vector’

Vector CAN Driver

Technical Reference

Reference Implementation 1.5

Version 3.01.01

H. Honert, K. Emmert
3.01.01

released (in preparation/completed/inspected/released)

©2010, Vector Informatik GmbH Version: 3.01.01 1/149

TechnicalReference Vector CAN Driver VeCtOf

1 Document Information

1.1 History

Author | Date |Version ‘ Remarks ‘

Hoffmann July, 30th 1997 1.00 Initial draft

Baudermann, Ebner Aug, 9th 1999 2.00 Reorganization of the document
Hardware related
documentation removed

Ebner Nov, 2nd 1999 2.01 Spelling corrections

Baudermann Nov, 6th 1999 2.02 Restrictions with reentrance
capability for the following CAN
Driver functions: Canlnit,
CanReset..., CanSleep,
CanWakeUp and CAN
interrupts

Honert Dec, 14th 1999 2.03 DLC check added

Ebner Feb, 8th 2000 2.04 Configuration by tool support
(CANgen) added

Baudermann, Rein, Honert, May, 23th 2000 2.10 Generally reworked

Brandle According to reference
implementation, version 1.1

Honert Oct, 31th 2000 2.11 Description of indexed CAN
Driver added

Honert Feb, 28th 2001 2.12 Extensions according to
reference implementation
version 1.2
Hardware related
documentation of HC12 and
C16x moved to a separate
document

Honert Aug, 10th 2001 2.13 Description of API extended
m Single Receive Channel CAN

Driver
m CanCancelTransmit and
CanCancelMsgTransmit added

m Access to ErrorCounters added

Honert, Aug, 20th 2001 2.14 Prototype of UserPrecopy
corrected

Emmert Spel!llng (?,orrectlons |
Modifications for pdf conversion

Emmert Okt, 9th 2001 2.15 Modifications of Figure 4 and 5.

Honert Mai, 17th 2002 2.16 Function name corrected for
indexed driver
Extensions according to

©2010, Vector Informatik GmbH Version: 3.01.01 2/149

based on template version 2.1

TechnicalReference Vector CAN Driver V@CtOf

reference implementation
version 1.3

Ebner, Honert, Emmert Jun, 18th, 2003 2.20 Macro names corrected in
figure 7.

Extensions according to
reference implementation
version 1.4.

Additional explanation for offline
/ partial offline mode (ch. 5.2.6)

Emmert, Honert Juli, 29th, 2003 2.21 New tables for API descriptions.

Corrections of some
Parameters and API
descriptions.

Stephan Hoffmann, Klaus May 17nd, 2.22 Description of API extended
Emmert, Heike Honert, 2004 = Direct Transmit Objects

Patrick Markl Cancel in Hardware

Language corrections, New
Layout, Technical revisions
Klaus Emmert 2005-12-30 2.23 GENy added as Generation

Matthias Fleischmann Tool
Added description for:

Multiple ECU

Common CAN

Signal Access Macros

Rx Queue

Conditional Message Received

Variable Datalen

Heike Honert 2006-08-01 2.30 Extensions according to
reference implementation 1.5.

Heike Honert 2007-01-09 3.00 prepare links to hw specific
Added description for:
m CAN RAM check
m Standard/HighEnd CAN Driver
Heike Honert 2007-01-29 3.01 some corrections
m improve Common CAN

m service functions for conditional
message reception added

m Description for Partial Offline
Mode for GENy modified

m ESCANO00032527: Update
description of
ApplCanAddCanlnterruptDisabl
e/Restore call-back function

Heike Honert 2010-06-11 3.01.01 Reference to documentation of
VstdLib changed

Table 1-1 History of the Document
©2010, Vector Informatik GmbH Version: 3.01.01 3/149

TechnicalReference Vector CAN Driver VeCtOf

1.2 Reference Documents

Index and Document Name

[1] TechnicalReference_<hardware>.pdf

Table 1-2 Reference Documents

| Please note
. We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the

questionnaire.

©2010, Vector Informatik GmbH Version: 3.01.01 4/149

based on template version 2.1

TechnicalReference Vector CAN Driver

1.3 Contents

1 Document INnformationoooiiiiiii i 2
1.1 HISTOTY e 2
1.2 Reference DOCUMENTSooovvuiiiiiiiicc e, 4
1.3 ContentS. ..o 5

2 About this Document ...t e 13
2.1 Documents this one refers to.........oooouiiiiiiiiic e, 14
2.2 Naming ConVENtioNSccoooiiiii i, 14

3 Reference Implementations...........ccccccciiii e 15
3.1 VEISION 1.0 et et e e e e e e e et e e e e aaeeaanns 15
3.1.1 WHAT'S NEW? ... et 15
3.1.2 What's ChangQea?2........ueiiiiiiiiiie s 15
3.2 VEISION 1. et e e e e e e e et e e e e e eeaaaas 16
3.2.1 WHaAt'S NEW? ... e 16
3.2.1.1 Mandatory (for all CAN DIVEIS) ...cccooiieiiiiii e, 16
3.2.1.2 Optional (for some specific CAN DFIVErS)coeeeiiiiiiiiiiiiiiieeeeee e 16
3.2.2 What's ChangQea?........eeviiiiiiiiii s 16
3.3 RV =1 1 o o i PSSP 17
3.3.1 WHhat's NEW? ... e 17
3.3.2 What's Changed?uuiiiiiiiii s 17
3.4 VEISION 1.3 oottt e e e e e e e e et e e e e e eeaanas 17
3.4.1 WHhat's NEW? ... et 17
3.4.2 What's Changed?uuiiiiiiiii s 17
3.5 VEISION 1.4 oottt e e e e e e e e et e e e e aaeeanens 18
3.5.1 AT T LT 1= 18
3.5.1.1 Mandatory (for all CAN DIiVEIS) ...cccooiieiiieei e, 18
3.5.1.1.1 CommMON fEAIUIES 18
3.5.1.1.2 TransmisSion fEAtUrESccoiiiiiiii e, 18
3.5.1.2 Optional (for some specific CAN DFIVErS)coeveiiiiiiiiiiiiiiieeeee e 18
3.5.1.2.1 Transmission fEatUIES..........ouuuuiiiiiiiiiiccce e, 18
3.5.1.2.2 ReCeplion fEALUIESuueeeeeee e 18
3.5.2 What's Changed? ..o 19
3.5.2.1 Transmission fEAtUreScccciieiiieiie e, 19
3.6 VEISION 1.5 Lot e e e e e e e eaana 19
3.6.1 WHhat's NEW? ... e 19
3.6.2 What's Changed?euiiiiiiiii s 20

©2010, Vector Informatik GmbH Version: 3.01.01

vector’

5/149

TechnicalReference Vector CAN Driver V@CtOf

O © 1Y Y TSRO POPPORRPPPPPPOt 21
41 Short Summary of the Functional Scopecccceiiiiiiiiiiiie 22
411 111 (F= 7= 11 o o R 22
41.2 B = 10 £ 0 0TS o 22
4.1.3 RECEPIION .. 23
4.1.4 BUS-Off . 23
4.1.5 Sleep MOAE 23
4.1.6 Special Features ... 23
4.2 Data Structures for CAN Driver Customizationc.ccooeeeiiiiiiiiiiiinnnnnnn. 24
421 O 1Y I - - TP URRPRP 25
4.2.1.1 Initialization StruCtures ..., 25
4.2.1.2 Transmit SUCIUIEScoooeieii i 26
4.2.1.3 RECEIVE SITUCIUIEScoiiiiiiiiee et 26
4.2.2 RAM Data.....ccooooiieieee 26

5 Detailed Description of the Functional Scope (Standard)cccccceciinnnnnee. 27
5.1 INIGANZALION ... e aaaas 27
5.1.1 Power-On Initialization of the CAN Driver.........cccccooiiiiiiiiiiiiieeiieeeceee, 27
51.2 Re-Initialization of the CAN Controllercccccooeeiiiiiiiiiiieiieieee e, 27
5.2 TrANSIMISSION ..eeei et e e e e e e e e e e e e 27
5.2.1 Detailed Functional DescCriptionccoooiiiiiiiiiiiiei e, 27
5.2.2 Transmit QUEUE..........ooooiiiiiiiieiieeeeeeeeeeeeeeeeeeee ettt e e e e aeeeeees 32
5.2.3 Data Copy MEChaniSMSccoiiiiiiiiiiiieee e 33
5.2.3.1 INTEINGAI ... e a e 33
5.2.3.2 User defined (“Pretransmit FUNCON”)..........ccvviiiiiiiiiii 34
524 NOEIfICAtION ..o 34
5.2.4.1 Data Interface (Confirmation Flag).......ccccooeeiiiiiiiiiiiii e, 34
5.2.4.2 Functional Interface (Confirmation Function for each message) 34
5.2.4.3 Functional Interface (Common Confirmation Function for all messages) .. 34
5.2.5 Offine Mode ... 35
5.2.6 Partial Offline MOdE.........ooouiuiiiiiie e 35
5.2.6.1 Partial Offline Mode with GENy ..., 36
5.2.7 PasSiVe SEate ...c.ovueii i 39
5.2.8 TX ODSEIVE. ...ttt 40
5.2.9 Cancellation of a TransmisSioN ..., 41
5.2.9.1 Cancel a Transmission via Canlnit..................coiiiiii e, 41
5.2.9.2 Cancel a Transmission via CanCancelTransmit or

CanCancelMSgTranSMit...........oooiiiiiiiiiie e 41
5.2.9.3 Notification about Cancellation of a message.......ccccoeeevveiiiiiiiieiiiennn, 42
5.2.10 Overview of Transmit ObJECESccceeieeiiiiiiiiiiie e, 43
5.2.11 Normal Transmit ODJECTcooiiiiiiiiee e 43

©2010, Vector Informatik GmbH Version: 3.01.01 6/149

TechnicalReference Vector CAN Driver V@CtOf

5.2.12 Full CAN Transmit ObjJeCtScccooeiieiiiii i, 43
5.2.13 Dynamic Transmit ObjectSccooeiieiiiiiiiiii 43
5.2.14 Priority of Transmit ODJECtScceiiiiiiiiiie 45
5.3 RECEPHON ... 46
5.3.1 Detailed Functional DescCriptioncccooooooiiiiiiee e 46
5.3.2 ReCEIVE FUNCHON ... 50
5.3.3 Range-Specific Precopy FUNCHONSccoooiiiiiiiiiiiiiiceei e, 50
53.4 Identifier Search AlgOrithmsocooi i 50
5.3.5 DLC CRECK....eeeieeeeeeeeeee et 51
5.3.6 Data Copy Mechanism........ccccooiiiiiiiiiiii 51
B5.3.6.1 INEEINAL <. 51
5.3.6.2 User-defined Precopy FUNCLONS........ccooiiiiiiiiiiiiici e, 52
5.3.7 NOLFICAtION ... 52
5.3.7.1 Data Interface (Indication FIag)cccccimiiiiiiiiiiiiie e 53
5.3.7.2 Functional Interface (Indication Function)..........ccccccoiiiiiiiiiiiiiiini, 53
5.3.8 Not-Matched FUNCHON ..o, 53
5.3.9 OVverrun HandliNgoooiieiiieiieeee e 53
5.3.10 Full CAN Overrun Handling........ccooooiiiiiiiiieeccceee e, 53
5.3.11 Conditional Message Received..............cociiiiiiiiiiiiiiieecee s 54
5.4 Bus-Off HaNAIINGcccooiiiiie e 54
5.5 SIEEP MOAE ... 55
5.6 Special Features ... 56
5.6.1 SHATUS e e e e e 56
5.6.2 SOP MOAE ... 57
5.6.3 Remote Frames ..., 57
5.6.4 INEErTUPT CONLIOL ..uuiiiiiiiiiiiiii e annanne 57
5.6.4.1 SeCUrity LeVEL.....cooi i 57
5.6.4.2 Control of CAN interruptsccoooeeiiiiiiii 58
5.6.5 =TT o L 59
5.6.6 Hardware Loop ChecCKcccooeeiiiii i, 62
5.6.7 Support of OSEK-Compliant Operating Systems..............ccccooi. 63
5.6.8 Multiple-Channel CAN DIVELccooiii e 63
5.6.8.1 INdeXe@d CAN DIIVET ... 63
5.6.9 Standard Polling Mode ..., 63
5.6.9.1 Application HINES 64
5.6.10 Handling of different identifier types.......ccooeeeiiiiiiiiieeiii e, 64
5.6.11 Copying MeChanisms ... 65
5.6.12 ComMMON CAN L. 65
5.6.13 MUHIPIE ECU ..ot 65
5.6.14 Signal ACCESS MACIOSuuuiiiiiiieiieec e 65
5.6.15 CAN RAM CRECKuiiiiiiiiiiie ettt a e e e e 66

©2010, Vector Informatik GmbH Version: 3.01.01 71149

TechnicalReference Vector CAN Driver V@CtOf

6 Detailed Description of the Functional Scope (High End extension).................. 67
6.1 TrANSIMISSION ..eeei et e e e e e e e e e e e e 67
6.1.1 Low-Level Message Transmitcouuueiiiiiiiiiiiicces e 67
6.2 RECEPLHION ... e 67
6.2.1 Multiple BasiC CAN ... 67
6.2.2 RX QUEUE ... 67
6.2.2.1 Handling in Receive INterrupt............cooiiiiiiiiii e 68
6.2.2.2 Handling on Task LEVElcoooiiiiiiiiiiiii e 69
6.2.2.3 Resetting the RX QUEUEcccoiiiiiiiiiiiiee e 70
6.3 Special Features ... 71
6.3.1 INAIVIAUAI POIING ... 71

7 Feature List (Standard and High End).........ccccccoiiiiiiiniicncccsssnnnns 72

8 Description of the APl (Standard)cccccccciiciiirnirnsii s anes 75
8.1 APL CategOriS ...ttt 75
8.1.1 Single Receive Channel (SRC)..........uuiiiiiiiiiiiee e 75
8.1.2 Multiple Receive Channel (MRC) ..., 75
8.2 Data TYPES ..o 76
8.3 CoNStaNtS ... 77
8.3.1 VErsion NUMDETvveiii s e e e e et e e e e e e eeanens 77
8.4 Y= Tod (o 1= PSSP 77
8.4.1 Conversion between Logical and Hardware Representation of CAN

Parameter DLC ... 77
8.4.2 Direct Access to the CAN Controller Registers..........cccceeeeeiiiiiiien, 78
8.4.3 Interpretation of the CAN Statuseueiiiiiiies 79
8.4.4 Access to low level transmit structurecoooviiiiii e 80
8.5 FUNCHIONS... ..ot e e e 80
8.5.1 Service FUNCLONS.........cooiiii e 81
8.5.1.1 CanInitPOWErON.......ccooei i, 81
8.5.1.2 CanINit. . a e e e e 81
8.5.1.3 CanTranSMIt......coouuuiiiiiii e aeeeeaans 82
8.5.1.4 CaANTASK ..uueiccec e 83
8.5.1.5 CanTXTASK ...ceeeeiiiiiie et e e e e e e ea 83
8.5.1.6 CanNRXFUIICANTASKcoeiiiiiiiiee et e e e eeeaaas 84
8.5.1.7 CanRXBaSICCANTASKcccciiiieiiieii e, 84
8.5.1.8 CaAnNEITOITASKcouvuuiiiiiiieii ettt e e e e e e e e et e e e e e e e eeeeens 85
8.5.1.9 CanWaKEUPTASK.......uuueicce et 85
8.5.1.10 CanONINE ... 86
8.5.1.11 CaAnNOMIINE ...oveeeeiiee e e e a e e 86
8.5.1.12 CanPartOnliNg.......cccooieii i 87

©2010, Vector Informatik GmbH Version: 3.01.01 8/149

TechnicalReference Vector CAN Driver V@CtOf

8.5.1.13 CanPartOffliNe........oooiiieieiee e 87
8.5.1.14 CanGetPartMOdeuuuiiiiieie et 88
8.5.1.15 CanGetStatus 88
B.5.1.16 CaANSIEED «.uuneee e 89
8.5.1.17 CanWaKEUD ... 90
8.5.1.18 CanSHAIteeeeeiiiiie e e e e e e e 91
LS TR TRt Pt S TR 0= 0 1) o] o 92
8.5.1.20 CanGiloballnterruptDisSable.........cccoooiiiie e 92
8.5.1.21 CanGloballnterruptRestoreccoooovieiiiiiiii 93
8.5.1.22 CanCanlinterruptDisable.........cccoooiiiiiiiiiiii 93
8.5.1.23 CanCanInterruptRestorecccoooiiiiei e 94
8.5.1.24 CanSetPasSIVe.......ccccuuuiiiiiiie e 94
8.5.1.25 CaANSEIACLIVE ...ooeeeiiee e 95
8.5.1.26 CanResetBusOffStart...........cccooveii 95
8.5.1.27 CanResetBUSOENG.........cooiiiiiiiii e 96
8.5.1.28 CanReESEIBUSSIEEPuuieeee e 96
8.5.1.29 CanGetDYNTXOD] 97
8.5.1.30 CanReleaseDyNTXOD]cccooeiiiiiiiii e, 99
8.5.1.31 CanDynTXODSEIAoeiiiiiiiiiie e 99
8.5.1.32 CanDynTXODJSELEXIIAcooeiiiiiiiiieiiie e 100
8.5.1.33 CanDyNTXODJSEDICcuuiiieeiiiiiiiiiiiie e e e e e e 100
8.5.1.34 CanDynTxODbjSetDataPtr..........cccuuiiiiiiiiii e 101
8.5.1.35 CanCancelTranSmit..........ccouii i 101
8.5.1.36 CanCopYFromOCancoouiiiiiiiiiiiiiiee e 101
8.5.1.37 CanCoPYTOC ANcceiiiitiieieee ettt e e 102
8.5.1.38 CanTXGetACtHANAIEcoooeeiiiiiiiieee e 102
8.5.1.39 CanResetMsgReceivedConditioncccuviiiiiiiiiiiiiiieeee e 103
8.5.1.40 CanSetMsgReceivedConditioncccooeiiiiiiiiiiiiiiiiecccceecceecce e, 103
8.5.1.41 CanGetMsgReceivedCondition............ccceeeuuumn e 104
8.5.2 User SpecCific FUNCHONS......... e 105
8.5.2.1 USEIPIECOPY ..oeieeeiieiiiie ettt ettt s e e e e et e e e s e e e e e e e e aaa e e e aaeeeeaes 105
8.5.2.2 USerINdiCationo 105
8.5.2.3 USerPreTransmito 106
8.5.2.4 UserConfirmationuuuiiiiiiiiiiieieeee e 106
8.5.3 Callback FUNCLIONScoooieiiiee 107
8.5.3.1 ApPICANBUSOIT ... 107
8.5.3.2 APPICANWAKEUP......uuceec e 107
ST TRC TRC T Y o] o1 0= 0 1@ 1Y =Y o U o 108
8.5.3.4 ApplCanFullCanOVEeITUNu e 108
8.5.3.5 ApplICanMSGRECEIVEQ...........uuuuui e 109
8.5.3.6 AppICanRaANGEPIECOPYuuueiie e 109

©2010, Vector Informatik GmbH Version: 3.01.01 9/149

TechnicalReference Vector CAN Driver V@CtOf

8.5.3.7 ApplCanAddCanlinterruptDisable............cccoeoeiiiiiii 110
8.5.3.8 ApplCanAddCaninterruptRestore ... 110
8.5.3.9 APPICANFAtalEITOrei e 111
8.5.3.10 ApplCanMsgNotMatched ..., 111
8.5.3. 11 APPICANINIt. ... 112
8.5.3.12 ApPICanTXODJSIArT ... 113
8.5.3.13 ApplCanTxObjConfirmedcccooiiiiiiiiiiii 113
8.5.3.14 ApplCanTimerStarto 114
LSRRG T ES TN o] o] [02=1 0 1 T o 1=1 o e o] o RS RPRRPR 114
8.5.3.16 AppICaNTIMEIrENG.......cccoooiiiee e 115
IR Ty WA Y o] o] [0F= T o1 C =T o 1= ot oy =Tt o o V28 115
8.5.3.18 ApPPICaANPreWaKeuUPcccoeeeee e, 115
8.5.3.19 ApplCanTxConfirmationcccooeieiiiiiii 116
8.5.3.20 ApplCanMsgDICFailed........cccoooiiiiiieee e 117
8.5.3.21 ApplCanCancelNotificationcccccociiiiiiiiiiiccc e, 117
8.5.3.22 APPICANONIINE ... 118
8.5.3.23 APPICANOFIING ... 118
8.5.3.24 ApplCanMsgCondRECEIVEdccoeeiiiiiiiiiiieicec 118
8.5.3.25 ApplCanMemCheckFailedccoooiiiiiiiiii 119
8.5.3.26 AppICanCorruptMailboXcccooeeiiieiieie e, 119
9 Description of the API (High End extension).........cccccoiiiiiimemnnncseeennnennns 121
9.1] o (o 121
9.1.1 Service FUNCLIONS........cooo i 121
9.1.1.1 CanTXODJTASK. ..cieiieiiieeeeee e e e e e e 121
9.1.1.2 CanRXFUICANOD]TASKcccieiiiiiiiiiiiiiiiee et e e e e e e 122
9.1.1.3 CanRXxBaSiCCANOD]TASKcoiiuiiiiiieiiee e 122
1S B O O 0= 11V (=T I =T 1= 0 1 T 123
9.1.1.5 CanCancelMsgTransSmit..........cocouiiiiiiiiiiiii e 123
9.1.1.6 CanHaNAIERXMSGuuee e 124
9.1.1.7 CanDeleteRXQUEUEooeiiiiiiiieeee e 124
9.1.2 Callback FUNCLIONS ..o 125
9.1.2.1 ApplCanMsgTransmitConf...........cccooiiiiiiiiiiiecccc e 125
9.1.2.2 ApplCanMsgTransmitlnit.........cccoooiii e 125
9.1.2.3 ApplCanMsgCancelNotification............cccccciii e 125
9.1.24 ApplCanPreRXQUEUE.........ccceeiiiiiiiiiiiee et e e e e e 126
9.1.25 ApplCanRXQUEUEOVEITUNu e 126
10 Configuration (Standard and High End)...........coovmrmmeii e ee e 128
10.1 Network Database — Attribute Definitionccccoeeiiiii 128
10.2 Automatic Configuration by GENYuuviiiiiiiiiiiiiiiiiiiieiieeeieevieeeiennanen, 128

©2010, Vector Informatik GmbH Version: 3.01.01 10/149

TechnicalReference Vector CAN Driver V@CtOf

10.3 Automatic Configuration by CANGENeuviiviiiiiiiiiiae 139
104 Manual configuration via user configuration file...........ccccccoeeiiiiiiiiiiiinnnnn. 144
LB T € X7 7 | 145
7 0o o 1 - T PP 149

©2010, Vector Informatik GmbH Version: 3.01.01 11/149

TechnicalReference Vector CAN Driver

lllustrations

Figure 2-1
Figure 4-1

Figure 4-2
Figure 5-1
Figure 5-2
Figure 5-3

Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11

Figure 5-12

Figure 5-13
Figure 6-1

Figure 6-2

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7

Tables

Table 1-1
Table 1-2

©2010, Vector Informatik GmbH

Manuals and References for the CAN Driver ..., 14
Relationship of the individual Software Components. They are

customized by the Generation TOOI............ooiiiiiiiiiiii e 21
Description data, CAN Driver and Application with their interfaces. 25
Transmission of a CAN MESSAQEcooeeiiiiiiiiiiiie 28
Transmission with an available transmit object; Using global data buffer....... 30
Transmission with an available hardware transmit object; Using a

pretransmit function to copy data.........ccooeeiiiiiiiii 31
Transmit procedure if no hardware transmit object available 32
Partial Offline Mode settings in GENY..............oeiiiiiiiiiiieee 37
One Single Application Message Selectedccccoiiiiiiiiiiiiiiiiiieeen 38
User Defined assignment to Offline Modesccoooevieiiiiiiiiiiiiiie, 38
Overview Messages and Offline Modescccccceiiiiiiiiiiie, 39
Priority of Transmit ODJECES...........uuiiiiiiiiii e 45
Reception of 8 CAN MESSAQES.......uiiiiiiiiiciieceeeeeeeee et 46
Reception of a CAN message: The data is completely processed in the
PreCopPy FUNCHONee e 48
Reception of a CAN message: The CAN Driver internal copying

MECNANISIM IS USEA ... e a e e e e e e 49
Name of Signal 8CCESS MACTOScciiiiiiiiiiiiiiiiieee e 66
Handling of the Rx queue within the receive routine.cccccoiiiiiiiin. 69
Handling of the Rx queue on task level. ... 70
Configuration of the common CAN Driver options with GENy..................... 129
Channel Specific Configuration for GENY ... 135
Configuration of individual polling with GENyc. 136
Configuration of a Tx message with GENy................c.cccoe, 137
Configuration of an Rx message with GENYcccooiiiiiiiiiieee, 138
CAN Driver configuration tabooeiiiiiii 139
Configuration of Partial Offline Mode.................cco 143
History of the DOCUMENT ..o 3
Reference DOCUMEBNLES ... e 4

Version: 3.01.01

vector’

12/149

TechnicalReference Vector CAN Driver VeCtOf

2 About this Document

This document describes the concept, features, APl and the configuration of the Vector
CAN Diriver.

