT2

Figure 3-2 Data consistency

Note on Multi Core systems: It is in the responsibility of the user to assign only
measurement values relevant for the Core to the corresponding Event Channel called on
the specific Core.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 24
based on template version 6.0.1

3.14 The Online Data Calibration Model

3.14.1 Page Switching

The MCS can switch between a flash page and a RAM page. The XCP command
SET_CAL_PAGE is used to activate the required page. The page switching is enabled with

the /MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching definition.

The following application callback functions have to be implemented:

 5.5.23 XcpAppl_GetCalPage

 5.5.24 XcpAppl_SetCalPage

Note
Annotation for the use of CANape:

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH”. Activate page switching. Enter a flash selector
value e.g. 1 and a Ram selector e.g. 0.

3.14.2 Page Switching Plug & Play Mechanism

The MCS can be automatically configured if the page switching plug & play mechanism is
used. This mechanism comprises

> General information about the paging processor

The page switching plug & play mechanism is enabled with the switch
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpGeneralPagingInfo.

3.14.3 Calibration Data Page Copying

Calibration data page copying is performed by the XCP command COPY_CAL_PAGE. To
enable this feature the compiler switch

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpCopyPage has to be enabled.

For calibration data page copying the following application callback function has to be
provided by the application:

 5.5.25 XcpAppl_CopyCalPage

3.14.4 Freeze Mode Handling

Freeze mode handling is performed by the XCP commands SET_SEGMENT_MODE and
GET_SEGMENT_MODE. To enable this feature the parameter

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode has to be enabled.

For freeze mode handling the following application callback functions have to be provided
by the application:

 5.5.26 XcpAppl_SetFreezeMode

 5.5.27 XcpAppl_GetFreezeMode

 5.5.22 XcpAppl_CalResumeStore

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 25
based on template version 6.0.1

3.15 Flash Programming

There are two methods available for the programming of flash memory.

> Flash programming by the ECU’s application

> Flash programming with a flash kernel

Depending on the hardware it might not be possible to reprogram an internal flash sector,
while a program is running from another sector. In this case the usage of a special flash
kernel is necessary.

3.15.1 Flash Programming by the ECU’s Application

If the internal flash has to be reprogrammed and the microcontroller allows to
simultaneously reprogram and execute code from the flash the programming can be
performed with the ECU’s application that contains the XCP. This method is also used for
the programming of external flash.

The flash programming is done with the following XCP commands PROGRAM_START,

PROGRAM_RESET, PROGRAM_CLEAR, PROGRAM, PROGRAM_NEXT, PROGRAM_MAX, PROGRAM_RESET,

PROGRAM_FORMAT
1, PROGRAM_VERIFY1.

The flash prepare, flash program and the clear routines are platform dependent and
therefore have to be implemented by the application.

 5.5.15 XcpAppl_Reset

 5.5.16 XcpAppl_ProgramStart

 5.5.17 XcpAppl_FlashClear

 5.5.18 XcpAppl_FlashProgram

The flash programming is enabled with the switch

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming.

Note
Annotation for the usage of CANape:

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH” and select the entry “Direct” in the flash kernel
drop down list.

3.15.2 Flash Programming Plug & Play Mechanism

The MCS (like e.g. CANape) can get information about the Flash and the Flash
programming process from the ECU. The following information is provided by the ECU:

> Number of sectors, start address or length of each sector

> The program sequence number, clear sequence number and programming method

> Additional information about compression, encryption

1
 Command not supported

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 26
based on template version 6.0.1

The flash programming plug & play mechanism is enabled with the switch

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming/XcpSector.

3.15.3 Flash Programming with a Flash Kernel

A flash kernel has to be used for the flash programming if it is not possible to
simultaneously reprogram and execute code from the flash. Even though the
reprogrammed sector and the sector the code is executed from are different sectors.

The application callback function

 5.5.13 XcpAppl_DisableNormalOperation

 5.5.14 XcpAppl_StartBootLoader

is called prior to the flash kernel download in the RAM. Within this function the normal
operation of the ECU has to be stopped and the flash kernel download can be prepared.
Due to the flash kernel is downloaded in the RAM typically data gets lost and no more
normal operation of the ECU is possible.

The flash programming with a flash kernel is enabled with the switch

/MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload.

Note
Annotation for the usage of CANape:

The flash kernel is loaded by CANape into the microcontroller’s RAM via XCP
whenever the flash memory has to be reprogrammed. The flash kernel contains the
necessary flash routines, its own CAN-Driver and XCP Protocol implementation to
communicate via the CAN interface with CANape.

Every flash kernel must be customized to the microcontroller and the flash type being
used. CANape already includes some flash kernels for several microcontrollers. There
is also an application note available by Vector Informatik GmbH that describes the
development of a proprietary flash kernel.

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH”, and select in the ‘flash kernel’ drop down list, the
corresponding fkl file for the microcontroller being used.

3.16 Multi Core Support

3.16.1 Type Safe Copy

The XCP Protocol Layer supports a feature called “Type Safe Copy” which provides
atomic access to aligned uint16 and uint32 measurement values. This is important on multi
core platforms where one core is accessing a measurement value while the XCP is trying
to do the same running from another core. The Type Safe Copy is used for polling while
DAQ/STIM usually use direct memory access and copy byte wise.

With this option disabled, all access to measurement values is performed byte wise which
is not an atomic operation.

The following points must be taken into consideration when enabling this option:

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 27
based on template version 6.0.1

> This option allows the XCP to only read/write basic data types used on another core; it
cannot provide data consistency on ODT level.

> This option has a slightly higher runtime.

> Some MCS tools perform an optimization by grouping measurement values. This
option must be disabled; otherwise they do not represent unique data types anymore.

3.16.2 DAQ/STIM with Multi Core

It is possible to execute the Xcp_Event function on a different Core. This must be
configured in the configuration tool accordingly. For each Core the XCP is used on the

following Container must be created: /MICROSAR/Xcp/XcpConfig/XcpCoreDefinition. The
correct Core Definition must be referenced for each configured Event Channel:

/MICROSAR/Xcp/XcpConfig/XcpEventChannel/XcpEventChannelCoreRef. An Event Channel
can only be called on the Core it is configured for; otherwise a DET error is thrown.

