

User Manual

AUTOSAR Calibration
Measuring and Calibrating of AUTOSAR

Applications with XCP and CANape

Version 1.0
English

Imprint

Vector Informatik GmbH
Ingersheimer Straße 24
D-70499 Stuttgart

Vector reserves the right to modify any information and/or data in this user documentation without notice. This documentation nor any of
its parts may be reproduced in any form or by any means without the prior written consent of Vector. To the maximum extent permitted
under law, all technical data, texts, graphics, images and their design are protected by copyright law, various international treaties and
other applicable law. Any unauthorized use may violate copyright and other applicable laws or regulations.

 Copyright 2013, Vector Informatik GmbH. Printed in Germany.
All rights reserved.

User Manual AUTOSAR Calibration Contents

© Vector Informatik GmbH Version 1.0 - I -

Contents

1 Introduction 3

1.1 Purpose of the AUTOSAR Calibration User Manual 4

1.2 About This User Manual 5
1.2.1 Certification 6
1.2.2 Warranty 6
1.2.3 Support 6
1.2.4 Trademarks 6

2 Introduction to AUTOSAR 7

2.1 Background 8

2.2 Approach 9

2.3 Basic Concept 10

2.4 Architecture 11

3 Measuring and Calibrating of ECU Software 13

3.1 Basics 14

3.2 XCP Driver 15
3.2.1 Measurement Modes 17
3.2.2 Autoselection and Software Version Check of the A2L File 18
3.2.3 Online Calibration 19
3.2.4 Page Switching 19
3.2.5 Bypassing 20
3.2.6 Resume Mode 21

3.3 A2L File 22
3.3.1 Structure 23
3.3.2 Mode of Functioning 32

4 OEM 33

4.1 Objective 34

4.2 Content of the Performance Specifications 34

4.3 Measurement Task 34

4.4 Calibration Task 35

4.5 XCP Features 35

5 Supplier 36

5.1 Preface 37

5.2 Requirements 37

5.3 Definition of Measurement and Calibration Parameters 37
5.3.1 Measuring and Calibrating of AUTOSAR Software Components 38
5.3.2 Measuring of Ports and Variables 38
5.3.3 XCP Events 39
5.3.4 Software Component with Calibration Parameters 40
5.3.5 Calibration Parameters for Multiple Software Components 40
5.3.6 Configuration of the RTE (Runtime Environment) 41
5.3.7 Measuring and Calibrating Without the Support of the RTE 41
5.3.8 Debugging of the BSW (Basic Software) 42

User Manual AUTOSAR Calibration Contents

© Vector Informatik GmbH Version 1.0 - II -

5.4 Configuration of the XCP Module 42
5.4.1 DAQ List Configuration 43
5.4.2 Tool-Driven DAQ Timestamp Option 44
5.4.3 XCP Event Information 44
5.4.4 Software Version Check 44
5.4.5 Use of the XCP Component in the Implementation 46
5.4.6 Recommendations for the Configuration of the XCP Module 46

5.5 Configuration of the Driver Modules 48
5.5.1 CAN Module MICROSAR XCP 48

5.6 Configuration of the Memory Management 48
5.6.1 Configuration for Resume Mode 48

5.7 Creating an A2L File 49
5.7.1 Creation of a Master A2L File 49
5.7.2 Expansion of the Master A2L File 51
5.7.3 Working with ASAP2 Tool-Set 52
5.7.4 Working with CANape and the ASAP2 Editor 54

5.8 Fast Access to the ECU Via the VX Module 55

5.9 Additional Topics 56

6 Delivery Test/Quick Start 57

7 CANape Introduction 58

7.1 Creation of a Project 59

7.2 Device Configuration 60
7.2.1 Devices 61
7.2.2 Networks 62
7.2.3 Vector Hardware 62
7.2.4 XCP Features in CANape 63

7.3 Online Measurement Configuration 64
7.3.1 Measurement Options 64
7.3.2 Measurement Signals 65
7.3.3 Recorder List 67
7.3.4 Event List 69

7.4 Working with Parameter Set Files 69

7.5 Dataset Management 70
7.5.1 Tool-Based in CANape 11.0 and Higher 70

7.6 Offline Evaluation 72

7.7 Flashing 74

8 Addresses 75

9 Abbreviations 76

User Manual AUTOSAR Calibration Introduction

© Vector Informatik GmbH Version 1.0 - 3 -

1 Introduction

In this chapter you will find the following information:

1.1 Purpose of the AUTOSAR Calibration User Manual page 4

1.2 About This User Manual page 5

 Certification

 Warranty

 Support

 Trademarks

User Manual AUTOSAR Calibration Introduction

© Vector Informatik GmbH Version 1.0 - 4 -

1.1 Purpose of the AUTOSAR Calibration User Manual

AUTOSAR Standard The AUTOSAR Standard describes methods that enable standardized development
of reusable and replaceable software components within vehicles. This approach
minimizes the development effort for electronic control unit (ECU) software. The
software is then optimized using CANape.

Calibration and
measurement
parameters

Since the software developer cannot yet optimize the parameters for a control
algorithm of the ECU at the time of implementation, these parameters are defined in
the software as calibration parameters. The calibration parameters are ultimately
variables in the source code that reside in RAM memory and remain unchanged by
the algorithm itself. They can then be calibrated using CANape. To record the effects
of the calibration process, additional measurement parameters are defined in the
software. These parameters are also variables in the source code and reside in RAM
memory. In contrast to calibration parameters, however, measurement parameters
are continually changed by the ECU algorithm and reflect the current value. This
makes the effects of the calibration process visible and allows the behavior of the
ECU to be optimized. For example, the wheel speed (calibration parameter) of a
driving dynamics control system is changed and the measuring equipment measures
the corresponding sensor values (measurement parameters) in order to acquire the
change in behavior of the algorithm.

CCP/XCP protocols
with A2L file

In order to access the ECU-internal measurement and calibration parameters during
runtime, the CCP and XCP protocols are used. A fundamental component of these
address-oriented protocols is an A2L file. This file facilitates data handling, since it
enables the symbolic selection of data objects independent from their memory
addresses in the ECU. Thus, it is possible to access ECU-internal parameters using
symbolic names. The measurement, calibration, and diagnostics system (CANape)
maintains the link between the ECU-internal addresses and the associated symbolic
names. For this, a separate A2L file is required for each ECU. Figure 1-1 shows the
integration of the A2L file in the MCD system.

Figure 1-1: Integration
of the A2L file in the
MCD system

ECU-independent
concept

An ECU-independent concept for measuring and calibrating AUTOSAR applications
is needed for the development of ECUs based on the AUTOSAR Standard. The
AUTOSAR Calibration user manual describes a standardized procedure for
implementing and calibrating an ECU according to AUTOSAR.

Structure of this
document

The document begins with a brief introduction of the AUTOSAR Standard. Aspects of
Measuring and Calibrating of ECU Software are then explained.

 The OEM chapter serves as a checklist for OEMs when creating performance
specifications. It briefly explains the details that must be communicated to the supplier
in order to realize the desired measurement task.

User Manual AUTOSAR Calibration Introduction

© Vector Informatik GmbH Version 1.0 - 5 -

 The Supplier chapter describes the procedure on the part of the supplier. It describes
details for configuring MICROSAR XCP and the software components of AUTOSAR.
It also explains the process of generating the A2L file.

 The Delivery Test/Quick Start chapter then explains how CANape can be used to
perform a simple delivery test of the A2L file. This can additionally be used as a
CANape Quick Start for the OEM.

 The final CANape Introduction chapter describes the path from project creation to
flashing of optimized parameters in CANape.

1.2 About This User Manual

To Find information
quickly

This user manual provides you with the following access help:

> At the beginning of each chapter you will find a summary of the contents.

> The header shows in which chapter of the manual you are.

> The footer shows the version of the manual.

> At the end of the user manual you will find a list of abbreviations to look-up used
abbreviations.

Conventions In the two tables below you will find the notation and icon conventions used
throughout the manual.

 Style Utilization

 bold Fields/blocks, user/surface interface elements, window- and
dialog names of the software, special emphasis of terms.

[OK] Push buttons in square brackets

File|Save Notation for menus and menu entries

 MICROSAR Legally protected proper names and marginal notes.

 Source Code File and directory names, source code, class and object
names, object attributes and values

 Hyperlink Hyperlinks and references.

 <Ctrl>+<S> Notation for shortcuts.

User Manual AUTOSAR Calibration Introduction

© Vector Informatik GmbH Version 1.0 - 6 -

 Symbol Utilization

This icon indicates notes and tips that facilitate your work.

This icon warns of dangers that could lead to damage.

This icon indicates more detailed information.

This icon indicates examples.

This icon indicates step-by-step instructions.

1.2.1 Certification

Quality
management system

Vector Informatik GmbH has ISO 9001:2008 certification. The ISO standard is a
globally recognized standard.

1.2.2 Warranty

Restriction of
warranty

We reserve the right to modify the contents of the documentation or the software
without notice. Vector disclaims all liabilities for the completeness or correctness of
the contents and for damages which may result from the use of this documentation.

1.2.3 Support

Need support? You can get through to our hotline by calling

+49 (0)711 80670-200

or you can send a problem report to canape-support@vector.com.

1.2.4 Trademarks

Protected
trademarks

All brand names in this documentation are either registered or non-registered
trademarks of their respective owners.

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 7 -

2 Introduction to AUTOSAR

In This Chapter You Will Find the Following Information:

2.1 Background page 8

2.2 Approach page 9

2.3 Basic Concept page 10

2.4 Architecture page 11

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 8 -

2.1 Background

AUTOSAR AUTOSAR (AUTomotive Open System ARchitecture) is a working group of
automobile manufacturers and suppliers whose objective is to establish a joint
industry standard for automotive E/E (electrics/electronics) architectures.

Main objectives The main objectives of this effort are:

> Management of the increasing E/E complexity

> Improved flexibility for updates and modifications

> Scalability to different vehicle and platform variants

> Improved reliability and quality of E/E systems

> Ability to identify errors in early phases of development

> Reusability of functions irrespective of the supplier

> Standardized model tools and code generators

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 9 -

2.2 Approach

AUTOSAR elements Figure 2-1 shows the AUTOSAR approach. The individual elements are explained in
more detail below.

Figure 2-1: Concept of
AUTOSAR

1

AUTOSAR SW-C The AUTOSAR software components form the framework of an application that runs
on the AUTOSAR infrastructure.

Reference: The interfaces of the AUTOSAR software components are described in
more detail on http://www.autosar.org/index.php?p=1&up=2&uup=1&uuup=0.

SW-C Description The software component description is provided by AUTOSAR, for example, for
defining interfaces.

Virtual Functional
Bus (VFB)

The VFB describes all communication mechanisms of AUTOSAR at an abstract level.

1

Source of figure: AUTOSAR Technical Overview V2.2.2 R3.2 Rev 1

http://www.autosar.org/index.php?p=1&up=2&uup=1&uuup=0

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 10 -

System Constraint
and ECU
Descriptions

In order to integrate software components into a network of an ECU, AUTOSAR
provides descriptions for entire systems or for configurations and signals of individual
ECUs.

Runtime
Environment (RTE)

The RTE implements the functionality of the VFB of a particular ECU. However, it can
delegate a portion to the basic software.

Basic Software
(BSW)

The basic software provides the infrastructural functionality of the ECU.

2.3 Basic Concept

Communication via
VFB

The communication between the individual components takes place via the Virtual
Functional Bus (VFB). At this stage, there is not yet any memory management of the
ECUs. The VFB is used both within the ECU and across ECUs and has no
knowledge of the bus technology used. This enables replacement of the application
software, regardless of the bus technology used. Figure 2-2 shows the
communication flow of the Virtual Functional Bus.

Figure 2-2: Communication flow of the VFB

Running of the
components

As soon as all relevant objects have been defined, they are mapped to the ECU. The
VFB is implemented using an ECU-specific Runtime Environment (RTE) and,
together with the operating system, takes over the running of the components.