The CAN Diriver interface to the CAN Controller is designed to use the hardware specific
capabilities in an efficient way. The interface to the higher communication layers is mostly
identical for different CAN Controllers, so that the Interaction Layer, Network Management,
Transport Protocol and especially the user software are independent of the particular CAN
Controller used. Please note that in this document the term Application is not used strictly
for the user software but also for all the higher communication layers as listed above.
Therefore, Application refers to any of the software modules using the CAN Driver.

Two different types of CAN Driver are supported. These are the Standard CAN Driver and
the High End CAN Driver. The High End CAN Driver is an extended Standard CAN Diriver.
The description of the Standard CAN Driver is also valid for the High End CAN Driver. The
additional features of the High End CAN Driver are described in own chapters.

The API of the functions is described in a separate chapter at the end of this document.
Referred functions are always shown in the Single receive channel mode.

Hardware related special features and implementation specifics are described in a
separate document which is named TechnicalReference CAN_<hardware>.pdf.

©2010, Vector Informatik GmbH Version: 3.01.01 137149

TechnicalReference Vector CAN Driver V@CtOf

2.1 Documents this one refers to...
m User Manual CAN Driver

m Hardware-specific documentation for the CAN Driver

User Manual

Vector CAN Driver
User Manual

Technical Technical
Reference Reference
General Hardware

You are here

#hw_ <xxx>

Figure 2-1 Manuals and References for the CAN Driver

2.2 Naming Conventions

Some of the function names are mandatory, because they are used in the CAN Driver.
Other names are placeholders, and the Application can redefine or has to select them
according to its requirements:

Can... It is mandatory to use all names beginning with Can... as they appear. Can...
stands for CAN Driver.
ApplCan... The functions, starting with Appl... are so called callback functions. They are

provided by the Application and called by the CAN Driver. They are used to
notify the application about events such as state transitions.

User... All names starting with User... are placeholders and will be selected by using
the Generation Tool according to the requirements of the Application. User...
stands for user-specific functions.

©2010, Vector Informatik GmbH Version: 3.01.01 14 /149

TechnicalReference Vector CAN Driver VeCtOf

3 Reference Implementations

The reference implementation is a general specification for all Vector CAN Drivers. The
software versions for specific CAN Drivers differs, because there are different source
codes for different CAN Controllers. Therefore another overall version number exists,
representing the reference implementation. The CAN Drivers are implemented according
to this reference implementation with an identical feature set and Application interface as
well as a harmonized implementation.

3.1 Version 1.0

3.1.1 What's new?

» Identifier ranges defined by acceptance code and mask to receive a complete set of
several CAN identifiers. This is much more efficient for special requirements with fixed
identifier ranges and can be configured by the Application. Useful settings for
Application are selected automatically by the Generation Tool.

m Some parameters are provided by preprocessor defines in the CAN Driver configuration
file instead of global variables. This results in more efficient code.

= Notification of a CAN receive message overrun condition is done by the callback
function ApplCanOverrun(). This is configurable.

= The internal copy mechanism of the CAN Driver is configurable separately for receive
and transmit direction. It will be enabled automatically if an Application data buffer is
selected by the Generation Tool.

3.1.2 What's changed?

m General interrupt disable during critical service functions is replaced by a reentrant
solution.

m General assertion categories for the following severe errors in the CAN Driver:
m - User interface (e.g. invalid handles)
= - Generated data (caused by the Generation Tool)
m - Hardware problems (unexpected conditions of the CAN Controller)
= - Internal errors (e.g. inconsistent transmit queue entries)

m The different categories can be configured separately and the name of the callback
function has changed from ApplFatalError(..) to ApplCanFatalError(..).

= Callback function CanMsgReceive() has changed in ApplCanMsgReceived().

m Plausibility check for configuration switches of the CAN Driver is optional and will be
done in a separate header file called CAN_CHK.H.

s CanRxActualDLC will be provided as a preprocessor macro.

©2010, Vector Informatik GmbH Version: 3.01.01 15/149

TechnicalReference Vector CAN Driver VeCtOf

m If the transmit queue is used for CAN Controllers with several hardware transmit
objects, only one of these register sets will be used for normal transmission (in
combination with the transmit queue). The others are reserved for Full CAN Transmit
Objects with fixed CAN identifier and DLC.

» The names of the following global variables have been changed:
s CanEcuNumber to canEcuNumber

m CanRxHandle to canRxHandle

3.2 Version1.1

3.21 What's new?

3.2.1.1 Mandatory (for all CAN Drivers)
m Configurable callback function if software acceptance filtering doesn't match.

m Configurable callback functions to monitor the correct transmit behavior.
= Dynamic transmit objects for variable CAN identifier and DLC

m Security level for the data consistency during the internal copy routines for receive and
transmit data.

m Configurable callback functions to control hardware dependent loop break conditions
(e.g. during the transition to reset, standby or sleep mode).

m For micros with nested interrupt levels the global disabling of interrupts by
CanGloballnterruptDisable/Restore() is replaced by a configurable interrupt lock level.

3.21.2 Optional (for some specific CAN Drivers)

= Support of extended CAN identifiers in different modes (extended only or mixed with
standard identifiers)

= Non-interrupt (polling) mode for asynchronous transmission, reception, error and wake-
up notification.

= Dynamic transmit objects (for flexible transmit buffer, pretransmit as well as confirmation
function).

= Full CAN Transmit Objects with fixed CAN identifier and DLC.

m Dynamic hardware acceptance filtering for the reception of different messages.

3.2.2 What's changed?

m Service functions for flexible CAN identifier and DLC CanTransmitVarDLC/ID(..) must
not be used for new developments. It will be replaced by dynamic transmit objects.

= Special macros for the direct access to CAN message information (identifier, DLC, ...) in
the receive function (Dir...) will be removed. The standard macros can be used instead.

©2010, Vector Informatik GmbH Version: 3.01.01 16/149

TechnicalReference Vector CAN Driver VeCtOf

m Configurable DLC check for the length of the according receive buffer to avoid the
overwriting of the next receive buffer: The complete data will not be copied and the
Application will not be notified if an inconsistency is detected.

= The return code data type of the CanGetStatus() service function has changed because
of additional information in the software state of the CAN Driver and the hardware state
of the CAN Controller.

3.3 Version 1.2

3.3.1 What’s new?

= Hash search algorithm

= Low level transmit functionality to support e.g. gateways

m Service functions to stop and restart the CAN Controller.

n partial offline to switch dedicated transmit messages off.

= New return code of CanTransmit() in case of partial offline.

m Macros which return 8 bit of a received extended ID for use in precopy functions.
= Access to error counter of the CAN controller

= Service function to cancel transmit requests and confirmations

3.3.2 What’s changed?
m Generic Precopy function is now mandatory

m CanSleep() and CanWakeUp() has now a return value.

m CanGetStatus() is always available. Activation of extended status enables the additional
information in the hardware state of the CAN Controller.

m Passive mode can only be activated for all transmit requests and not for dedicated
messages.

= The name of some macros to access the ID in a precopy function has changed
= In the indexed CAN Driver, CanGetDynTxObj() has the channel as additional parameter.
m Macro CanRxActualldHi renamed to CanRxActualldRawHi

m Macro CanRxActualldLo renamed to CanRxActualldRawLo

3.4 Version1.3

3.41 What’s new?
m New service functions to disable and restore CAN interrupts

3.4.2 What’s changed?
m Function CaninterruptDisable renamed to CanGloballnterruptDisable

©2010, Vector Informatik GmbH Version: 3.01.01 177149

TechnicalReference Vector CAN Driver VeCtOf

m Function CanlinterruptRestore renamed to CanGloballnterruptRestore
= Support of systems with mixed Identifier expanded

= Macro CanRxActualld returns the Identifier always in the logical presentation

3.5 Version1.4

3.5.1 What’s new?
3.5.1.1 Mandatory (for all CAN Drivers)

3.5.1.1.1 Common features

» New functions CanCopyFromCan and CanCopyToCan. Hardware/Compiler dependent
functions to optimize copying of data (provide for higher layers such as TP, Diag).
more... API...

m The CAN driver can be configured to run without any disabling of interrupts.
The application has to take care of reentrancy! To set the Can Driver to this mode, the
security level has to be set to the lowest value. more...

m The CAN Driver is more fault tolerant against unexpected CAN interrupts like Rx
interrupt of a transmit object. Interrupt in polling mode or interrupts of unused objects
are handled by the driver.

= Callback function ApplCanPreWakeUp which is called immediately after the activation of
the wakeup interrupt. more... API...

s The CAN Driver doesn’t use library function of the compiler library (except for intrinsic
functions)

m The Can Driver code is MISRA compliant.

3.5.1.1.2 Transmission features

A confirmation function common to all transmit messages is supported. This function is
called after any successful transmission (except Direct Transmit Objects but includes
canceled transmit objects that had been sent although). more... API...

3.5.1.2 Optional (for some specific CAN Drivers)

3.5.1.2.1 Transmission features
m CanDirectTransmit(txHandle) to support direct transmit objects.
This transmission is completely independent of other transmit messages and can

be sent e.g. out of a NMI (non-maskable interrupt service routine. (see also what's
changed).

3.5.1.2.2 Reception features
m For Full CAN controllers polling of Basic CAN is supported (all functionality of the CAN
driver can be used in polling mode). more...

m A callback function is called, if the DLC check fails (this means if the DLC of the
received message is shorter than configured for this message). more... API...

©2010, Vector Informatik GmbH Version: 3.01.01 18/149

TechnicalReference Vector CAN Driver V@CtOf

= Support variable data length (for specific OEMSs).

3.5.2 What’s changed?

s The names of the different kinds of transmission objects changed. To make the
differences clear in the following table all kinds of transmission objects are listed even if
nothing changed. more...

Transmit Objects Normal Transmit Object
Direct Transmit Objects Full CAN Transmit Object
Dynamic Transmit Objects Dynamic Transmit Objects
- Direct Transmit Objects

Low Level Message Transmit Low Level Message Transmit

3.5.2.1 Transmission features

s The interface of the TxObserve Callback functions has changed (parameter of the
functions ApplCanTxObjStart() and ApplCanTxObjConfirmed() and ApplCanlnit(). An
additional parameter is used. This additional parameter is the handle of the hardware
object (a unique number over all hardware transmit objects which starts with 0).
more... API...

s The functions CanCancelTransmit() and CanCancelMsgTransmit can now delete a
message in the hardware transmit buffer as well as in the queue. more... API...

= To get the tx handle of a pending transmit message, a new Service function is defined:
CanTxGetActHandle(CanObjectHandle logTxHwObject) more... API...

m If a CAN controller doesn’t support arbitration by ID, Direct Transmit Objects and Full
CAN Transmit Objects have a higher priority than the Normal Transmit Object. The Low
Level Message transmission has the lowest priority. more...

m It is not possible/necessary any longer to specify the number of the CAN transmit buffer
for Full CAN Transmit Objects. This will be done by the Generation Tool automatically.

m The functions CanPartOffline and CanPartOnline are designed to be reentrant. API...

3.6 Version 1.5
3.6.1 What’s new?
m data size optimized Tx Queue.

= In systems with mixed IDs (standard and extended), each range can be configured to
standard or extended ID individually.

m Each hardware objects can be configured individually to polling or interrupt mode.
more... API...

= Multiple Basic CAN objects can be defined to optimize the hardware filters. more...

©2010, Vector Informatik GmbH Version: 3.01.01 19/149

TechnicalReference Vector CAN Driver V@CtOf

= Rx Queue supports now queuing of messages out of a range.

Notification about mode change of the CAN driver between offline and online mode.

New macros to fill structure of Low Level Message Transmit

distinguish between Standard CAN Driver and High End CAN Driver instead of optional
features

3.6.2 What’s changed?

m Source Address of Range Specific Precopy Messages removed — deviation to HIS CAN
Driver Specification. (EcuNumber isn’t any longer a member of tCanRxInfoStruct)

= Return code of Range Precopy Functions has effect on further reception handling.
m Direct Transmit Objects are not supported any more

= API Categories Single Receive Buffer (SRD) and Multiple Receive Buffer (MRB) are not
supported any more.

= Global Interrupt Control has been moved to VStdLib (CanGloballnterruptDisable(),.
CanGloballnterruptRestore(), Interrupt Control by Application, Interrupt Lock Level).
...more information see Application Note AN-ISC-2-1050_VstdLibIntegration.pdf.

m Channel parameter for Hardware Loop Check Callbacks — deviation to HIS CAN Driver
Specification API...

= The following macros are not available any more: MK _EXTID LO, MK EXTID HI,
MK_STDID LO, MK STDID HI, CanRxActualIdRaw, CanRxActualIdRawHi,
CanRxActualIdRawLo

m The polling Tasks are allowed to be called in Sleep mode, too.
= Improvement of usage of assertions
s Same OSEK OS interrupt category for all CAN interrupts.

m Variable data length replaced by copying data with received DLC and DLC check
against minimum length.

m Description of dynamic pretransmit function, dynamic confirmation function and dynamic
acceptance filtering removed.

©2010, Vector Informatik GmbH Version: 3.01.01 20/149

TechnicalReference Vector CAN Driver VeCtOf

4 Overview

For error prevention, maintainability and expandability of Application programs, it is
essential to have a uniform interface between Application and CAN Driver, mostly
independent of the CAN Controller used. The CAN Driver itself must be adapted to the
CAN Controller for reasons of efficiency. This yields the following requirements for a
universally applicable CAN Driver:

= Independent of Application
m Driver code optimized for the CAN Controller used
= Uniform interface to the Application for different CAN Controllers

= Efficient usage of hardware resources, especially RAM and run time

m Support of special services like Interaction Layer, Network Management, Transport
Protocol

F e osCAN
Application Universal
Network Measurement
Ma“ageme“t and Calibration .
Diagnostics Protocol
: Interaction . Configuration
. Communication " Tool
b Layer ' 00
: f:ntrol | e
;R Transport Protocol !
I | I I
CAN Driver
CAN Controller
Transceiver
CAN

Figure 4-1 Relationship of the individual Software Components. They are customized by the Generation Tool

The generic CAN Driver code is independent of the Application. Only the callback
functions have to be given by the Application. The Application specific description data are
stored in dedicated data structures. The structure of the description data is fixed; however,
the contents of the structures are defined according to the ECU specific behavior by the
Generation Tool. This is done partly automatically based on information in the CAN
database and partly manually by user specific settings in the Generation Tool. The data
structures are specific for the CAN Controller, they are linked to the CAN Driver code
(ROM-capable).

The data to be transmitted or received are exchanged by default via global data buffers.
These data buffers are CAN message based. They are also created by the Generation

©2010, Vector Informatik GmbH Version: 3.01.01 217149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

Tool. Additionally, the Generation Tool creates signal-based access macros and/or
functions. This means the Application does not have to know the location and the structure
of the global data buffers. The names of the access macros/functions are formed from the
signal names in the CAN database. The detailed structure and features of the access
macros/functions are described in the documentation of the Generation Tool.

The Generation Tool will not be discussed in this CAN Driver documentation, since it is
irrelevant for the CAN Driver functionality. But the generated data structures are highly
optimized for an efficient usage of each CAN Controller. Therefore the usage of the
Generation Tool is a must to customize the CAN Driver code to the special needs of the
Application.

4.1 Short Summary of the Functional Scope
In this section the main tasks of the CAN Driver are summarized very briefly:
1. Initialize the CAN Controller

Transmit a single CAN message
Receive a single CAN messages
Handle Bus-Off

Support sleep mode

o 0 LD

Support special services

4.1.1 Initialization

There are several CAN Driver service functions for initialization purposes available.
CanlnitPowerOn(..) for the complete initialization of software and hardware after power-on,
CanResetBusOffStart(..) and CanResetBusOffEnd(..) for the re-initialization of the CAN
Controller after BusOff. For any other re-initialization the application can call Canlnit(..).

Various initialization data structures can be predefined by the Generation Tool and
referenced in the Application by means of a specific initialization handle.

4.1.2 Transmission

One of the main services provided by the CAN Driver is to set up a transmit request in the
CAN Controller by the service function CanTransmit(..). The reference to the CAN
message specific description data is done by a transmit handle used in the Application.
This information like CAN identifier and DLC is set up by the Generation Tool based on the
CAN Database and additional user specific settings. If the CAN Controller is busy because
all hardware transmit objects are currently reserved, the transmit request can be stored
temporarily in a transmit queue. The number of hardware transmit objects depends on the
CAN Controller or CAN Driver configuration. For details please refer to the CAN Controller
specific documentation TechnicalReference CAN_<hardware>.pdf [#hw_comObj]. If the
CAN Controller is ready, data can be copied by different mechanism to the hardware
transmit registers. The return code of the transmit function informs whether the transmit
request was accepted by the CAN Driver or not. If it was rejected by an error and no
transmit queue is used, the Application is responsible for the repetition of the transmit

©2010, Vector Informatik GmbH Version: 3.01.01 22/149

TechnicalReference Vector CAN Driver VeCtOf

request until the message is in the CAN Controller. A successful transmission is signaled
by a confirmation. Special features like offline or passive mode are available to control the
transmit path of the CAN Driver by the Network Management or Diagnostics.

4.1.3 Reception

If a message on the CAN bus was accepted by the hardware and software acceptance
filtering, data can be read by different mechanism and this asynchronous event is notified
to the application by an indication. Additionally a special callback function
ApplCanMsgReceived() allows the user to access receive data directly in the scope of a
receive interrupt before the software acceptance filtering. The algorithm for the software
acceptance filtering is configurable because in some Applications a lot of irrelevant CAN
identifiers are passing the hardware acceptance filter and an efficient software filtering is
very important.

41.4 Bus-Off

The CAN Driver notifies a detected BusOff state to the Application by calling a special
callback function ApplCanBusOff(). Further processing like re-initialization of the CAN
Controller and additional customer-specific requirements like disabling transmissions for a
certain time have to be done by the Application.

41.5 Sleep Mode

Some CAN Controller are supporting a so called sleep mode with reduced power
consumption. The CAN Driver provides the service functions CanSleep() and
CanWakeUp() to enter and leave this special mode on request of the Application.

If the CAN Controller is also wakeable by the CAN bus, the callback function
ApplCanWakeUp() is called if this condition is detected. In some cases this leads to the
situation that the CAN controller is initialized (CanWakeUp) before the application will be
notified.

In case of changing the PLL (SLEEP = slow speed / ACTIVE = normal speed) the
application must be informed immediately. Otherwise the “long” interrupt execution causes
a watchdog reset. Therefore the callback function ApplCanPreWakeUp is called just after
the activation of the wakeup interrupt. The configuration is done via the Generation Tool or
user configuration file.

4.1.6 Special Features
There is additional support for special features like

m Status of CAN Driver and CAN Controller

= Interrupt control

= Assertions

= Hardware loop check

m Support of OSEK compliant operating systems
= Multiple-channel CAN Driver

= Polling mode

©2010, Vector Informatik GmbH Version: 3.01.01 237149

TechnicalReference Vector CAN Driver VeCtOf

= Handling of Extended Identifiers

= Stop mode

4.2 Data Structures for CAN Driver Customization

The description data created by the Generation Tool are split into initialization structures
for the CAN Controller as well as transmission and reception structures for CAN
messages. They are located in the ROM memory of the microprocessor. The receive and
transmit buffers are mapped in RAM data and will be referenced by the description data.
The description data also contains references (pointers) to user-specific functions of the
Application. The CAN Driver accesses all the structures in the description data. The CAN
Driver is independent of the Application but the generated description data depends on the
particular Application.

©2010, Vector Informatik GmbH Version: 3.01.01 247149

TechnicalReference Vector CAN Driver

! Initialization Description ; CAN Driver

Bus Timing = Data

i Services

: |Acceptance Filters :

21 |CaninitP oweron

i |Control Reqisters

£ 1 |Caninit

/ it CanTransmit

Transmission ® Transmit Burers

' [cle rtifier _.: :' ...

: [UserPretransmitPir Application

 [UserconfirrationPtr Eh UserPretransmitFet

 |DataPtr i |

| confirmationnieanss _H&"f- Flags E | LIserconfirmationFet

: Ly

i ! E .

| Reception Receive Buffers | | UserconfirmationFot?

t [lentifier

Diatalen p UserPrecopy Pt

| Datartr £ | UserPrecopyFet2

i |UserPrecopyPir

: |userindicationPtr il UsernelicationFet

lindication Flags f

b |indicationOffaetiv ask .|:|

.lllll I I T T IT T T T T I TN T T T I T T T I T TN T T T E é.llllllllllllllllllllllllllllllllllll.llll
Figure 4-2 Description data, CAN Driver and Application with their interfaces.

4.21 ROM Data
4.2.1.1 Initialization Structures

vector’

The CAN Controller is initialized with the description data stored in the initialization
structures. They consist of the register values for the CAN Controller. They are highly
dependent on the particular used CAN Controller.