The following picture shows the architecture behind the Multi Core support and the way
the Xcp_Event function is called on each Core:

Figure 3-3 Application of Xcp_Event function on Multi Core systems

3.17 En- / Disabling the XCP module

The macro XCP_ACTIVATE/XCP_DEACTIVATE can be used to en- or disable the XCP module
during run time. Thus the XCP functionality can be controlled by the application. These

 act Activ ity

OsTask

Application

Core

Calculation of Application

Data

Collecting Data

Xcp_Ev ent(5ms_ApplicationCore)
«datastore»

Lock free Core

Specific Queue

ActivityFinal

OsTask BSW

Core

Xcp_MainFunction (Trigger

Sequential Transmission)

OsTask

Util ity Core

Calculation of Utility Data

Collecting Data

Xcp_Ev ent(5ms_UtilityCore)
«datastore»

Lock free Core

Specific Queue

ActivityFinal

ActivityFinal

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 28
based on template version 6.0.1

macros control the protocol and transport layer together, i.e. enabling or disabling them as
a whole. It is recommended to perform a Xcp_Disconnect() API call to bring the XCP in a
save state before it is disabled.

3.18 XCP measurement during the post event time

In use cases where there is no further communication request except XCP measurement
the session state of the XCP can be determined to prevent an early shutdown of the ECU.
For this purpose the following API exist:

 5.2.13 Xcp_GetSessionStatus

An example implementation that is called cyclically could look like the following example:

Example

{

 uint16 sessionState;

 sessionState = Xcp_GetSessionStatus();

 if(0 != (sessionState & XCP_SESSION_CONNECTED))

 {

 /* Is the xcp actively used? */

 if(0 != (sessionState & (XCP_SESSION_DAQ | XCP_SESSION_POLLING)))

 {

 /* Yes, reload timer */

 swTimer = XCPAPPL_TIMEOUT_TIMER_RELOAD;

 }

 }

 if(swTimer > 0)

 {

 /* No timeout so far */

 swTimer--;

 }

 else

 {

 /* Timer timeout happened, release xcp communication request */

 }

}

Please note that polling requests may happen erratically. Therefore it is important not to

choose the timeout value XCP_TIMEOUT_TIMER_RELOAD too small.

3.19 Error Handling

3.19.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det_ReportError() as specified in [2], if development error reporting is enabled:

/MICROSAR/Xcp/XcpGeneral/XcpDevErrorDetect.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 29
based on template version 6.0.1

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det_ReportError().

The reported XCP ID is 26.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 Xcp_Init

0x03 Xcp_SendEvent

0x04 Xcp_PutChar

0x05 Xcp_Print

0x06 Xcp_Disconnect

0x07 Xcp_SendCrm

0x08 Xcp_GetXcpDataPointer

0x0A Xcp_GetVersionInfo

0x0B Xcp_TlRxIndication

0x0C Xcp_TlTxConfirmation

0x0E Xcp_GetSessionStatus

0x0F Xcp_SetActiveTl

0x10 Xcp_GetActiveTl

0x14 Xcp_ModifyProtectionStatus

0xC8 Xcp_MainFunction

0xC9 Xcp_Event

0xFD Xcp_StimEventStatus

Table 3-7 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x0A API service Xcp_Init() called with wrong parameter.

0x0B API service used with an invalid channel identifier or channel was not configured
for the functionality of the calling API.

0x0C API service used with an invalid event channel identifier or event channel was
not configured for the functionality of the calling API.

0x0D API service used with invalid pointer parameter (NULL).

0x0E API service used with an invalid channel identifier or channel was not configured
for the functionality of the calling API.

0x10 API service used without module initialization.

0x11 The service Xcp_Init() is called while the module is already initialized.

0x12 The service Xcp_Event() is called with a wrong channel id on a wrong core.

Table 3-8 Errors reported to DET

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 30
based on template version 6.0.1

3.19.2 Production Code Error Reporting

The errors reported to DEM are described in the following table:

Error Code Description

- No production errors are reported by the XCP.

Table 3-9 Errors reported to DEM

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 31
based on template version 6.0.1

4 Integration

This chapter gives necessary information for the integration of the MICROSAR XCP into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the XCP contains the files which are described in the chapters 4.1.1 and
4.1.3:

4.1.1 Static Files

File Name Description

Xcp.c This is the source file of the XCP. It contains the XCP protocol layer.

Xcp.h This is the header file. It contains global declarations.

Xcp_Priv.h This is the private header file. It contains declarations only relevant for the XCP
itself.

Xcp_Types.h This is the type definition header file. It contains type definitions used by the XCP.

Table 4-1 Static files

4.1.2 Templates – user modifiable

File Name Description

XcpAppl.c This is the source file of the application call-back. This file usually must be
modified by the user to his needs.

XcpAppl.h This is the header file of the application call-backs. It contains global declarations.

Table 4-2 Templates

4.1.3 Dynamic Files

The dynamic files are generated by the configuration tool.

File Name Description

Xcp_Cfg.h XCP Protocol Layer configuration file.

Xcp_Lcfg.c Parameter definition for the XCP Protocol Layer.

Xcp_Lcfg.h External declarations for the parameters.

Table 4-3 Generated files

4.1.4 Generated a2l files

The GenTool also generates multiple a2l files which can be used in the MCS tool for easier
integration. The following files are generated:

 XCP.a2l (general protocol layer settings)

 XCP_daq.a2l (DAQ specific settings)

 XCP_events.a2l (DAQ event info)

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 32
based on template version 6.0.1

 XCP_Checksum.a2l (Checksum information)

Example Master.a2l:

...

/begin IF_DATA XCP

 /include XCP.a2l

 /begin DAQ

 /include XCP_daq.a2l

 /include XCP_events.a2l

 /include XCP_checksum.a2l

 ...

 /end DAQ

 /include CanXCPAsr.a2l

/end IF_DATA

...

/include bsw.a2l

...

4.2 Critical Sections

The XCP protocol layer makes use of three critical sections in order to protect functions
that are not re-entrant. The following sections are used:

 XCP_EXCLUSIVE_AREA_0

 XCP_EXCLUSIVE_AREA_1

 XCP_EXCLUSIVE_AREA_2

The individual exclusive areas must not be allowed to interrupt each other. The areas are
used for the following cases:

4.2.1 XCP_EXCLUSIVE_AREA_0

This exclusive area is used to protect non-reentrant functions. This critical section covers
calls to several sub-functions and can have a long run-time.

4.2.2 XCP_EXCLUSIVE_AREA_1

This exclusive area is used by Xcp_Event during DAQ measurement. It is used to provide
data integrity on ODT level and its duration is dependent on the MAX_DTO parameter, i.e.
can be short on CAN and long on Ethernet.