Consistence of
software components

Software components, here e.g., Left Door and Right Door, consist of:

> Ports: These serve as the interface for communication with other software
components. They can act either as sender/receiver or client/server. The ports
are interconnected using connectors.

> Runnables: Each atomic SW-C contains one or more runnables. These
represent the runnable portion of the software component and reference functions
and procedures.

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 11 -

2.4 Architecture

Layers The AUTOSAR architecture essentially has seven different layers (see Figure 2-3).
The top and bottom layers are not explained in detail here as they do not belong to
the basic software.

Figure 2-3: Overview of
AUTOSAR layers

Microcontroller
Abstraction Layer

The Microcontroller Abstraction Layer is the lowest software layer of the basic
software architecture and provides the upper layers their independence from the
actual microcontroller.

ECU Abstraction
Layer

The purpose of the ECU Abstraction Layer is to ensure the independence of higher
layers from the actual ECU.

Service Layer The Service Layer is the highest layer of the basic software. It contains the operating
system and assumes functions such as the network and NVRAM management and
diagnostic services.

Complex Device
Drivers

The device driver layer controls special sensors and actuators via direct access to the
microcontroller. This involves sensors with special time conditions, for example, that
supply fuel injection to paths.

Runtime
Environment

As middleware, the Runtime Environment (RTE) integrates different applications with
the basic software. It organizes the communication and data exchange between the
two layers and manages the running of the runnables. Because all layers are
described exactly, the application software can be implemented independent of the
hardware and without knowledge of how the other layers behave. The communication
between the layers takes place via ports defined beforehand.

 The following Figure 2-4 shows the complete AUTOSAR ECU software architecture.

User Manual AUTOSAR Calibration Introduction to AUTOSAR

© Vector Informatik GmbH Version 1.0 - 12 -

Figure 2-4: AUTOSAR software architecture

2

2
 Source of figure: AUTOSAR Technical Overview V2.2.2 R3.2 Rev 1

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 13 -

3 Measuring and Calibrating of ECU Software

In This Chapter You Will Find the Following Information:

3.1 Basics page 14

3.2 XCP Driver page 15

 Measurement Modes

 Autoselection and Software Version Check of the A2L File

 Online Calibration

 Page Switching

 Bypassing

 Resume Mode

3.3 A2L File page 22

 Structure

 Mode of Functioning

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 14 -

3.1 Basics

Challenge Variables in the source code are implemented as measurement and calibration
parameters in the ECU software. The task of the calibration engineer is to measure
and calibrate these parameters so that the behavior of the ECU is optimized. To
make the calibration process convenient, calibration tools such as the MCD tool
(Measurement, Calibration, Diagnostics) CANape are used. This type of tool requires
an XCP driver and an A2L file for communicating with the ECU. The XCP driver
enables the access to ECU-internal parameters during runtime. The A2L file, in turn,
links the symbolic name of a measurement or calibration parameter with its memory
address. In this way, the calibration engineer can calibrate individual calibration
parameters with CANape without having to know the memory address of the
parameter.

Figure 3-1: Measurement and calibration process

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 15 -

3.2 XCP Driver

Protocol The XCP driver – such as MICROSAR XCP – is a further development of the CCP
driver and can be used universally for different bus systems. It involves a protocol
based on the single master/multi-slave principle. An XCP master, such as CANape, is
able to communicate simultaneously with various XCP slaves. These include, for
example, the ECU or HIL/SIL systems. Figure 3-2 shows the slave connection via
XCP.

Figure 3-2: Communication possibilities of an XCP master such as CANape

Communication via
A2L file

CANape communicates with the ECU via the XCP driver. The A2L file is an important
component of this communication. From this file, the XCP master reads all
information that is important for the communication setup and sequence.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 16 -

Figure 3-3: Single master/multi-slave concept

Transfer objects In the XCP protocol, a distinction is made between "Command Transfer Objects
(CTO)" and "Data Transfer Objects (DTO)" (see Figure 3-3). The Object Description
Table (ODT) describes the mapping of the DTOs and memory of the slave. The
reception of a CTO signals the slave to run a certain service. The transmission of a
DTO is used for event-triggered reading and writing of objects from the memory of the
XCP slave. For this, DAQ (Data Acquisition) lists are created from multiple ODTs in
order to send the measurement values to the master at the same time that an event
occurs. The events are defined using event channels and take over, with the help of
defined time bases, the timing for task-synchronous transmission of measurement
data.

Dynamic
configuration of DAQ
lists

With XCP it is possible to configure the DAQ lists both statically as well as
dynamically. In the case of static configuration, the maximum number of DAQ lists,
ODT tables, and ODT entries per DAQ list is fixed at compile time. With dynamic
DAQ lists, on the other hand, only the maximum memory size is specified at compile
time. This enables more efficient memory utilization since the size of the DAQ lists is
defined individually. If necessary, it also allows more measurement signals to be
measured compared to the static configuration. In addition, implementation in the
XCP driver is significantly easier because specifications such as the maximum
number of ODTs is eliminated. The dynamic configuration is therefore the only mode
supported.

XCP features The XCP protocol also enables use of some optional XCP features. These must be
explicitly implemented and therefore be known to the supplier. The rest of this section
presents the following XCP features in more detail: Measurement Modes,
Autoselection and Software Version Check of the A2L File, Online Calibration, Page
Switching, Bypassing and Resume Mode.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 17 -

3.2.1 Measurement Modes

Measurement modes The XCP protocol enables two different measurement modes: Polling and DAQ
measurement. Both variants are briefly explained here.

Polling Polling is the simplest measurement mode of the XCP protocol. In this mode, the

XCP master uses an XCP command (SHORT_UPLOAD) to poll the measurement

values in a uniform time base. The measurement data are not equidistant in this
mode. If there is a high bus load, the measurement parameter may be transferred
with a time lag. Figure 3-4 shows the communication sequence for the polling
measurement mode.

Figure 3-4: Communication sequence for the polling measurement mode

DAQ The DAQ measurement mode uses an optimized method in order to access ECU-
internal values. In DAQ measurement mode, the XCP master groups the
measurement and calibration parameters to be measured in ODTs and assigns these
to the corresponding DAQ events before the start of the measurement. During the
measurement, the XCP slave transmits the measurement values when the cyclic
DAQ event or asynchronous DAQ event occurs without further requests to the master
(see also the XCP Driver section).

 In the DAQ measurement mode, a distinction is also made between the Consistency
ODT and Consistency DAQ modes. In the first case, the measurement data of an
ODT are consistent. In the second case, the DAQ list as a whole is consistent, but not
every ODT as a single entity. The measurement data can therefore be split between
two ODTs. Figure 3-5 presents the communication sequence of the DAQ
measurement mode in a trace.

Note: Only the Consistency ODT is currently supported by MICROSAR.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 18 -

Figure 3-5: Communication sequence for the DAQ measurement mode

Timestamps If there are stringent requirements for time accuracy of the measurement values,
generation of the timestamp directly in the ECU is recommended. In the DAQ
measurement mode, the XCP driver also transfers the timestamp for each occurring
event so that the measurement is not falsified by the running time of the transfer to
the MCD tool. However, the throughput of measurement values is meanwhile
reduced. Because the timestamps represent an additional load on the bus, their
generation can also be controlled via the MCD tool.

 With a CAN bus, for example, it should be possible to disable the timestamp. With
Ethernet, the timestamp is of little importance.

 Timestamps are mandatory on FlexRay when a cycle time is used that is faster than
the FlexRay bus cycle.

3.2.2 Autoselection and Software Version Check of the A2L File

Software version
check

CANape provides the option of checking the software version. This means that a
check is made based on certain information to determine whether die A2L file
integrated in CANape corresponds to the current software version of the connected
ECU. The option also exists to select the A2L file automatically using an XCP protocol
command.

 CANape can use the following information for the software version check:

> XCP Station Identifier (protocol command GET_ID)

> EPK check

> Checksum of code segments in the ECU (CANape 11.0 and higher)

XCP station identifier The "XCP Station Identifier" (GET_ID) represents the name of the A2L file during the

software version check. This describes the software version in a meaningful way

(e.g., EcuName_V1-2-0.a2l). CANape can use this identifier to check whether the

correct A2L file is loaded or load the appropriate A2L file automatically.

EPK check The EPK identifier (EPROM identifier) is a character string that is present in the ECU

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 19 -

as well as in the database. The address in the ECU where this identifier can be found
is specified in the database. This character string can, in turn, designate the software
version based on the project name and its version.

Checksum The checksum of code segments (memory segments with ECU code) can be
calculated for the HEX file and the ECU. On the basis of the checksum it can be
determined if the HEX file, the A2L file, and the software on the ECU are compatible
with respect to version. This approach assumes that the HEX file and the A2L file are
viewed as a unit.

Application of the
procedures

The described procedures can be applied independently of one another. Each
individual procedure increases the assurance that you are working with correct data.
For example, it is possible to have the A2L file selected automatically based on the
"XCP Station Identifier" and to additionally use the check based on EPK identifier.

3.2.3 Online Calibration

Prerequisite This section introduces the most important terms regarding online calibration. Online
calibration enables optimization of the calibration parameters of the ECU algorithm
during runtime so that the effects of the change can be directly measured. A
prerequisite for this is availability of sufficient RAM memory.

Calibration concepts Two different calibration concepts are available for calibrating with XCP and
AUTOSAR:

> InitRAM

> AUTOSAR Single Pointered

Reference: Additional information on the topic of calibration concepts can be found in

the respective AUTOSAR specification AUTOSAR_SWS_RTE, chapter "Calibration".

3.2.4 Page Switching

Switchover of
memory segment
pages between RAM
and FLASH

Calibration parameters normally reside in FLASH memory and are copied to RAM
memory, if required. Depending on the implementation, some ECUs provide the
option of page switching, i.e., the XCP switchover of memory segment pages
between RAM and FLASH. With the help of this feature, calibration parameters can
be calibrated and the possibility exists to quickly switch back to the values stored in
FLASH memory. This XCP mechanism is independent of the calibration concept
used.

Logical structure of
the memory in
segments

In principle, the memory is logically structured in segments. These specify where the
calibration parameters reside. Each segment can, in turn, have multiple pages. A
page describes the same data at the same address, but with different properties or
values (see Figure 3-6).

http://www.autosar.org/index.php?p=3&up=1&uup=2&uuup=10&uuuup=0&uuuuup=0

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 20 -

Figure 3-6: Physical
layout of the memory

Assignment The assignment of the algorithm to a page within a segment must be unambiguous at
all times. In addition, only one page at a time may be active in a segment. This page
is the so-called "active page for the ECU in this segment".

Access The page that the ECU or the XCP driver accesses can be controlled individually. The
active page for the XCP access is called the “active page for the XCP access in this
segment”.

Commands In order to use page switching, the ECU must support the XCP commands

GET_CAL_PAGE and SET_CAL_PAGE.

 With the GET_CAL_PAGE command, the master asks the slave which page of a

segment is currently active. With the SET_CAL_PAGE command, on the other hand,

the master can define which page the master itself or the ECU algorithm accesses.

3.2.5 Bypassing

Changes to the ECU
algorithm

With the help of the bypassing feature, changes to the ECU algorithm can be made
without calibration and subsequent flashing of the software.

Implementation To implement bypassing, at least 2 XCP events as well as writable access to the ECU
RAM via XCP are required. The events must differ in their direction (STIM, DAQ).
Figure 3-7 shows the use of bypassing.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 21 -

Figure 3-7: Use of bypassing

Signal path:
1. Reception of signals of the ECU (DAQ)
2. Transmission of signals as input of the model
3. Transmission of events back to the XCP master
4. Transmission of events back to the ECU (STIM)

Calibration path:
5. Calibration of the ECU (XCP)
6. Calibration of the model with XCP

Reference: The ASAM XCP Version 1.1 Part 1 - Overview specification, section 1.3
BYPASSING (BYP), explains in detail all other functions and implementations on the
topic of bypassing.