©2010, Vector Informatik GmbH

Version: 3.01.01

257149

TechnicalReference Vector CAN Driver VeCtOf

4.21.2 Transmit Structures
The structures listed below are used by the CAN Driver internally.

— Identifier of the messages to be transmitted. The format is CAN
Controller dependent for efficiency reasons.

DLC Number of data bytes to be transmitted (Data Length Code).
The format is CAN Controller dependent for efficiency reasons.

DataPtr Pointer to the CAN message based global transmit buffer.

UserPreTransmitPtr Pointer to the user specific pretransmit function (must be a
NULL pointer if not used).

UserConfirmationPtr Pointer to the user specific confirmation function (must be a

NULL pointer if not used).

ConfirmationOffset/Mask Byte offset and bit mask for the CAN Driver access to the
corresponding confirmation flag.

4.21.3 Receive Structures
The structures listed below are used by the CAN Driver internally.

— Identifier of the messages to be received. The format is CAN
Controller dependent for efficiency reasons.

DatalLen Number of data bytes to be copied. The value may be different
from the DLC of the message received. The driver then only
copies the number of bytes stored in this structure. The other
bytes are ignored.

DataPtr Pointer to the CAN message based global receive buffer.

UserPrecopyPtr Pointer to the user specific precopy function (must be a NULL
pointer if not used).

UserIndicationPtr Pointer to the user specific indication function (must be a NULL

pointer if not used).

IndicationOffset/Mask Byte offset and bit mask for the CAN Driver access to the
corresponding indication flag.

4.2.2 RAM Data
The RAM data consist of transmit and receive buffers for the CAN messages.

In the data buffers, the first byte transmitted or received is located at the least significant
address of the data array (Note: Bit 7 is transmitted first).

For some microprocessors there are memory areas which can be accessed more
efficiently (e.g. internal RAM or bit addressable segments). The data buffers can be
mapped by the Generation Tool.

©2010, Vector Informatik GmbH Version: 3.01.01 26/149

TechnicalReference Vector CAN Driver VeCtOf

5 Detailed Description of the Functional Scope (Standard)

5.1 Initialization

5.1.1 Power-On Initialization of the CAN Driver

The following service function must be called once after power-on to initialize the CAN
Driver:

void CanInitPowerOn (void);

This call initializes the CAN Controller for each channel and all CAN Driver variables (local
and global), i.e. the CAN Driver is set to online and active state.

This service function has to be called for a proper initialization before any other CAN
Driver function and before the global interrupts are enabled.

5.1.2 Re-Initialization of the CAN Controller
The CAN Controller is completely re-initialized by the service function call:
void CanInit (CanInitHandle initObject);

The parameter initObject means a handle for a specific initialization structure.
It is a must to bring the CAN Driver into offline state before this service function is called.

By this service function only the CAN Controller and the corresponding internal variables
will be initialized. Software states like online/offline or active/passive remain unchanged.

Changes of individual registers of the CAN Controller are only possible by means of a
complete re-initialization, i.e. an entire initialization structure must be provided for each
register change (e.g. bit timing, acceptance filtering, ..).

5.2 Transmission

5.2.1 Detailed Functional Description

This section shows the transmission of a CAN message using different methods. For the
general processing first a flow chart is used. The gray decision symbols branch to features
that can be removed from the CAN Driver using the configuration options (see Figure 5-1).
In a second step sequence charts are used to show how the different objects of the CAN
Driver, description data and Application program work together.

©2010, Vector Informatik GmbH Version: 3.01.01 2717149

Application

CanTransmit

CAN offline

Part offline
check

Configured

Not configured

Yes

Part offline

Use Queue

Use not

vector’

TechnicalReference Vector CAN Driver

Leave Transmit Interrupt

Yes

CanTransmitQueuedObj No Queue Empty

Use not

Transmit Queue

c
@
©

Yes e i
onfirmation Functiol

GR D Not configured
No Configured Confirmation Function
Defined

Confirmation Flag
Not configured

Pretransmit Function
defined

Not configured

Pretransmit Function

kCanCopyData

Configured onfirmation Flag
Transmit Buffer Full Defined
Yes
No
onfirm Transmissiol
Use not
Use i ion o
ransmissiol
Confirm TxObserve Use not

Use TxObserve

i

Switches in the Generation Tool for

[T ETEY
v = optional features of the CAN Driver
Enter Transmit Interrupt
Decisions in the code, if the feature is selected.
Initiate Transmit ’
Optional or mandatory functions of the CAN Driver
—— F i
IntspuptEnabled Mandatory path through the CAN Dri
ry path through the river
Queue >
Use TxObserve Yes —> Optional path through the CAN Driver
fGbeeelS arad Use not Direction of work flow
ACKNOWLEDGE
(sent message received)
Transmit

CAN Message

©2010, Vector Informatik GmbH

Figure 5-1 Transmission of a CAN message
Version: 3.01.01

2817149

based on template version 2.1

vector’

The main service function to initiate a transmit request is

vuint8 CanTransmit (CanTransmitHandle txObject);

The function parameter is a transmit message handle. It represents an index in the
generated transmit description data. The return code contains the following information:

kCanTxOk Successful transmit request. The message is sent out by the

CAN Controller without any further action required. For CAN
Drivers with transmit queue, this return code is also used if the
transmit request has been accepted in the queue, even if it was
already in queue.

kCanTxFailed CAN transmit request failed. In this case the calling application

has to repeat the transmit request later.

kCanTxPartOffline Error code because CAN Driver’s transmit path is in partial

offline mode for this transmit object.

The left path (see Figure 5-1) time flows from top to bottom. This path shows the program
flow calling the service function CanTransmit(..). First the CAN Driver checks whether the
transmit path is switched to offline state. If so the function returns with an error code. Then
the Driver checks (if configured) the partial offline mode. If the specified message is offline,
the function will return an error code.

In the next step the CAN Driver checks the availability of a hardware transmit object. If no
object is available the transmit request is stored in the transmit queue (if configured to be
used) and the CAN Driver returns to the Application with the return code kCanTxOk. If no
transmit queue is used the CAN Driver returns with an error code kCanTxFailed.

If a transmit object is available the CAN identifier and the data length code will be set in
accordance to the description data. Now, if a pretransmit function is configured, this
pretransmit function will be called. Within this user specific function the Application may
copy the data to be transmitted directly to the CAN Controller hardware registers. If the
data is completely copied, the pretransmit function returns kCanNoCopyData to the CAN
Driver.

The data has to be copied by the CAN Driver itself, if there is no pretransmit function
defined or this function returns kCanCopyData. In this case the CAN Driver copies the data
from the global data buffer associated with the message to the CAN Controller hardware
registers.

Then the transmission of the CAN message is started in the CAN Controller and the
function returns the code kCanTxOk to the Application.

Dependent on the configuration, the TxObserve function is now started.

In the right path of the figure below, the time flows from bottom to top. This path shows the
program flow in the interrupt service routine after a successfully transmission of the
message to the CAN bus. In the transmit interrupt routine, the confirmation actions are
performed. If configured, first the TxObservation is confirmed, then (if configured) a

©2010, Vector Informatik GmbH Version: 3.01.01 29/149

TechnicalReference Vector CAN Driver VeCtOf

confirmation function for all messages is called. Afterwards the confirmation flag is set and
then the message-specific confirmation function is called.

If the CAN Diriver is configured to use a transmit queue, after processing the confirmation
actions the CAN Driver checks if the transmit queue is empty. If so the transmit interrupt
routine is finished. If there are entries in the queue the highest priority CAN message is
removed from the queue and the transmission of this message is requested. This is also
done on interrupt level.

In the middle of the picture we see the transmit queue which is used if all hardware
transmit objects are busy, when CanTransmit(..) is called.

The next sections describe the transmission of a CAN message using sequence charts.
The vertical lines within these diagrams represent program objects like interrupt routines,
functions (thick lines) or data objects (thin lines). The horizontal lines represent program
flow or data access within the program. Flow control and program instances are described
using thick lines, data access is described using thin lines. Time flows from the top of a
chart downwards so that sequence ,1“ is performed before sequence ,2“. The description
of the sequence charts is given in the tables following the charts.

The first sequence chart in Figure 5-2 shows the behavior if a hardware transmit object is
available, a global data buffer is associated to the message and the copy mechanism of
the CAN Diriver is used.

CAN Data TX Interrupt Can- Driver Global Data Conf.

CAN Buffer Routine Transmit Parameters Buffer Conf. Flag Pretransmit Function Application
; 1
< 2
——3
5 >
e § > . .
le 9 1
<€ 10
Figure 5-2 Transmission with an available transmit object; Using global data buffer
1 The Application writes the data to the global data buffer
2 The Application calls CanTransmit(..) service function
3 Function uses description data (CAN identifier, DLC, etc...)
4 Global data buffer is read and copied; the transmit process is started
5 CanTransmit(..) service function is finished, the return code is kCanTxOk
6 The message is successfully sent to the CAN bus. Transmit interrupt routine is
started
7 Transmit confirmation flag is set (cleared by the Application)

©2010, Vector Informatik GmbH Version: 3.01.01 30/149

TechnicalReference Vector CAN Driver VeCtOf

8 Confirmation function is called

9 Confirmation functions returns to transmit interrupt routine

10 Transmit interrupt routine is left

The next sequence chart in shows the behavior if a hardware transmit object is available
and a pretransmit function is used to copy the data to be sent.

CAN Data TX Interrupt Can- Driver Global Data .. Conf. o
CAN Buffer Routine Transmit Parameters Buffer Conf. Flag Pretransmit Function Application
) |
in
2 '
| 3
< 4 }
<€ 5
6 >
7
q 8
y 1
< 10
€ 11 |
\

Figure 5-3 Transmission with an available hardware transmit object; Using a pretransmit function to copy data

1 CanTransmit(..) service function is called by the Application

2 Function reads the description data (CAN identifier, DLC, etc.)

3 Call of the pretransmit function

4 Pretransmit function writes data to the CAN Controller

5 Pretransmit function returns to CanTransmit(..)

6 Start transmission; CanTransmit(..) service function is finished and the return code
is kCanTxOk

7 The message is successfully sent to the CAN bus. Transmit interrupt routine is
started

8 Transmit confirmation flag is set (cleared by the Application)

9 Confirmation function is called

10 Confirmation function returns to transmit interrupt routine

11 Transmit interrupt routine is left

©2010, Vector Informatik GmbH Version: 3.01.01 31/149

TechnicalReference Vector CAN Driver VeCtOf

The next sequence chart in shows the behavior, if no hardware transmit object is available.
This sequence chart is valid only if the CAN Driver is configured to use a transmit queue.
The data is copied by the CAN Driver itself.

CAN Data TX Interrupt Can- Driver Global Data Conf.

CAN Buffer Routine Transmit Parameters ~ Buffer Conf. Flag Pretransmit Function Application
< 1
<
3 1
»
A o
4 > 5 >
6 >
<€ 7
«———8
9
< 10 |

Figure 5-4 Transmit procedure if no hardware transmit object available

1 The Application writes the data to the global data buffer

2 | The Application calls CanTransmit() service function. No hardware transmit objects
available. Request is stored in the transmit queue.

Function returns kCanTxOk

AW

Transmit interrupt: A (previous) CAN message was successfully sent, transmit object
is available again

Confirmation flag of the previous CAN message is set (cleared by the Application)

Confirmation function of the previous CAN message is called

Confirmation function return

O|IN|O|O

The transmit queue is checked for requests. The pending transmit request is found.
The description data are evaluated (CAN identifier, DLC, etc...)

9 | Global data buffer is read and copied; the transmit process is started

10 | Transmit interrupt routine is left

5.2.2 Transmit Queue

The normal Tx object can be configured to use a transmit queue or not. The Transmit
Queue is not available for Full CAN Objects and the Low Level Transmit Object. If no
transmit queue is used, the Application is responsible to restart a transmit request if it
wasn’t accepted by the CAN Driver. In case of using a transmit queue, a transmit request
is always accepted (if the driver is online). But the transmit queue holds only the transmit

©2010, Vector Informatik GmbH Version: 3.01.01 32/149

TechnicalReference Vector CAN Driver VeCtOf

request of a CAN message. It doesn’t store the data to be sent. Please note the same
message can be queued only once. The CAN Driver sets a transmit request in the transmit
queue, if no hardware transmit object is available after CanTransmit(..) is called. On a
transmit interrupt, i. e. when a message has been sent successfully, the CAN Driver
checks whether transmit requests are stored in the queue. If so, one requests is removed
from the queue and the transmit request is executed. The search algorithm in the queue is
priority based, there is no FIFO strategy. This means the CAN identifier with the lowest
number is removed first from the queue.

If the CAN Driver is configured to use a transmit queue, the internal data copy mechanism
will be initiated and/or the pretransmit function will be called in the scope of a transmit
interrupt after the completion of a previous transmit request. Therefore the user has to
guarantee the data consistency, because an Application write access to the global data
buffer may be interrupted by such a transmit interrupt. If within this interrupt the associated
message is requested to be transmitted on the CAN bus, inconsistent data may be sent.
The Application must ensure data consistency by one of the following mechanisms:

m Disable Interrupts while writing data to the global data buffer

s Use the message based confirmation flag to manage the data access handling. On
startup the access right is on Application side. Calling CanTransmit(..) this access right
is given to the CAN Driver. As soon as the confirmation flag is set by the CAN Driver,
the access right is given back to the Application.

= In polling mode the service function CanTxTask() must be used to transmit queued
messages. The transmission of a CAN message is only started if the CanTxTask() is
called. In polling mode every message is queued in the transmit queue. To ensure that
every message was send the CanTxTask() may be called cyclic.

5.2.3 Data Copy Mechanisms

There are two different methods for the Application to pass the data to be transmitted to
the CAN Driver. The CAN Driver selects the method for each message depending on the
CAN Driver description data. If no pretransmit function is defined, the usage of a global
data buffer is a prerequisite and the CAN Drivers internal data copy mechanism is always
used. If a pretransmit function is defined, the data to be transmitted may be stored
anywhere in the Applications memory and the user defined copy mechanism in the
pretransmit function is used.

5.2.31 Internal

With the internal data copy mechanism, the Application writes the data to be transmitted to
a global data buffer associated with the transmit message. The global data buffer is
defined by the Generation Tool. The access to the global data buffer is done by means of
access macros and/or functions which are also defined by the Generation Tool. After
passing the data to the global data buffer, the Application initiates the transmit request by
calling CanTransmit(..) and the data is copied internally to the CAN Controller hardware
registers.

| Important
« % | Data consistency of CAN messages has to be guaranteed by the Application if
¥ CanTransmit(..) is called on a higher interrupt or task level, or the transmit queue is
used.

©2010, Vector Informatik GmbH Version: 3.01.01 33/149

TechnicalReference Vector CAN Driver VeCtOf

5.2.3.2 User defined (“Pretransmit Function”)

Using the pretransmit function to pass the data to be transmitted to the CAN bus, the
Application first initiates the transmit request by calling CanTransmit(..). Just before the
message is put in the CAN chip, the CAN Driver calls a user defined pretransmit function.
For each transmit message a separate pretransmit function may be defined. Within this
user specific function the user can write the data directly to the hardware registers of the
CAN Controller, but other tasks can also be performed. The return code of the pretransmit
function indicates to the CAN Driver whether the data are to be copied by the CAN Driver
internally from the global data buffer to the CAN Controller hardware registers or not (if it is
already done within the pretransmit function).

| Important
(. }\ Be careful if a pretransmit function is used. Interrupts are not disabled during the call of
¥ | this user specific function by the CAN Driver, therefore the restrictions for security level 0
are valid. If the interrupts are not disabled before and restored after the copy process by
the Application, data consistency of a CAN messages cannot be guaranteed if the
transmit queue is used.

5.2.4 Notification

After the successful transmission of a message on the CAN bus (i.e. at least one other
CAN bus node received the CAN message correctly with an acknowledge), the Application
can be notified by different confirmation mechanisms:

5.2.41 Data Interface (Confirmation Flag)

If a confirmation flag is used, this message related flag is set by the CAN Driver, if the
associated CAN message was sent on the CAN bus. This is done in the scope of the
transmit interrupt. The flag must be cleared by the Application.

| Important
- % | Interrupts have to be disabled while the confirmation flags are being cleared, because of
¥ | the read-modify-write conflict if this operation is interrupted by a CAN transmit interrupt
routine. This can result in the loss of events.

5.2.4.2 Functional Interface (Confirmation Function for each message)

In parallel or instead of the data interface a functional interface can be configured, i.e. user
specific function is called if the associated CAN message was sent on the CAN bus. This
is also done in the scope of the transmit interrupt and therefore special care of the run time
of this function has to be taken.

5.2.4.3 Functional Interface (Common Confirmation Function for all messages)

A common confirmation function informs the application via ApplCanTxConfirmation about
a successful transmission of a message. Any message is confirmed via this callback
function.

Info

A canceled transmission will provoke a notification if the message was send on the bus.
If the message had been deleted out of the hardware, the application will not be notified.
More...

©2010, Vector Informatik GmbH Version: 3.01.01 347149

TechnicalReference Vector CAN Driver VeCtOf

5.2.5 Offline Mode

The CAN Diriver's transmit path can be switched to the offline state, i.e. disabled. In this
state no CAN messages are sent to the CAN bus. On each transmit request the CAN
Driver checks the internal flag which indicates whether the transmission is currently
disabled and the transmit service function returns an error code. This flag is set and reset
by the following CAN Driver service functions

void CanOnline(void);

void CanOffline(void);

These CAN Driver service functions are called by the Network Management or by the
Application (only if there is no Network Management available on a specific CAN channel).

The Application can be notified about the mode change (e.g. if the Network Management
calls CanOnline () or CanOffline ()). This is done with the following callback functions:

void ApplCanOnline(void);
void ApplCanOffline(void);

5.2.6 Partial Offline Mode

The partial Offine Mode enables the application to prevent the transmission of groups of
CAN messages. CanTransmit() returns a special code, if the requested message cannot
be sent because of the active partial offline mode. The partial offline mode is implemented
by the following functions:

void CanPartOnline (wvuint8 sendGroup);
void CanPartOffline(vuint8 sendGroup);

vuint8 CanGetPartMode (void);

The partial offline mode can handle up to eight different groups of messages. The function
parameter sendGroup decides about this group. CanPartOffline() switches all messages of
one ore more send groups to the offline state. Earlier calls of CanPartOffline() are not
affected. CanPartOnline() switches one or more send groups back to online state.

Each message might be assigned to one or more send groups. The names of the send
groups are configurable. Each send group can be switched to offline or online by using the
generated define:

C _SEND GRP <name>

C_SEND_GRP_ALL can be used to switch all groups together to offline or online.
Y Example
Iz The following table shows, which message is assigned to which send group (CANgen

concept. For GENy concept, go to the next chapter.).

7 ‘ 6 ‘ 5|4 ‘ 3 ‘UserZ‘UseH |User0

©2010, Vector Informatik GmbH Version: 3.01.01 35/149

TechnicalReference Vector CAN Driver VeCtOf

MESSAGE1 X X X
MESSAGE?2 X X
MESSAGE3 X X

Example

g

for a possible program flow:
CanPartOffline(C_SEND_GRP_User0); MESSAGE?2 is stopped to be send

CanPartOffline(C_SEND_GRP_User1); MESSAGE1 is stopped to be send
MESSAGE?2 is still stopped to be send

status = CanGetPartMode(); status is equal to (C_SEND_GRP_User0
| C_SEND_GRP_User1)

CanPartOnline(C_SEND_GRP_User0); MESSAGE1 is still stopped to be sent
MESSAGE?2 can be sent again

CanPartOffline(C_SEND_GRP_User0 | C_SEND_GRP_3);

MESSAGE1 is stopped to be sent
MESSAGE?2 is stopped to be sent
MESSAGES is stopped to be sent

CanPartOnline(C_SEND_GRP_ALL); All send groups are online again. All
messages can be sent now.

Info

If the offline mode and partial offline mode are used in parallel the offline
mode has ‘higher priority’. This means if the offline mode is set the function
CanTransmit always returns ‘kCanTxFailed’ independent of the current
partial offline state.

5.2.6.1 Partial Offline Mode with GENy
In GENy there are

n 8 Offline Modes (SendGroups)

m Default name is UserX, but can be changed as shown in the illustration below. There
Offline mode 4 is changed to MyGroup4.

m 5 Message Classes for
m Default (0)
= Appl
= Nm
= Tp
= Diag

©2010, Vector Informatik GmbH Version: 3.01.01 36/149

TechnicalReference Vector CAN Driver VeCtOf

All messages are assigned automatically to a message class using their attribute
information from the DBC file.

I:I-:}fﬂine Modes v
Maode 0 Mame ISERD* |: Default Mapping
Mode 1 Mame USER1® &Message Clas= 0
Mode 2 Mame UISERZ* |: Meszage Class 1 (APPL)
Made 3 Marme ISERZ* Crfflineioden [F-
Mode 4 Name MyGroupd Oftlineidode LK
Made 5 Mame IISERE® Offlineiodel -
Made & Mame IISERE® Offlineiodes LK
Mode ¥ Mame IISERT* Offlineiocdes *
QfflineMocdes L
v Cfflinetodes Lk
QfflineMode? L
&Message Cla=zs 2 (M)
&Message Class 3 (TP
&Message Clazs 4 (DIAG)
&Message Class 2 (L)

Figure 5-5 Partial Offline Mode settings in GENy

Info
You find this information in the configuration view of the CAN Driver.

With the checked checkbox for OfflineMode4 (Message Class 1 (APPL) all application
messages are assigned to the Offline Mode 4.

If you select an application message, you will find the following:

©2010, Vector Informatik GmbH Version: 3.01.01 371/149

TechnicalReference Vector CAN Driver

{F ECU -~

= E;]P Components
+ DrvCan_pcEh00F lexcar
GenTool_GenyPluginCaonl
Hw_78k0Cpu
+ MameDecoratar
—-[g TeMessages
» DummyTransmit

Figure 5-6 One Single Application Message Selected

Configurable Dptions

| Diumnny T ransmit |

— Message ! Frame Properties
Generate
Channel
I
Extended ID
Length [hyte]
Application Mezsage
Message Class
Comman Driver Parameters
Signal Access Macros
— Offling Modes
+ USERD
+ IUSER1
+ USERZ
+ USERS
— My Groupd
Usage
Real Yalue
+ USERS
+ USERE
+ USERT

*
~

*

Standard J

vector’

At the Message Class entry you see this is an application message and below you see
your MyGroup4 and a checked checkbox. l.e. this message is assigned to MyGroup4.

|: Cffline Modes
|i ISERDO

[+ LSERT
|- USERZ2

Uzane JzeDefined

Real Yalue

|i ISER3
|: My Groupd

Uzane JzeDefined

Real Yalue |:|

[+ USERS
|+ USERE

+|USERT

Figure 5-7 User Defined assignment to Offline Modes

For any message you can decide whether to assign the message to another Offline Mode
or to additionally assign the message to another Offine Mode. In the example above, the
messate DummyTransmit (application message) is not assigned to MyGroup4 anymore.

Now this message is assigned to USER2.