4.2.3 XCP_EXCLUSIVE_AREA_2

This exclusive area is used by Xcp_Event during STIM measurement. It is used to provide
data integrity on ODT level and its duration is dependent on the MAX_DTO parameter, i.e.
can be short on CAN and long on Ethernet.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 33
based on template version 6.0.1

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the XCP are described in this chapter.

Type Name C-Type Description

Xcp_TimestampType

c-type This is a type used for timestamp values. Its size is depending
on the configuration in the tool and can be uint8, uint16 or
uint32.

Table 5-1 Type definitions

Xcp_ChannelStruct

Struct Element Name C-Type Description

Xcp_ChannelStruct

c-type This is a complex structure containing all the configuration
data of the XCP. This structure needs to be stored in NVM for
resume mode.

Table 5-2 Xcp_ChannelStruct

5.2 Services provided by XCP

5.2.1 Xcp_InitMemory

Prototype

void Xcp_InitMemory (void)

Parameter

- -

Return code

- -

Functional Description

This service initializes the XCP Protocol Layer memory. It must be called from the application program
before any other XCP function is called. This is only required if the Startup Code does not initialize the
memory with zero.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The global interrupts have to be disabled while this service function is executed. This function should be
called during initialization of the ECU before the interrupts have been enabled.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 34
based on template version 6.0.1

Expected Caller Context

> Task and interrupt level

Table 5-3 Xcp_InitMemory

5.2.2 Xcp_Init

Prototype

void Xcp_Init (void)

Parameter

- -

Return code

- -

Functional Description

This service initializes the XCP Protocol Layer and its internal variables. It must be called from the
application program before any other XCP function is called (except of Xcp_InitMemory).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

Expected Caller Context

> Task level
4 Xcp_Init

5.2.3 Xcp_Event

Prototype

uint8 Xcp_Event (uint16 EventChannel)

Parameter

EventChannel Number of event channels to process.

The event channel numbers have to start at 0 and have to be continuous. The
range is: 0..x

Return code

uint8 XCP_EVENT_NOP : Inactive (DAQ not running, Event not configured)

XCP_EVENT_DAQ : DAQ active */

XCP_EVENT_DAQ_OVERRUN : DAQ queue overflow, data lost

XCP_EVENT_STIM : STIM active

XCP_EVENT_STIM_OVERRUN : STIM data not available

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 35
based on template version 6.0.1

Functional Description

Calling Xcp_Event with a particular event channel number triggers the sampling and transmission of all

DAQ lists that are assigned to this event channel.

The event channels are defined by the ECU developer in the application program. An MCS (e.g. CANape)
must know about the meaning of the event channel numbers. These are usually described in the tool
configuration files or in the interface specific part of the ASAM MC2 (ASAP2) database.

Example:

A motor control unit may have a 10ms, a 100ms and a crank synchronous event channel. In this case, the

three Xcp_Event calls have to be placed at the appropriate locations in the ECU’s program:

Xcp_Event (XcpConf_XcpEventChannel_10ms); /* 10ms cycle */

xcp_Event (XcpConf_XcpEventChannel_100ms); /* 100ms cycle */

xcp_Event (XcpConf_XcpEventChannel_Crank); /* Crank synchronous cycle */

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant (for different Event Channel).

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim

Expected Caller Context

> Task and interrupt level

Table 5-5 Xcp_Event

5.2.4 Xcp_StimEventStatus

Prototype

uint8 Xcp_StimEventStatus (uint16 EventChannel, uint8 Action)

Parameter

EventChannel Event channel number.

Action STIM_CHECK_ODT_BUFFER : check ODT buffer

STIM_RESET_ODT_BUFFER : reset ODT buffer

Return code

uint8 XCP_NO_STIM_DATA_AVAILABLE : stimulation data not available
XCP_STIM_DATA_AVAILABLE : new stimulation data is available

Functional Description

Check if data stimulation (STIM) event can perform or delete the buffers.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 36
based on template version 6.0.1

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpSynchronousDataStimulation

Expected Caller Context

> Task and interrupt level

Table 5-6 Xcp_StimEventStatus

5.2.5 Xcp_MainFunction

Prototype

void Xcp_MainFunction (void)

Parameter

- -

Return code

- -

Functional Description

If the XCP command for the calculation of the memory checksum has to be used for large memory areas, it
might not be appropriate to block the processor for a long period of time. Therefore, the checksum

calculation is divided into smaller sections that are handled in the Xcp_MainFunction.

Additionally, the main function handles persisting requests.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly

Expected Caller Context

> Task level

Table 5-7 Xcp_MainFunction

5.2.6 Xcp_SendEvent

Prototype

void Xcp_SendEvent (Xcp_ChannelType XcpChannel, uint8 EventCode, uint8
*EventData, uint8 Length)

Parameter

XcpChannel The channel number in multi client mode.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 37
based on template version 6.0.1

EventCode The event code of the message to send.

EventData A pointer to the string of the event to send.

Length The length of the event data.

Return code

- -

Functional Description

Transmission of event codes via event packets (EV).

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Event Codes has to be enabled: /MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpEventCodes

Expected Caller Context

> Task level

Table 5-8 Xcp_SendEvent

5.2.7 Xcp_PutChar

Prototype

void Xcp_PutChar (Xcp_ChannelType XcpChannel, uint8 *Character)

Parameter

XcpChannel The channel number in multi client mode.

Character The char to send.

Return code

- -

Functional Description

Put a char into a service request packet (SERV).

The service request packet is transmitted if either the maximum packet length is reached (the service
request message packet is full) or the character 0x00 is in the service request packet.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Service Request Message has to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 38
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-9 Xcp_PutChar

5.2.8 Xcp_Print

Prototype

void Xcp_Print (Xcp_ChannelType XcpChannel, uint8 *Str)

Parameter

XcpChannel The channel number in multi client mode.

Str The 0 terminated string to send.

Return code

- -

Functional Description

Transmission of a service request packet (SERV).

The string str is sent via service request packets. The string has to be terminated by 0x00.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Service Request Message has to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Expected Caller Context

> Task level

Table 5-10 Xcp_Print

5.2.9 Xcp_Disconnect

Prototype

void Xcp_Disconnect (Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

- -

Functional Description

If the XCP slave is connected to a XCP master a call of this function discontinues the connection (transition
to disconnected state). If the XCP slave is not connected this function performs no action.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 39
based on template version 6.0.1

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

Expected Caller Context

> Task level

Table 5-11 Xcp_Disconnect

5.2.10 Xcp_SendCrm

Prototype

void Xcp_SendCrm (Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

- -

Functional Description

Transmission of a command response packet (RES), or error packet (ERR) if no other packet is pending.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly, XCP is in connected state and a command
packet (CMD) has been received.