3.2.6 Resume Mode

Automatic data
transfer

Resume mode enables automatic data transfer to take place directly after switching
on the ECU. This mode is commonly used to start recording and evaluating data as
soon as the ECU starts. Resume mode supports both the STIM and DAQ directions.

The RESUME_SUPPORTED flag in the DAQ properties must be set appropriately in the

A2L file.

Commands With the START_STOP_DAQ_LIST command (select), the master can select a DAQ

list as part of a DAQ list configuration that the slave stores in non-volatile memory.
The master then sends to the slave the configuration ID that the master has itself
calculated and stored. The slave then knows that it will store the DAQ lists in non-

volatile memory as soon as the STORE_DAQ_REQ_RESUME command is transmitted

to it. The configuration ID is also stored in non-volatile memory so that the slave can

return it upon the GET_STATUS command. Via the GET_STATUS command, the

master finds out whether a slave is in resume mode. Prior to storing, the slave deletes
the previous content of the non-volatile memory.

http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=519&start=

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 22 -

 After each start of the slave, it sends the EV_RESUME_MODE command to the master.

This command contains the following data:

Figure 3-8: Data of the
EV_RESUME_MODE

command

Communication
sequence

The communication sequence between the master and slave can be tracked in Figure
3-9.

Figure 3-9:
Communication
sequence between
master and slave

Reference: Additional XCP commands and information regarding resume mode can

be found in the ASAM XCP Version 1.1 Part 1 - Overview specification.

3.3 A2L File

Goal The A2L file has been specified by the Association for Standardization of Automation
and Measuring Systems (ASAM) with the goal of defining compatible and replaceable
modules for electronics development in the automotive industry.

http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=519&start=

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 23 -

Figure 3-10: ASAM
interfaces

ECU description file The description file of the ECU for configuring the models and the layout of the
calibratable and measurable objects supplies the ASAP2 (ASAM MCD 2MC) interface
in the form of the A2L file. Finally, the data exchange between the MCD system and
the ECU is specified via the ASAM MCD 1MC (ASAP1b) interface.

3.3.1 Structure

Modular structure The A2L file has a modular structure, which enables the replacement of individual
modules without having to adapt the entire A2L file. Figure 3-11 shows this modular
structure.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 24 -

Figure 3-11: Structure
of the A2L file

4 major parts The project-relevant data at the start of the A2L file are defined using the PROJECT

keyword and form the framework of the A2L file. These also include the ECU

description that can be described with the MODULE keyword and divided into 4 major

parts:

> AML

> General ECU Implementation

> IF_DATA

> A2L Objects

 These parts are explained in more detail below.

3.3.1.1 AML

Interface-specific
parameters

The first part defines the interface-specific parameters. It yields the framework of the

IF_DATA area that is defined using the A2ML metalanguage with the AML keyword.

The AML is generally configured once since the specification of a driver and the
corresponding features is also performed once.

Reference: Detailed information regarding the metalanguage can be found in the

ASAP2 specification ASAM MCD-2 MC, chapter 5.

http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=531&start=

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 25 -

3.3.1.2 General ECU Implementation

ECU description This part of the A2L file specifies the ECU description. Here, standardized structures

of the ECU and the general description are defined using the MOD_COMMON and

MOD_PAR keywords. This part of the A2L file also generally remains unchanged since

the structures of the ECU are set. The keywords are now briefly presented:

MOD_COMMON The MOD_COMMON keyword describes the internal structures of the ECU. The

possibility exists to define certain parameters for the complete ECU. For example, if a
standard byte order exists, this can be specified for the complete device in this area.

Example:

 /begin MOD_COMMON ""

 BYTE_ORDER MSB_LAST

 …

/end MOD_COMMON

MOD_PAR The MOD_PAR keyword describes the ECU-specific description data such as the

EPROM identifier or the memory segments.

Example:

 /begin MOD_PAR "Comment"

 ADDR_EPK 0x12345

 EPK "EPROM identifier test"

 /begin MEMORY_SEGMENT Data0001 "Data segment" DATA

 FLASH INTERN 0x30000 0x1000 -1 -1 -1 -1 -1

 /end MEMORY_SEGMENT

 SYSTEM_CONSTANT "CONTROLLERx CONSTANT1" "0.99"

/end MOD_PAR

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 26 -

3.3.1.3 IF_DATA

Communication
interface

Next, the communication interface is specified using the IF_DATA keyword. This is

only adapted if, for example, certain XCP commands are also to be used afterwards.

IF_DATA The IF_DATA keyword describes the interface-specific data, such as protocol layer or

DAQ lists. These can also be defined directly as a subcategory for diverse A2L
objects.

Example:

 /begin IF_DATA XCP

 /begin PROTOCOL_LAYER

 …

 /end PROTOCOL_LAYER

 /begin DAQ

 …

 /end DAQ

 /begin XCP_ON_CAN

 …

 /end XCP_ON_CAN

/end IF_DATA

DAQ configuration The DAQ configuration is an essential component of the XCP protocol and will

therefore be presented again in more detail. The configuration is made under the DAQ

keyword in the IF_DATA section, and the individual events are defined under this

point.

Reference: More detailed information regarding the definition of events can be found
in the ASAM XCP Version 1.1 Part 1 - Overview specification, section 1.1.1.5 Event
Channels.

Specification of DAQ
lists

Table 3-1: Specification of DAQ lists in the IF_DATA section compares the static and

dynamic DAQ configuration in the A2L file.

http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=519&start=

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 27 -

XCP (static) XCP (dynamic) Explanation

/begin DAQ /begin DAQ

 STATIC DYNAMIC DAQ configuration

 RESUME_SUPPORTED RESUME_SUPPORTED Resume mode is supported

 /begin DAQ_LIST

 0x0 DAQ list number

 DAQ_LIST_TYPE DAQ Direction (DAQ | STIM)

 MAX_ODT 0xB Maximum ODTs

 MAX_ODT_ENTRIES 0x7 Maximum entries in an ODT

 FIRST_PID 0x3 Packet designator

 EVENT_FIXED 0x0 Event channel is permanently

specified

 /end DAQ_LIST

 /begin EVENT /begin EVENT

 "10 ms Liste 1" "10 ms Liste 1" Name of the event channel

 "10 ms Lis" "10 ms Lis" Brief name of the event channel

 0x0000 0x0000 Number of the event channel

Direction (DAQ | STIM) DAQ DAQ Direction (DAQ | STIM)

 0x01 0x01 Maximum of DAQ lists

 0x0A 0x0A Sampling period (0 corresponds to

non-cyclic)

 0x06 0x06 Time base(0x06 corresponds to 1ms)

 0x00 0x00 Priority

 /end EVENT /end EVENT

/end DAQ /end DAQ

Table 3-1: Specification of DAQ lists in the IF_DATA section

Default event It is recommended to assign at least one default event to each measurement and
calibration parameter in order to ensure that the objects will be measured at the
correct time in each case (example in next section under A2L Objects | Measurement
parameters). With the help of this assignment, the drag & drop feature of the display
windows in CANape can be used optimally. If a default event is not defined, the
measurement mode must be changed manually by polling the appropriate event.

3.3.1.4 A2L Objects

Specification of
parameters and
keywords

The last part contains the A2L objects. The measurement and calibration parameters
are specified here using various parameters and keywords. In this area, changes may
occur even after completion of the A2L file since, for example, measurement
parameters will also be added during the course of the project.

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 28 -

Measurement
parameters

The measurement parameters are defined using the MEASUREMENT keyword. Some

parameter values are optional (labeled in []), while other values, such as the name,

are mandatory.

 Prototype:

/begin MEASUREMENT

 ident Name

 string LongIdentifier

 datatype Datatype

 ident Conversion

 uint Resolution

 float Accuracy

 float LowerLimit

 float UpperLimit

 [-> ANNOTATION]*

 [-> ARRAY_SIZE]

 [-> BIT_MASK]

 [-> BIT_OPERATION]

 [-> BYTE_ORDER]

 [-> DISCRETE]

 [-> DISPLAY_IDENTIFIER]

 [-> ECU_ADDRESS]

 [-> ECU_ADDRESS_EXTENSION]

 [-> ERROR_MASK]

 [-> FORMAT]

 [-> FUNCTION_LIST]

 [-> IF_DATA]*

 [-> LAYOUT]

 [-> MATRIX_DIM]

 [-> MAX_REFRESH]

 [-> PHYS_UNIT]

 [-> READ_WRITE]

 [-> REF_MEMORY_SEGMENT]

 [-> SYMBOL_LINK]

 [-> VIRTUAL]

/end MEASUREMENT

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 29 -

Example:

 /begin MEASUREMENT

 FP_LED

 "Raw value target driving program"

 UBYTE NonDim_2p0 0 0 0 10

 ECU_ADDRESS 0xD000B47C

 ECU_ADDRESS_EXTENSION 0x0

 /begin IF_DATA XCP

 /begin DAQ_EVENT VARIABLE

 /begin DEFAULT_EVENT_LIST

 EVENT 0001

 /end DEFAULT_EVENT_LIST

 /end DAQ_EVENT

 /end IF_DATA

/end MEASUREMENT

Calibration
parameters

The calibration parameters are specified in the A2L file using the CHARACTERISTIC

keyword. In this case, as well, there are optional parameter values [] and mandatory

parameter values.

 Prototype:

/begin CHARACTERISTIC ident Name

 string LongIdentifier

 enum Type

 ulong Address

 ident Deposit

 float MaxDiff

 ident Conversion

 float LowerLimit

 float UpperLimit

 [-> ANNOTATION]*

 [-> AXIS_DESCR]*

 [-> BIT_MASK]

 [-> BYTE_ORDER]

 [-> CALIBRATION_ACCESS]

 [-> COMPARISON_QUANTITY]

 [-> DEPENDENT_CHARACTERISTIC]

 [-> DISCRETE]

 [-> DISPLAY_IDENTIFIER]

 [-> ECU_ADDRESS_EXTENSION]

 [-> EXTENDED_LIMITS]

 [-> FORMAT]

 [-> FUNCTION_LIST]

 [-> GUARD_RAILS]

 [-> IF_DATA]*

 [-> MAP_LIST]

 [-> MATRIX_DIM]

 [-> MAX_REFRESH]

 [-> NUMBER]

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 30 -

 [-> PHYS_UNIT]

 [-> READ_ONLY]

 [-> REF_MEMORY_SEGMENT]

 [-> STEP_SIZE]

 [-> SYMBOL_LINK]

 [-> VIRTUAL_CHARACTERISTIC]

/end CHARACTERISTIC

Example:

 /begin CHARACTERISTIC Pehp_IDATA.T_FP_delay

 "Time for transition from target to actual driving program

HPP"

 VALUE 0xA01350CC UWORD_COL_DIRECT 0 ms_f10 0 60000

ECU_ADDRESS_EXTENSION 0x0

 EXTENDED_LIMITS 0 60000

 BYTE_ORDER MSB_LAST

 FORMAT "%6.0"

/end CHARACTERISTIC

Conversion rules Frequently, conversion rules are additionally defined for measurement or calibration
parameters if, for example, an object is to be converted to a physical unit. The

COMPU_METHOD keyword is used for this.

 Prototype:

/begin COMPU_METHOD ident Name

 string LongIdentifier

 enum ConversionType

 string Format

 string Unit

 [-> COEFFS]

 [-> COEFFS_LINEAR]

 [-> COMPU_TAB_REF]

 [-> FORMULA]

 [-> REF_UNIT]

 [-> STATUS_STRING_REF]

/end COMPU_METHOD

 There are various conversion types for this:

IDENTICAL Raw value and physical value are identical, no conversion is necessary

FORM A formula is used for the conversion (to be specified with the FORMULA keyword)

LINEAR Conversion is made linearly according to f(x)=ax+b

(a and b are specified using the COEFFS_LINEAR keyword)

RAT_FUNC Conversion is made using a rational function:
f(x) = (axx+bx+c)/(dxx+ex+f)

a, b, c, d, e, f are specified using the COEFFS keyword.