©2010, Vector Informatik GmbH

Version: 3.01.01

38/149

TechnicalReference Vector CAN Driver VeCtOf

¢} ECU & Bters
-8 Ed;m;i':;:i Difiin Modes
42 Channek USERD USERT USERZ USER3 MyGroupd UISEF
=[5y TxMessages Usage Realalue| Uszage Real'/alue| Usage |Hea| Walue| Usage Real Value| Usage |F|aa| YYalue|Usag
Duiminey Traresmit Standard | [Standard | [UseDefined J Standard | [] UserDefined J Stane
ResTxObserveTestST Standard | [Standard | [Standard ' UseDsfined | Standard Stare
RestiagReckiag Standard | [0 Standard | [0 Standard Standard | [Standard Stanc
ResCanCanintDis Standard [Standard | [Standard Standard [Standard j Stane
ResApplversion Standard | [Standard | [Standard J O Standard | [Standard Stanc
BitByteAccess_RES Standard | [Standard | [Standard J (| Standard | [Standard Stane
StsTxPrio Standard | [Standard | [Standard J Standard | [Standard Stare
FesTxPriolL Standard | [0 Standard | [0 Standard J Standard | [Standard Stanc
ResTxPriohlorm Standard [Standard | [Standard J F Standard [UserDefined | Stane
ResTxPrioFull Standard | [Standard | [Standard J O Standard | [Standard Stanc
ResTxPrioli Standard | [Standard | [Standard J (| Standard | [Standard | Stane
RangePrecopy_RES Standard | [Standard | [Standard J Standard | [Standard Stare
HwloopCheck_RES Standard H Standard] [Standard F Standard Stanc

Standard

Figure 5-8 Overview Messages and Offline Modes

Info

If you cannot find any information concerning Offline Modes you should use the
Customize Grid functionality. Activate the view below via: View|Customize Grid and
then select Offline Modes.

Customize Grid

+ ‘Meszage / Frame
i Properties

= Cornmon Driver
Farameters

Signal Access
t acrog

Offline Modes
Rk

Flags
Funchions
FUllCAM T=

Y

< [<] =] [«

I o B

To get an overall view of which message is assigned to which group, or to do the
necessary assignments having a good overview, select all TxMessages in the tree view
and activate the Offline Modes via Customize Grid (described at the top of this chapter).

5.2.7 Passive State

The CAN Driver's transmit path can be switched to the passive state. In passive state no
transmit request is passed to the CAN bus, i.e. no CAN message is sent. However, there
is only the CAN bus activity affected but not the Application interface because there is no
error code returned and the notification is done in the normal way, i.e. the Application
software runs in normal operating mode. This is the main difference to the offline mode.
The passive state may be used to localize errors in a CAN bus and is realized by the
following CAN Driver service functions

void CanSetActive (void);

void CanSetPassive (void);

©2010, Vector Informatik GmbH Version: 3.01.01

39/149

TechnicalReference Vector CAN Driver VeCtOf

The passive state of the CAN Driver is usually used during the development phase of the
CAN bus. If an Application might disturb the other nodes, it can be switched to passive
state temporarily and simulated by an appropriated tool. This is usually done by a
Diagnostics.

Info

To use the Passive State efficiently there must be a special support by the network
designer. An external tool must be able to take over the tasks of the ECU simultaneously
when the ECU is switched to passive state.

The passive state of the CAN Driver must not be mixed up with the passive state of
OSEK Network Management. If the OSEK Network Management is put into passive
state (service functions SilentNM / TalkNM) only Network Management messages are
affected. The passive state of the CAN Driver prevents any CAN messages (including
Network Management messages) from being sent on the CAN bus.

Also note the following hints for the usage of the passive state:

m If the passive function is enabled the corresponding code in CanSetPassive() and
CanSetActive() is activated, otherwise only dummy macros will be provided. This results
in less CAN Driver code and an easy way to switch off this service function without
changing the Application software.

m The Application calls the service function CanSetPassive() to prevent transmission. In
case of a transmit queue it is cleared, i.e. confirmation activities may be lost during the
transition from active to passive state. Beginning with the next CanTransmit() the
messages are not sent on the CAN bus until CanSetActive() is called.

In case of a transmit queue, the service function CanSetPassive() has to be called in
the confirmation function of the last message to be sent on the CAN bus. If there is no
such request, CanSetPassive() can be called at any time.

In passive mode, the result seems to be successful, i.e. the code kCanTxOKk is returned
from CanTransmit(), and all configured flags (cleared by the Application) are set and the
functions are called (Common Confirmation Function, Confirmation Flag and/or
Confirmation Function). Tx Observation is not used in passive state.

= To restart transmission, the service function CanSetActive() has to be called. Starting
with the next call of CanTransmit(), the messages are transmitted again on the CAN
bus.

| Important
« | Ifthe CAN Driver is switched from active to passive state, the transmit queue will be
¥ cleared and therefore some confirmations may be lost.

5.2.8 Tx Observe

This functionality is used to check the transmit path of the CAN Driver by the following
way: After a successful transmit request in the CAN Controller a specific function is called:

void ApplCanTxObjStart(logTxHwObject);

©2010, Vector Informatik GmbH Version: 3.01.01 40/149

TechnicalReference Vector CAN Driver VeCtOf

If the message was sent on the CAN network successfully another callback function is
called in the scope of the transmit interrupt:

void ApplCanTxObjConfirmed(logTxHwObject);

This functionality can be used to observe any transmission. As the CAN Driver is not time
triggered, the call back functions offer the application a way to start a timer with
ApplCanTxObjStart and stop this timer with ApplCanTxObjConfirmed. In case of exceeding
a predefined time for transmission, the message can be deleted or any other reaction can
be done.

In case of a well working system, these callback functions are normally called in a
symmetric way within the maximum specified delay time which is allowed in the existing
run time environment after a transmit request until the CAN message is sent to the CAN
bus successfully. In case of a transmit error a time-out supervision can be implemented by
these callback functions and error recovery can be done. If more than one hardware
transmit object is used, these callback functions can be called in a nested way and so an
additional counter is necessary. That counter has to be reset after each re-initialization of
the CAN Controller. This can be done in the following callback function:

void ApplCanInit(logTxHwObjectFirstUsed,
logTxHwObjectFirstUnused) ;

5.2.9 Cancellation of a Transmission
There are several ways to cancel a requested transmission.

5.2.9.1 Cancel a Transmission via Canlnit

Canlnit initializes the CAN controller hardware and can therefore be used to cancel any
current transmission. (see Re-Initialization of the CAN Controller). Some controllers do not
stop their transmission immediately, so it is possible that the Cancellation via Canlnit()
could lead to an errorframe on the bus.

5.2.9.2 Cancel a Transmission via CanCancelTransmit or CanCancelMsgTransmit

Both functions work the same way, except that CanCancelTransmit cancels a transmission
initiated via CanTransmit and CanCancelMsgTransmit cancels a transmission initiated via
CanMsgTransmit.

The call of the confirmation function or the setting of the confirmation flag are suppressed,
if this message is already in the transmit buffer of the CAN Controller. If the transmit queue
is enabled, a pending transmit request in the queue is canceled.

These functions also delete messages in the hardware transmit buffer if configured. But
this feature is strongly dependent of the hardware. Some CAN Driver / CAN Controller
require the call of CanRxTask() / CanTxTask() to be able to continue.

Using the cancel functions out of the Tx observe functionality (see above) the handle for
the functions must be obtained via the function CanTxGetActHandle(CanObjectHandle
logTxHwODbject). The return code decides whether it was a CanTransmit or a
CanMsgTransmit which causes a CanCancelTransmit or a CanCancelMsgTransmit.

©2010, Vector Informatik GmbH Version: 3.01.01 41/149

TechnicalReference Vector CAN Driver V@CtOf

CanTransmitHandle Hd1;

Hdl = CanTxGetActHandle (logTxHwObject) ;

if (Hdl == kCanBufferMsgTransmit)

{
CanCancelMsgTransmit (Hd1) ;

}
else i1if (Hdl < kCanBufferMsgTransmit)

{
CanCancelTransmit (Hdl) ;
}
else if (Hdl > kCanBufferMsgTransmit)

{

/* The Tx request was confirmed or cancelled, or no Tx request is pending. */

5.2.9.3 Notification about Cancellation of a message

The application can be notified each time the transmit request or the pending confirmation
is cancel. That means either the message based confirmation (flag or function) or the
cancel notification will be executed after successful call of CanTransmit() or
CanMsgTransmit().

To enable the notification the flag “CAN Cancel Notification” in the Generation Tool must
be selected. If this flag is set a Callback function informs the Application about that a
message was cancelled. ApplCanCancelNotification() will be called if the transmit request
was initiated via CanTransmit(), ApplCanMsgCancelNotification() will be called if the
request was set up via CanMsgTransmit().

©2010, Vector Informatik GmbH Version: 3.01.01 42 /149

TechnicalReference Vector CAN Driver VeCtOf

5.2.10 Overview of Transmit Objects

The table shows the naming for different Rl versions. Some of the features of the column
are hardware dependent.

Transmit Object Normal Transmit Object Normal Transmit Object

Direct Transmit Objects Full CAN Transmit Object Full CAN Transmit Object

- Direct Transmit Objects -

Dynamic Transmit Objects Dynamic Transmit Objects Dynamic Transmit Objects

Low Level Message Transmit |Low Level Message Transmit Low Level Message Transmit

5.2.11 Normal Transmit Object

A Normal Transmit Object is the hardware transmit object supported by all CAN Drivers. All
transmit messages that are not assigned to a Full CAN Transmit Object will be transmitted
via this Normal Transmit Object. The transmit queue works only on this object and the
Dynamic Transmit Objects can only be transmitted via this object, too.

5.2.12 Full CAN Transmit Objects

Each Full CAN Transmit Object has its own Hardware Transmit Object. This means a Full
CAN Transmit Object holds exactly one CAN message with a specific CAN identifier and
DLC. These CAN messages are statically assigned by the Generation Tool. Changes of
this reference during run time are not possible. There are two reasons for Full CAN
Transmit Object:

1. The associated CAN message object is never occupied by another transmit request

2. There is no need to copy the CAN identifier and the DLC. The message data can also
be stored directly in the CAN Controller and the transmit request can be initiated
directly.

- Info
Full CAN objects are sent via CanTransmit() function.

5.2.13 Dynamic Transmit Objects

The CAN Driver supports the transmission of CAN messages with dynamic parameters.
These messages must not be specified in the CAN database. This feature can be used in
gateways, for example.

These dynamic objects can consist of mixed dynamic and static parts. CAN identifier, DLC
and data pointer can be selected separately as dynamic or static. The selection is common
for all dynamic objects. Pretransmit functions and confirmation functions are always static.

The CAN identifier priority for dynamic objects is lost if a transmit queue is used. Dynamic
objects have a higher internal priority than static objects, independent of their current CAN
identifier.

©2010, Vector Informatik GmbH Version: 3.01.01 43 /149

TechnicalReference Vector CAN Driver VeCtOf

Before the Application can use a dynamic object, the Application needs to reserve one.
This can be done by the following service function:

CanTransmitHandle CanGetDynTxObj (CanTransmitHandle txHandle);

The next step is to set all dynamic parameters of this object. This will be done by calling
the service functions:

void CanDynTxObjSetId (
void CanDynTxObjSetExtId (
void CanDynTxObjSetDlc (
void CanDynTxObjSetDataPtr (

After this, the dynamic object can be transmitted by calling CanTransmit(..) with the handle
of the dynamic object. The Application is allowed to use a dynamic object several times. If
the Application doesn’'t need the dynamic objects any more, it can be released by the
service function

vuint8 CanReleaseDynTxObj (CanTransmitHandle txHandle);

There are two macros to allow a call of CanReleaseDynTxObj() in a confirmation function.
Both macros are only allowed to be called in the context of the user confirmation function
of this Dynamic Object.

o=l siElnd o Bl] This macro enables release of dynamic objects in a confirmation
le) function.

txHandle has to be equal to the parameter of the confirmation
function.

CanConfirmEnd() This macro restores security mechanism for release of dynamic
Objects.

Example:

void Confirm ResDynTxObj (CanTransmitHandle txHandle)
{

CanConfirmStart (txHandle) ;

if (CanReleaseDynTxObj (txHandle)== kCanDynNotReleased)
{ //error handling }

CanConfirmkEnd () ;

e
If a dynamic object is used several times, the Application has to take care to use the
confirmation flag / function.

The maximum number of Dynamic Transmit Objects must be defined statically in the
Generation Tool.

Messages of dynamic transmit objects can not be sent via Full CAN Transmit Objects.

©2010, Vector Informatik GmbH Version: 3.01.01 44 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

5.2.14 Priority of Transmit Objects

Message ID Priority

Low O

Full CAN Transmit Objects

Highn Y
Normal Transmit Object

Low Level Transmit Object
(High End)

Figure 5-9 Priority of Transmit Objects

Full CAN Objects have the highest priority and they are sorted according to their ID. This is
automatically done by the Generation Tool.

There is only one Normal Transmit Object with a lower priority than the Full CAN Objects.
Dynamic Transmit Objects are transmitted via the Normal Transmit Object.

The Low Level Message Transmit Object has the lowest priority.
This priority is only valid, if the hardware is not able to arbitrate according the IDs.

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

457149

TechnicalReference Vector CAN Driver

5.3
5.3.1

Reception

Detailed Functional Description

CAN Message

No Action

Interrupt Request No
is stored

Hardware
Acceptance Filter

Message not accepted

Message accepted

Interrupt Enabled

Ise Receive Functior

Use not

Match?

Range/Component
PreCopy Function

kCanNoCopyData

Message not matched Software

Use
[Message Not Matched

DLC Failed

Switches in the Generation Tool for
optional features of the CAN Driver

Decisions in the code, if the feature is selected.
Optional or mandatory functions of the CAN Driver

Mandatory path through the CAN Driver

Optional path through the CAN Driver

Direction of work flow

Failed

No

Acceptance Filter

Message accepted

Check DLC

Use not

Precop

Generic Use not
PreCopy Function

kCanCopyData

Defined

Precopy defined

Precopy Function Not defined

kCanCopyData

Copy Data

Defined

defined
Indication Flag Not defined
Defined Tndication Function
defined

Indication Function Not defined

Leave

Receive Interrupt

Figure 5-10 Reception of a CAN messages

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector’

46/149

TechnicalReference Vector CAN Driver VeCtOf

CAN messages are received asynchronously and without any explicit service function call.
Normally, the CAN Driver is informed by the CAN Controller via interrupt of the reception of
a CAN message. That means the received CAN identifier has passed the hardware
acceptance filtering of the CAN Controller and the entire message is stored in a receive
register. In case of a Basic CAN object, the message has to be retrieved and processed as
fast as possible. If a feature is only in Basic CAN or Full CAN available if is mentioned in
the text.

The gray decision symbols branch to features that can be removed from the CAN Driver
using the configuration options of the Generation Tool. Disabled features cannot be used
for any messages. The code for these features is completely removed. If a feature is
enabled, it can be determined for each message whether it is used or not.

The receive callback function ApplCanMsgReceived(..) is called on every reception of a
CAN message after the hardware acceptance filter is passed. Within this function the
Application may preprocess the received message in any way (ECU specific dynamic
filtering mechanisms, gateway functionality, etc...). If the function returns kCanCopyData,
the CAN Driver continues the processing. If the function returns kCanNoCopyData, the
CAN Driver terminates the message reception.

During the software acceptance filtering (only available for Basic CAN) the CAN Driver first
checks for range specific identifiers. For the range specific identifiers special precopy
functions may be defined. Afterwards the single CAN identifier based filtering is performed.
The CAN Drivers support different mechanisms like linear search, hash search or an index
search. In any case the filtering capabilities of the CAN Controller are used. The
corresponding receive object has to be determined by comparing the generated CAN
identifier in the data description tables with the received CAN identifier in the Basic CAN
object.

If the result of the software acceptance filtering is negative (only done for a Basic CAN
object), the callback function ApplCanMsgNotMatched() is called. Then the receive
interrupt is terminated immediately after the CAN Controller hardware is serviced.

After a CAN identifier match, the DLC will be checked. In case of a failed DLC check there
can be a configured callback function to notify the application.

In case of a successful DLC check the generic precopy function is called (if configured).
Generic precopy means that a common function named ApplCanGenericPrecopy() is
called for all identifiers. If this function returns kCanNoCopyData the CAN Driver
terminates further processing. If this function returns kCanCopyData, the CAN Driver
continues to work on the message received.

After the generic precopy if configured a precopy function separate for each message
according to the entry in the description data is called. Within this user specific function
any processing of the message received may occur (complete processing of a message or
special storage methods like ring buffers, FIFOs, ...). If the precopy function returns
kCanNoCopyData the CAN Driver terminates further processing. If the precopy function
returns kCanCopyData, the CAN Driver continues to work on the message received.

In the next step the data is copied to the global data buffer. The CAN Driver copies only
the number of bytes from the CAN receive buffer that is stored in the array CanRxDatalLen.

©2010, Vector Informatik GmbH Version: 3.01.01 47 /149

TechnicalReference Vector CAN Driver VeCtOf

Then the indication actions defined for this message are performed. This means the
indication flag is set and/or the indication function is called. The Application has to reset
the indication flag before or after data processing.

In the following sections the processing steps are described using sequence charts. The
vertical directed lines within these diagrams represent program objects like interrupt
routines, functions or data objects. The horizontal lines represent program flow or data
access within the program. Within the sequence charts below flow control and program
instances are described using thick lines, data access is described using thin lines. Time
flows from the top of a chart downwards so that sequence ,1 is performed before
sequence ,2“. The description of the sequence charts is given in the tables following the
charts.

CAN Data RX Interrupt Driver Global Data Indication — ApplCan- -
CAN Buffer Routine Parameters Buffer Flag Precopy Indication MsgReceived Application
1 >
A
€ 3
«—4—
5 A -
o
€ 7
[—3

Figure 5-11 Reception of a CAN message: The data is completely processed in the precopy function

1 A CAN message has passed the hardware acceptance filtering, the receive interrupt
routine is triggered

If configured, the ApplCanMsgReceived() callback function is called

The ApplCanMsgReceived() callback function returns kCanCopyData

Software acceptance filtering and identification of the received CAN message

Al |IN

If configured, the precopy function is called. The Application is able to take control over
the receive process immediately after the software acceptance filtering and direct access
to the CAN Controller receive register is possible.

6 | Within the precopy function the data in the CAN Controller hardware registers are read
and completely processed.

7 | The precopy function returns kCanNoCopyData. No further processing (copying of data,
indication actions) occurs in the CAN Driver

8 | After servicing the CAN Controller hardware (the receive registers of the CAN Controller
are released), the receive interrupt routine is left.

- Info
1. If the ApplCanMsgReceived() callback function returns kCanNoCopyData, the
received message is ignored. This means no further software filtering, no precopy, no

©2010, Vector Informatik GmbH Version: 3.01.01 48 /149

TechnicalReference Vector CAN Driver VeCtOf

copying of data and no indication actions are performed.

2. If the precopy function returns kCanNoCopyData, no copying of data and no
indication actions are performed.

RX . I
CAN Data Driver Indication ApplCanMsg
Interrupt Global Data s ! L
CAN Buffer Routine Parameters Buffer Flag Precopy Indication Receive Application
1 >
€ 3
——4—r
5
< 6
> 71—
8 >
¥ A
<€ 10
€ 11]
|

Figure 5-12 Reception of a CAN message: The CAN Driver internal copying mechanism is used

1 A CAN message has passed the hardware acceptance filtering, the receive interrupt
routine is triggered

If configured, the ApplCanMsgReceived(..) callback function is called

The ApplCanMsgReceived(..) callback function returns kCanCopyData

Software acceptance filtering and identification of the received CAN message

Al |IN

If configured, the precopy function is called. The Application is able to take control
over the receive process immediately after the software acceptance filtering and the
direct access to the CAN Controller receive register is possible.

6 |The precopy function returns kCanCopyData. The CAN Driver continues its normal
processing.

7 | The received data are copied from the CAN Controller receive register to the global
data buffer associated to the CAN message

8 | If configured, the indication flag is set (must be reset by the Application)

9 | If configured, the indication function is called; any user actions can be performed
within this user specific function

10 |Indication function returns to the receive interrupt routine

11 | Receive interrupt routine is left

©2010, Vector Informatik GmbH Version: 3.01.01 49 /149

TechnicalReference Vector CAN Driver VeCtOf

5.3.2 Receive Function

Before the software filtering is done, the Application optionally may use the
ApplCanMsgReceived() callback function called by the CAN Driver. Within this function the
Application can define whether to process the message received or not.

5.3.3 Range-Specific Precopy Functions

The CAN Driver's receive path can be configured to filter special identifier ranges and
associated precopy functions will be called directly. Up to four ranges are supported by the
CAN Driver. The ranges must be defined by a start address (e.g. 0x400) and a mask (e.g.
Ox1F, i.e. if a bit is set it means don’t care) and leads to a specific range (in our example it
is from 0x400 to Ox 41F). The ranges are typically predefined by the Generation Tool for
special functions. If these are not used they are available for the application:

Range 0 | Network If the usage of a Network Management is configured
Management
Application Application specific. May be used by the Application
Range 1 |Diagnostics If extended addressing mode of the Transport Protocol is configured
Application Application specific. May be used by the Application
Range 2 |Special usage |Car manufacturer specific
Application Application specific. May be used by the Application
Range 3 | Application Application specific. May be used by the Application

Special capabilities of some CAN Controllers with several hardware acceptance filters may
also be used for the range specific filtering.

5.3.4 Identifier Search Algorithms

The following software filtering mechanisms are supported: All mechanisms but linear are
optional in the different hardware implementations.

Linear Search: The identifier of the incoming message is compared to all CAN
identifiers in a table (if found, the search stops). The average search
time is proportional to the number of receive messages.

Hash Search: An optimized search algorithm with a small known number of search
steps. The Generation tool calculates an optimized search table and
some parameters used at run time. The number of search steps can
be defined by the user. The less search steps the bigger the resulting
hash tables.

Table Search: This is a kind of hash mechanism. The last three bits of a CAN
identifier are used as a selector for the search table. There are 8
different tables for each of the hardware acceptance filters in the
CAN Controller. Within the table a linear search is implemented.

Index Search: A table with 2048 entries (one entry for each identifier) is used for
software filtering. Index Search is used for Standard ID only.

©2010, Vector Informatik GmbH Version: 3.01.01 50/149

TechnicalReference Vector CAN Driver VeCtOf

5.3.5 DLC check

The Data Length Code of a received message will be compared to the length of the
Application receive buffer of this message. If the DLC is smaller than the Application
receive buffer, data will not be copied. The length of the received message buffer is the
maximum length which is necessary to treat all signals for this ECU. To inform the
application the callback function ApplCanMsgDlcFailed will be called. The reception
process will be terminated afterwards.

Depending on the OEM the length of the received data bytes can be different at run time. It
is also possible to compare the length of the received message with a minimum length
which can be smaller than the Application receive buffer.

The behavior can be configured via generation tool and the database attribute
GenMsgMinAcceptLength.