Expected Caller Context

> Task level

Table 5-12 Xcp_SendCrm

5.2.11 Xcp_GetVersionInfo

Prototype

void Xcp_GetVersionInfo (Std_VersionInfoType *versionInfo)

Parameter

versionInfo Pointer to the location where the Version information shall be stored.

Return code

- -

Functional Description

Xcp_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the component.
The versions are BCD-coded.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 40
based on template version 6.0.1

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The version info API has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpVersionInfoApi

Expected Caller Context

> Task level

Table 5-13 Xcp_GetVersionInfo

5.2.12 Xcp_ModifyProtectionStatus

Prototype

void Xcp_ModifyProtectionStatus (Xcp_ChannelType XcpChannel, uint8 AndState,
uint8 OrState)

Parameter

XcpChannel The channel number in multi client mode.

AndState The following flags: XCP_RM_CAL_PAG, XCP_RM_DAQ, XCP_RM_STIM
and XCP_RM_PGM can be used to clear the protection state of the respective
resource. The modified state is persistent until Xcp_Init.

OrState The following flags: XCP_RM_CAL_PAG, XCP_RM_DAQ, XCP_RM_STIM
and XCP_RM_PGM can be used to set the protection state of the respective
resource. The modified state is persistent until Xcp_Init.

Return code

- -

Functional Description

This method can be used to enable or disable the protection state of an individual resource during runtime.
The newly set protection state is persistent until the next call of the Xcp_Init function where all flags are set
again.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Seed&Key has to be enabled: /MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey

Expected Caller Context

> Task level

Table 5-14 Xcp_ModifyProtectionStatus

5.2.13 Xcp_GetSessionStatus

Prototype

uint16 Xcp_GetSessionStatus (Xcp_ChannelType XcpChannel)

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 41
based on template version 6.0.1

Parameter

XcpChannel The channel number in multi client mode.

Return code

uint16 The function returns a bit mask with the following flags:

XCP_SESSION_CONNECTED: The XCP is in state connected.

XCP_SESSION_POLLING: A polling measurement is ongoing.

XCP_SESSION_DAQ: A DAQ measurement is active.

Functional Description

This service can be used to get the session state of the XCP Protocol Layer. The session state is returned
as a bit mask where the individual bits can be tested.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Session Status API has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpSessionStatusAPI

Expected Caller Context

> Task level

Table 5-15 Xcp_GetSessionStatus

5.2.14 Xcp_GetXcpDataPointer

Prototype

uint16 Xcp_GetXcpDataPointer (Xcp_ChannelStructPtr * pXcpData)

Parameter

pXcpData Pointer to XCP channel information.

Return code

- -

Functional Description

This service can be used to get the complete XCP data. This is required for flash programming with a flash
kernel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Bootloader Download has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload

Expected Caller Context

> Task level

Table 5-16 Xcp_GetXcpDataPointer

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 42
based on template version 6.0.1

5.3 Services provided by the XCP Protocol Layer and called by the XCP Transport
Layer

5.3.1 Xcp_TlRxIndication

Prototype

void Xcp_TlRxIndication (Xcp_ChannelType XcpChannel, unt8 *CmdPtr)

Parameter

XcpChannel The channel number in multi client mode.

CmdPtr Pointer to the XCP protocol message, which must be extracted from the XCP
protocol packet.

Return code

- -

Functional Description

Every time the XCP Transport Layer receives a XCP CTO Packet this function has to be called.
The parameter is a pointer to the XCP protocol message, which must be extracted from the XCP protocol
packet.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-17 Xcp_TlRxIndication

5.3.2 Xcp_TlTxConfirmation

Prototype

void Xcp_TlTxConfirmation (Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

- -

Functional Description

The XCP Protocol Layer does not call <Bus>Xcp_Send again, until Xcp_TlTxConfirmation has

confirmed the successful transmission of the previous message. Xcp_TlTxConfirmation transmits

pending data acquisition messages by calling <Bus>Xcp_Send again.

Note that if Xcp_TlTxConfirmation is called from inside <Bus>Xcp_Send a recursion occurs, which

assumes enough space on the call stack.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 43
based on template version 6.0.1

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-18 Xcp_TlTxConfirmation

5.3.3 Xcp_SetActiveTl

Prototype

void Xcp_SetActiveTl (Xcp_ChannelType XcpChannel, uint8 MaxCto, uint16 MaxDto,
uint8 ActiveTl)

Parameter

XcpChannel The channel number in multi client mode.

MaxCto Max CTO used by the respective XCP Transport Layer

MaxDto Max DTO used by the respective XCP Transport Layer

ActiveTl XCP_TRANSPORT_LAYER_CAN: XCP on CAN Transport Layer

XCP_TRANSPORT_LAYER_FR: XCP on Fr Transport Layer

XCP_TRANSPORT_LAYER_ETH: XCP on Ethernet Transport Layer

Return code

- -

Functional Description

This service is used by the XCP Transport Layers to set the Transport Layer to be used by the XCP
Protocol Layer

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-19 Xcp_SetActiveTl

5.3.4 Xcp_GetActiveTl

Prototype

uint8 Xcp_GetActiveTl (Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 44
based on template version 6.0.1

Return code

uint8 XCP_TRANSPORT_LAYER_CAN: XCP on CAN Transport Layer

XCP_TRANSPORT_LAYER_FR: XCP on Fr Transport Layer

XCP_TRANSPORT_LAYER_ETH: XCP on Ethernet Transport Layer

Functional Description

This service is used by the XCP Transport Layers to get the currently active Transport Layer used by the
XCP Protocol Layer

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-20 Xcp_GetActiveTl

5.4 XCP Transport Layer Services called by the XCP Protocol Layer

5.4.1 <Bus>Xcp_Send

Prototype

void <Bus>Xcp_Send (Xcp_ChannelType XcpChannel, uint8 len, uint8 *msg)

Parameter

XcpChannel The channel number in multi client mode.

len Length of message data

msg Pointer to message

Return code

- -

Functional Description

Requests for the transmission of a command transfer object (CTO) or data transfer object (DTO).

Xcp_TlTxConfirmation must be called after the successful transmission of any XCP message. The

XCP Protocol Layer will not request further transmissions otherwise.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 45
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-21 <Bus>Xcp_Send

5.4.2 <Bus>Xcp_SendFlush

Prototype

void <Bus>Xcp_SendFlush(Xcp_ChannelType XcpChannel, uint8 FlushType)

Parameter

XcpChannel The channel number in multi client mode.