TAB_INTP Conversion table with interpolation

TAB_NOINTP Conversion table without interpolation

TAB_VERB Verbal conversion table

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 31 -

Example:

 /begin COMPU_METHOD NonDim_2p0_a ""

 RAT_FUNC "%5.0" "-"

 COEFFS 2 1 0 0 4 1

/end COMPU_METHOD

Groups Hierarchy levels are realized in the A2L file using groups. In a project with many
measurement and calibration parameters, these can be subdivided and categorized.
The possibility also exists to define subgroups. This makes the A2L file easier to view
in CANape.

 Prototype:

/begin GROUP ident GroupName

 string GroupLongIdentifier

 [-> ANNOTATION]*

 [-> FUNCTION_LIST]

 [-> IF_DATA]*

 [-> REF_CHARACTERISTIC]

 [-> REF_MEASUREMENT]

 [-> ROOT]

 [-> SUB_GROUP]

/end GROUP

Example:

 /begin GROUP Maps "Calibration Maps"

 ROOT

 /begin SUB_GROUP

 WorkingPoint

 /end SUB_GROUP

 /begin REF_CHARACTERISTIC

 KF1 KF2 KF3 KF4 KF5 KF6 KF7 KF8

 TestKennfeld map1_8_8_uc map4_80_uc map5_82_uc

 /end REF_CHARACTERISTIC

/end GROUP

Structures The A2L Specification contains no keyword for structures. CANape identifies these
based on analysis of the object name.

 The valid syntax for structures in the A2L has the following appearance:

"." for objects (e.g., "TestStructStruct1.TestStruct2.s1")

"[]" for arrays (e.g., "TestStructStruct1.TestStruct2.s1[0]")

User Manual AUTOSAR Calibration Measuring and Calibrating of ECU Software

© Vector Informatik GmbH Version 1.0 - 32 -

Example:

 /begin CHARACTERISTIC Test1.s0 ""

 VALUE 0x2080D0 __ULONG_S 0 Test1.s0.CONVERSION 0 4294967295

 ECU_ADDRESS_EXTENSION 0x0

 EXTENDED_LIMITS 0 4294967295

 FORMAT "%.15"

/end CHARACTERISTIC

Reference: Detailed information on the meaning of individual parameters can be

found in the ASAP2 specification ASAM MCD-2 MC under the respective keyword.

3.3.2 Mode of Functioning

Figure 3-12: Mode of functioning of the A2L

Engine speed as
example

Figure 3-12 illustrates the mode of functioning of an A2L file. The engine speed is
read out here as an example. Via the A2L file, the measurement and calibration
system (CANape) learns which memory address contains the engine speed and how
the ASAM MCD 1MC interface must be parameterized. The read-out raw value is
then converted to a physical value using a conversion rule described in the A2L file.

http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=531&start=

User Manual AUTOSAR Calibration OEM

© Vector Informatik GmbH Version 1.0 - 33 -

4 OEM

In This Chapter You Will Find the Following Information:

4.1 Objective page 34

4.2 Content of the Performance Specifications page 34

4.3 Measurement Task page 34

4.4 Calibration Task page 35

4.5 XCP Features page 35

User Manual AUTOSAR Calibration OEM

© Vector Informatik GmbH Version 1.0 - 34 -

4.1 Objective

Checklist for
performance
specifications

This chapter serves as a checklist for creating performance specifications. The OEM
must ensure that the indicated items are incorporated in the performance
specifications after careful consideration and as needed.

4.2 Content of the Performance Specifications

 The content of the performance specifications must define the desired requirements
for the supplier. These can be divided into mandatory and optional requirements.

Mandatory
Requirements

> Delivery of an A2L compatible with the software version

> Configured XCP driver

> Preconfigured CANape project

Optional
Requirements

> Build environment that can generate the A2L

> Delivery of a linker MAP file

 The delivery of a linker MAP file has the advantage that new measurement and
calibration parameters can be incorporated directly into the A2L file. If a request to
measure additional objects arises during the course of a measurement task, the
memory addresses are known and these can be added.

4.3 Measurement Task

Information to be
communicated

To realize the mandatory requirements relating to the measurement task, the supplier
requires some information, such as the category of the measurement parameters.
Various details about the DAQ configuration are also relevant both for the configured
XCP driver and for the A2L file.

 Specifically, information on the following items must be communicated to the supplier:

> Category of the measurement parameters

> Software component

> Basic software

> BSW module (e.g., COM, CanNm)

> Runtime monitoring

> Event-triggered measuring via DAQ

> Static or dynamic DAQ lists

Vector recommends dynamic DAQ lists in order to make more efficient use of
the memory and, if necessary, to allow more signals to be measured.

> Definition of DAQ event time base

> Use of timestamps

> Use of DAQ default events

User Manual AUTOSAR Calibration OEM

© Vector Informatik GmbH Version 1.0 - 35 -

4.4 Calibration Task

Items to be
considered

The calibration task also affects the mandatory requirements (A2L file, XCP driver) for
the supplier. The following items should be carefully considered here:

> Location of the calibration parameters

> Software component

> NVRAM

> Optimized "going online"

The accesses to the ECU are decreased when "going online" is optimized. An
upload operation is performed only if differences between the data in the memory
image and the ECU are identified. This procedure accelerates the "going online".

For optimized "going online", the use of a memory image is required. The
memory image is described on the basis of memory segments, which contain
only calibration parameters. In addition, the checksum calculation must be
implemented in the ECU.

Optimized "going online" is also a prerequisite for offline calibration and the use of
dataset management.

> Use of a flashable HEX file (with calibrated calibration parameters from CANape)

4.5 XCP Features

Features to be
supported

The XCP Driver section explained some aspects and features of the XCP protocol.
Specifically, the following were explained: Measurement Modes, Autoselection and
Software Version Check of the A2L File, Online Calibration, Page Switching,
Bypassing, and Resume Mode. It is important here that the OEM communicates to
the supplier which of these features are to be supported by the XCP driver.

 It is recommended to incorporate the following XCP features in the performance
specifications:

> Polling and DAQ measurement modes

> Autoselection of A2L and the software version check

> Online calibration

> Resume mode

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 36 -

5 Supplier

In This Chapter You Will Find the Following Information:

5.1 Preface page 37

5.2 Requirements page 37

5.3 Definition of Measurement and Calibration Parameters page 37

 Measuring and Calibrating of AUTOSAR Software Components

 Measuring of Ports and Variables

 XCP Events

 Software Component with Calibration Parameters

 Calibration Parameters for Multiple Software Components

 Configuration of the RTE (Runtime Environment)

 Measuring and Calibrating Without the Support of the RTE

 Debugging of the BSW (Basic Software)

5.4 Configuration of the XCP Module page 42

 DAQ List Configuration

 Tool-Driven DAQ Timestamp Option

 XCP Event Information

 Software Version Check

 Use of the XCP Component in the Implementation

 Recommendations for the Configuration of the XCP Module

5.5 Configuration of the Driver Modules page 48

 CAN Module MICROSAR XCP

5.6 Configuration of the Memory Management page 48

 Configuration for Resume Mode

5.7 Creating an A2L File page 49

 Creation of a Master A2L File

 Expansion of the Master A2L File

 Working with ASAP2 Tool-Set

 Working with CANape and the ASAP2 Editor

5.8 Fast Access to the ECU Via the VX Module page 55

5.9 Additional Topics page 56

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 37 -

5.1 Preface

Certain functions and
configurations for
AUTOSAR

The measurement and calibration task assigned by the OEM is carried out in the
implementation of the ECU software. When AUTOSAR-compliant software modules
are used, the modules must be configured appropriately and certain functions must
be implemented.

 This chapter explains procedures for implementing the requirements for the ECU
software. The description refers to the MICROSAR product.

 The first part describes the configuration of software components (SW-C), the
MICROSAR RTE, and the MICROSAR BSW module.

 This is followed by a brief overview of the integration of the XCP slave. The XCP
slave is provided by the XCP module.

 The final part describes the creation of the A2L description file, which will be a central
component of the CANape configuration.

5.2 Requirements

Software
components

The following software components at least starting with the following versions are
required for the descriptions:

> Vector Informatik DaVinci Developer 3.0.110 (SP5)

> Vector Informatik DaVinci Configurator 4.1.1.2

> Vector Informatik ASAP2 Tool-Set 7.0

> Vector Informatik CANape 10.0 SP4

> Vector MICROSAR Basic Software starting with Release 14 including
MICROSAR XCP and MICROSAR RTE

5.3 Definition of Measurement and Calibration Parameters

Via software
components

The measurement and calibration parameters for the measurement and calibration
task of the OEM are usually located in the software components (SW-C). These
parameters are defined with configuration tools, such as the DaVinci Developer.
Configuration of the RTE is also required for this.

Without RTE Other measurement and calibration parameters can also be provided without the
support of AUTOSAR interfaces. A brief explanation is given in the Measuring and
Calibrating Without the Support of the RTE section.

Via A2L file In addition, measurement parameters can also be added to the measurement
configuration within the AUTOSAR basic software. This is done by inserting known
measurement parameters from the basic software into the A2L file.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 38 -

5.3.1 Measuring and Calibrating of AUTOSAR Software Components

Measurable objects Measurable objects can be configured using a configuration tool, such as the DaVinci
Developer. Measurable objects include data elements (data elements) of

application and service ports (application port interfaces), variables for

communication between runnables (inter-runnable variables), and calibration

parameters (calibration parameters).

Figure 5-1: SW-C connected to ports

Figure 5-2: SW-C with parameters for measuring/calibrating

Calibration access The objects indicated above can be made measurable by setting Calibration Access
to ReadOnly in the DaVinci Developer. The ReadWrite setting enables the writing of
objects with CANape. The writing of calibration parameters occurs in the common
"Calibration" use case of CANape. The writing of other data elements can be
configured but is not recommended. This is because the write access is not exclusive,
which means that information can be overwritten again.

Figure 5-3:
Measurement and
calibration option for an

object (e.g., data

element)

Specifying calibration
parameters

The AUTOSAR Standard provides the option of specifying calibration parameters.
Two variants are differentiated.

Calibration parameters can be defined within a software component. These are then
also available only for this software component.

The second variant is the use of a calibration software component that can provide
calibration parameters for multiple software components.

5.3.2 Measuring of Ports and Variables

Configuration of the
data elements

Data elements to be measured must be configured appropriately with the help of the
Calibration & Measurement Support. For measuring, Calibration Access must be
set to ReadOnly.

 The following data elements can be measured:

> Sender/Receiver Ports

> Client/Server Ports (RTE not currently supported)

> Inter-Runnable Variables

> Calibration Parameters

 For Sender and Receiver Ports, the data elements can be easily configured for

calibrating via the Properties.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 39 -

Figure 5-4:
Configuration of a
sender/receiver port

Special case: Data
Mapping

Sender/Receiver Ports for which a Data Mapping is defined represent a special

case. For these ports, a direct (explicit) access and a buffered (implicit) access can
be configured as shown in Figure 5-5.

Figure 5-5: Access
definition of a port

 Ports that have explicit access configured can only be measured using the BSW
module COM. On the other hand, ports whose access was configured as buffered
can be measured using the RTE as well as the BSW module COM.

The measurement parameters are typically already preconfigured.

5.3.3 XCP Events

RTE support The RTE supports the generation of XCP events. For one thing, an event is created
for each task. These events are used to measure variables of the runnables that are
run within the task. The following should be noted in this regard:

> The RTE generates XCP events at the end of each task. An XCP event thus does
not have a direct relation to the running of a Runnable. It is therefore common
that a Runnable does not run continuously between XCP events.

