

Application Interrupt Control with VStdLib

Version 1.0
2008-08-06

Application Note AN-ISC-2-1081

Author(s) Patrick Markl
Restrictions Restricted Membership
Abstract This application note explains how the application can control interrupt handling via the

VStdLib and which constraints apply.

Table of Contents

 1
Copyright © 2008 - Vector Informatik GmbH
Contact Information: www.vector-informatik.com or ++49-711-80 670-0

1.0 Overview ..1
1.1 Introduction..1
2.0 Interrupt Control by Application ...3
2.1 Constraints ..3
2.1.1 Constraint 1: Nested Calls ..3
2.1.2 Constraint 2: Recursive Calls when Disabling CAN Interrupts...3
2.1.3 Constraint 3: No Locking when Disabling CAN Interrupts ..3
3.0 Solution ..6
3.1.1 Nested Calls..6
3.1.2 No Locking of Interrupts..7
4.0 Referenced Documents ...12
5.0 Contacts...13

1.0 Overview
This application note describes how the user can configure the interrupt control options of the VStdLib. Some
applications provide their own lock/unlock functions, which better fulfill the application’s needs. Because of this the
VStdLib provides a means which allows the application to use it’s own lock/unlock functions, instead of the
implementation provided by the VStdLib.

This application note describes the handling of this use case in more detail.

1.1 Introduction
The VStdLib provides functions to lock/unlock interrupts. There are three options to be set in the configuration tool,
as shown in figure1. The first option (Default) lets the VStdLib lock global interrupts. Depending on the hardware
plattform it is also possible to lock interrupts to a certain level. The lock is implemented by the VStdLib itself.

Figure 1: Possible configuration options for VStdLib interrupt control

 Application Interrupt Control with VStdLib

 2
Application Note AN-ISC-2-1081

The second option (OSEK) is to configure the VStdLib in a way that locking of interrupts is done by means of
OSEK OS functions. The third and last option (User defined) requires the application to perform the
locking/unlocking functionality within callback functions.

This application note focusses mainly on the third option. It describes the way the application has to implement the
callback functions required by the VStdLib.

Figure 2: Configuration of interrupt control by application

Figure 2 shows the VStdLib configuration dialog, if interrupt control by application is configured. The user has to
enter the names of two functions in the dialog, which will be called by the VStdLib in order to lock/unlock interrupts.
If the user has specified the callback function names as shown in figure 2, the application must provide the
implementations of these two two functions. The prototypes are:

void ApplNestedDisable(void);

void ApplNestedRestore(void);

From now on these two function names will be used within this application note.

These two functions are called by the VStdLib, in case any Vector component requests a lock for a critical section.
The user has to make sure that the locking mechanism within these two functions is sufficient to protect data. This
depends heavily on the architecture of the application. The more priority levels exists, which call Vector functions,
the more restrictive the lock must be.

Please check the technical references of the other Vector components for restrictions regarding the call
context of the API functions.

 Application Interrupt Control with VStdLib

 3
Application Note AN-ISC-2-1081

2.0 Interrupt Control by Application
This configuration option is usually used, if a global lock is not desired by the user or special lock mechanisms are
used. Once this option is configured, there are two functions to be provided by the application. The user can
specify the names of these functions in the configuration dialog of the VStdLib. The VStdLib calls these functions
instead of directly locking/unlocking interrupts. This means, if any Vector component requests an interrupt lock, it is
finally performed by the application provided functions.

The first function is called, in order to perform a lock operation. It is expected, that the application function stores
the current interrupt state(or any other), in order to restore it later. The second function is to restore the previously
saved lock state.

The implementation of these two functions is up to the user. The user may lock just certain interrupt sources or set
a mutex, semaphore or whatever ensures consistent data and fulfills the call context requirements, described in the
Vector component specific technical references.

2.1 Constraints
The usage of Interrupt Control by Application has some constraints, which have to be taken into account. The
following chapters describe them.

2.1.1 Constraint 1: Nested Calls
It is expected that the two callback functions (ApplNestedDisable()/-Restore()) are implemented in a way that
nested calls are possible. This means if the function ApplNestedDisable() was called by some software component
it may happen that this function is called again from somewhere else. This has to be taken into account when
saving and restoring the interrupt state! The implementer of these two function can assume that the number of lock
and unlock calls is identical and nesting is balanced.

2.1.2 Constraint 2: Recursive Calls when Disabling CAN Interrupts
Instead of implementing an own lock mechanism, the user could configure interrupt control by application and call
the CAN driver’s CanCanInterruptDisable()/-Restore() functions. These two function simply disable CAN interrupts
for the given CAN channel. These two CAN driver functions protect the access to their state variables by means of
the VStdLib’s lock mechanism, which would again be implemented by the callbacks provided by the application.
This would cause an indirect recursion.

Please note that CanCanInterruptDisable()/Restore() shall not be called from
ApplNestedDisable()/Restore(). This application note does not provide a solution for this use case!