FlushType This is one of the following:

XCP_FLUSH_CTO: To flush CTO messages.

XCP_FLUSH_DTO: To flush DTO message.

XCP_FLUSH_ALL: To flush either message.

Return code

- -

Functional Description

Flush the transmit buffer.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-22 <Bus>Xcp_SendFlush

5.4.3 <Bus>Xcp_TlService

Prototype

uint8 <Bus>Xcp_TlService(Xcp_ChannelType XcpChannel, uint8 *pCmd)

Parameter

XcpChannel The channel number in multi client mode.

pCmd Pointer to transport layer command string

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 46
based on template version 6.0.1

Return code

uint8 XCP_CMD_OK : Done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_SYNTAX : Error

XCP_CMD_BUSY : not executed

XCP_CMD_UNKNOWN : not implemented optional command

XCP_CMD_OUT_OF_RANGE : command parameters out of range

Functional Description

Transport Layer specific commands are processed within the XCP Transport Layer.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-23 <Bus>Xcp_TlService

5.5 Application Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found
in the XcpAppl header.

The XCP Protocol Layer provides application callback functions in order to perform
application and hardware specific tasks.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

5.5.1 XcpAppl_GetTimestamp

Prototype

Xcp_TimestampType XcpAppl_GetTimestamp(void)

Parameter

- -

Return code

Xcp_TimestampType The timestamp which is either uint8, uint16 or uint32, depending on
configuration.

Functional Description

Returns the current timestamp.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 47
based on template version 6.0.1

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> DAQ and timestamp feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim

/MICROSAR/Xcp/XcpGeneral/XcpTimestampType

Expected Caller Context

> Task level

Table 5-24 XcpAppl_GetTimestamp

5.5.2 XcpAppl_GetPointer

Prototype

Xcp_AddressPtrType XcpAppl_GetPointer(Xcp_ChannelType XcpChannel, uint8

AddrExt, const Xcp_AddressPtrType Addr)

Parameter

XcpChannel The channel number in multi client mode.

AddrExt 8 bit address extension

Addr 32 bit address

Return code

Xcp_AddressPtrType Pointer to the address specified by the parameters

Functional Description

This function converts a memory address from XCP format (32-bit address plus 8-bit address extension) to
a C style pointer. An MCS like CANape usually reads this memory addresses from the ASAP2 database or
from a linker map file.

The address extension may be used to distinguish different address spaces or memory types. In most
cases, the address extension is not used and may be ignored.

This function is used to convert an address from the MCS tool.

Example:

The following code shows an example of a typical implementation of XcpAppl_GetPointer:

Xcp_AddressPtrType XcpAppl_GetPointer(Xcp_ChannelType XcpChannel, uint8 AddrExt, uint32 Addr)

{

 return (Xcp_AddressPtrType)Addr;

}

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> DAQ and timestamp feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim

/MICROSAR/Xcp/XcpGeneral/XcpTimestampType

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 48
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-25 XcpAppl_GetPointer

5.5.3 XcpAppl_GetIdData

Prototype

uint32 XcpAppl_GetIdData(uint8 **Data, uint8 Id)

Parameter

Data Pointer to location where address pointer to Id data is stored.

Id Identification of the requested information/identification

Return code

uint32 Length of the MAP file names

Functional Description

Returns a pointer to identification information as requested by the Xcp Master.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Get ID feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpGetIdGeneric

Expected Caller Context

> Task level

Table 5-26 XcpAppl_GetIdData

5.5.4 XcpAppl_GetSeed

Prototype

uint8 XcpAppl_GetSeed(const uint8 Resource, uint8 *Seed)

Parameter

Resource Resource for which the seed has to be generated

XCP_RM_CAL_PAG : to unlock the resource calibration/paging

XCP_RM_DAQ : to unlock the resource data acquisition

XCP_RM_STIM : to unlock the resource stimulation

XCP_RM_PGM : to unlock the resource programming

Seed Pointer to RAM where the seed has to be generated to.

Return code

uint8 The length of the generated seed that is returned by seed.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 49
based on template version 6.0.1

Functional Description

Generate a seed for the appropriate resource.

The seed has a maximum length of MAX_CTO-2 bytes.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Seed&Key feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey

Expected Caller Context

> Task level

Table 5-27 XcpAppl_GetSeed

5.5.5 XcpAppl_Unlock

Prototype

uint8 XcpAppl_Unlock(const uint8 *Key, const uint8 Length)

Parameter

Key Pointer to key.

Length Length of the key.

Return code

uint8 0 : if the key is not valid

XCP_RM_CAL_PAG : to unlock the resource calibration/paging

XCP_RM_DAQ : to unlock the resource data acquisition

XCP_RM_STIM : to unlock the resource stimulation

XCP_RM_PGM : to unlock the resource programming

Functional Description Functional Description

Check the key and return the resource that has to be unlocked.

Only one resource may be unlocked at one time.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Seed&Key feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 50
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-28 XcpAppl_Unlock

5.5.6 XcpAppl_CalibrationWrite

Prototype

uint8 XcpAppl_CalibrationWrite(Xcp_AddressPtrType Dst, uint8 *Src, uint8 Size

)

Parameter

Dst Destination address as integer.

Src Pointer to source of data.

Size Size of data to copy from Src to Dst.

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_PENDING : access is performed asynchronously (e.g. EEPROM)

XCP_CMD_OK : if access is granted

Functional Description Functional Description

Check addresses for valid write access and copy data from source to destination.

Particularities and Limitations

> This function can be synchronous and asynchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-29 XcpAppl_CalibrationWrite

5.5.7 XcpAppl_MeasurementRead

Prototype

uint8 XcpAppl_MeasurementRead(uint8 *Dst, Xcp_AddressPtrType Src, uint8 Size)

Parameter

Dst Pointer to destination address

Src Source address of data as integer

Size Size of data to copy from Src to Dst.

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_PENDING : access is performed asynchronously (e.g. EEPROM)

XCP_CMD_OK : if access is granted

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 51
based on template version 6.0.1

Functional Description Functional Description

Check addresses for valid read access and copy data from source to destination.

Particularities and Limitations

> This function can be synchronous and asynchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-30 XcpAppl_MeasurementRead

5.5.8 XcpAppl_CheckReadAccess

Prototype

uint8 XcpAppl_CheckReadAccess(Xcp_ChannelType XcpChannel, Xcp_AddressPtrType

Address, uint32 Size)

Parameter

XcpChannel The channel number in multi client mode.