> If XCP events are generated by the RTE, the DAQ measurement mode must also
be activated in the XCP module.

> It must thereby be anticipated that the XCP events of the RTE will be called very
often.

> The generated XCP events are not cyclic, so it is not possible to make a definitive
statement about the expected bus load.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 40 -

 For another thing, the RTE also generates XCP events for the above-mentioned
access to buffered ports. By means of the description in the A2L file, it is ensured that
these ports are measured fixed with the generated event.

5.3.4 Software Component with Calibration Parameters

External access The definition of calibration parameters (Calibration Parameter) makes it

possible to change a calibration parameter within the software component externally
via XCP.

 Within the software component, access to this calibration parameter is read-only.
However, outside of the SW-C, the possibility exists to change this calibration
parameter.

Figure 5-6: Properties of a calibration parameter

 A calibration parameter consists of a data type and an initial value. The scope
(Scope) and the measurement and calibration access can be configured.

Note: For additional information about these parameters, refer to the online help for
the DaVinci Developer.

5.3.5 Calibration Parameters for Multiple Software Components

Calibration-type
software component

A calibration-type software component is used to provide calibration parameters for
multiple software components.

 This type of software component has only calibration ports (Calibration Ports),

that provide calibration parameters for other SW-Cs and act as a sender port.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 41 -

 Representation of a calibration software component in DaVinci Developer:

Figure 5-7: Graphic interface

Figure 5-8: List with the configured ports

 Each calibration port, in turn, contains calibration parameters. These calibration
parameters are handled in just the same way as calibration parameters within a
software component.

5.3.6 Configuration of the RTE (Runtime Environment)

RTE support
necessary

The support of the RTE is required in order to measure and calibrate software
components using the XCP protocol. The MICROSAR RTE Generator provides this
measurement and calibration support.

Reference: For an explanation of the activation of the measurement and calibration
support, refer to the technical reference TechnicalReference_Asr_Rte, page 102ff.

Online calibration
procedures
supported by
CANape

CANape currently supports the following online calibration procedures:

> Initialized RAM

> Single Pointered

Initialized RAM The standard calibration procedure with CANape is "Initialized RAM". This procedure
is suitable when the ECU has sufficient RAM memory for all calibration parameters to
be calibrated.

Single Pointered The advantage of the "Single Pointered" calibration concept is that not all calibration
parameters constantly have a copy in the RAM memory. Therefore, this procedure
must be chosen when RAM memory capacity is limited.

 When the ECU source code is generated by the DaVinci Developer, A2L fragments

are also generated. The integration of the created A2L fragments Rte.a2l and

Rte_XcpEvents.a2l is described in more detail in the Creating an A2L File section.

5.3.7 Measuring and Calibrating Without the Support of the RTE

Points to be
considered

The possibility exists to use measurement and calibration even without the support of
the RTE.

 The following points must be noted in this regard:

> Measurement via DAQ events requires that corresponding XCP events be
programmed and then described in the A2L file.

file:///D:/helps/AUTOSAR%20Calibration%20Guide/Development/TechnicalReferences/TechnicalReference_Asr_Rte.pdf

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 42 -

Example: Integrating an XCP event within a runnable

 FUNC(void, RTE_CTAPMCU_APPL_CODE) RCtApMy_Algo(void)

{

 // Perform algorithm within my runnable

 ...

 // Trigger user defined XCP Event

 XcpEvent(12);

}

 > For online calibration, a separate implementation of the calibration method
("Initialized RAM" or AUTOSAR "Single Pointered") is required.

> Calibration and measurement requires one or more A2L files that are created
manually or with an external program (e.g., ASAP2 Creator or TargetLink). These
A2L files must be merged with the A2L files generated by the Vector tools. The
ASAP2 Merger program can be used for this (see description in the Creating an
A2L File section on page 49).

5.3.8 Debugging of the BSW (Basic Software)

Modules which
provide
measurement
parameters

MICROSAR AMD allows measuring BSW internal status information using XCP in
order to ease debugging. For this purpose MICROSAR AMD provides measurement
parameters for by different MICROSAR modules such as COM, CANNM or CANTP.

Generating the A2L
information

For generating the A2L information GENy creates automatically the A2L fragments

bsw.a2l and bsw_xcp_events.a2l required for the A2L.

Reference: Information for configuration and detailed instructions are provided in the
User Manual AMD.

5.4 Configuration of the XCP Module

Configuration tool
GENy

The XCP module is configured with the GENy software component configuration tool.
The source code for the XCP slave implementation is then generated based on this
configuration.

file:///D:/helps/AUTOSAR%20Calibration%20Guide/Development/UserManuals/UserManual_AMD.pdf

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 43 -

Figure 5-9: Settings in GENy

Reference: Information and instructions on configuring the module can be found in
the TechnicalReference_XCP_Protocol_Layer document.

Preface The most important configuration parameters are described below. In addition, the
optional XCP features Measurement Modes and Autoselection and Software Version
Check of the A2L File are described in the context of the XCP module.

5.4.1 DAQ List Configuration

Implementation only
for dynamic DAQ
lists

The XCP module currently has only the implementation for dynamic DAQ lists.

Predefined DAQ lists (static DAQ lists) are currently not supported by the XCP
module. Static DAQ lists are not suitable for use of an XCP slave within an
AUTOSAR software stack. For one thing, these require an unnecessarily large
amount of memory. For another thing, when very many XCP events are implemented,
the maximum possible number of static lists may be exceeded if a fixed assignment is
used.

Amount of memory
space

The amount of memory provided for the DAQ configuration can be specified in the
XCP module.

 The following formula can be used for the calculation:

measure per signals tmeasuremen of number max.5[bytes] ionconfigurat DAQ for spaceMemory

../TechnicalReferences/TechnicalReference_XCP_Protocol_Layer.pdf

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 44 -

5.4.2 Tool-Driven DAQ Timestamp Option

Additional options for
timestamps

As described previously in the Measurement Modes section, the possibility exists to
use a timestamp of the ECU. To do so, this must be supported in the XCP driver. As
an additional option, the XCP driver can also supply the timestamp as a matter of
principle (timestamp fixed) or on request. The size of the timestamp (1, 2, 4 bytes per
event) should be chosen after careful consideration.

Example:
The ECU uses a 1 µs counter for generating the DAQ timestamps. Only a 2-byte
timestamp is chosen.

As a result, the timestamp overflows every 65 ms. So that the MCD tool can
recognize an overflow, at least one signal that supplies a measurement value and
thus also a timestamp at a more frequent interval than 65 ms must be measured in
the measurement setup.

5.4.3 XCP Event Information

XCP slave to XCP
master

XCP event information can be provided in two ways by the XCP slave. Either by a
generated A2L file that contains the configured events or by the XCP command

GET_DAQ_EVENT_INFO which provides the event information directly from the ECU.

In both cases the event information has to be configured in the generation tool
accordingly.

Caution: If the GET_DAQ_EVENT_INFO feature is activated in the XCP module, the

automatically generated events of the RTE are not taken into consideration.

Recommendation:

No RTE events are
used:

If no RTE events are used, the functionality of the XCP event information can be
used. However, attention must be paid that all events that are implemented are
described (including those of the BSW component).

RTE events are
used:

Due to the fact that the GET_DAQ_EVENT_INFO feature overwrites all events defined

in A2L files, deactivation of this feature is recommended if RTE events are used. In

this case the generated fragment XCP_events.a2l can be inserted into the master

A2L file (see the Creating an A2L File section).

5.4.4 Software Version Check

Aspects for
implementation

The possibilities for checking the software version were previously presented in the
Autoselection and Software Version Check of the A2L File section. Aspects for the
implementation are explained here.

XCP Station
Identifier (protocol

command GET_ID)

The Station Identifier should be centrally defined in an appropriate way and
afterwards only integrated. This can be achieved as follows:

> Do not perform a manual configuration of the XCP identifier in GENy.

> Create a "User Defined" configuration containing, for example:

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 45 -

Example:
user_cfg.h:
/* Standard commands */

#define kXcpStationIdLength 7u

extern CONST(XcpCharType, XCP_CONST) kXcpStationId[];

user_cfg.c:
CONST(XcpCharType, XCP_CONST) kXcpStationId[] = "EcuName_V1-2-

0";

 If this information is integrated in the build process, the Station Identifier

EcuName_V1-2-0 is used.

EPK check It is recommended that the EPK identifier be generated automatically and consistently
with every compilation both in the source code and in the A2L file.

Ideally, the EPK is stored at a constant address in the ECU. This could look like this
in the source code:

Example:
__attribute__((section("calflash_signature"))) const char

epk[26] = "EcuName V1.2.0 01.03.2012";

 In the A2L file, the EPK identifier must also be implemented accordingly. For the
above example in the ECU software, the entry in the A2L file looks like:

Example:

 /begin MOD_PAR "EcuName"

 ADDR_EPK 0x350002

 EPK "EcuName V1.2.0 01.03.2012"

 /end MOD_PAR

Checksum of code
segments in the
ECU (CANape 11.0
and higher)

So that CANape can calculate the checksum of code segments, some information is
required. First, the code segments must be defined in the A2L file. Second, CANape
requires a HEX file that also contains the code segments.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 46 -

5.4.5 Use of the XCP Component in the Implementation

Figure 5-10: Interaction of the XCP module with AUTOSAR application

Interaction of XCP
module with
AUTOSAR
application

1. For DAQ measurements, the basic software or the application calls the

XcpEvent function.

2. The initialization routine of the application (within DriverInitTwo) calls

XcpInit.

3. The scheduler of the basic software calls XcpBackground periodically.

4. By means of the CanXcp functions, the application can be informed about CAN-

specific events.

Procedure for use > All modules that require the XCP component must include the XcpProf.h

header file.

> The XCP component must be initialized in the initialization routine of the software

by calling the XcpInit function.

> A desired XCP service within the application can be used by calling a function, for

example XcpEvent (channel) with a corresponding channel/event number.

5.4.6 Recommendations for the Configuration of the XCP Module

Check important
parameters

In general, every configuration parameter of the XCP module should be checked with
respect to its setting. Important parameters that should be assigned a different value
than the default value are described below. These can also be seen again directly in
GENy in Figure 5-9.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 47 -

General Settings XCP Station Identifier Manual specification of the file name of the
A2L file without the file name extension. Use
of the automatic name adaptation described
in the Software Version Check section is
recommended.

 Event Codes Activate option.

 Development Error Detection Activate option during the development.

Table 5-1: Recommendations for the Configuration of the XCP Module: General Settings

Synchronous Data
Acquisition (DAQ)

Synchronous Data Acquisition (DAQ) Activate option (see the DAQ List
Configuration section)

 Memory Size A memory size of 2048 bytes has proven to
be adequate. The memory is reserved and
used exclusively for the DAQ configuration
and the Send Queue for the resume mode.

 Prescaler Activate option.

 Write DAQ multiple Activate option if CAN is not used as
Transport Layer.

 Resume Mode Activate option if the OEM requires this in the
performance specifications. If activated, the
memory size should be rechecked, since the
Send Queue should have appropriate
capacity.

 General Info Activate option.

 STIM Activate option if the OEM requires the
bypassing feature in the performance
specifications.

 DAQ Timestamp Activate option (see the Tool-Driven DAQ
Timestamp Option section).

 Fixed Timestamp Activate option if CAN is not used as
Transport Layer.

 Timestamp Size Selection should be greater than or equal to
WORD (2 bytes).

 Timestamp Unit + Ticks per Unit The time unit for the timestamp should be less
than the smallest event cycle time.

Table 5-2: Recommendations for the Configuration of the XCP Module: DAQ

Block Transfer Block Upload Activate option.

 Block Download Activate option.

 MIN_ST for Block Download Check whether the ECU can process the
blocks on time without a loss of data.
Otherwise, a wait time should be configured
here.