5.3.6 Data Copy Mechanism

There are two different methods for the Application to access the data received from the
CAN bus.

5.3.6.1 Internal

Using the internal data copy mechanism, the CAN Driver copies the contents of the CAN
controller receive registers to a global data buffer associated to the receive message. The
Application can access the signal values in the message specific data buffer using access
macros or functions. The access macros are generated by the Generation Tool using
information in the CAN database. The signal access macros always return unsigned
values.

The Application itself is responsible for the data consistency of signals in a CAN message
which cannot be handled in atomic operations because the receive buffer may be
overwritten asynchronously by a CAN receive interrupt. Different mechanisms can be used
to guarantee data consistency:

1. Disabling of the CAN receive interrupt.

2. Read the receive signal. Compare the signal value with the signal in the hardware
buffer. Repeat the read operation if the values differ.

3. Usage of the message based indication flag:
3.1 Clear the message indication flag
3.2 Read the data (one or more signals of a message)

3.3 Check the message indication flag: If set then return to 3.1

Depending on the OEM the length of the received data bytes can be different at run time.
Instead of copying all needed bytes (equal to the length of the global data buffer
associated to the receive message) the CAN Driver can be configured to copy the number
of received bytes. In case the number of received bytes exceed the length of the data
buffer, the CAN Driver takes care to copy at maximum the length of the data buffer.

©2010, Vector Informatik GmbH Version: 3.01.01 51/149

TechnicalReference Vector CAN Driver VeCtOf

Info

The signal access macros are not affected. The application has to make sure, that it
does not access data via access macros that is not copied now because of a change of
the data length.

5.3.6.2 User-defined Precopy Functions

The user can define specific precopy functions for each receive object in the Generation
Tool. If defined, the CAN Driver calls this user-specific function immediately after the
software filtering. Within this precopy function the Application can access the data directly
in the CAN Controller receive registers. The precopy function indicates this to the CAN
Driver by the appropriate return code kCanNoCopyData and the further processing will be
terminated immediately. On the other side the CAN Driver can be forced to continue with
normal processing of the message after the precopy function by using the return code
kCanCopyData.

The parameter of the precopy function is a pointer to a structure. This structure includes
the handle of the received message and a pointer to the received data.

A separate user-specific function may be defined for each receive message. But it is also
possible to use the same function for different messages.

If no such function is defined, a NULL pointer is written to the corresponding description
data by the Generation Tool.

The user has to note that these user-specific functions are called in the receive interrupt.
Only short receive actions should be done to avoid negative influence on the Application
task by a long interrupt disable time.

The precopy mechanism can be used to handle only a small number of receive signals in
an efficient way, if there is a CAN receive message with 8 bytes but the receiving ECU for
example only needs the 6th bit of the 7th byte. The standard copy routine starts always at
the beginning of the receive data buffer and copies all data up to the last byte with
significant signals for the dedicated node (the 7th byte in the example above). This results
in some overhead in RAM and run time, particularly if these signals are mapped in the rear
part of the message. The precopy function can therefore be used to implement a user
specific copy routine and has to return the return code kCanNoCopyData.

Another example for a precopy function is a compare mechanism between the CAN
Controller receive register and the global Application buffer. If both are matching, data
have not to be copied and the indication is not necessary, i.e. kCanNoCopyData is
returned. Otherwise the return code kCanCopyData leads to the standard copy
mechanism of the CAN Driver and notification to the Application using indications.

The precopy function can also be used to implement receive queues (FIFO, FILO or ring
buffer).

5.3.7 Notification

After the reception of a message from the CAN bus and the successful hardware and
software acceptance filtering, the Application can be notified by different indication
mechanisms:

©2010, Vector Informatik GmbH Version: 3.01.01 52/149

TechnicalReference Vector CAN Driver VeCtOf

5.3.7.1 Data Interface (Indication Flag)

If an indication flag is used, this message related flag is set by the CAN Driver, if the
associated CAN message was received. This is done in the scope of the receive interrupt.
The flag must be cleared by the Application.

f} Caution

! . Interrupts have to be disabled during reset of the indication flags because of the read-

¥ modify-write conflict if this operation is interrupted by a CAN receive interrupt routine.
This can result in the loss of events.

5.3.7.2 Functional Interface (Indication Function)

In parallel or instead of the data interface a functional interface can be configured, i.e. a
user-specific function is called if the associated CAN message was received. This is also
done in the scope of the receive interrupt and therefore special care on the run time of this
user-specific function has to be taken. A special notification mechanism for the Application
can be implemented in such an indication function.

5.3.8 Not-Matched Function

If a CAN message has passed the hardware acceptance filtering but is rejected by the
software acceptance filtering (in case of a Basic CAN receive object) a special callback
function will be called (if configured):

void ApplCanMsgNotMatched(...);

5.3.9 Overrun Handling

An Overrun appears if a CAN message is lost in the Basic CAN receive object, because
the other was not treated yet entirely. There are two possibilities how a message could be
lost. In some cases the old message was overwritten with a new message. In other cases
a new message couldn’t be received.

If enabled, the Application has to provide an overrun callback function:

void ApplCanOverrun(void);

The overrun handling itself is done by the CAN Driver.

5.3.10 Full CAN Overrun Handling

A Full CAN Overrun appears if a CAN message is lost in the Full CAN receive object,
because the other was not treated yet entirely. There are two possibilities how a message
could be lost. In some cases the old message was overwritten with a new message. In
other cases a new message couldn’t be received.

If enabled, the Application has to provide an overrun callback function for Full CAN
objects:
void ApplCanFullCanOverrun (void);

The overrun handling itself is done by the CAN Driver

©2010, Vector Informatik GmbH Version: 3.01.01 537149

TechnicalReference Vector CAN Driver VeCtOf

5.3.11 Conditional Message Received

The Conditional Message Received function ApplCanMsgCondReceived() will be
conditional called for each reception of a CAN message. The condition can be set / reset
and read by application via CanResetMsgReceivedCondition(),
CanSetMsgReceivedCondition(), and CanGetMsgReceivedCondition(). The condition is
automatically set by CanlnitPowerOn() and CanSleep().

5.4 Bus-Off Handling

There are several functions provided by the CAN Driver to handle a BusOff state of the
CAN Controller after severe transmit errors. For some CAN Controllers a re-initialization
must be done to satisfy the hardware requirements others are changing automatically to
the 'Error Active' state after 128 x 11 recessive bits on the CAN bus as it is specified in the
CAN protocol. Nevertheless it is recommended by most of the customer specific CAN bus
specifications to re-initialize the CAN Controller in every case, because the transmit error
might be caused by a faulty bit in the CAN Controller registers, e.g. bus timing registers, in
case of EMC influences. The following service functions have to be used by the
Application to handle a BusOff error:

void CanResetBusOffStart(CanInitHandle initObject);
void CanResetBusOffEnd(CanInitHandle initObject);

Typically an extension (compared to the CAN protocol specific requirements) of the error
recovery time for the CAN bus is implemented. This is done by switching the CAN Driver's
transmit path to off using the service function CanOffline(). Because of recursive calls of
some CAN Diriver service functions, CanResetBusOffStart(..) and CanResetBusOffEnd(..)
are only allowed to be called in the offline mode of the CAN Driver, i.e. CanOffline() has to
be called before.

Typically the Network Management handles BusOff errors. In such case there are no
additional activities necessary by the Application. If no Network Management is used, the
Application has to provide a callback function

void ApplCanBusOff (void);

This callback function is called by the CAN Driver in case of BusOff. The error handling as
described above has to be done in this function. CanOnline has to be called outside of this
function on task level.

| Important
- * | For CAN controller which has autorecovery after BusOff detection we don’t recommend
1 to use the status polling. If using status polling with autorecovery it could happen, that
the application doesn’t detect a BusOff because a transmit request was detected first
and the application wasn’t informed about the BusOff.

©2010, Vector Informatik GmbH Version: 3.01.01 54 /149

TechnicalReference Vector CAN Driver VeCtOf

5.5 Sleep Mode

Some CAN Controllers support a special power-down mode with reduced power
consumption which is typically called sleep mode. This mode will be entered by the
following service:

vuint8 CanSleep(void);

| Important
- % | Before entering the sleep mode, some hardware specific preconditions have to be
v ensured, e.g. the CAN Controller transmit registers have to be empty. It has to be
guaranteed, that the following service functions are called before CanSleep():

void CanOffline(void);
void CanResetBusSleep(CanlnitHandle initObject);.

The return to normal mode will be initiated by an explicit request of the Application:
vuint8 CanWakeUp(void);

Sleep mode is not supported by all CAN Controllers. If not, both related service functions
are provided to guarantee a unified service function interface for all CAN Drivers and to
make the Application mostly hardware independent. However, the functions itself have no
effect on the CAN Controller.

A subset of CAN Controllers, which are supporting a sleep mode in principle, are able to
be awakened by any CAN bus activity, i.e. a dominant level on the CAN bus. This wake-up
by CAN is an asynchronous event, normally detected by a special wake-up interrupt. The
Application will be notified by the following callback function:

void ApplCanWakeUp(void);

This callback function has to be provided by the Application. CanWakeUp() doesn't have to
be called in this case, because the CAN Controller returns to normal mode automatically
or initiated by the CAN Driver before this function call. Other communication related issues
like the activation of the bus transceiver hardware used or the return to the online mode
(see CanOnline()) have to be done in this callback function or as a consequence of this
event.

If a CAN Controller doesn't support a wake-up by the CAN bus, other hardware
substitutions like an external interrupt based on the CAN Controller's Rx line have to be
implemented.

The application should check the return value of CanSleep () and CanWakeUp () in
every case to get the status of the CAN Controller. If CanSleep () returns kCanFailed
the CAN controller hasn’t entered into sleep mode. If CanWakeUp () returns kCanFailed
the CAN controller has not woken up. The application has to decide how to react on this
behavior.

If sleep mode is not entered, no CAN wake-up interrupt will be generated on detection of
any message on the CAN bus. The callback function ApplCanWakeUp() will not be called
and as a consequence the bus transceiver will not be initialized. This may lead to a
deadlock. Therefore it is necessary to call CanSleep() successfully to build a wake-up
capable system.

©2010, Vector Informatik GmbH Version: 3.01.01 55/149

vector’

TechnicalReference Vector CAN Driver

There is a limitation in the access to the API in Sleep mode.

The implementation of this functionality is very hardware dependent. See also CAN
controller specific documentation TechnicalReference CAN_<hardware>.pdf [#hw_sleep].

5.6 Special Features

5.6.1 Status

Some internal software states of the CAN Driver and hardware states of the CAN
Controller can be read by the return code of the following service function:

vuint8 CanGetStatus(void);

In detail this is the following information:
m CAN Controller is in sleep mode (CanSleep() was called)

m CAN Controller is in stop mode (CanStop() was called)
m CAN Driver transmit path is in offline mode(CanOffline() was called)

m current error states of the CAN Controller (Error-Active, Warning, Error-Passive or Bus-
Off)

Not all of the CAN protocol specific bus states are supported by each CAN Driver. Please
refer to the CAN Controller related section of the CAN Driver documentation for details
TechnicalReference CAN_<hardware>.pdf [#hw_status].

There are special macros to provide an easier access on the single information in the
return code. These macros are true (not equal to 0) if the specific condition is valid and
false (equal to 0) if not. The parameter of this macros is the status, i.e. the return code of
CanGetStatus():

vuint8 CanHwIsOk (vuint8 status);
vuint8 CanHwIsWarning(vuint8 status);
vuint8 CanHwIsPassive(vuint8 status);
vuint8 CanHwIsBusOff (vuint8 status);
vuint8 CanHwIsSleep (vuint8 status);
vuint8 CanHwIsWakeUp (vuint8 status);
vuint8 CanHwIsStop (vuint8 status);
vuint8 CanHwIsStart (vuint8 status);
vuint8 CanHwIsOffline(vuint8 status):;
vuint8 CanHwIsOnline (vuint8 status);

If the hardware status information isn’'t used by the Application this part of the functionality
can be disabled.

©2010, Vector Informatik GmbH Version: 3.01.01 56 /149

TechnicalReference Vector CAN Driver VeCtOf

5.6.2 Stop Mode

The function CanStop() switches the CAN controller hardware to a state in which the CAN
controller doesn’t influence the communication of other nodes on the bus. For example no
hardware acknowledge is given, messages can’t be transmitted or received. In this state
the Can controller can’t be activated by activities on the CAN bus.

The function CanStart() reactivates the CAN controller hardware again.
The implementation of this functionality is very hardware dependent. See also CAN
controller specific documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_stop].

5.6.3 Remote Frames
The CAN Driver ignores remote frames and doesn’t answer on a remote request.

5.6.4 Interrupt Control
The interrupt control of the CAN Driver is done by the service functions
void CanGlobalInterruptDisable(void);

void CanGlobalInterruptRestore(void);

These functions have been moved to VstdLib. Only macros for compatibility reasons are
still provided in the CAN Driver:

#define CanGlobalInterruptDisable VStdSuspendAllInterrupts
#define CanGlobalInterruptRestore VStdResumeAllInterrupts
...more information see in the technical reference of the VStdLib.

(TechnicalReference_VstdLib.pdf).

5.6.4.1 Security Level

The security levels can be used to guarantee the data consistency of a complete CAN
message during the copy process (this is a must, because the CAN Driver does not know
anything about the signal structure of the message) and the access to the notification flags
(indication and confirmation). During these operations the interrupt lock time is as short as
possible. Depending on the program scope with access to CAN message signals,
indication or confirmation flags in the Application the following actions in the CAN Driver
have to be realized without any interruption:

m Copy process for receive messages (in the scope of the receive interrupt)

m Copy process for transmit messages (in the scope of CanTransmit(..) or in a pretransmit
function)

m Set of indication and confirmation flags (in the scope of the receive and transmit
interrupt)

= Some internal mechanisms for data consistency.

Therefore different security levels are supported:

©2010, Vector Informatik GmbH Version: 3.01.01 57/149

TechnicalReference Vector CAN Driver

00

None

No consistency mechanisms at all. The CAN
driver has to be configured to polling mode.
CAN interrupts are not allowed. All CAN driver
tasks, all calls to service functions, all data and
flag access must be performed from the same
level.

10

No Flag and Copy
Security

No usage of CAN transmit and receive signals
in the interrupt context. Usage of the TxQueue
is allowed in Tx polling mode only.

No reset of notification flags in the interrupt
context

If a fully-preemptive operating system is used,
the access to the transmit data and
transmission of the data has to be done on the
same priority level. (data consistency).

20

Interrupts are
disabled during the
copy process of
transmit messages

a) Interrupt-Mode:
No usage of CAN receive signals and no
reset of notification flags in the interrupt
context

b) Polling-Mode
Access to CAN receive signals, indication
and confirmation flags is only allowed at the
same level or at lower level than CanTask().

30
(default)

Interrupts are
disabled during the
copy process of
transmit and
receive messages
and during the
access to the
notification flags

No restrictions for the Application, neither on
the usage of CAN receive or transmit signals
nor on the reset of notifications flags, can i.e.
both be done at any time.

A

-

5.6.4.2

Important

Figure 1: Security levels

vector’

Be careful if a pretransmit function is used. Interrupts are not disabled during the call of
this user specific function by the CAN Driver, therefore the restrictions for security level
10 are valid. If the interrupts are not disabled before and restored after the copy process
by the Application, data consistency of a CAN messages cannot be guaranteed if the

transmit queue is used..

Control of CAN interrupts
The interrupt control of the CAN Interrupts is done by the service functions

void CanCanInterruptDisable(void);

©2010, Vector Informatik GmbH

Version: 3.01.01

58 /149

TechnicalReference Vector CAN Driver VeCtOf

void CanCanInterruptRestore(void);

These service functions control the CAN Interrupts. CanCanlinterruptDisable disables the
CAN interrupts and CanCanlnterruptRestore restores the state of the CAN interrupts
before the call of CanCanlinterruptDisable. This mechanism is accompanied with a counter
to recognize the number of calls. A “disable” increments the counter and a “restore”
decrements the counter to allow nested calls of these functions.

These functions could only be called as pair. That means that on a
CanCanlnterruptDisable must follow a CanCanlinterruptRestore. Otherwise the selected
interrupt(s) are always disabled.

Additionally refer to the hardware description for the specific platform
TechnicalReference CAN_<hardware>.pdf [#hw_int] especially concerning the handling of
the wake-up interrupt. It depends on the hardware whether the wake-up interrupt is
included or not.

There are two call back functions for the application. After the CanCanlnterruptDisable the
function ApplCanAddCaninterruptDisable is called and after the CanCaninterruptRestore
the function ApplCanAddCaninterruptRestore is called.

Use these two functions to handle the wake-up interrupt if the hardware treats this interrupt
separately or if the Driver runs in Polling Mode disable the polling tasks.

To activate the call back functions refer to the API description of the functions.

5.6.5 Assertions
To detect some incorrect internal conditions of the CAN Driver during development,

integration and software test, there are different categories of so called assertions
configurable:

m User interface (for example input parameters, reentrance if not allowed)

» Fatal hardware errors

= Generated data

= Internal software errors (for example inconsistent internal states)

Each type of assertion can be configured independently.

These assertions will help in different development phases to deal with unexpected
problems which cannot be handled by the CAN Driver internally. In such case the following
callback function will be called by the CAN Diriver:

void ApplCanFatalError(vuint8 errorNumber);

This callback function has to be provided by the Application. The function parameter
errorNumber gives more detailed information about the kind of error which is occurred.

Generally, the error number has to be checked to solve the underlying problem.

| Important
« % | This callback function must not return to the CAN Driver afterwards.
v

©2010, Vector Informatik GmbH Version: 3.01.01 59/149

TechnicalReference Vector CAN Driver

The recommended usage of the different assertion categories is explained in the following

table:

User Interface
Fatal hardware errors

Development of Application software
Development of Application software

New CAN Controller used

Generated Data

New version of the Generation Tool used

Test of software changes in the Generation Tool or CAN Driver
(Vector internal)

Internal software errors

These checks could be very run-time intensive and should only be activated for the

Test of software changes in the CAN Driver (Vector internal)

development phase of the CAN Driver

The call back function ApplCanFatalError() is called with the following error codes:

kErrorTxDlcTooLarge CanTransmitVarDlc() or CanDynTxObjSetDlIc() called
with DLC > 8.

kErrorTxHdITooLarge service function called with transmit handle too large

kErrorintRestoreTooOften CanCaninterruptRestore() called too often

kErrorintDisable TooOften CanCaninterruptDisable() called too often

kErrorChannelHdITooLarge

service function called with channel handle too large

kErrorinitObjectHdITooLarge

Canlnit() called with parameter “initObject” too large

kErrorTxHwHdITooLarge

CanTxGetActHandle() called with logical hardware
handle too large

kErrorHwODbjNotInPolling

CanTxObjTask(), CanRxFull CANObjTask() or
CanRxBasicCANObjTask() called for hardware object
which is configured to interrupt mode.

kErrorHwHdITooSmall CanTxObjTask(), CanRxFullCANObjTask() or
CanRxBasicCANObjTask() called for hardware object
handle too small

kErrorHwHdITooLarge CanTxObjTask(), CanRxFullCANObjTask() or

CanRxBasicCANObjTask() called for hardware object
handle too large

kErrorAccessedInvalidDynObj

CanGetDynTxObj(),CanReleaseDynTxObj() or
CanDynTxObjSet...() is called with wrong transmit
handle (transmit handle too large)

kErrorAccessedStatObjAsDyn

CanGetDynTxObj(),CanReleaseDynTxObj() or
CanDynTxObjSet...() is called with wrong transmit
handle (transmit handle belongs to a static object)

kErrorDynObjReleased

UserConfirmation() or UserPreTransmit() is called for a
dynamic object which is already released.

kErrorPollingTaskRecursion

CAN Driver Polling tasks (Can... Task()) are called

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

60/ 149

TechnicalReference Vector CAN Driver VeCtOf

recursive or interrupt each other.

kErrorDisabledChannel Service function called for disabled channel on systems
with multiple configurations.
kErrorDisabledTxMessage CanCancelTransmit() or CanTransmit() called with

txHandle that is not active in the current configuration.
(Physical multiple ECU)

kErrorDisabledCanint CanSleep() or CanWakeUp() is called with disabled
CAN Interrupts (via CanCanlinterruptDisable()).
kErrorCanSleep CanStop(), CanCanlinterruptDisable() or

CanCaninterruptRestore() called during Sleep mode, or
offline mode is not active during sleep mode.

kErrorCanOnline CanSleep() or CanStop() is called without offline mode.

kErrorCanStop CanSleep() is called during Stop mode or offline mode
is not active during Stop mode.

kErrorWrongMask CanSetTxIdExtHi() is called with illegal mask (mask
higher than 0x1F).

kErrorWrongld CanDynTxObjSetld() or CanDynTxObjSetExtid() is

called with illegal ID (standard ID higher than 0x7ff or
extended ID higher than Ox1FFFFFFF).

In case of a generation assertion: ‘

kErrorTXROMDLCToolLarge Error in generated table of transmit DLCs

In case of a hardware assertion: ‘

kErrorTxBufferBusy HW transmit object is busy, but this is not expected

In case of a internal assertion: ‘

kErrorTxHandleWrong saved transmit handle has an unexpected value

kErrorinternalTxHdITooLarge internal function called with parameter tx handle too
large

kErrorRxHandleWrong The variable rx handle has an illegal value.

kErrorTxObjHandleWrong The handle of the hardware transmit object has an
illegal value.

kErrorReleasedUnusedDynObj CanReleaseDynTxObj() is called for an object which is
already released.

kErrorTxQueueToManyHandle The data type of the Tx Queue cannot handle all tx
messages.

kErrorinternalChannelHdITooLarge | Static function called with channel handle too large or
calculated channel handle too large.

kErrorinternalDisabledChannel Static function called for disabled channel on systems
with multiple configurations.

kErrorinternalDisabledTxMessage | Confirmation called with txHandle that is not active in
the current configuration. (Physical multiple ECU)

See the CAN Controller specific part of the CAN Driver documentation
TechnicalReference_ CAN_<hardware>.pdf [#hw_assert] to get the list of additional
hardware specific error numbers for each CAN Driver.

©2010, Vector Informatik GmbH Version: 3.01.01 61/149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

5.6.6 Hardware Loop Check

There are two kinds of handling loops in the CAN Driver internally. The first one uses a
counter or other mathematics algorithms to abort the loop. The second one uses hardware
information from the CAN Controller to abort the loop.

Some of these state transitions have to be done by two steps:

1. Request
2. Acknowledge

In the first step the request for a specific action (e.g. re-initialization of the CAN Controller)
is set but generally it cannot be entered immediately because of the prerequisite that the
CAN bus has to be in idle state, i.e. waiting for a recessive CAN bus level. In normal
operation the described behavior is non-critical. However, an exception is a malfunction of
the hardware. If the hardware is damaged or disturbed for a longer time, this loop may be
too long or even endless and is finally stopped by a watchdog reset. Because of this
restrictive error recovery the complete software functionality is affected, nothing can be
done to prevent the repetition and additionally it is not possible to store any error specific
diagnostic information, i.e. the problem cannot be checked later.