Address Destination address to check.

Size Size of data to check.

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description Functional Description

Check addresses for valid read access.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Read Protection feature need to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpMemoryReadProtection

Expected Caller Context

> Task level

Table 5-31 XcpAppl_CheckReadAccess

5.5.9 XcpAppl_CheckProgramAccess

Prototype

uint8 XcpAppl_CheckProgramAccess(Xcp_AddressPtrType Address, uint32 Size)

Parameter

Address Destination address to check.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 52
based on template version 6.0.1

Size Size of data to check.

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description Functional Description

Check addresses for valid write flash access.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task level

Table 5-32 XcpAppl_CheckProgramAccess

5.5.10 XcpAppl_UserService

Prototype

uint8 XcpAppl_UserService(uint8 *Cmd)

Parameter

Cmd Pointer to command string

Return code

uint8 XCP_CMD_OK : if command is accepted.

XCP_CMD_PENDING : if command is performed asynchronously.

XCP_CMD_SYNTAX : if command is not accepted.

Functional Description Functional Description

Application specific user command.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> User command feature need to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpUserDefinedCommand

Expected Caller Context

> Task level

Table 5-33 XcpAppl_UserService

5.5.11 XcpAppl_OpenCmdIf

Prototype

uint8 XcpAppl_OpenCmdIf(Xcp_ChannelType XcpChannel, uint8 *Cmd, uint8

*Response, uint8 *Length)

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 53
based on template version 6.0.1

Parameter

XcpChannel The channel number in multi client mode.

Cmd Pointer to command string

Response Pointer to response string

Length Pointer to response length

Return code

uint8 XCP_CMD_OK : if command is accepted.

XCP_CMD_PENDING : if command is performed asynchronously.

XCP_CMD_UNKNOWN : if command is not accepted.

Functional Description Functional Description

Call back that can be used to extend the XCP commands of the XCP protocol layer.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> User command feature need to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpOpenCommandInterface

Expected Caller Context

> Task level

Table 5-34 XcpAppl_OpenCmdIf

5.5.12 XcpAppl_SendStall

Prototype

uint8 XcpAppl_SendStall(Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

uint8 0 : Reject sending of new message.

1 : continue processing.

Functional Description Functional Description

Resolve a transmit stall condition in Xcp_Putchar or Xcp_SendEvent.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Service request Messages feature need to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 54
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-35 XcpAppl_SendStall

5.5.13 XcpAppl_DisableNormalOperation

Prototype

uint8 XcpAppl_DisableNormalOperation(Xcp_AddressPtrType Address, uint16 Size)

Parameter

Address Address (where the flash kernel is downloaded to)

Size Size (of the flash kernel)

Return code

uint8 XCP_CMD_OK: download of flash kernel confirmed

XCP_CMD_DENIED: download of flash kernel refused

Functional Description Functional Description

Prior to the flash kernel download has the ECU’s normal operation to be stopped in order to avoid
misbehavior due to data inconsistencies.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Bootloader download feature need to be enabled:

/MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload

Expected Caller Context

> Task level

Table 5-36 XcpAppl_DisableNormalOperation

5.5.14 XcpAppl_StartBootLoader

Prototype

uint8 XcpAppl_StartBootLoader(void)

Parameter

- -

Return code

uint8 This function should not return.

XCP_CMD_OK : positive response

XCP_CMD_BUSY : negative response

Functional Description Functional Description

Start of the boot loader.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 55
based on template version 6.0.1

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Bootloader download feature need to be enabled:

/MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload

Expected Caller Context

> Task level

Table 5-37 XcpAppl_StartBootLoader

5.5.15 XcpAppl_Reset

Prototype

void XcpAppl_Reset(void)

Parameter

- -

Return code

- -

Functional Description

Perform an ECU reset after reprogramming of the application.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context

> Task level

Table 5-38 XcpAppl_Reset

5.5.16 XcpAppl_ProgramStart

Prototype

uint8 XcpAppl_ProgramStart(void)

Parameter

- -

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 56
based on template version 6.0.1

Return code

uint8 XCP_CMD_OK : Preparation done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_ERROR : Flash programming not possible

Functional Description

Prepare the ECU for flash programming.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context

> Task level

Table 5-39 XcpAppl_ProgramStart

5.5.17 XcpAppl_FlashClear

Prototype

uint8 XcpAppl_FlashClear(uint8 *Address, uint32 Size)

Parameter

Address Address of memory area to clear

Size Size of memory area to clear

Return code

uint8 XCP_CMD_OK : Flash memory erase done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_ERROR : Flash memory erase error

Functional Description

Clear the flash memory, before the flash memory will be reprogrammed.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 57
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-40 XcpAppl_FlashClear

5.5.18 XcpAppl_FlashProgram

Prototype

uint8 XcpAppl_FlashProgram(const uint8 *Data, uint8 *Address, uint8 Size)

Parameter

Data Pointer to data.

Address Address of memory to store data at.

Size Size of data.

Return code

uint8 XCP_CMD_OK : Flash memory programming finished

XCP_CMD_PENDING : Flash memory programming in progress.

 Xcp_SendCrm has to be called when done.

Functional Description

Program the cleared flash memory.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context

> Task level

Table 5-41 XcpAppl_FlashProgram

5.5.19 XcpAppl_DaqResume

Prototype

uint8 XcpAppl_DaqResume(Xcp_ChannelType XcpChannel, Xcp_ChannelStruct *Channel

)

Parameter

XcpChannel The channel number in multi client mode.

Channel Pointer to dynamic DAQ list structure

Return code

uint8 Boolean flag whether valid DAQ list was restored.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 58
based on template version 6.0.1

Functional Description

Resume the automatic data transfer.

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the service
XcpAppl_DaqResumeStore(..) has to be restored to RAM.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpResumeMode

Expected Caller Context

> Task level

Table 5-42 XcpAppl_DaqResume

5.5.20 XcpAppl_DaqResumeStore

Prototype

void XcpAppl_DaqResumeStore(Xcp_ChannelType XcpChannel, const

Xcp_ChannelStruct *Channel, uint8 MeasurementStart)

Parameter

XcpChannel The channel number in multi client mode.

Channel Pointer to dynamic DAQ list structure

MeasurementStart If > 0 then set flag to start measurement during next init

Return code

- -

Functional Description

This application callback service has to store the whole dynamic DAQ list structure in non-volatile
memory for the DAQ resume mode. Any old DAQ list configuration that might have been stored in non-
volatile memory before this command, must not be applicable anymore.