Table 5-3: Recommendations for the Configuration of the XCP Module: Block Transfer

Checksum Checksum Activate option.

 AUTOSAR CRC Module Support Recommended if the AUTOSAR module is
present.

Table 5-4: Recommendations for the Configuration of the XCP Module: Checksum

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 48 -

5.5 Configuration of the Driver Modules

5.5.1 CAN Module MICROSAR XCP

Configuration The CAN module MICROSAR XCP is configured with the GENy Software Component
Configuration tool.

The CAN messages for the XCP communication can be specified for MICROSAR
XCP.

The module is also responsible for creating the CanXCPAsr.a2l file.

Reference: Additional information is provided in the Technical Reference XCP

Protocol Layer document.

5.6 Configuration of the Memory Management

NVM module The AUTOSAR Standard provides an NVM module for the memory management.
Measuring and calibrating generally have no direct points of contact with the memory
management.

 The sole use case for configuring the NVM with regard to the XCP module is the use
of Resume Mode.

5.6.1 Configuration for Resume Mode

Implementation For implementation of Resume Mode, the XCP driver must store its DAQ
configuration in a non-volatile memory. Two pieces of information must be stored for
resume mode: first, the fact that the mode is active and, second, the DAQ
configuration itself.

 For this a memory block large enough for the configuration is configured in the NVM
module. Its size can be derived from the buffer size configured in the XCP module.

Buffer size The following formula can be used to calculate the buffer size:

timestamp the of Sizej) ,signal nt(Measureme
time cycle

1
 time Buffersize Buffer

Signal

j

i Event

Event

i i

API methods The API methods provided by the NVM module can then be used in order to save and
load the configuration in the XCP module. This program part is not generated
automatically and must be programmed.

Reference: The methods to be implemented can be referenced in the Technical

Reference XCP Protocol Layer document.

../TechnicalReferences/TechnicalReference_XCP_Protocol_Layer.pdf
../TechnicalReferences/TechnicalReference_XCP_Protocol_Layer.pdf
../TechnicalReferences/TechnicalReference_XCP_Protocol_Layer.pdf
../TechnicalReferences/TechnicalReference_XCP_Protocol_Layer.pdf

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 49 -

5.7 Creating an A2L File

To complete the A2L
file, merge all
relevant information
regarding the ECU

The A2L description file contains all relevant information regarding the ECU. This
information is generated from various generators during the creation process.
Information, such as the physical address, which is not available until the ECU
application has been created, is also needed.

 All parts must be merged to ultimately obtain a complete A2L description file. The
addresses in the A2L file then still have to be updated.

 Ideally, this process is incorporated into the automated creation process of the ECU
application.

5.7.1 Creation of a Master A2L File

Note: MICROSAR XCP provides a _Master.a2l file as a template in the delivery

folder …\Misc\McData. All A2L files generated by Vector tools can be found in

…\GenData folder.

Goal A master A2L file that merges all partial databases into one is required. This master
file can then be used as a template for the file to be created. The objective is to
ultimately obtain a single file containing all information.

Project-specific
master A2L file

This master A2L file is very project-specific. The information for an A2L file is created
by different generators. Some information is also added manually. For this reason,
the master A2L file is not created automatically.

Figure 5-11: Process for creating a master A2L file (example)

include commands The general structure of an A2L file is already described in Figure 3-11: Structure of

the A2L file. To merge the individual A2L fragments, include commands are used.

These are inserted accordingly to the modular structure (AML, General ECU
Implementation, IF_DATA and A2L Objects).

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 50 -

 To allow the merge of the individual memory segments running smoothly, project-
specific adaptions must be made in the master A2L file. These are marked

with // TODO:

Adaption of include

commands

For the below-named include commands the file paths may have to be adapted.

Generally remove the appropriate includes if not required in the project.

Use of a text editor The simplest procedure is to use a text editor to create and adapt the master A2L file.

Master A2L file ASAP2_VERSION 1.60

/begin PROJECT ExampleProject ""

 /begin MODULE MyModuleName ""

AML /begin A2ML

 ...

 block "IF_DATA" taggedunion if_data {

 ...

 };

 ...

 //TODO: Include AML Information if required.

 /end A2ML

General ECU
implementation

 /begin MOD_COMMON ""

 // TODO: Set the Byte Order of the ECU as defined by the

ECUC module MSB_FIRST or MSB_LAST and configure the byte

alignment used in this project.

 /end MOD_COMMON

 /begin MOD_PAR ""

 /include "GenData\Rte\Rte_MemSeg.a2l"

 // TODO: Add or include MEMORY_SEGMENT information here.

 /end MOD_PAR

IF_DATA /begin IF_DATA XCP

 /include "GenData\XCP.a2l"

 /begin DAQ

 // TODO: Add or include further a2l file splitter that

provide XCP Events.

 /include "GenData\XCP_daq.a2l"

 /include "GenData\XCP_events.a2l"

 /include "Misc\McData\Dlt_Events.a2l"

 /include "GenData\Bsw\bsw_xcp_events.a2l"

 /include "GenData\Rte\Rte_XcpEvents.a2l"

 /end DAQ

 /include "GenData\CanXCPAsr.a2l"

 /end IF_DATA

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 51 -

A2L objects // TODO: Add or include further a2l splitter that provide

measurement objects.

 /include "Misc\McData\Dlt.a2l

 /include "GenData\Bsw\bsw.a2l"

 /include "GenData\Rte\Rte.a2l"

 /include "GenData\AmdRtm.a2l"

 /end MODULE

/end PROJECT

5.7.2 Expansion of the Master A2L File

Include commands A good approach for incorporating additional contents into the A2L file is the

expansion of the master A2L file using include commands. Copying additional

information directly and inserting it without include commands is not recommended.

Integrating of ECU
information (General
ECU
Implementation)

The A2L elements MOD_COMMON and MOD_PAR are best described in additional A2L

files, which are manually integrated in the A2L file via an include command.

These include instructions are already inserted in the master file and accompany

the AUTOSAR Calibration user manual.

Integrating of
interface data
(Interface Data)

Some parts of the IF_DATA information are created by generators. These parts are

integrated via an include command. If additional manual information is to be added,

the creation of additional A2L files is recommended. These must be integrated in the

IF_DATA at the appropriate points. The merging of IF_DATA information from

various A2L files using the ASAP2 Merger is not supported.

The include instruction UserDefinedXcpEvents.a2l in the master file adds

manually defined XCP events to the IF_DATA section, for example.

Integrating of A2L
objects
(measurement and
calibration
parameters)

Partial databases containing measurement and calibration parameters are integrated
most commonly. These files can be created, for example, by generators such as
Simulink, TargetLink, or the ASAP2 Creator.

Another example is the basic software, which also contains measurable objects.

These files can be integrated manually using an additional include command, with

the help of the ASAP2 Tool-Set or the ASAP2 Editor.

Note: A file can only be added manually using an include command if the file

structure permits this. A complete A2L file cannot be added via include.

Example: A2L fragment – Inserting via include command possible

 /CHARACTERISTIC

 …

 /MEASUREMENT

 …

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 52 -

Example: Complete A2L file – Inserting possible only via ASAP2 Merger

 /begin PROJECT ExampleProject ""

 /begin MODULE MyModuleName ""

 /CHARACTERISTIC

 …

 /MEASUREMENT

 …

 /end MODULE

/end PROJECT

5.7.3 Working with ASAP2 Tool-Set

5.7.3.1 Merging of Additional A2L Files

Procedure for
complete A2L files

A complete A2L file (as in the above example) cannot be embedded in the master

A2L file using an include command. These types of A2L files can be merged using

the ASAP2 Merger program, which is part of the ASAP2 Tool-Set.

Figure 5-12: Integrating of A2L objects

Reference: The use of the ASAP2 Merger and its possible settings in the INI file are
described in the ASAP2 Tool-Set user manual.

Example:
The generated Extern1.a2l and ExternN.a2l files are imported into the master A2L file

Master.a2l as a slave. The result of the merging is then written to the

ECU_merged.a2l file. Necessary settings are provided with the merger.ini file.

The merger.ini file must be present since the ASAP2 Merger adopts the setting

from this file at each command line call.

Command Line Call:
ASAP2Merger.exe -m Master.a2l -s Extern1.a2l -s ExternN.a2l -o

ECU_Merged.a2l -p "<INI_PATH>\merger.ini"

Merger.ini

[OPTIONS]

MERGE_GROUP_CONTENTS = 1 // The contents of groups with the

same name will be merged

ASAP2Tool-Set_UserManual_V800_01.pdf

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 53 -

DISABLE_SUFFIXES = 1 // Do not create suffixes for

imported objects

5.7.3.2 Update of the Addresses in the A2L File

Necessity It is necessary to update the measurement and calibration parameters in an A2L file
because the addresses of objects are not known until after the program code is
created (after compilation).

Further benefit The update step can also be used to create, with the help of the master A2L file, a

complete A2L file that no longer has any Includes. The advantage of doing this is

that afterwards only one file has to be worked with and all partial databases do not
always have to be separately copied.

Figure 5-13: Update of
the addresses in the
A2L file

Reference: The use of the ASAP2 Updater and its possible settings in the INI file are

described in the ASAP2 Tool-Set user manual.

Note: The _Updater.ini file can be found in the delivery folder …\Misc\McData.

It is supplied with the AUTOSAR Calibration user manual.

Template
_Updater.ini

The _Updater.ini file is provided as a template, which is indicated by the

underscore.

Necessary adaption The _Updater.ini file needs to be adapted in any case, e.g. at least the

MAP_FORMAT must be specified. The array notation in [] is necessary because it is

used by MICROSAR that way.

Example:

The Master.a2l file is read in and the addresses of the measurement and

calibration parameters are updated and written to the ECU.a2l file. The addresses

for the update are taken from the demo.elf file. Information of the update operation

is also written in the a2l.log file. Necessary settings are provided with the

updater.ini file. The ASAP2 Updater also always requires an updater.ini file.

Command Line Call:
ASAP2Updater.exe -I Master.a2l -O ECU.a2l -A demo.elf -L

a2l.log -T "<INI_PATH>\Updater.ini"

updater.ini:
[OPTIONS]

MAP_FORMAT=31 // Use ELF 32 Bit

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 54 -

5.7.3.3 Step by Step Instructions with the ASAP2 Tool-Set

Recommendation The use of the ASAP2 Tool-Set is recommended because this can be integrated in an
automatic generation process. The address update and the export of the database
can be integrated as a post-build task.

STEP 1: A2L fragment generation
So that A2L fragments are generated, the corresponding generators must be
configured. This is done by integrating these into the build process.

It must be ensured that the created A2L fragments are stored are a fixed location.

 STEP 2: Manual creation of A2L fragments
Information that the A2L file must subsequently contain but that is not automatically
generated must be manually created.

 STEP 3: Adaptation of the master A2L file

A master A2L file must be created. In the process, the paths of the include

commands must be adapted accordingly.

 STEP 4: Merging of additional A2L files
If complete A2L files must be integrated, the Merger of the ASAP2 Tool-Set must be
used. For this, the Merger must be called with appropriate parameters for each
additional complete A2L file.

 STEP 5: Update of the addresses and export of the final file
The final step is to configure the creation of the final A2L file. For this, the ASAP2
Updater is incorporated into the build process, which updates the addresses of the
measurement and calibration parameters. At the same time, a new final A2L
containing all included A2L fragments is created.

 STEP 6: Use of the A2L file in CANape
Following completion of these steps, a current A2L file should now be generated
automatically when the ECU software is created.

This final A2L file can then be used in CANape.

5.7.4 Working with CANape and the ASAP2 Editor

Use exported
databases without
include commands

CANape and the ASAP2 Editor support an interactive procedure for carrying out the
actions described above. In this procedure, however, it must be ensured that the

master file with its include commands remains intact. The master A2L file should

therefore not be specified as a database for the ECU directly in CANape. Instead, an

exported database that contains no more include instructions must always be used.