2.1.3 Constraint 3: No Locking when Disabling CAN Interrupts
One could think of letting the application directly modify the interrupt flags of the CAN controller, to overcome the
recursion, described in the previous chapter. But this would cause the CAN interrupts to be never locked, when
CanCanInterruptDisable() is called, by any component. The reason is that the application’s interrupt lock code
would interfere with the code in the CAN driver’s function CanCanInterruptDisable(). The following pseudo code
shows the way CanCanInterruptDisable() is implemented. It is assumed that ApplNestedDisable()/-Restore() are
implemented to allow nested calls.

 Application Interrupt Control with VStdLib

 4
Application Note AN-ISC-2-1081

/* CAN Interrupt will be never locked in this example!!! */

void CanCanInterruptDisable(CAN_CHANNEL_CANTYPE_ONLY)

{

 ApplNestedDisable();

 Lock CAN interrupts

 ApplNestedRestore();

}

void ApplNestedDisable(void)

{

 Save current CAN interrupt state();

 Lock CAN Interrupts();

}

void ApplNestedRestore(void)

{

 Restore CAN interrupts to previous state();

}

Figure 3 shows what happens in this case. The function CanCanInterruptDisable() calls ApplNestedDisable() in
order to protect an internal counter. This lock function disables the CAN interrupts, afterwards the CAN driver’s
function locks the CAN interrupts too. The next thing is to call ApplNestedRestore() which again is implemented by
the application and restores the previous CAN interrupt state – in this case enables the CAN interrupts. Now an
inconsistency exists. The code which called CanCanInterruptDisable() assumes locked CAN interrupts, but they
aren’t

 Application Interrupt Control with VStdLib

 5
Application Note AN-ISC-2-1081

sd FailedLock

Component CAN Driver Application CAN Controller

CanCanInterruptDisable
VStdGlobalInterruptDisable

Lock CAN Interrupt

Lock CAN Interrupt

VStdGlobalInterruptRestore

Unlock CAN Interrupt

Figure 3: Sequence diagram of CanCanInterruptDisable()

 Application Interrupt Control with VStdLib

 6
Application Note AN-ISC-2-1081

3.0 Solution
This chapter proposes a solution and a code examples, to overcome the constraints 1 and 3 described in the
previous chapters.

3.1.1 Nested Calls
Solving the first issue – nested calls – is simply done by introducation of a nesting counter. The callbacks
implemented by the application need to manage this counter. The counter is to be incremented, if the function to
lock interrupts is called and decremented if the unlock function is called. The application has to take care to
initialize this counter, before any Vector function is called, in order to ensure a consistent interrupt locking.

The interrupt state is to be modified only if the counter has the value zero. If the value is greater than zero, the
counter is just maintained. The following code example shows, how this nested counter could be implemented.

/* Global variable as nesting counter */

vuint8 gApplNestingCounter;

/* Must be called before the Vector components are initialized! */

void SomeApplicationInitFunction(void)

{

 gApplNestingCounter = (vuint8)0;

}

void ApplNestedDisable(void)

{

 /* check counter – lock if counter is 0 */

 if((vuint8)0 == gApplNestingCounter)

 {

 /* Save current state and perform lock */

 ApplicationSpecificSaveStateAndLock();

 }

 /* increment counter – do not disable if nested, because already done */

 gApplNestingCounter++;

}

void ApplNestedRestore(void)

{

 gApplNestingCounter--;

 if((vuint8)0 == gApplNestingCounter)

 {

 Application Interrupt Control with VStdLib

 7
Application Note AN-ISC-2-1081

 ApplicationSpecificRestoreToPreviousState();

 }

}

3.1.2 No Locking of Interrupts
Constraint 3 described a situation, in which the CAN interrupts are not locked at all. This is because the application
implements a lock function, which modifes the CAN interrupt registers with own code. To overcome this issue, a
global flag needs to be implemented. This global flag tells the application, when to lock or unlock CAN interrupts.
The flag is set within two additional callback functions to be implemented by the application. The prototypes of the
additional callbacks are:

void ApplCanAddCanInterruptDisable(CanChannelHandle channel);

void ApplCanAddCanInterruptRestore(CanChannelHandle channel);

The callback functions are called by the CAN driver from within the functions CanCanInterruptDisable() and
CanCanInterruptRestore() and have to be enabled by means of the preprocessor define
C_ENABLE_INTCTRL_ADD_CAN_FCT. This is done, by creating a user config file, which contains this definition.
More information about these two functions can be found in [1].

The sequence diagrams in figure 4 and figure 5 show the lock and unlocking procedure respectively.

 Application Interrupt Control with VStdLib

 8
Application Note AN-ISC-2-1081

sd InterruptControlByApplication_Lock

CAN DriverComponent VStdLib Application

CanCanInterruptDisable
CanNestedGlobalInterruptDisable

ApplDisableFunc

Lock if
Flag
cleared

Lock CAN Interrupts

ApplCanAddCanInterruptDisable

Set
Global
Flag

CanNestedGlobalInterruptRestore

ApplRestoreFunc

Unlock
if Flag
cleared

Figure 4: Sequence diagram for locking just CAN interrupts.