To avoid those kinds of endless loops, the user can configure a special loop control. This
has to be handled by the Application. It cannot be done by the CAN Driver itself because it
is hardware dependent.

Therefore the Application is informed once by the following callback function if such a
critical loop is entered:

void ApplCanTimerStart(vuint8 timerIdentification);

This callback function starts a timer realized by the Application. The recommended timer
handling is counting downwards to zero because of faster code on most microprocessors.
The parameter identifies the timer, i.e. the kind of loop. It is necessary to identify the loop
type because the corresponding start value has to be set. Beside of this, different (not the
same) loops can be started re-entrant and so the Application has to provide one timer for
each kind of loop. The list of necessary timers is pre-defined by the CAN Driver and
depends on the CAN Controller. Please refer to CAN Controller specific documentation for
a detailed list TechnicalReference CAN_<hardware>.pdf [#hw_loop].

During the loop wait state a second callback function is called repeatedly to control the
break condition for the loop by the Application:

vuint8 ApplCanTimerLoop(vuint8 timerIdentification);

This callback function returns the status of the corresponding timer to the CAN Driver. The
return code must be TRUE (not equal to 0) if the timer is still running and FALSE (equal to
0) if the timer has expired. In this case the CAN Driver loop will be left immediately. The
Application must be aware of a serious problem in the hardware and the following actions
have to be done:

m Store diagnostics information

= Switch off transmit (CanOffline()) and receive path of the CAN Driver

©2010, Vector Informatik GmbH Version: 3.01.01 62/149

TechnicalReference Vector CAN Driver VeCtOf

= Re-initialization of the CAN Driver (Canlnit()). This may lead to the next loop control
failure, therefore it has to be limited and in case of a permanent severe hardware
problem a special limp home state has to be foreseen.

If the loop is terminated, a third callback function is provided to stop the previously started
loop control timer:

void ApplCanTimerEnd(vuint8 timerIdentification);

| Important
. % | Be aware of the priorities of the timer interrupt routine and the CAN interrupt routine. If
v | the priority of the timer interrupt is below the CAN Interrupt priority the timer value for the
loop check may not be changed anymore while a CAN interrupt routine is running.

5.6.7 Support of OSEK-Compliant Operating Systems

If an OSEK operating system is used (ISR category 2), the hard-coded interrupt routines
for receiving, transmitting, error and wake-up are replaced by the ISR macro. In this case
an OSEK-specific header has to be included in can_inc.h to provide this macro.

5.6.8 Multiple-Channel CAN Driver

There are two different kinds of multiple-channel CAN Drivers: Sometimes two CAN
Controllers are used by one ECU on the same CAN bus, to increase the number of receive
and transmit objects. Logically, they can be conceived as a single CAN Controller. This
behavior is described in the chapter Common CAN. more...

Usually, two (or more) CAN Controllers are used to serve different CAN networks, for
example in gateways.

5.6.8.1 Indexed CAN Driver

Indexed CAN Drivers work on more than one CAN bus without doubling of code. Function
names are equal to single channel (standard) CAN Driver. Function parameter are different
in many cases.

Switches in can_cfg.h are without a suffix but with effect to all CAN channels.

5.6.9 Standard Polling Mode

In polling mode no interrupts are used. Instead of interrupts the Application has to call
cyclic service functions in the CAN Driver, to work on transmit and receive messages as
well as other asynchronous events. This cyclic service function is

void CanTask (void);

and calls all needed service functions for transmission, reception, error and wake-up which
can also be polled separately by the following service functions:

void CanRxBasicCANTask (void);
void CanRxFullCANTask (void);

void CanTxTask (void);

©2010, Vector Informatik GmbH Version: 3.01.01 63/149

TechnicalReference Vector CAN Driver VeCtOf

void CanErrorTask (void);

void CanWakeUpTask (void);

The transmission and the reception of CAN messages can be served by interrupt or by
polling separately. Several configurations for polling are available:

= Full CAN Receive objects (for Full CAN Controllers only)
Basic CAN Receive Objects

Transmit objects

Errors
Wake-Up

5.6.9.1 Application Hints

Concerning the transmit polling the handling depends on the configuration of transmit
queue and the confirmation notification:

= No transmit queue but confirmation flags and/or confirmation functions are configured:
The CanTxTask() has to be called cyclically as fast as the confirmation notification is
needed or before CanTransmit() is called to release the CAN Controller hardware
transmit register.

= Transmit queue is configured: CanTransmit() puts only a transmit request into the
transmit queue. CanTxTask() transmits the messages on the CAN bus and does the
confirmation as well. Therefore CanTxTask() has to be called as fast as confirmation is
needed and the messages should be transmitted.

5.6.10 Handling of different identifier types

Every Vector CAN Driver supports per default only the standard mode using 11 bits for a
CAN identifier. In addition to this standard mode, some Vector CAN Drivers also support
the feature of extended mode using 29 bits for a CAN identifier.

Depending on the selected mode (standard or extended CAN identifiers) the Generation
Tool switches to the correct initialization structures used for the corresponding mode. The
type and number of supported search algorithms depends on the mode. Four different
CAN Diriver configurations are possible:

m Standard mode (only 11 bit CAN identifier)

m Extended mode for the normal receive path of single CAN messages (only 29 bit CAN
identifier)

= Mixed mode (11 bit and 29 bit CAN identifier mixed on one CAN bus)

m For indexed drivers a bus dependent mode (11 bit CAN identifier on one and 29 bit CAN
identifier on the other CAN bus).

©2010, Vector Informatik GmbH Version: 3.01.01 64 /149

TechnicalReference Vector CAN Driver VeCtOf

5.6.11 Copying Mechanisms

CanCopyToCan or CanCopyFromCan are hardware/compiler dependent functions that are
provided to optimize copying of data from/to the CAN hardware buffer.

p Info
CanCopyFromCan should only be used within a precopy function. CanCopyToCan
should only be used within a pretransmit function.

5.6.12 Common CAN

Common CAN is a special feature which is available only on request and on systems with
2 or more CAN controllers. The idea of this feature is to map different HW channels into
one application channel.

When Common CAN is activated additional receive FullCAN messages can be configured
on a channel. This is realized by using a second CAN controller for the same channel. The
first CAN controller (CAN A) supports Tx, Rx Full CAN and Rx Basic CAN. The second
CAN controller (CAN B) supports Rx Full CAN. Both CAN controllers have to be connected
to the same CAN bus. The APl is always ‘Multiple Receive Channel’.

To enable the Common CAN feature activate the corresponding checkbox in the channel
settings.

First select the messages handled in Full CAN objects. Then select the “Hardware
Channel” to be used to receive the full CAN message.

Please note that the messages received on CAN B of the Common CAN must be filtered
out with the Basic CAN mask.

5.6.13 Multiple ECU

The feature Multiple ECU is usually used for nodes that exist more than once in a car with
only a few differences. At power up the application decides which node should be realized,
e.g. left passenger door, or right driver door.

To reduce the memory consumption messages that are sent exclusively from one node
can be overlapped with the exclusively sent messages from the other nodes. The result of
this overlapping is that all these messages share a common memory location for the
transmit data.

5.6.14 Signal Access Macros

Signal access macros are function like macros, to access signals within a message. They
can be used by the application for an easy access to signals. The generation of signal
value access macros can be enabled or disabled. If enabled, the Generation Tool
generates access macros using the signal names from the communication data base with
respect to prefixes or post-fixes defined in the Names tab.

©2010, Vector Informatik GmbH Version: 3.01.01 65/149

TechnicalReference Vector CAN Driver VeCtOf

#define a_ b = TestSignal = b M3Gl.msgl. Testdignal
L

\— Signal size postfix no byte

alignment or byte alignment

| Signal postfin for FxTx separst |

| Signa name for RxiTx separst |

| Signal prefi for Rx/Tx separat |

Signal size prefix; no byte
alignment or byte alignment

Signal Set/Get Prefix Signal Summary.
[onlky used for signals bigger than 5 hit)

Figure 5-13 Name of signal access macros

For each signal an access macro is formed from the signal name in the CAN database, a
signal variable prefix (access via signal structures or byte/word commands), a signal
prefix, a signal postfix, and a signal variable postfix. Prefixes and postfixes can be
configured by the user in the generator program. To assure better readability, it is
advisable not to use all four prefixes and postfixes simultaneously.

The access macros for the CAN receive buffer get an extended prefix CAN . Within
Precopy and Pretransmit routines these macros serve to access the CAN controller's CAN
receive and transmit buffer on a signal basis.

5.6.15 CAN RAM Check

The CAN driver supports a check of the CAN controller’s mailboxes. The CAN controller
RAM check is called internally every time the function Canlnit() is called. The CAN driver
verifies that no used mailboxes is corrupt. A mailbox is considered corrupt if a predefined
pattern is written to the appropriate mailbox registers and the read operation does not
return the expected pattern. If a corrupt mailbox is found the function
ApplCanCorruptMailbox() is called. This function tells the application which mailbox is
corrupt.

After the check of all mailboxes the CAN driver calls the callback function
ApplCanMemCheckFailed() if at least one corrupt mailbox was found. The application
must decide if the CAN driver disables communication or not by means of the callback
function’s return value. If the application has decided to disable the communication there is
no possibility to enable the communication again until the next call to CanlnitPowerOn().

The CAN RAM check functionality itself can be activated via Generation Tool. This include
the callback ApplCanMemCheckFailed(). The callback ApplCanCorruptMailbox() can only
be activated via a user configuration file.

©2010, Vector Informatik GmbH Version: 3.01.01 66 /149

TechnicalReference Vector CAN Driver VeCtOf

6 Detailed Description of the Functional Scope (High End extension)

6.1 Transmission

6.1.1 Low-Level Message Transmit

Using a multiple channel CAN Driver the routing of complete CAN messages from one
CAN Bus to another one is supported by the function

vuint8 CanMsgTransmit(...);

This function has a parameter with a pointer to a CAN Message Buffer. So it is possible to
route the whole buffer from one CAN chip to the other one. To prevent a conflict with the
functional messages, this function uses an own send buffer (If an additional buffer is
available in the CAN Controller).

A special confirmation function and an initialization callback function are called.
void ApplCanMsgTransmitConf(...); within confirmation interrupt

void ApplCanMsgTransmitInit(...); within CanInit

These functions can be used by the application to implement a data queue mechanism.
There is no internal transmit queue for this transmit object available.

CanMsgTransmit() can also be used for dynamic transmission. Therefore the CAN driver
supports macros to write standard ID or extended ID, DLC and data to the structure:

CanMsgTransmitSetStdId (...)
CanMsgTransmitSetExtId (...)
CanMsgTransmitSetDlc (...)

CanMsgTransmitSetData (...)

6.2 Reception

6.2.1 Multiple Basic CAN

To improve efficiency of the hardware filtering and reduce the interrupt load produced by
reception of unwanted messages, the number of Hardware Basic CAN objects can be
changed in the Generation Tool. Each Hardware Basic CAN object has it's own filter.

Increasing the number of Basic CAN objects will reduce the number of available Full CAN
objects (Rx and Tx).

This feature is only available for Full CAN controllers.

6.2.2 Rx Queue

The Rx Queue is a data queue which stores receive messages if the application does not
want to process them within the interrupt context. In some applications it may happen that
the run time in the receive interrupt becomes too long. This leads to long interrupt
latencies and possible loss of messages. The Rx Queue may help in these cases. If the
Rx Queue is configured the received messages are copied into this queue in the interrupt

©2010, Vector Informatik GmbH Version: 3.01.01 67 /149

TechnicalReference Vector CAN Driver VeCtOf

context. The handling of the queued messages is done on task level. Messages which are
received by means of a RangePrecopy can also be copied into the queue or handled in
the interrupt context.

In order to handle the queued messages the application has to call cyclically a CAN Driver
function which checks for queued messages and processes them.

If Precopy and Indication functions are used for application messages, be aware that they
are not called in interrupt context any more.

By using the Rx Queue the runtime in the Rx interrupt is decreased. The average runtime
of the application is increased because of the overhead for handling the queue.

| Please note
- * |Incase arange is configured to be handled via the Rx Queue, the return code of the
¥ RangePrecopy for this range is ignored.

6.2.2.1 Handling in Receive Interrupt

During the receive interrupt the CAN Driver calls the callback function
ApplCanPreRxQueue() after the range or search algorithm match in order to let the
application decide whether the received message is processed within the interrupt or has
to be entered into the Rx queue. The function ApplCanPreRxQueue() is only called if
configured. Otherwise all received messages are handled by the Rx queue. If the Rx
Queue is full the CAN Driver notifies the application by calling the callback function
ApplCanRxQueueOverrun() (if configured) and discards the received message. After the
message was copied into the Rx queue the Rx interrupt is terminated.

©2010, Vector Informatik GmbH Version: 3.01.01 68/149

TechnicalReference Vector CAN Driver

vector’

Receive message
(hardware filtering)

— Hardware Level

v

Enter
Receive Interrupt

Rx Interrupt Level Start —|

v

ApplCanMsgReceived
(CanRxInfoStructPtr)

SW Range
entered

no

yes

Queue

configured yes

no

v
Normal receive-interrupt | Range Precopy ApplCanPreRxQueue
with SW message search Indexed, Function (CanRxInfoStructPtr)
Hash,
Linear
ApplCanPreRxQueue
(CanRxInfoStructPtr) Return
kCanCopyData
Return s
kCanCopyData y
no y
v Write FIFO Write FIFO
L Handle Handle
normal receive-interrupt Id Id no
with Message Prec_opy, DLC DLC
data copy mechanism, Data Data
Indication Function / Flags

yes

Rx Interrupt Level End

Figure 6-1

6.2.2.2 Handling on Task Level

A
A
A

Handling of the Rx queue within the receive routine.

In order to process the messages pending in the Rx queue the application has to call the
function CanHandleRxMsg(). This function processes all messages in the queue. The
processing of the messages is done in the same way like in the Rx interrupt. That means

©2010, Vector Informatik GmbH

Version: 3.01.01 69/149

TechnicalReference Vector CAN Driver VeCtOf

for each message the Generic Precopy and the UserPrecopy are called. After that the
message data are copied into the RAM buffer and than the Indication Flag is set and the

Userlndication function is called. The last step is to delete the processed message from
the Rx queue.

Task Level Start — | CanHandleRxMsg()

YI entered YIS
normal receive-interrupt Range Pljecopy
with Message Precopy, Function

data copy mechanism

y A
Clear FIFO Clear FIFO
Handle Handle
Id Id
DLC DLC
Data Data

4

Indication Function / Flags

A 4

Task Level End @

Figure 6-2 Handling of the Rx queue on task level.

6.2.2.3 Resetting the Rx Queue

The CAN Driver provides the function CanDeleteRxQueue() to delete all messages
pending in the Rx Queue

©2010, Vector Informatik GmbH Version: 3.01.01 70/149

TechnicalReference Vector CAN Driver VeCtOf

6.3 Special Features

6.3.1 Individual Polling

Each mailbox (BasicCAN Rx, FUllCAN Rx, FullCAN Tx, low level Tx and normal Tx) can be
selected to be polled or treat in interrupt context. This also provides the possibility to use
interrupt mode on one channel and polling mode on the other.

The polling tasks of the standard polling mode are still available. The CAN Driver provides
additional service functions to poll each mailbox individual.

void CanRxBasicCANObjTask (...);
void CanRxFullCANObjTask (...);
void CanTxObjTask («..)

These functions have the number of the mailbox and the hardware channel as parameter.
For both parameters, symbolic names are generated.

CanTask (), CanErrorTask () and CanWakeUpTask () are available in this polling
mode, too.

©2010, Vector Informatik GmbH Version: 3.01.01 717149

TechnicalReference Vector CAN Driver VeCtOf

7 Feature List (Standard and High End)

This general feature list describes the overall feature set of Vector CAN Drivers. Not all of
these features are mandatory for all CAN Drivers. Please refer to the CAN Controller
dependent CAN Driver manual for details TechnicalReference CAN_<hardware>.pdf
[#hw_feature].

CAN Driver Functionality
Standard HighEnd Functions

Initialization
Power-On Initialization
Re-Initialization

Transmission

Transmit Request

Transmit Request Queue
Internal data copy mechanism
Pretransmit functions
Common confirmation function
Confirmation flag

Confirmation function

Offline Mode

Partial Offline Mode

Passive-Mode

Tx Observe mode

Dynamic TxObjects

Full CAN Tx Objects
Cancellation in Hardware
Low Level Message Transmit
Reception

Receive function
Search algorithms

©2010, Vector Informatik GmbH

Version: 3.01.01

CanlnitPowerOn
Canlnit

CanTransmit

UserPreTransmit
ApplCanTxConfirmation

UserConfirmation
CanOnline, CanOffline
CanOnline, CanPartOffline,
CanGetPartMode

CanSetActive,
CanSetPassive

ApplCaninit,
ApplCanTxObjStart,
ApplCanTxObjConfirmed

CanDynTxSet(Ext)ld
CanDynTxSetDIc
CanDynTxSetDataPtr

CanCancelTransmit,
CanCancelMsgTransmit

CanMsgTransmit

ApplCanMsgReceived

721149

TechnicalReference Vector CAN Driver

Range specific precopy functions

DLC check

Internal data copy mechanism
Generic precopy function
Precopy function

Indication flag

Indication function

Message not matched function
Overrun Notification

Full-CAN overrun notification
Multiple Basic CAN

Rx Queue

Bus off
Notification function
Nested Recovery functions

Sleep Mode

Mode Change
Preparation
Notification function

Special Feature
Status

Security Level
Assertions

Hardware loop check

Stop Mode
Support of OSEK operating system
Standard Polling Mode

Individual Polling

Multi-channel
Support extended ID addressing mode
Support mixed ID addressing mode

Support access to error counters

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

ApplCanRangeXxxPrecopy
Xxx ..0,1,2,3

ApplCanMsgDlIcFailed

ApplCanGenericPrecopy
UserPrecopy

Userlndication
ApplCanMsgNotMatched
ApplCanQOverrun
ApplCanFullCanOverrun

CanHandleRxMsg,
CanDeleteRxQueue

ApplCanBusOff

CanResetBusOffStart,
CanResetBusOffEnd

CanSleep, CanWakeUp
CanResetBusSleep
ApplCanWakeUp

CanGetStatus

ApplCanFatalError

ApplCanTimerStart
ApplCanTimerLoop
ApplCanTimerEnd

CanStart, CanStop

CanTxTask
CanRxFullCANTask
CanRxBasicCANTask
CanErrorTask
CanWakeUpTask

CanTxObjTask,
CanRxFullCANObjTask,
CanRxBasicCANODbjTask

CanRxActualErrorCounter
CanTxActualErrorCounter

7317149

TechnicalReference Vector CAN Driver VeCtOf

Copy functions CanCopyFromCan,
" " CanCopyToCan
CAN RAM check] | ApplCanMemCheckFailed

Figure 2: Feature List

m feature is supported in general (exceptions might be possible if a CAN controller is not able to support a

feature.

O feature is not implemented for each hardware because different CAN controller doesn’t support this
feature.

©2010, Vector Informatik GmbH Version: 3.01.01 741149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

8 Description of the API (Standard)

The complete Standard CAN Driver APl is described in this section.

8.1 API Categories

Depending on the number of supported channels, i.e. the number of connected CAN
networks to one ECU, the API of the CAN Driver is realized as "Single Channel" or
"Multiple Channel" with additional channel specific information.

8.1.1 Single Receive Channel (SRC)
A “Single Receive Channel” CAN Driver supports one CAN channel.

8.1.2 Multiple Receive Channel (MRC)

A "Single Receive Channel" CAN Driver is typically extended for multiple channels by
adding an index to the function parameter list (e.g. CanOnline() becomes to
CanOnline(channel)) or by using the handle as a channel indicator (e.g.
CanTransmit(txHandle)).

©2010, Vector Informatik GmbH Version: 3.01.01 75/149

TechnicalReference Vector CAN Driver

8.2 Data Types

The following general data types are defined by the CAN Driver:

vbittype canbittype Single bit information

vuint8 canuint8 unsigned 8 bit (byte) value
vuint16 canuint16 unsigned 16 bit (word) value
vuint32 canuint32 unsigned 32 bit (dword) value
vsint8 cansint8 signed 8 bit (byte) value
vsint16 cansint16 signed 16 bit (word) value
vsint32 cansint32 signed 32 bit (dword) value

There are special data types to reference specific generated data structures:

CanlnitHandle

CanReceiveHandle
CanTransmitHandle
CanChannelHandle

Initialization parameters

Receive parameters

Transmit parameters

Channel parameters (only available in indexed CAN Drivers)

Some data types are referencing the CAN Controller registers

CanChipDataPtr
CanChipMsgPtr

Receive and transmit data register of the CAN Controller
Complete receive and transmit message objects including CAN

identifier and DLC

Some data types are only available in Single Receive Channel and Multiple Receive

Channel CAN Drivers

typedef volatile struct

{
CanChipDataPtr pChipData;
CanTransmitHandle Handle;

} CanTxInfoStruct;

typedef volatile struct

{

CanChannelHandle Channel;
CanChipMsgPtr pChipMsgObj;
CanChipDataPtr pChipData;
CanReceiveHandle Handle;

} tCanRxInfoStruct;

©2010, Vector Informatik GmbH

Structure with transmit information.

pChipData is the pointer to the transmit data bytes
in the CAN controller.

Handle of the transmit message.

Structure with receive information:
Channel from which the precopy is called.

pChipMsgObj is the pointer to the CAN Controller
Receive Register. If there are several receive
objects with different memory addresses available,
pChipMsgObj contains the pointer to the dedicated
receive object to get some information like CAN
identifier or DLC of the received message directly
out of the CAN Controller registers.

pChipData is the pointer to the received data bytes.

Version: 3.01.01

vector’

76 /149

TechnicalReference Vector CAN Driver VeCtOf

Handle of the received message.
CanRxInfoStructPtr Pointer to structure with receive information.

8.3 Constants
This information is stored in ROM.

8.3.1 Version Number

kCanMainVersion and kCanSubVersion contains the BCD coded version of the CAN
Driver:

kCanMainVersion Main version of the CAN Driver (BCD coded in a vuint8 constant
variable)

kCanSubVersion Sub version of the CAN Driver (BCD coded in a vuint8 constant
variable)

kCanBugFixVersion Release version of the CAN Driver (BCD coded in a vuint8
constant variable)

& Example
iz A version number 2.31.00 is coded as 0x02 in kCanMainVersion, 0x31 in
kCanSubVersion and 0x00 in kCanBugFixVersion.

8.4 Macros

8.41 Conversion between Logical and Hardware Representation of CAN
Parameter DLC

These macros are used to convert the CAN protocol specific parameter DLC between the
logical presentation (DLC: 0..8) and the CAN Controller dependent, internal register layout
of different CAN Controllers.

They are normally used by the Generation Tool for the initialization of the node specific
control structures but they are available also for the Application, if necessary.