After a cold start or reset the dynamic DAQ list structure has to be restored by the application callback

service XcpAppl_DaqResume(..)when the flag MeasurementStart is > 0.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpResumeMode

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 59
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-43 XcpAppl_DaqResumeStore

5.5.21 XcpAppl_DaqResumeClear

Prototype

void XcpAppl_DaqResumeClear(Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

- -

Functional Description

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the service

XcpAppl_DaqResumeStore(..) has to be cleared.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpDaqAndStim/XcpResumeMode

Expected Caller Context

> Task level

Table 5-44 XcpAppl_DaqResumeClear

5.5.22 XcpAppl_CalResumeStore

Prototype

boolean XcpAppl_CalResumeStore(Xcp_ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

boolean If true the calibration page was stored.

Functional Description

This application callback service has to store the current calibration data in non-volatile memory for the
resume mode.

After a cold start or reset the calibration data has to be restored by the application.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 60
based on template version 6.0.1

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode

Expected Caller Context

> Task level

Table 5-45 XcpAppl_CalResumeStore

5.5.23 XcpAppl_GetCalPage

Prototype

uint8 XcpAppl_GetCalPage(uint8 Segment, uint8 Mode)

Parameter

Segment Logical data segment number

Mode Access mode

The access mode can be one of the following values:

1 : ECU access

2 : XCP access

Return code

uint8 Logical data page number

Functional Description

This function returns the logical number of the calibration data page that is currently activated for the
specified access mode and data segment.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching

Expected Caller Context

> Task level

Table 5-46 XcpAppl_GetCalPage

5.5.24 XcpAppl_SetCalPage

Prototype

uint8 XcpAppl_SetCalPage(uint8 Segment, uint8 Page, uint8 Mode)

Parameter

Segment Logical data segment number

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 61
based on template version 6.0.1

Page Logical data page number

Mode Access mode

The access mode can be one of the following values:

1 : ECU access the given page will be used by the slave device application

2 : XCP access the slave device XCP driver will access the given page

Both flags may be set simultaneously or separately.

Return code

uint8 XCP_CMD_OK : Operation completed successfully

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CRC_OUT_OF_RANGE : segment out of range (only one segment

supported)

XCP_CRC_PAGE_NOT_VALID : Selected page not available

XCP_CRC_PAGE_MODE_NOT_VALID : Selected page mode not available

Functional Description

Switch pages, e.g. from reference page to working page.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching

Expected Caller Context

> Task level

Table 5-47 XcpAppl_SetCalPage

5.5.25 XcpAppl_CopyCalPage

Prototype

uint8 XcpAppl_CopyCalPage(uint8 SrcSeg, uint8 SrcPage, uint8 DestSeg, uint8

DestPage)

Parameter

SrcSeg Source segment.

SrcPage Source page.

DestSeg Destination segment.

DestPage Destination page.

Return code

uint8 XCP_CMD_OK : Operation completed successfully

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CRC_PAGE_NOT_VALID : Page not available

XCP_CRC_SEGMENT_NOT_VALID : Segment not available

XCP_CRC_WRITE_PROTECTED : Destination page is write protected.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 62
based on template version 6.0.1

Functional Description

Copying of calibration data pages.

The pages are copied from source to destination.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

> /MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpCopyPage

Expected Caller Context

> Task level

Table 5-48 XcpAppl_CopyCalPage

5.5.26 XcpAppl_SetFreezeMode

Prototype

void XcpAppl_SetFreezeMode(uint8 Segment, uint8 Mode)

Parameter

Segment Segment to set freeze mode

Mode New freeze mode

Return code

- -

Functional Description

Setting the freeze mode of a certain segment. Application must store the current freeze mode of each
segment.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

> /MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode

Expected Caller Context

> Task level

Table 5-49 XcpAppl_SetFreezeMode

5.5.27 XcpAppl_GetFreezeMode

Prototype

uint8 XcpAppl_GetFreezeMode(uint8 Segment)

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 63
based on template version 6.0.1

Parameter

Segment Segment to read freeze mode

Return code

uint8 Return the current freeze mode, set by XcpAppl_SetFreezeMode().

Functional Description

Reading the freeze mode of a certain segment. Application must store the current freeze mode of each
segment and report it by the return value of this function.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

> /MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode

Expected Caller Context

> Task level

Table 5-50 XcpAppl_GetFreezeMode

5.5.28 XcpAppl_CalculateChecksum

Prototype

uint8 XcpAppl_CalculateChecksum(uint8 *MemArea, uint8 *Result, uint32 Length)

Parameter

MemArea Address pointer to memory area

Result Pointer to response string

Length Length of mem area, used for checksum calculation

Return code

uint8 XCP_CMD_OK : CRC calculation performed successfully

XCP_CMD_PENDING : Pending response, triggered by call of

Xcp_SendCrm

XCP_CMD_DENIED : CRC calculation not possible

Functional Description

Normally the XCP uses internal checksum calculation functions. If the internal checksum calculation
does not fit the user requirements this call-back can be used to calculate the checksum by the
application.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:

> /MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpCRC/XcpCustomCRC

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 64
based on template version 6.0.1

Expected Caller Context

> Task level

Table 5-51 XcpAppl_CalculateChecksum

5.5.29 XcpAppl_ConStateNotification

Prototype

uint8 XcpAppl_ConStateNotification(Xcp_ChannelType XcpChannel, uint8

ConnectionState)

Parameter

XcpChannel The channel number in multi client mode.

ConnectionState The new connection state (XCP_CON_STATE_RESUME,

XCP_CON_STATE_DISCONNECTED, XCP_CON_STATE_CONNECTED).

Return code

- -

Functional Description

Notifies the application that the connection state has changed and which the new state is.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task and interrupt level

Table 5-52 XcpAppl_ConStateNotification

5.5.30 XcpAppl_MemCpy

Prototype

uint8 XcpAppl_MemCpy(uint8 * Dst, const uint8 * Src, uint16 Size)

Parameter

Dst The destination where the data is copied to.

Src The source where the data is copied from.

Size The number of byte to be copied.

Return code

- -

Functional Description

Copies data from source to destination.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 65
based on template version 6.0.1

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context

> Task and interrupt level

Table 5-53 XcpAppl_MemCpy

5.6 Services used by XCP

In the following table services provided by other components, which are used by the XCP
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

DET Det_ReportError

OS GetCoreID

Table 5-54 Services used by the XCP

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 66
based on template version 6.0.1

6 Configuration

6.1 Configuration Variants

The XCP supports the configuration variants

> VARIANT-PRE-COMPILE

The configuration classes of the XCP parameters depend on the supported configuration
variants. For their definitions please see the Xcp_bswmd.arxml file.