 Application Interrupt Control with VStdLib

 9
Application Note AN-ISC-2-1081

sd InterruptControlByApplication_UnLock

Component CAN Driver VStdLib Application

CanCanInterruptRestore

VStdGlobalInterruptDisable

ApplDisableFunc

Lock if
Flag
cleared

Restore CAN Interrupts

ApplCanAddCanInterruptRestore
Clear Global Flag

VStdGlobalInterruptRestore

ApplRestoreFunc

Unlock
if Flag
cleared

Figure 5: Sequence diagram for unlocking just CAN interrupts

The following code example shows how to implement the handling of the global flag. If the function
CanCanInterruptDisable() is called, it calls the ApplNestedDisable(), in order to protect a counter. This function
locks CAN interrupts using own code. When ApplNestedDisable() returns, the CAN driver locks CAN interrupts too.
Afterwards ApplCanAddCanInterruptDisable() is called. This function is implemented by the application and sets
the global flag. Before the function CanCanInterruptDisable() returns, it calls ApplNestedRestore(). The application,
which implements the restore callback function has to check, if the global flag is set. If yes, the CAN interrupts
must not be unlocked!

If the function CanCanInterruptRestore() is called, first ApplNestedDisable() is called again. Then the CAN driver
unlocks the CAN interrupts (if its nesting counter reached the value zero) and calls the function
ApplCanAddCanInterruptRestore(). Within this function the flag is cleared. If ApplNestedRestore() is called now,
the flag is not set anymore and the restore of the CAN interrupts is performed.

 Application Interrupt Control with VStdLib

 10
Application Note AN-ISC-2-1081

Note that the application needs to implement also a nesting counter, if it uses own code to lock CAN interrupts, in
order to avoid the issue described by constraint 1. The following code example shows, how to implement the
nesting counter and the flag.

vuint8 gCanLockFlag;

vuint8 gApplNestingCounter;

void ApplicationInitFunction(void)

{

 /* initialize the flags */

 gCanLockFlag = (vuint8)0;

 gApplNestingCounter = (vuint8)0;

}

void ApplNestedDisable(void)

{

 if((vuint8)0 == gApplNestingCounter)

 {

 if((vuint8)0 == gCanLockFlag)

 {

 Save current CAN interrupt state();

 Lock CAN Interrupts();

 }

 }

 gApplNestingCounter++;

}

void ApplNestedRestore (void)

{

 gApplNestingCounter--;

 if((vuint8)0 == gApplNestingCounter)

 {

 if((vuint8)0 == gCanLockFlag)

 {

 Restore CAN interrupts to previous state();

 }

 Application Interrupt Control with VStdLib

 11
Application Note AN-ISC-2-1081

 }

}

void ApplCanAddCanInterruptDisable(CanChannelHandle channel)

{

 gCanLockFlag = (vuint8)1;

}

void ApplCanAddCanInterruptRestore(CanChannelHandle channel)

{

 gCanLockFlag = (vuint8)0;

}

 Application Interrupt Control with VStdLib

 12
Application Note AN-ISC-2-1081

4.0 Referenced Documents
The following table contains the referenced documents.

Referenced Documents

[1] TechnicalReference_CANDriver.pdf

 Application Interrupt Control with VStdLib

 13
Application Note AN-ISC-2-1081

5.0 Contacts

Vector Informatik GmbH
Ingersheimer Straße 24
70499 Stuttgart
Germany
Tel.: +49 711-80670-0
Fax: +49 711-80670-111
Email: info@vector-informatik.de

Vector CANtech, Inc.
39500 Orchard Hill Pl., Ste 550
Novi, MI 48375
USA
Tel: +1-248-449-9290
Fax: +1-248-449-9704
Email: info@vector-cantech.com

VecScan AB
Lindholmspiren 5
402 78 Göteborg
Sweden
Tel: +46 (0)31 764 76 00
Fax: +46 (0)31 764 76 19
Email: info@vecscan.com

Vector France SAS
168 Boulevard Camélinat
92240 Malakoff
France
Tel: +33 (0)1 42 31 40 00
Fax: +33 (0)1 42 31 40 09
Email: information@vector-france.fr

Vector Japan Co. Ltd.
Seafort Square Center Bld. 18F
2-3-12, Higashi-shinagawa,
Shinagawa-ku
J-140-0002 Tokyo
Tel.: +81 3 5769 6970
Fax: +81 3 5769 6975
Email: info@vector-japan.co.jp

Vector Korea IT Inc.
Daerung Post Tower III, 508
Guro-gu, Guro-dong, 182-4
Seoul, 152-790
Republic of Korea
Tel.: +82-2-2028-0600
Fax: +82-2-2028-0604
Email: info@vector-korea.com