Caution: When saving, the ASAP2 Editor overwrites the existing A2L file and

removes thereby the includes. For this reason always store only a copy.

INI-file All project-specific settings of CANape are stored in the CANape.ini. Changes to

the configuration can be easily made via the user interface in CANape.

Note: The _CANape.ini file can be found in the delivery folder …\Misc\McData. It

is supplied with the AUTOSAR Calibration user manual.

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 55 -

Template The _CANape.ini file is provided as a template, which is indicated by the

underscore. The necessary presettings, such as for the export important notation [] of
arrays is already preconfigured to facilitate the implementation.

5.7.4.1 Step by Step Instruction

STEP 1: A2L fragment generation
So that A2L fragments are generated, the corresponding generators must be
configured. This is done by integrating these into the build process.

It must be ensured that the created A2L fragments are stored are a fixed location.

 STEP 2: Manual creation of A2L fragments
Information that the A2L file must subsequently contain but that is not automatically
generated must be manually created.

 STEP 3: Insert INI file

Copy the definite CANape.ini file to the directory of the master A2L file.

 STEP 4: Adaptation of the master A2L file

A master A2L file must be created. In the process, the paths of the include

commands must be adapted accordingly.

 STEP 5: Start the ASAP2 Editor
Start the ASAP2 Editor and load the master A2L. The ASAP2 Editor will be used to
create the final A2L file.

 STEP 6: Merging of additional A2L files
The ASAP2 Editor can merge content from existing A2L databases. If complete, A2L
files must be integrated; the import functionality can be used. Either use File | Import
or File | Add partial database from the application menu.

 STEP 7: Update of the addresses
The address update requires a configured MAP file. A MAP file can be added via the
database properties. After assigning a MAP file, the address can be updated via the
application menu File | Update addresses.

 STEP 8: Create final A2L file to use in CANape
The master A2L file should not be altered with the ASAP2 Editor. A new A2L file
should be generated instead. This can be achieved by saving into a new database
using the application menu entry File|Save as.

This final A2L file can then be used in CANape.

5.8 Fast Access to the ECU Via the VX Module

Great measurement
bandwidth

An VX module is a scalable solution with maximum performance for measurement
and calibration tasks. The use of VX measurement hardware enables a greater
measurement bandwidth. The system forms the interface between the ECU and a
measurement and calibration tool such as CANape. For a high data throughput with
minimum runtime effects on the ECU, the data access occurs via microcontroller-
specific data trace and debug interfaces. The VX module is connected to the PC
using XCP on Ethernet. The VX measurement hardware is connected to the ECU via
a POD (Plug-On Device).

User Manual AUTOSAR Calibration Supplier

© Vector Informatik GmbH Version 1.0 - 56 -

Application notes For information on general integration of a VX module (VX1000), refer to the following
application notes:

> AN-IMC-1-016 VX1000: Getting Started with Nexus JTAG and MPC5554

> AN-IMC-1-013 VX1000: Getting Started with Infineon XC2000

> AN-IMC-1-014 VX1000: Getting Started with Infineon TriCore

Note: These documents are available from the Vector Download Center.

5.9 Additional Topics

Items to consider The following items require additional consideration:

> Memory protection unit, ISO26262, Thread safety

> Limiting of runtime of a task or runnable

> MultiThreading

User Manual AUTOSAR Calibration Delivery Test/Quick Start

© Vector Informatik GmbH Version 1.0 - 57 -

6 Delivery Test/Quick Start

Objectives This chapter describes a delivery test for the A2L file created by the supplier.
However, it can also be used as a CANape Quick Start for the OEM.

Test of the A2L file To ensure the completeness and the functionality of the delivered A2L file, a simple
delivery test can be performed with the help of CANape. If the A2L file is incomplete
or corrupt, an error appears when the file is inserted. If the insertion is successful, a
few measurement signals can be added to display windows for the test and a
measurement started. If no error appears, the A2L file is functional.

Perform delivery test (step by step instruction):

1. Copy the A2L file to an empty directory and connect the hardware.

2. Start CANape from this directory (right-click on canape32.exe | Properties | Run
in insert directory of the A2L file).

3. Use a drag & drop operation to move the A2L file to CANape.

If an error message appears, the A2L file is incomplete or corrupt. Otherwise, the
ECU is shown as online.

4. Open the Symbol Explorer and expand the database under Devices.

5. Select individual measurement and calibration parameters, use drag & drop to
move them onto the empty display page (see Figure 6-1), and choose suitable
measurement and calibration windows.

Figure 6-1: Dragging measurement and calibration parameters onto display page

6. Start the measurement and calibrate the calibration parameters.

7. Check the required XCP features in the corresponding settings (for more detailed
information on each feature, refer to the CANape online help or the XCP Features
in CANape section).

The delivery test is successful if no error message occurs, meaningful
measurement values are displayed in the display windows, calibration parameters
can be calibrated, and all desired XCP features can be found.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 58 -

7 CANape Introduction

In This Chapter You Will Find the Following Information:

7.1 Creation of a Project page 59

7.2 Device Configuration page 60

 Devices

 Networks

 Vector Hardware

 XCP Features in CANape

7.3 Online Measurement Configuration page 64

 Measurement Options

 Measurement Signals

 Recorder List

 Event List

7.4 Working with Parameter Set Files page 69

7.5 Dataset Management page 70

 Tool-Based in CANape 11.0 and Higher

7.6 Offline Evaluation page 72

7.7 Flashing page 74

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 59 -

7.1 Creation of a Project

First steps A CANape project is created either using the selection dialog after starting CANape or
in CANape itself via File | New project. Once a project name has been defined in the
first step, CANape suggests a project directory structure in the second step, in which
the project name is a subdirectory.

Figure 7-1: Creating the
project directory

Working directory This serves as a working directory for CANape and should be changed as required. It
typically contains the following:

> The CANape.ini initialization file, i.e., the global configuration of the project

> Several configuration files (*.cna), i.e., local configurations for individual

measurement and calibration tasks

> A subdirectory in which the measurement files are stored

> For each ECU:

> A subdirectory containing the A2L file

> A subdirectory in which its parameter set files are stored

> Other subdirectories, depending on the devices used (e.g., external
measurement equipment modules)

Definition of the
devices

After the desired project directory structure has been specified, the new project is
opened. The next step is to define the devices. An ECU description file in A2L format
or a diagnostic driver in ODX/CDD format is generally required for this. In the end, a

complete project has at least one configuration file (*.cna), the corresponding

initialization file (*.ini), and at least one ECU description file (*.a2l).

 Figure 7-2 shows the recommended project directory structure.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 60 -

Figure 7-2: Project
directory

Prototype version
release

Folders for the project-relevant files are created for each prototype version release

X.Y of an ECU. The CANape configuration file (*.cna) and the canape.ini file are

located in folders in the CANape 10 SP4 subdirectory. The Hex file, the databases

(*.a2l, *.cdd), and the network files (e.g., *.axml) are inserted as subfolders for

each prototype version release. In addition, the measurement, parameter set, and
script files are stored in their own folders.

7.2 Device Configuration

Settings The settings for devices, networks, and channels can be modified and individual
devices and networks can be added in the device configuration. The device

configuration is accessed via the icon or using Device | Device configuration.

Graphic
representation

The device configuration can also be represented graphically using the Device
window. Double-clicking the individual icons opens the corresponding part of the
Device Configuration or the Database Editor.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 61 -

Figure 7-3: Device window in CANape 11.0

7.2.1 Devices

Creating new
devices

The Devices subitem of the Device Configuration displays all the created devices.
Here, new ECUs can be created from a database or the MCD3 server, or completely
new ECUs can be created. In the latter case, CANape generates an A2L body that
the user must still configure and complete using the ASAP2 Editor. Besides the XCP
and CCP devices, diagnostic drivers or databases can also be used. An example of
integrating a diagnostic database and of using panels for this can found in the
installation directory of CANape under Examples | ODX. A new device can be
created directly by dragging and dropping the database in CANape.

Bus monitoring For the bus monitoring, the databases of the CAN bus (*.dbc), FlexRay bus

(*.fibex), and LIN bus (*.ldf) can be integrated in CANape. In the AUTOSAR

context, the possibility exists to use an AUTOSAR system description file (*.arxml)

in the case of the CAN or FlexRay bus.

Configuration Corresponding dialog pages are available for configuring each created device.
Additional information regarding the configuration options can be found in the
CANape online help. Depending on the device status, the icon changes from green
(online) to yellow (offline) or red (inactive).

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 62 -

Figure 7-4: Device configuration

7.2.2 Networks

Listing The Networks subitem lists all networks available in the current configuration.

Configuration The following networks can be created in CANape: CAN, LIN, ETH, K-Line, FlexRay,
and MOST. The networks are configured on the corresponding dialog pages.

7.2.3 Vector Hardware

Configuration of the
hardware

The configuration of the hardware is performed using the Vector Hardware. It can be
opened using Device | Vector hardware configuration or in the Channels | Vector
section in the Device Configuration.

 The appropriate hardware can be assigned to the respective channels using
Application | CANape. In so doing, the physical channel number does not have to
match the logical channel number. The possibility also exists to change the number of
channels for a particular bus system.

Figure 7-5: Vector Hardware Config

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 63 -

7.2.4 XCP Features in CANape

Timestamp The use of a timestamp can be specified in the Device Configuration in subitem
Protocol | Event List of the device. Depending on the implementation in the ECU,
the option also exists here to require a timestamp of the slave.

Figure 7-6: Timestamp in the device configuration

Resume mode Whether or not resume mode is supported is indicated in the Expert settings of the
DAQ Lists subitem.

Autoselection/
software version
check

The autoselection and the software version check of the A2L file can also be set in
the device configuration. This option can be found in the Database subitem.

 If the "Page Switching" or "Checksum calculation" options are used, these can be
found under Memory Segments of the device (see Figure 7-7).

Online help All XCP features are described in more detail in the CANape online help.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 64 -

Figure 7-7: Page switching in the device window

7.3 Online Measurement Configuration

Call The complete measurement is configured in the online measurement configuration. It

is called via the icon or using Measurement | Measurement Configuration.

Display windows and
pages

Various display windows are available in order to display the measurement and
calibration parameters. These windows are described in detail in the CANape online
help. In addition, several display pages can be created to enable a well-organized
complete configuration.

7.3.1 Measurement Options

Behavior of the
measurement

The behavior of the measurement can be configured in the measurement options of
the measurement configuration. For example, the handling with polling signals during
the measurement or the size of the measurement buffer can be adapted. In addition,
a comment template for newly created measurement files can be specified here.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 65 -

Figure 7-8: MDF
measurement comment
template

7.3.2 Measurement Signals

Measureable signals All signals of the measurement configuration are listed on this page. Signals of the
database can be selected using Edit | Insert Signal. Only the signals that are
contained in the measurement signal list or in the display windows of CANape are
measured. The option also exists to deactivate signals for individual measurements
instead of deleting and adding them again. For the case that a signal is to be
measured but not recorded, i.e., for performance and memory space reasons, the
Recorder option can be deactivated.

Measurement modes The measurement mode of the measurement signals leaves some of the
configuration options up to the user. The most commonly used measurement modes
are:

> Event: In event mode, the ECU sends the current measurement value of a signal
autonomously. The possible events and DAQ lists are defined in the ECU and
described in the A2L file.

> Polling: In polling mode, the measurement values of a signal are returned
asynchronously on request and according to the polling rate of the ECU. This
process is well suited for slower measurements when there are no requirements
for synchronous polling.

> Cyclic: In XCP and CCP, the cyclic measurement mode corresponds to the event
measurement mode. A data reduction can be achieved based on its cycle time.

> On key: When a key (combination) is entered, the signal is requested (polling).

> On trigger: When a trigger event occurs (StartTrigger, StopTrigger,
LastTriggerFinished), CANape measures the desired signal (polling).