The MK_... macros are converting from the logical to the CAN Controller dependent
representation:

MK TX DLC (dlc) Conversion of transmit DLC, if associated CAN message has
standard identifier

The following macro is only allowed to be used if extended CAN identifiers are used:

MK_TX_DLC_EXT (dlc) Conversion of transmit DLC if associated CAN message has an
extended identifier

The XT_... macro is converting from the CAN Controller dependent to the logical
presentation:

©2010, Vector Informatik GmbH Version: 3.01.01 771149

TechnicalReference Vector CAN Driver VeCtOf

XT TX DLC(dlc) Conversion of transmit DLC independent of identifier type

8.4.2 Direct Access to the CAN Controller Registers

These macros are defined by the CAN Driver to provide the access on CAN protocol
specific parameters like CAN identifier and DLC currently available in the CAN Controller.

To assign these information to a previously received message they are only valid in the
callback function ApplCanMsgReceived() or in user specific precopy functions. Only in this
scope there is a clear reference on receive messages possible and data in the CAN
Controller receive registers are still locked. They are referencing either on the CAN
Controller register or on the software shadow buffer of the CAN Driver, if used. The
parameter rxStruct is only available for Single Receive Channel and Multiple Receive
Channel Drivers and is the pointer to the receive information structure.

CanRxActualld(rxStruct) Read identifier in logical presentation (Oh..7FFh for
standard identifier or Oh..1FFFFFFFh for extended
identifier).

In case of mixed identifier, the macro
CanRxActualldType can be used to decide whether
the CAN identifier is in standard or extended
format.

CanRxActualIdType (rxStruct) Read the format type of the CAN identifier
kCanldTypeStd standard format
kCanldTypeExt extended format

CanRxActualDLC (rxStruct) Read DLC in logical presentation (0..8)

CanRxActualData (rxStruct, i) Read Data in logical presentation. i is the position
of the byte (0..7).

CanRxActualErrorCounter (Read current status of the receive error counter. In
channel) use of microcontrollers without an readable error
counter, this macro returns always 0.
CanTxActualErrorCounter (Read current status of the transmit error counter. In
channel) use of microcontrollers without an readable error

counter, this macro returns always 0.

The following macros are only available if extended CAN identifiers are used:

CanRxActualIdExtHi (Read the bit 24 to 29 of the extended identifier in
rxStruct) logical presentation
CanRxActualIdExtMidHi (Read the bit 16 to 23 of the extended identifier in
rxStruct) logical presentation
CanRxActualIldExtMidLo (Read the bit 8 to 15 of the extended identifier in
rxStruct) logical presentation

CanRxActualIdExtLo (Read the bit 0 to 7 of the extended identifier in
rxStruct) logical presentation

To write CAN protocol specific parameters like CAN identifier and DLC the to the CAN
controller there are some macros available. The parameter txStruct is only available for

©2010, Vector Informatik GmbH Version: 3.01.01 781149

TechnicalReference Vector CAN Driver V@CtOf

Single Receive Channel and Multiple Receive Channel Drivers and is the pointer to the
transmit information structure.

CanTxWriteActId (txStruct, Write the parameter id in standard format and in
id) logical presentation to the hardware.

CanTxWriteActDLC (rxStruct, Write the DLC in logical presentation (0..8)
dlc)

The following macro is only available if extended CAN identifiers are used:

CanTxWriteActExtId (Write the parameter id in extended format and in
txStruct, id) logical presentation to the hardware.

8.4.3 Interpretation of the CAN Status

The following macros are used to decode the return code of CanGetStatus() (TRUE
means not equal to zero):

CanHwIsOk (state) This macro returns TRUE, if the status of the CAN
Controller is Error-Active.

CanHwIsWarning (state) This macro returns TRUE, if the status of the CAN
Controller is Warning (at least one error counter is equal or
higher than 96).

CanHwIsPassive (state) This macro returns TRUE, if the status of the CAN
Controller is Error-Passive.

CanHwIsBusOff (state) This macro returns TRUE, if the status of the CAN
Controller is Bus-Off. This information is only temporary. The
time when this status changes from TRUE to FALSE
depends on the CAN controller. This could be after the CAN
controller has resynchronized on the bus regardless of the
Busoff recovery by the Application. This could also be after
CanResetBusoffStart() is called or after
CanResetBusoffEnd() is called.

Hint: Busoff detection has to be performed with

ApplCanBusoff().

CanHwIsWakeup (state) This macro returns TRUE, if the CAN Controller is not in
sleep mode.

CanHwIsSleep (state) This macro returns TRUE, if the CAN Controller is in sleep
mode.

CanHwIsStart (state) This macro returns TRUE, if the CAN Controller is not in
stop mode.

CanHwIsStop (state) This macro returns TRUE, if the CAN Controller is in stop
mode.

CanIsOnline (state) This macro returns TRUE, if the CAN Driver is online.

CanIsOffline (state) This macro returns TRUE, if the CAN Driver is offline.

©2010, Vector Informatik GmbH Version: 3.01.01 791/149

TechnicalReference Vector CAN Driver V@CtOf

Not all CAN Controllers support all of the hardware dependent states. Please refer to the
CAN Controller specific documentation TechnicalReference CAN_<hardware>.pdf
[#hw_status] for details.

8.4.4 Access to low level transmit structure

These macros are defined by the CAN driver to fill the set the data to be transmitted with
CanMsgTransmit ():

CanMsgTransmitSetStdId(Write the parameter id in standard format and in logical
tCanMsgTransmitStruct presentation to the structure txData.
*txData, vuintlé6 id)

CanMsgTransmitSetExtId(Write the parameter id in extended format and in logical
tCanMsgTransmitStruct presentation to the structure txData.
*txData, vuint32 id)

CanMsgTransmitSetDlc (Write the DLC in logical presentation (0..8)
tCanMsgTransmitStruct

*txData, vuint8 dlc)

CanMsgTransmitSetData (Write the data bytes to be transmitted to the structure
tCanMsgTransmitStruct txData. nrDataBytes specifies the number of bytes to be
*txData, vuint8 copied (e.g. same as the DLC, max. 8). txDataBytes
nrDataByte, wvuint8 points to the current location where the data has to be
*txDataBytes) copied from.

8.5 Functions

This chapter contains a description of the CAN Driver functions (services, callbacks and
user specifics) and the appropriate parameters and return codes. The function declarations
are given in C syntax as explained below:

vuint8 CanTransmit (CanTransmitHandle txObject);

= vuint8 is the type of the return code
m CanTransmit is the name of the function
m CanTransmitHandle is the type of the function parameter

m txObject is the function parameter.

©2010, Vector Informatik GmbH Version: 3.01.01 80/149

TechnicalReference Vector CAN Driver VQCEO['

8.5.1 Service Functions

8.5.1.1 CanlnitPowerOn

CanlnitPowerOn
Prototype

Single Receive Channel void CanInitPowerOn (void)
Multiple Receive Channel

Parameter

Return code

Functional Description

The service function CanInitPowerOn () initializes the CAN Controller and the CAN Drivers internal
variables. The CAN Driver is always set to online mode and active operating state.

Particularities and Limitations

m This service function has to be called before any other CAN Driver function. The interrupts have to
be disabled during this service function is called.

m For indexed CAN Drivers every channel is initialized with kCanInitObj0.

8.5.1.2 Canlnit

Canlinit
Single Receive Channel void CanInit (CanInitHandle initObject)
Multiple Receive Channel | ,i4 canInit (CanChannelHandle channel, CanTnitHandle
initObject)
initObject Han(;jle of an initialization structure. The generated macros should be
used:

kCanInitObjX (with X =1 ... Number of generated initialization structures)

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

Initialization of the CAN Controller hardware. It is used to cancel pending transmit requests in the CAN
Controller transmit register and to change the baud rate or the hardware acceptance filters.
Online/Offline mode and Active/Passive state will not be changed.

Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

81/149

TechnicalReference Vector CAN Driver VeCtOf

m During the call of CanInit (..), the CAN Driver has to be in offline mode.
B CanInit (..) is notreentrant and therefore must not be called recursively.
B CanInit (..) mustnotbe interrupted by CanReset... (..),CanSleep(..), CanWakeUp(..)

or by any CAN interrupt service routine and vice versa.

B CanInit (..) mustnotinterrupt the confirmation interrupt and must not be called in the
confirmation or indication function.

8.5.1.3 CanTransmit

CanTransmit

Prototype

Single Receive Channel vuint8 CanTransmit (CanTransmitHandle txObject)

Multiple Receive Channel

txObject Handle of the transmit object
kCanTxOk The transmit request was accepted by the CAN Driver
kCanTxFailed Error code because one of the following conditions:

m Transmit request could not be passed to the CAN Controller because
the transmit registers are busy (only if there is no transmit queue
used)

CAN Driver's transmit path is in offline mode

m Special hardware conditions of the CAN Controller (e.g. the sleep
mode was entered; failed synchronization on the CAN bus)

KCanTxPartOffline Err_or code becaus_e the trar_lsmi_t path of the CAN driver is in partial
offline mode for this transmit object.

Functional Description

The service function CanTransmit (..) checks if a transmit register in the CAN Controller is
available. If so, the transmit process is initiated in the CAN Controller and kCanTxOk is returned. If not
and if there is no transmit queue configured, the function call returns with the error code
kCanTxFailed or kCanTxPartOffline. For a CAN Driver with a configured transmit queue; the
transmit request is marked in the queue and kCanTxOk is returned. Only the transmit request is saved
but not the associated data. As soon as one of the CAN Controller transmit registers becomes
available (successful transmission of the previous transmit request), the next transmit request with the
highest priority (lowest CAN identifier) in the transmit queue will be serviced.

By the parameter txObject all information for transmission (CAN identifier, DLC, location and length
of data, efc...) can be taken from the CAN Driver description data. They will be copied to the CAN
Controller and the transmit process is started. The message will be actually transmitted on the CAN
bus after a successful arbitration of the CAN protocol.

After a successful transmission a CAN message (at least one other CAN bus node gives an
acknowledge) the confirmation notification (a flag will be set or a user specific function will be called)
are executed in the scope of the CAN transmit interrupt routine.

Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01 82 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

B CanTransmit (..) supports the Network Management which can enable or disable the CAN
Driver's transmit path by means of the CAN Driver service functions CanOnline () and
CanOffline (). No distinction is made between Network Management and Application messages.
In the offline mode, the transmit request is rejected with an error code.

m For CAN Controllers with priority controlled transmit queue (hardware or software) the sequence of
transmission may deviate from the call sequence of CanTransmit (..) because the transmit
queues are handled according to priorities (lowest CAN identifier first) and not according to the
chronological order of the entries in the queue (FIFO).

m The generated handles should be used to reference the transmit objects. The names consist of the
message symbol, a prefix and a postfix. Fixed rules are used to build these names. For more
details please refer to the user manual of the Generation Tool

8.5.1.4 CanTask
CanTask

Prototype
Single Receive Channel void CanTask (void)

Multiple Receive Channel
Parameter

Return code

Functional Description

The service function CanTask () does polling of error events, receive objects, transmit objects and
wake-up events in the CAN Controller according to the configured polling mode. In multiple channel
drivers the CanTask () handles all channels.

Particularities and Limitations
B CanTask () must not run on higher priority than other CAN functions.
B CanTask () is available, if any polling mode is configured for the CAN Driver

B CanTask () is also available for some CAN Controllers if cancellation in hardware is configured.
See more about that in the CAN Controller specific documentation
TechnicalReference CAN_<hardware>.pdf [#hw_cancel] .

8.5.1.5 CanTxTask
CanTxTask

Prototype
Single Receive Channel void CanTxTask (void)

Multiple Receive Channel | ,0i4 canTxTask

(CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

83 /149

TechnicalReference Vector CAN Driver VQCEO['

Functional Description

The service function CanTxTask () does polling of transmit objects in the CAN Controller.
Confirmation functions will be called and confirmation flags will be set. If the transmit queue is
configured, this service function additionally transmits the queued messages.

Particularities and Limitations

B CanTxTask () is available, if the general polling mode or the transmit polling mode is configured.

B CanTxTask () is also available for some CAN Controllers if cancellation in hardware is configured.
See more about that in the CAN Controller specific documentation

TechnicalReference_ CAN_<hardware>.pdf [#hw_cancel] .

8.5.1.6 CanRxFullCANTask
CanRxFullCanTask

Prototype

Single Receive Channel | 514 CanRxFullCANTask (void)

Multiple Receive Channel void CanRxFullCANTask (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanRxFullCanTask () does polling of Full CAN receive objects (if available)
according to the configured polling mode.

Particularities and Limitations

B CanRxFullCanTask () must not run on higher priority than other CAN functions.

B CanRxFullCanTask () is available if the Full CAN receive polling mode is configured.

8.5.1.7 CanRxBasicCANTask
CanRxBasicCANTask

Prototype

Single Receive Channel | 614 canRxBasicCANTask (void)

Multiple Receive Channel |4 canRxBasicCANTask (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanRxBasicCANTask () does polling of Basic CAN receive objects according to
the configured polling mode.

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

84 /149

TechnicalReference Vector CAN Driver VQCEO['

Particularities and Limitations

B CanRxBasicCANTask () must not run on higher priority than other CAN functions.
®m CanRxBasicCANTask () is available if the Basic CAN receive polling mode is configured.

8.5.1.8 CanErrorTask

CanErrorTask
Prototype

Single Receive Channel void CanErrorTask (void)

Multiple Receive Channel | ;4 canErrorTask (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanErrorTask () does polling of error events in the CAN Controller. In case of a
BusOff, the callback function Appl1CanBusOff () is called by this service function.

Particularities and Limitations

B CanErrorTask () is available if the error polling is enabled.

8.5.1.9 CanWakeUpTask
CanWakeUpTask

Prototype

Single Receive Channel void CanWakeUpTask (void)

Multiple Receive Channel | i canWakeUpTask (CanChannelHandle channel)
Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanWakeUpTask () does polling of the wake-up events in the CAN Controller
according to the enabled polling mode. In case of a wake-up event on the CAN bus, the callback
function ApplCanwWakeUp () will be called by this service function.

Particularities and Limitations

B CanWakeUpTask () is available if the wakeup polling is enabled.

m A wake-up by the CAN bus is not supported by all CAN Controllers. Please refer to the CAN
controller specific documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_sleep].

©2010, Vector Informatik GmbH Version: 3.01.01 85/149

based on template version 2.1

TechnicalReference Vector CAN Driver VQCEO['

8.5.1.10 CanOnline

CanOnline

Prototype
Single Receive Channel void CanOnline (void)

Multiple Receive Channel void CanOnline (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanOnline () enables the CAN Driver's transmit path for all subsequent transmit
requests of CanTransmit (..). This is prerequisite to transmit any CAN message.

The current status of the transmit path can be queried by CanGetStatus ().

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

If a Network Management is used, the service function CanoOnline () may only be used by the
Network Management.

It is only allowed to call canOnline () on Task level. No other CAN Driver service function is allowed

to be interrupted by CanOnline () .

8.5.1.11 CanOffline
CanOffline

Prototype
Single Receive Channel void CanOffline (void)

Multiple Receive Channel void CanOffline (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanOffline () disables the CAN Driver's transmit path for all subsequent
transmit requests of CanTransmit (..).

While the transmit path is blocked, transmit requests by CanTransmit (..) are rejected with an
error. This can be determined by evaluating the return code.

The current status of the transmit path can be queried by CanGetStatus().
For indexed CAN Diriver, this functionality is related to the specified CAN channel.
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

86 /149

TechnicalReference Vector CAN Driver VQCEO['

If the CAN Driver is configured to use a transmit queue, all queue entries will be cleared, i.e. transmit
requests will be lost.

If a Network Management is used, the service functions CanOffline () may only be used by the

Network Management.

8.5.1.12 CanPartOnline

CanPartOnline
Prototype

Single Receive Channel void CanPartOnline (vuint8 sendGroup)

Multiple Receive Channel void CanPartOnline (CanChannelHandle channel, vuint8
sendGroup)

sendGroup Send group or groups to be switched to online.
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanPartOnline () enables the CAN Driver's transmit path for the selected send
groups.

The current status of the partial offline mode can be queried by CanGetPartMode ().
For indexed CAN Driver, this functionality is related to the specified CAN channel.

Particularities and Limitations

8.5.1.13 CanPartOffline
CanPartOffline

Single Receive Channel void CanPartOffline (vuint8 sendGroup)

Multiple Receive Channel void CanPartOffline (CanChannelHandle channel, wvuint8
sendGroup)

sendGroup Send group or groups to be switched to offline.

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

871/149

TechnicalReference Vector CAN Driver VeCtOf

The service function CanPartOffline () disables the CAN Driver's transmit path for the selected
send groups.

While the transmit path is blocked for a selected group, transmit requests of a message assigned to
this group by CanTransmit (..) are rejected with kCanPartOffline. This can be determined by
evaluating the return code.

The current status of the partial offline mode can be queried by CanGetPartMode ().

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m A queued message will be still send after the function canpartoffline () was called.

8.5.1.14 CanGetPartMode
CanGetPartMode

Prototype
Single Receive Channel vuint8 CanGetPartMode (void)

Multiple Receive Channel vuint8 CanGetPartMode (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code
vuints Send groups which are in partial offline mode.

m C_SEND_GRP_NONE (if the partial mode is inactive)

m C_SEND_GRP_ALL (if the partial mode is active for all groups.)

NOTE: predefined macros can be used to check for all or none
send groups.

For indexed CAN Driver, this functionality is related to the specified CAN
channel.

See also 5.2.6 Partial Offline Mode page 35

Functional Description
Reads the current partial offline status of the CAN Driver.

Particularities and Limitations

8.5.1.15 CanGetStatus

CanGetStatus
Prototype

Single Receive Channel vuint8 CanGetStatus (void)

Multiple Receive Channel | ;intg canGetStatus (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

©2010, Vector Informatik GmbH Version: 3.01.01 88 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

Software status of the CAN Driver. The following information is coded in
the return code:

m CAN Driver is offline (CanOffline () was called)

vuint8

If extended status is enabled, this function also returns the hardware
status of the CAN Controller. The following additional information are
coded in the return code:

m Warning level, Error-Active/-Passive state and Bus-Off of the CAN
Controller

m CAN Controller is in sleep mode (CanSleep () was called)
m CAN Controller is in stop mode (CanStop () was called)

There are special macros to get this information in the return code.
These macros are TRUE (not equal to 0) if the specific condition is valid
and FALSE (equal to 0) if not. The parameter of these macros is the
status, i.e. the return code of CanGetStatus ():

B CanHwIsWarning(..), CanHwIsPassive(..),
CanHwIsBusOff (..),

B CanHwIsOk(..)

B CanHwIs Sleep(..), CanHwIsWakeup(..)

B CanHwIsStop(..), CanHwIsStart(..)

B CanIsOffline(..), CanIsOnline(..)

For indexed CAN Driver, this functionality is related to the specified CAN
channel.

Functional Description
Reads the current status of the CAN Driver and the CAN Controller.

Particularities and Limitations

8.5.1.16 CanSleep
CanSleep

Prototype

Single Receive Channel vuint8 CanSleep (void)

Multiple Receive Channel | ;i t3 CanSleep (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Result of the sleep request:

kCanFailed Sleep mode not entered
kCanOk Sleep mode entered
kCanNotSupported The function CansSleep is not supported by this driver

Functional Description
The service function CanSleep () puts the CAN Controller into sleep mode. This reduces the power

©2010, Vector Informatik GmbH Version: 3.01.01 89 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

consumption of the CAN Controller and enables the wake up behavior if the CAN Controller supports
this functionality. For indexed CAN Driver, this functionality is related to the specified CAN channel.

Particularities and Limitations

m This functionality is not supported for all CAN Controllers. In such case the function is provided by
the CAN Driver but without any effect on the CAN Controller. This is done to enable the Application
to realize an orthogonal software structure.

m Ifitis supported by the CAN Controller, on a wake-up by the CAN bus, the callback function
ApplCanWakeUp () is called.

m If a message is currently transmitted or received during the call of this service function, a direct
wake-up interrupt occurs or the CAN Driver remains in this function until the sleep mode is entered.
This behavior of the CAN Controller has to be considered in implementing the Application or the
Network Management. (This behavior is hardware dependent and described more detailed in the
CAN controller specific documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_sleep])

m If the sleep mode is not entered, no CAN wake-up interrupt occurs on the detection of any
message on the CAN bus. The callback function ApplCcanwakeUp () will not be called and in
consequence the bus transceiver will not be initialized. This leads to CAN bus errors. Therefore it is

necessary to call a set of functions to realize a wake-up capable system. The order of the function
calls is very important. more...

m During the call of CanSleep () the CAN Driver has to be offline.

B CanSleep () mustnot be interrupted by CanInit (), CanReset... (), CanWakeUp () or any
CAN interrupt routine and vice versa.

m CanSleep(..) is notreentrant and therefore must not be called recursively.
m [tisn’t allowed to call CanSleep () out of any callback function.

m CAN Interrupts should be disabled during the call of CanSleep (). To disable the Can Interrupts
the function CanCanInterruptDisable () should not be used. If this function is used no CAN
wake-up interrupt occurs on the detection of any message on the CAN bus. The callback function
ApplCanWakeUp () will not be called.

m In Sleep mode the service functions CanGetStatus (), CanWakeUp(), CanTransmit(),
CanTask () and all Can...Task() are allowed to be called.

8.5.1.17 CanWakeUp
CanWakeUp

Prototype

Single Receive Channel vuint8 CanWakeUp (void)

Multiple Receive Channel vuint8 CanWakeUp (CanChannelHandle channel)
Parameter

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code
Result of the wakeup request

kCanFailed wakeup was not successful
kCanOk Sleep mode left
kCanNot Supported The function CanWakeUp is not supported by this driver.

Functional Description

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

90/ 149

TechnicalReference Vector CAN Driver VeCtOf

The service function CanWakeUp () enters the normal operating mode of the CAN Controller.
For indexed CAN Diriver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m This functionality is not supported for all CAN Controllers. In such case the function is provided by
the CAN Driver but without any effect on the CAN Controller. This is done to enable the Application
to realize an orthogonal software structure.

m During the call of CanWakeUp () the CAN Driver has to be offline.
m No wake-up interrupt is generated by the call of CanWakeUp () .

B CanWakeUp () must not be interrupted by CanInit (), CanReset... (), CanSleep () or any
CAN interrupt routine and vice versa.

B CanWakeUp (..) is not reentrant and therefore must not be called recursively.

8.5.1.18 CanStart

CanStart
Prototype

Single Receive Channel vuint8 CanStart (void)

Multiple Receive Channel vuint8 CanStart (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code
Result of the stop request

kCanFailed Restart of the CAN controller was not successful.
kCanOk Stop mode left
kCanNotSupported The function CanStart () is not supported by this driver.

Functional Description

The service function CanStart () enters the normal operating mode of the CAN Controller.
CanStart () may not be called in sleep mode.

For indexed CAN Diriver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m This functionality is not supported for all CAN Controllers. In such case the function is provided by
the CAN Driver but without any effect on the CAN Controller. This is done to enable the Application
to realize an orthogonal software structure.

m During the call of canstart () the CAN Driver has to be offline.

B CanStart () must not be interrupted by CanInit (), CanReset... (), CanWakeUp () or any
CAN interrupt routine and vice versa.