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 67
based on template version 6.0.1

7 Glossary and Abbreviations

7.1 Abbreviations

Abbreviation Description

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems

BYP BYPassing

CAN Controller Area Network

CAL CALibration

CANape Calibration and Measurement Data Acquisition for Electronic Control
Systems

CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)

DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ERR Error Packet

EV Event packet

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.

ODT Object Descriptor Table

OEM Original equipment manufacturer (vehicle manufacturer)

PAG PAGing

PID Packet Identifier

PGM Programming

RAM Random Access Memory

RES Command Response Packet

ROM Read Only Memory

SERV Service Request Packet

STIM Stimulation

TCP/IP Transfer Control Protocol / Internet Protocol

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 68
based on template version 6.0.1

UDP/IP Unified Data Protocol / Internet Protocol

USB Universal Serial Bus

XCP Universal Measurement and Calibration Protocol

VI Vector Informatik GmbH

Table 7-1 Abbreviations

Technical Reference MICROSAR XCP

© 2017 Vector Informatik GmbH Version 1.0.0 69
based on template version 6.0.1

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions

	1.1
	1.1 Limitations
	1.1 General Limitations
	3.2 Initialization
	3.3 States
	3.4 Main Functions
	3.5 Block Transfer Communication Model
	3.6 Slave Device Identification
	3.6.1 XCP Station Identifier
	3.6.2 XCP Generic Identification

	3.7 Seed & Key
	3.8 Checksum Calculation
	3.8.1 Custom CRC calculation

	3.9 Memory Access by Application
	3.9.1 Memory Read and Write Protection
	3.9.2 Special use case “Type Safe Copy”

	3.10 Event Codes
	3.11 Service Request Messages
	3.12 User Defined Command
	3.13 Synchronous Data Transfer
	3.13.1 Synchronous Data Acquisition (DAQ)
	3.13.2 DAQ Timestamp
	3.13.3 Power-Up Data Transfer
	3.13.4 Data Stimulation (STIM)
	3.13.5 Bypassing
	3.13.6 Data Acquisition Plug & Play Mechanisms
	3.13.7 Event Channel Plug & Play Mechanism
	3.13.8 Send Queue
	3.13.9 Data consistency

	3.14 The Online Data Calibration Model
	3.14.1 Page Switching
	3.14.2 Page Switching Plug & Play Mechanism
	3.14.3 Calibration Data Page Copying
	3.14.4 Freeze Mode Handling

	3.15 Flash Programming
	3.15.1 Flash Programming by the ECU’s Application
	3.15.2 Flash Programming Plug & Play Mechanism
	3.15.3 Flash Programming with a Flash Kernel

	3.16 Multi Core Support
	3.16.1 Type Safe Copy
	3.16.2 DAQ/STIM with Multi Core

	3.17 En- / Disabling the XCP module
	3.18 XCP measurement during the post event time
	3.19 Error Handling
	3.19.1 Development Error Reporting
	3.19.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Templates – user modifiable
	4.1.3 Dynamic Files
	4.1.4 Generated a2l files

	4.2 Critical Sections
	4.2.1 XCP_EXCLUSIVE_AREA_0
	4.2.2 XCP_EXCLUSIVE_AREA_1
	4.2.3 XCP_EXCLUSIVE_AREA_2

	5 API Description
	5.1 Type Definitions
	5.2 Services provided by XCP
	5.2.1 Xcp_InitMemory
	5.2.2 Xcp_Init
	5.2.3 Xcp_Event
	5.2.4 Xcp_StimEventStatus
	5.2.5 Xcp_MainFunction
	5.2.6 Xcp_SendEvent
	5.2.7 Xcp_PutChar
	5.2.8 Xcp_Print
	5.2.9 Xcp_Disconnect
	5.2.10 Xcp_SendCrm
	5.2.11 Xcp_GetVersionInfo
	5.2.12 Xcp_ModifyProtectionStatus
	5.2.13 Xcp_GetSessionStatus
	5.2.14 Xcp_GetXcpDataPointer

	5.3 Services provided by the XCP Protocol Layer and called by the XCP Transport Layer
	5.3.1 Xcp_TlRxIndication
	5.3.2 Xcp_TlTxConfirmation
	5.3.3 Xcp_SetActiveTl
	5.3.4 Xcp_GetActiveTl

	5.4 XCP Transport Layer Services called by the XCP Protocol Layer
	5.4.1 <Bus>Xcp_Send
	5.4.2 <Bus>Xcp_SendFlush
	5.4.3 <Bus>Xcp_TlService

	5.5 Application Services called by the XCP Protocol Layer
	5.5.1 XcpAppl_GetTimestamp
	5.5.2 XcpAppl_GetPointer
	5.5.3 XcpAppl_GetIdData
	5.5.4 XcpAppl_GetSeed
	5.5.5 XcpAppl_Unlock
	5.5.6 XcpAppl_CalibrationWrite
	5.5.7 XcpAppl_MeasurementRead
	5.5.8 XcpAppl_CheckReadAccess
	5.5.9 XcpAppl_CheckProgramAccess
	5.5.10 XcpAppl_UserService
	5.5.11 XcpAppl_OpenCmdIf
	5.5.12 XcpAppl_SendStall
	5.5.13 XcpAppl_DisableNormalOperation
	5.5.14 XcpAppl_StartBootLoader
	5.5.15 XcpAppl_Reset
	5.5.16 XcpAppl_ProgramStart
	5.5.17 XcpAppl_FlashClear
	5.5.18 XcpAppl_FlashProgram
	5.5.19 XcpAppl_DaqResume
	5.5.20 XcpAppl_DaqResumeStore
	5.5.21 XcpAppl_DaqResumeClear
	5.5.22 XcpAppl_CalResumeStore
	5.5.23 XcpAppl_GetCalPage
	5.5.24 XcpAppl_SetCalPage
	5.5.25 XcpAppl_CopyCalPage
	5.5.26 XcpAppl_SetFreezeMode
	5.5.27 XcpAppl_GetFreezeMode
	5.5.28 XcpAppl_CalculateChecksum
	5.5.29 XcpAppl_ConStateNotification
	5.5.30 XcpAppl_MemCpy

	5.6 Services used by XCP

	6 Configuration
	6.1 Configuration Variants

	7 Glossary and Abbreviations
	7.1 Abbreviations

	8 Contact