> On event: When a particular system event occurs (e.g., measurement start), the
signal is measured (polling).

Measurement rate The measurement rate is displayed to the right of the displayed measurement mode
in the measurement configuration of the measurement signals. It indicates the
recording rate in polling or cyclic mode. The rate is specified as a time interval
between two measurement values, in milliseconds.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 66 -

Bus utilization The bus utilization and the measurement events for the selected device are listed at
the bottom of the measurement configuration. Here the bar indicates the percentage
utilization of the individual event time bases and the bus.

Online help In addition to the signals of the individual databases, additional measurement signals
such as global variables can also be incorporated into the measurement
configuration. For more detailed information on this, refer to the CANape online help.

Figure 7-9: Measurement configuration: Measurement signals list

Inserting signals With the help of the Symbol Explorer , individual measurement signals can be
inserted directly in a display window using a drag & drop operation. These are
automatically added to the measurement signal list.

Shortening rule To improve the readability of long measurement signal names in the Symbol Explorer,
a shortening rule can be specified using Tools | Options, section Display | Object
Names.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 67 -

Figure 7-10: Setting of
a name shortening rule

 This indicates the start of the signal name only and is limited in the display to the last
part after the specified separator.

Figure 7-11: Example
for use of a name
shortening rule

7.3.3 Recorder List

Definitions/Settings The recorder list in the measurement configuration provides an overview of the
defined recorders. The option exists to deactivate individual recorders in order to
realize different measurement tasks. The setting of the file name of the MDF file can
be made individually for each recorder. Here, it is possible to use different macros in
order, for example, to record the time of day in the file name. Under the Options
area, various settings can be made for each recorder. A detailed explanation of these
settings can be found in the CANape online help.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 68 -

Figure 7-12: Measurement configuration: Recorder list

Trigger of recordings In addition to the most straightforward measurement in which all signals are recorded
over the entire measurement period, the possibility also exists to trigger the recording
of individual signals by certain events. These are defined in more detail in the Trigger
area.

Figure 7-13: Trigger condition

Start events The selection menu of the [New] button can be used to select various start events.
The following categories are available for selection here:

> System events (messages from the PC or the ECU)

> Signal events (values from active measurement)

> Keyboard events (operator inputs)

Stop event These events are also available again as a stop event. However, a time limitation can
also be chosen as a stop event.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 69 -

Assign signals to
recorders

The measurement signals that are recorded by this recorder are indicated under All
recorder signals. Signals can be assigned to individual recorders so that these are
recorded only when the trigger condition occurs.

7.3.4 Event List

Overall event list The Event list section of the Measurement Configuration lists all events with their
properties. Here it can be seen whether the event is an ECU event or a general
system event. The defined trigger events are also displayed here.

Definition of new
events

New events are defined using the context menu. These are then available in the
measurement signal list as a measurement mode so that, for example, a signal is
measured only after a particular key has been pressed.

Figure 7-14: Measurement configuration - Event list

7.4 Working with Parameter Set Files

Purposes for saving
parameter set files

CANape offers the option to perform online calibration of calibration parameters and
to save these as a parameter set file. These files are then used mainly for two
purposes:

 > For saving the current version and for documenting and/or exchanging parameter
values

Different options are available for selection for saving the calibration parameters.
First, the parameters of a single calibration window can be saved by selecting
Save in the popup menu of the Calibration window. Second, all the parameters of
all Calibration windows can also be saved. This can be done using Calibration |
Save all calibration windows. In addition, the possibility exists to select

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 70 -

particular parameters via a filter (Calibration | Save parameter set as).

 > In order to bring the system to a defined state

Several functions are also available for loading a parameter set file. Calibration
parameters in a particular calibration window can also be opened here by
selecting Load in the popup menu of the Calibration window. Particular
calibration parameters can also be selected using Calibration | Load parameter
set from.

7.5 Dataset Management

Definition of dataset A dataset is a set of various parameters at a particular point in time within the edit
history. It normally contains all parameters that belong to an ECU and is represented
via the following files:

> Database file (A2L file)

> Memory image content (HEX file)

> Parameter set file (only for datasets from the eCDM system)

 The dataset is the central object for the versioning and configuring of parameters.

7.5.1 Tool-Based in CANape 11.0 and Higher

Dataset
management

In CANape 11.0, a convenient dataset management tool has been introduced. The
[Dataset Management] can be called via the device configuration. Here, various
datasets of an ECU can be added. New datasets (A2L+HEX, HEX or uncoded) can

be added on the Datasets tab using the icon. Additional settings are available in
the context menu. The Timestamps tab shows the snapshots of the calibration
history and indicates their timestamp.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 71 -

Figure 7-15: Dataset
management in
CANape 11.0

Working with multiple
datasets

The datasets are then displayed and can be activated in the Symbol Explorer. This
provides a convenient means for working with multiple datasets within a project.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 72 -

Figure 7-16: Dataset
management in the
Symbol Explorer

Demo project The Examples folder of the CANape installation directory contains a demo project

named Datasets_Thesaurus, which illustrates the use of the dataset management

using an example.

7.6 Offline Evaluation

Read in
measurement data

For purposes of offline evaluation, measurement data can be read in using Analysis |
Show values from measurement file.

Measurement File
Manager

The Measurement File Manager (can also be opened via the Analysis menu item)
shows all loaded MDF files as well as the virtual MDF channels. Several possible
settings are available in the toolbar of the Measurement File Manager. These are
described in detail in the CANape online help.

Data Mining An automatic procedure for offline evaluation of loaded MDF files is available under
Analysis | Data Mining. The option exists, for example, to find the times at which the
speed exceed 3000 rpm. In so doing, it is possible to evaluate multiple measurement
files with measurement signal names as identical as possible in a single search.
These are specified in the File filter list section. The option of using wildcards

(*.mdf) is also available.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 73 -

Calculation methods The calculation methods are configured in the Methods section. The following are
available for selection here:

> Function (based on user-defined functions that are created in the function editor
or from the global function library)

> MATLAB/Simulink model (based on MATLAB/Simulink models that are available
as DLL)

> Arithmetic condition (based on user-defined criteria)

> Script (defined in the Functions Editor)

Definition of
algebraic conditions

Figure 7-17 shows the definition of an algebraic condition. The time range to be
evaluated can be set under Extended.

Figure 7-17: Data Mining: Creating an algebraic condition

Naming analysis files The desired file name of the analysis file can be entered in the Options section. The
name can contain various macros that can be inserted using the corresponding
button.

Further settings In addition, it is possible to limit the number of hits per file. It is useful to specify a
creation date of the file to be searched if only the measurement data starting from a
certain date are to be evaluated.

Output in CSV format The results can also be output in CSV format for further analysis. The desired
separator for the measurement data should be indicated in the selection menu in this
section.

User Manual AUTOSAR Calibration CANape Introduction

© Vector Informatik GmbH Version 1.0 - 74 -

Executing scripts Scripts that are executed before starting the analysis, before the analysis of each file,
after the analysis of each file, or after finishing the complete analysis can also be
specified.

Example of Data
Mining

A detailed example of Data Mining can be found in the installation directory of
CANape under Examples | DataMining.

7.7 Flashing

Flash tools Other Flash tools, such as vFlash can be opened from CANape.

Online help Additional information on the topic of flashing with CANape can be found in the
CANape online help.

User Manual AUTOSAR Calibration Addresses

© Vector Informatik GmbH Version 1.0 - 75 -

8 Addresses

Addresses on Vector
homepage

Please find the contacts of Vector Informatik GmbH and all subsidiaries worldwide
via:

http://www.vector.com/vi_addresses_en.html

User Manual AUTOSAR Calibration Abbreviations

© Vector Informatik GmbH Version 1.0 - 76 -

9 Abbreviations

Abbreviation Description

ASAM Association for Standardization of Automation and Measuring Systems

AUTOSAR AUTomotive Open System ARchitecture

BSW Basic software

CSA Common Software Architecture

CTO Command Transfer Object

DAQ Data Acquisition

DTO Command Transfer Object

E/E Architecture Electrical/electronic architecture

EPK EPROM-Kennung (EPROM identifier)

EPROM Erasable Programmable Read Only Memory

MCD System Measurement Calibration, and Diagnostics System

ODT Object Description Table

RTE Runtime Environment

SW-C Software Component

VFB Virtual Function Bus

Get more Information!

Visit our Website for:

> News

> Products

> Demo Software

> Support

> Training Classes

> Addresses

www.vector.com

http://www.vector-worldwide.com/

	1 Introduction
	1.1 Purpose of the AUTOSAR Calibration User Manual
	1.2 About This User Manual
	1.2.1 Certification
	1.2.2 Warranty
	1.2.3 Support
	1.2.4 Trademarks

	2 Introduction to AUTOSAR
	2.1 Background
	2.2 Approach
	2.3 Basic Concept
	2.4 Architecture

	3 Measuring and Calibrating of ECU Software
	3.1 Basics
	3.2 XCP Driver
	3.2.1 Measurement Modes
	3.2.2 Autoselection and Software Version Check of the A2L File
	3.2.3 Online Calibration
	3.2.4 Page Switching
	3.2.5 Bypassing
	3.2.6 Resume Mode

	3.3 A2L File
	3.3.1 Structure
	3.3.1.1 AML
	3.3.1.2 General ECU Implementation
	3.3.1.3 IF_DATA
	3.3.1.4 A2L Objects

	3.3.2 Mode of Functioning

	4 OEM
	4.1 Objective
	4.2 Content of the Performance Specifications
	4.3 Measurement Task
	4.4 Calibration Task
	4.5 XCP Features

	5 Supplier
	5.1 Preface
	5.2 Requirements
	5.3 Definition of Measurement and Calibration Parameters
	5.3.1 Measuring and Calibrating of AUTOSAR Software Components
	5.3.2 Measuring of Ports and Variables
	5.3.3 XCP Events
	5.3.4 Software Component with Calibration Parameters
	5.3.5 Calibration Parameters for Multiple Software Components
	5.3.6 Configuration of the RTE (Runtime Environment)
	5.3.7 Measuring and Calibrating Without the Support of the RTE
	5.3.8 Debugging of the BSW (Basic Software)

	5.4 Configuration of the XCP Module
	5.4.1 DAQ List Configuration
	5.4.2 Tool-Driven DAQ Timestamp Option
	5.4.3 XCP Event Information
	5.4.4 Software Version Check
	5.4.5 Use of the XCP Component in the Implementation
	5.4.6 Recommendations for the Configuration of the XCP Module

	5.5 Configuration of the Driver Modules
	5.5.1 CAN Module MICROSAR XCP

	5.6 Configuration of the Memory Management
	5.6.1 Configuration for Resume Mode

	5.7 Creating an A2L File
	5.7.1 Creation of a Master A2L File
	5.7.2 Expansion of the Master A2L File
	5.7.3 Working with ASAP2 Tool-Set
	5.7.3.1 Merging of Additional A2L Files
	5.7.3.2 Update of the Addresses in the A2L File
	5.7.3.3 Step by Step Instructions with the ASAP2 Tool-Set

	5.7.4 Working with CANape and the ASAP2 Editor
	5.7.4.1 Step by Step Instruction

	5.8 Fast Access to the ECU Via the VX Module
	5.9 Additional Topics

	6 Delivery Test/Quick Start
	7 CANape Introduction
	7.1 Creation of a Project
	7.2 Device Configuration
	7.2.1 Devices
	7.2.2 Networks
	7.2.3 Vector Hardware
	7.2.4 XCP Features in CANape

	7.3 Online Measurement Configuration
	7.3.1 Measurement Options
	7.3.2 Measurement Signals
	7.3.3 Recorder List
	7.3.4 Event List

	7.4 Working with Parameter Set Files
	7.5 Dataset Management
	7.5.1 Tool-Based in CANape 11.0 and Higher

	7.6 Offline Evaluation
	7.7 Flashing

	8 Addresses
	9 Abbreviations