B CanStart (..) is not reentrant and therefore must not be called recursively.

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

91/149

TechnicalReference Vector CAN Driver

8.5.1.19 CanStop

CanStop

Prototype
Single Receive Channel

vuint8 CanStop (void)

Multiple Receive Channel

Parameter

channel

Return code
Result of the stop request:

vuint8 CanStop (CanChannelHandle channel)

Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Stop mode not entered

Functional Description

kCanFailed
kCanOk Stop mode entered
kCanNot Supported The function CanStop is not supported by this driver.

The service function CanStop () puts the CAN Controller into stop or hold mode. This does not
reduces the power consumption of the CAN Controller. The stop mode can only be left by calling
CanStart (). CanStop () must not be called in sleep mode.

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m This functionality is not supported for all CAN Controllers. In such case the function is provided by
the CAN Driver but without any effect on the CAN Controller. This is done to enable the Application
to realize an orthogonal software structure.

m During the call of CanStop () the CAN Driver has to be offline.

B CanStop () must not be interrupted by CanInit (), CanReset... (), CanWakeUp () orany
CAN interrupt routine and vice versa.

m CanStop (..) is not reentrant and therefore must not be called recursively.

8.5.1.20 CanGlobalinterruptDisable

CanGlobalinterruptDisable

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

Return code

Functional Description

©2010, Vector Informatik GmbH

The service function CanGlobalInterruptDisable () disables interrupts, either by changing the
global interrupt control flag of the microprocessor or the interrupt level of the interrupt controller. In the
later case, the interrupt level is configurable. All levels where the CAN API (CAN interrupt, Flags,
service functions) is used have to be disabled.

void CanGlobalInterruptDisable (void)

Version: 3.01.01

based on template version 2.1

vector’

92 /149

TechnicalReference Vector CAN Driver VQCEO['

Particularities and Limitations

m This function has been moved to VstdLib. For more information refer to Application note-ISC-2-
1050_VstdLibIntegration.pdf

8.5.1.21 CanGlobalinterruptRestore

CanGloballnterruptRestore

Prototype
Single Receive Channel void CanGlobalInterruptRestore (void)
Multiple Receive Channel

Parameter

Return code

Functional Description

The service function CanGlobalInterruptRestore () restores the initial interrupt state which was
saved temporarily by CanGlobalInterruptDisable (). If CanGlobalInterruptDisable () is
called in a nested way, the initial interrupt state is not restored until

CanGlobalInterruptRestore () has been called as many times.

Particularities and Limitations

m This function has been moved to VstdLib. For more information refer to Application note AN-ISC-2-
1050_VstdLiblntegration.pdf

8.5.1.22 CanCanlnterruptDisable

CanCanlnterruptDisable

Prototype

Single Receive Channel void CanCanInterruptDisable (void)

Multiple Receive Channel | 514 canCanInterruptDisable (CanChannelHandle channel)
Parameter

channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanCanInterruptDisable () disables all CAN interrupts of one CAN channel,
either by changing the CAN interrupt control flags of the interrupt controller or of the CAN controller. In
case of separately implemented wake-up interrupt routines they have to be disabled by the
application. Therefore the callback function ApplCanAddCanInterruptDisable () can be
activated.

Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01 93 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

m The CAN Dirivers differ in the implementation of this service function. Please refer to the CAN
Controller specification documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_int] for
details.

m This service function is not allowed to be called during Sleep-Mode.

8.5.1.23 CanCanlnterruptRestore

CanCanlinterruptRestore

Prototype

Single Receive Channel void CanCanInterruptRestore (void)

Multiple Receive Channel | 514 canCanInterruptRestore (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanCanInterruptRestore () restores the initial interrupt state which was
saved temporarily by CanCanInterruptDisable (). If CanCanInterruptDisable () is called in
a nested way, the initial interrupt state is not restored until CanCanInterruptRestore () has been
called as many times. In case of separately implemented wake-up interrupt routines they have to be
restored by the application. Therefore the callback function ApplCanAddCanInterruptRestore ()
can be activated.

Particularities and Limitations

m The CAN Dirivers differ in the implementation of this service function. Please refer to the CAN
Controller specification documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_int] for
details.

m This service function is not allowed to be called during Sleep-Mode.

8.5.1.24 CanSetPassive

CanSetPassive
Prototype

Single Receive Channel void CanSetPassive (void)

Multiple Receive Channel | ;4 canSetPassive (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description
The service function CanSetPassive (..) switches the CAN Driver to the passive state.

For indexed CAN Diriver, this functionality is related to the specified CAN channel.

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

94 /149

TechnicalReference Vector CAN Driver

vector”

Particularities and Limitations

m If the CAN Driver is configured to use a transmit queue, all queue entries will be cleared, i.e.
transmit requests and subsequent confirmations will be lost.

m The passive state of the CAN Driver will have an effect only if it is enabled by the CAN Driver
configuration. Nevertheless this service function is available at any time

8.5.1.25 CanSetActive

CanSetActive

Prototype
Single Receive Channel

void CanSetActive (void)

Multiple Receive Channel

Parameter

channel

Return code

Functional Description

void CanSetActive (CanChannelHandle channel)

Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

The service function CanSetActive () switches the CAN Driver back to the active state.
For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m The passive state of the CAN Driver will have an effect only if it is enabled by the CAN Driver
configuration. Nevertheless this service function is available at any time.

8.5.1.26 CanResetBusOffStart

CanResetBusOffStart

Prototype
Single Receive Channel

void CanResetBusOffStart (CanInitHandle initObject)

Multiple Receive Channel

Parameter

void CanResetBusOffStart (CanChannelHandle channel,
CanInitHandle initObject)

Handle of an initialization structure. The generated macros should be

Return code

Functional Description

©2010, Vector Informatik GmbH

initObject

used:

kCanInitOb3jX (with X =1 ... Number of generated initialization structures)
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Version: 3.01.01

based on template version 2.1

95/149

TechnicalReference Vector CAN Driver VeCtOf

This service function starts error recovery of the CAN Controller directly after BusOff. Usually a re-
initialization of the CAN Controller is done. The correct handling of a BusOff depends on the used
CAN Controller. Please refer to the CAN Controller specification documentation
TechnicalReference_ CAN_<hardware>.pdf [#hw_busoff] for details.

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations
m During the call of CanResetBusOffStart (..), the CAN Driver has to be in offline mode.

B CanResetBusOffStart (..) is not reentrant and therefore must not be called recursively.

B CanResetBusOffStart () must not be interrupted by CanInit (), CanResetBusOffEnd (),
CanResetBusSleep (), CanSleep (), CanWakeUp () or by any CAN interrupt service routine
and vice versa.

m This service function can be realized as a preprocessor macro.

8.5.1.27 CanResetBusOffEnd

CanResetBusOffEnd
Prototype

Single Receive Channel void CanResetBusOffEnd (CanInitHandle initObject)

Multiple Receive Channel | ;4 canResetBusOffEnd (CanChannelHandle channel,
CanInitHandle initObject)

initObject Han:le of an initialization structure. The generated macros should be
used:

kCanInitObjX (with X =1 ... Number of generated initialization structures)

Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

channel

Return code

Functional Description

Completes the error recovery after BusOff. For most of the CAN Drivers this service function has no
effect.

For indexed CAN Diriver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m During the call of CanResetBusOffEnd (. .), the CAN Driver has to be in offline mode.
B CanResetBusOffEnd(..) is notreentrant and therefore must not be called recursively.

B CanResetBusOffEnd () must not be interrupted by CanInit (), CanResetBusOffStart (),
CanResetBusSleep (), CanSleep (), CanWakeUp () or by any CAN interrupt service routine
and vice versa.

m This service function can be realized as a preprocessor macro.

8.5.1.28 CanResetBusSleep
CanResetBusSleep

Prototype

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

96 /149

TechnicalReference Vector CAN Driver

Single Receive Channel

void CanResetBusSleep (CanInitHandle initObject)

Multiple Receive Channel

Parameter

void CanResetBusSleep (CanChannelHandle channel,
CanInitHandle initObject)

Handle of an initialization structure. The generated macros should be

Return code

Functional Description

specific features:

and vice versa.

initObject

used:

kCanInitObjX (with X =1 ... Number of generated initialization structures)
channel Handle of a CAN channel. The generated macros should be used:

This service function aborts pending transmit requests in the CAN Controller before the sleep mode of
the CAN Controller is entered. This can be done by different ways, depending on CAN Controller

m Complete re-initialization of the CAN Controller (using the service function CanInit ())
m Cancel of the transmit requests

Please refer to the CAN Controller specific documentation for details.

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

m During the call of CanResetBusSleep (..), the CAN Driver has to be in offline mode.
B CanResetBusSleep (..) is not reentrant and therefore must not be called recursively.

B CanResetBusSleep () mustnot be interrupted by CanInit (), CanResetBusOffStart (),
CanResetBusOffEnd (), CanSleep (), CanWakeUp () or by any CAN interrupt service routine

m This service function can be realized as a preprocessor macro.

kCanIndexX (with X =0 ... Number of generated channel index)

8.5.1.29 CanGetDynTxObj

Prototype

CanGetDynTxObj

Single Receive Channel

Multiple Receive Channel
Parameter

txObject

Return code

CanTransmitHandle

CanTransmitHandle CanGetDynTxObj (CanTransmitHandle
txObject)

Handle of the dynamic transmit object.

Handle of the dynamic transmit object or kCanNoTxDynObjAvailable
if no dynamic transmit object is available or the specific dynamic object
is already used.

Functional Description

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector’

97 /149

TechnicalReference Vector CAN Driver VeCtOf

Reserves a dynamic transmit object.

To use dynamic transmit objects an Application must reserve a dynamic transmit object from the CAN
Driver.

Before transmission, the Application must set all configured dynamic parameters of the dynamic
transmit object.

The Application can use a dynamic transmit object for one or many transmissions, but finally it must
release the dynamic transmit object by calling CanReleaseDynTx0bj (. .).

Particularities and Limitations

m This service function is only available, if dynamic transmit objects are configured.

m The generated handles should be used to reference the transmit objects. The names consist of the
message symbol, a prefix and a postfix. Fixed rules are used to build these names. For more
details please refer to the online help of the Generation Tool.

©2010, Vector Informatik GmbH Version: 3.01.01 98 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

8.5.1.30 CanReleaseDynTxObj
CanReleaseDynTxObj

Prototype

Single Receive Channel vuint8 CanReleaseDynTxObj (CanTransmitHandle txObject)
Multiple Receive Channel

Parameter

txObject Handle of the dyngmic transmit object which was returned by
CanGetDynTxO0bj (. .)

Return code
kCanDynReleased Dynamic object is released

kCanDynNotReleased Dynamic transmit object couldn’t be released because the object is still
in the transmit queue or in the transmit register of the CAN Controller.

CanReleaseDynTxObj (..) has to be called later again.
Functional Description

Release a dynamic transmit object, which was reserved before by calling CanGetDynTx0b7 (. .).
The dynamic transmit object is referenced by txObject.

After a transmission of one or more messages is finished, the Application has to release the reserved
resource, because the number of dynamic transmit objects is limited and the Application should not
keep reserved dynamic transmit objects for a longer time.

Particularities and Limitations
m This service function is only available, if dynamic transmit objects are configured.
m The parameter txObject was reserved before by a call to CanGetDynTx0bj (. .).

8.5.1.31 CanDynTxObijSetld
CanDynTxObjSetld

Prototype

Single Receive Channel void CanDynTxObjSetId (CanTransmitHandle txObject, wvuintlé
Multiple Receive Channel | id)

Parameter

txObject Handle of the dynamic transmit object which was returned by
CanGetDynTx0bj (..).

CAN identifier in standard format

-
(o}

Return code

Functional Description

Sets the CAN identifier in standard format of a dynamic transmit object. The dynamic transmit object is
referenced by txObject.

Particularities and Limitations
m This service function is only available, if dynamic transmit objects are configured.
m The parameter txObject was reserved before by a call to CanGetDynTxO0bj (..).

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

99/149

TechnicalReference Vector CAN Driver

8.5.1.32 CanDynTxObjSetExtld

Prototype
Single Receive Channel

Multiple Receive Channel

Parameter

CanDynObjSetExtld

void CanDynTxObjSetExtId (CanTransmitHandle txObject,
vuintl6é idExtHi,
vuintl6 idExtLo)

Handle of the dynamic transmit object which was returned by

Return code

Functional Description

is referenced by txObject

txObject .

CanGetDynTx0bj (..)
idExtH Upper 16 bit of the CAN identifier in extended format
idExtLo Lower 16 bit of the CAN identifier in extended format

Sets the CAN identifier in extended format of a dynamic transmit object. The dynamic transmit object

Particularities and Limitations
m This service function is only available, if dynamic transmit objects are configured.
m The parameter txObject was reserved before by a call to CanGetDynTx0bj (..).

8.5.1.33 CanDynTxObjSetDlIc

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

txObject

CanDynTxObjSetDic

void CanDynTxObjSetDlc (CanTransmitHandle txObject,
vuint8 dlc)

Handle of the dynamic transmit object which was returned by
CanGetDynTx0bj (..)

(o}
=
Q

Return code

Functional Description

txObject.

Data Length Code of the dynamic transmit object

Sets the Data Length Code of a dynamic transmit object. The dynamic transmit object is referenced by

Particularities and Limitations
m This service function is only available, if dynamic transmit objects are configured.
m The parameter txObject was reserved before by a call to CanGetDynTx0bj (..).

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector”

100/ 149

TechnicalReference Vector CAN Driver VeCtOf

8.5.1.34 CanDynTxObjSetDataPtr
CanDynTxObjSetDataPtr

Prototype
Single Receive Channel void CanDynTxObjSetDataPtr (CanTransmitHandle txObject,
Multiple Receive Channel vuint8 *pData)

Parameter

txObject Handle of the dyngmic transmit object which was returned by
CanGetDynTxO0bj (. .)

*pData Data reference of the application specific data buffer referenced by the
dynamic transmit object

Return code

Functional Description

Sets the data pointer of a dynamic transmit object. The dynamic transmit object is referenced by
txObject.

Particularities and Limitations
m This service function is only available, if dynamic transmit objects are configured.

m The parameter txObject was reserved before by a call to CanGetDynTx0bj (..).

8.5.1.35 CanCancelTransmit

CanCancelTransmit

Prototype

Single Receive Channel void CanCancelTransmit (CanTransmitHandle txObject)

Multiple Receive Channel
Parameter
txObject Handle of the transmit object

Return code

Functional Description

The call of the confirmation function resp. setting of the confirmation flag associated with txObject are
suppressed, if this message is already in the transmit buffer of the CAN controller.

If the transmit queue is enabled, a pending transmit request in the queue is canceled.
Particularities and Limitations

The function call of CanCancelTransmit () must not interrupt the transmit ISR, CanTransmit () or
the canTxTask ().

Though a transmission is canceled it will be sent if the request has been already in the hardware
object. Only if activated and highly dependent on hardware and vehicle manufacturer the transmit
request can be deleted in the hardware transmit object, too.

8.5.1.36 CanCopyFromCan
CanCopyFromCan

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

101 /149

TechnicalReference Vector CAN Driver VQCEO['

Prototype

Single Receive Channel void CanCopyFromCan (void *dst, CanChipDataPtr src, vuint8
Multiple Receive Channel len)

Parameter

Pointer to the destination in default memory. This pointer is available in
the Precopy Function.

Pointer to the source CAN buffer or temporary buffer

number of bytes which have to be copied

Functional Description

This function copies data from the CAN data buffer to the RAM.

Particularities and Limitations
This function can only be used within precopy functions.

8.5.1.37 CanCopyToCan

CanCopyToCan
Prototype
Single Receive Channel void CanCopyToCan (CanChipDataPtr dst, void *src, vuint8

Multiple Receive Channel len)

Parameter

Pointer to the destination CAN buffer or temporary buffer. This pointer is
available in the Pretransmit Function.

Pointer to the source in default memory.

number of bytes which have to be copied

Functional Description

This function copies data from the RAM into the CAN data buffer.

Particularities and Limitations
This function can only be used within pretransmit functions.

8.5.1.38 CanTxGetActHandle

CanTxGetActHandle
Prototype

Single Receive Channel CanTransmitHandle CanTxGetActHandle (CanObjectHandle
Multiple Receive Channel | logTxHwCbject)

Parameter

©2010, Vector Informatik GmbH Version: 3.01.01 102/ 149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

1ogTxHwObject Handle of the CAN hardware transmit object. For indexed drivers this is
a unique number over all CAN channels.

Return code

txObject Handle of the transmit object which is currently in the hardware transmit
object. In case of enabled LowLevelMessageTransmit, this could also be
a handle of such a message

kCanBufferMsgTransmit: CanCancelMsgTransmit

kCanTxHandleNotUsed: Handle is not valid

Functional Description

This service functions returns the handle of the transmit message, which has been transmitted in a
certain CAN hardware transmit object. The return value can be used as a parameter for
CanCancelTransmit (). If the return value is kCanBufferMsgTransmit,
CanCancelMsgTransmit () has to be called in stead of CanCancelTransmit ().
CanCancelTransmit () ignores invalid handle and kCanBufferMsgTransmit.

Particularities and Limitations

This function is only allowed to be called in or after App1CanTxObjStart () and before
ApplCanTxObjConfirmed () of a certain CAN buffer.

8.5.1.39 CanResetMsgReceivedCondition

CanResetMsgReceivedCondition

Prototype

Single Receive Channel void CanResetMsgReceivedCondition (void)

Multiple Receive Channel | ;4 CanResetMsgReceivedCondition (CanChannelHandle
channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanResetMsgReceivedConditional () disables the calling of
ApplCanMsgCondReceived() .

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

8.5.1.40 CanSetMsgReceivedCondition
CanSetMsgReceivedCondition

Prototype

Single Receive Channel void CanSetMsgReceivedCondition (void)

Multiple Receive Channel | i3 canSetMsgReceivedCondition (CanChannelHandle channel
)

Parameter

©2010, Vector Informatik GmbH Version: 3.01.01 103 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VQCEO['

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanSetMsgReceivedConditional () enables the calling of
ApplCanMsgCondReceived() .

For indexed CAN Diriver, this functionality is related to the specified CAN channel.
Particularities and Limitations

8.5.1.41 CanGetMsgReceivedCondition
CanGetMsgReceivedCondition

Prototype

Single Receive Channel void CanGetMsgReceivedCondition (void)

Multiple Receive Channel | y,i4 canGetMsgReceivedCondition (CanChannelHandle channel

Parameter

|

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

The service function CanGetMsgReceivedConditional () returns the status of the condition for
calling 2zpplCanMsgCondReceived () .

For indexed CAN Driver, this functionality is related to the specified CAN channel.
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01 104 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

8.5.2 User Specific Functions

The user specific functions listed in this section are called by the CAN Driver and provided
by the Application when certain events occur. The user can define user specific functions
specifically for each message. The names in this section are only placeholders. The name
could be set in the generation tool. The type of the particular user specific message must
agree with the function types listed here.

8.5.2.1 UserPrecopy

UserPrecopy

Prototype

Single Receive Channel vuint8 UserPrecopy (CanRxInfoStructPtr rxStruct)

Multiple Receive Channel
Parameter

rxStruct Pointer to the receive structure

Return code

kCanCopyData Receive_d data will be copied using the CAN Driver 's internal copy
mechanism
kCanNoCopyData CAN Driver doesn’t copy data and doesn’t perform indication

Functional Description

User specific function of the CAN Driver, which is called in the receive interrupt of a CAN message
before copying the data from the CAN Controller receive register to the application specific global data
buffer.

Depending on the function's return code, the CAN Driver will either terminate the processing of the
received message (kCanNoCopyData) or resume normal processing (kCanCopyData).

Particularities and Limitations

m For each CAN message a separate precopy function may be defined.

8.5.2.2 Userlndication

Userindication

Prototype

Single Receive Channel void UserIndication(CanReceiveHandle rxObject)

Multiple Receive Channel
Parameter

rxObject Handle of the received message

Return code

Functional Description

User specific function which is called in the receive interrupt of a CAN message after data has been
copied and the CAN Controller receive register have been released.

Particularities and Limitations

m For each CAN message a separate indication function may be defined.

©2010, Vector Informatik GmbH Version: 3.01.01 105/149

based on template version 2.1

TechnicalReference Vector CAN Driver VQCEO['

8.5.2.3 UserPreTransmit

UserPreTransmit

Prototype

Single Receive Channel vuint8 UserPreTransmit(CanTxInfoStruct txStruct)

Multiple Receive Channel
Parameter

txStruct Transmit structure

kCanCopyData After the return of this user specific function, the CAN Driver copies the
data to be transmitted from the application specific global data buffer
associated to the corresponding message to the CAN Controller transmit
register

kCanNoCopyData The CAN Driver.does r]ot copy data but starts the transmit request in the
CAN Controller immediately

Functional Description

User specific function which is called before the message is copied from the application specific data
buffer to the transmit register of the CAN Controller. This is done in the scope of the Tx interrupt or the
CanTxTask () via CanTransmit (..). The usage of the internal copy mechanism of the CAN Driver
is controlled by the return code.

A possible usage is the acquiring and copying of existing data which are spread in the Application.

Particularities and Limitations

m For each CAN message a separate pretransmit function may be defined.

8.5.2.4 UserConfirmation

UserConfirmation

Prototype

Single Receive Channel void UserConfirmation(CanTransmitHandle txObject)

Multiple Receive Channel
Parameter
txObject Handle of the transmit object

Return code

Functional Description

User specific function which is called in the scope of the CAN transmit interrupt routine or the
CanTxTask () after the message has been sent on the CAN bus successfully

Particularities and Limitations

m For each CAN message a separate confirmation function may be defined.

©2010, Vector Informatik GmbH Version: 3.01.01 106 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

8.5.3 Callback Functions

Callback functions are called by the CAN Driver on certain events and have to be provided
by the Application. In contrast to the user specific functions in the section before the
callback functions are not message related but only event related. Their name can also be

reconfigured.

8.5.3.1 ApplCanBusOff

ApplCanBusOff
Prototype

Single Receive Channel void ApplCanBusOff (void)

Multiple Receive Channel void ApplCanBusOff (CanChannelHandle channel)
Parameter

channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
Return code

Functional Description

This callback function is called if the CAN Controller enters BusOff state. The function is called in the
error interrupt, CanTask () or CanErrorTask ().

Particularities and Limitations

If no Network Management is used which provides a BusOff error handling, the Application has to do
the subsequent error handling (usually the re-initialization of the CAN Controller) by the CAN Driver
service function CanResetBusOffStart () and CanResetBusOffEnd () itself.

8.5.3.2 ApplCanWakeUp
ApplCanWakeUp

Prototype

Single Receive Channel void ApplCanWakeUp (void)

Multiple Receive Channel | i applcanWakeUp (CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

This callback function is called if a wake-up condition on the CAN bus is detected during sleep mode
of the CAN Controller. The function is called in the wakeup interrupt, in the CanTask () orin the
CanWakeupTask().

Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

107 /149

TechnicalReference Vector CAN Driver VeCtOf

m If the CAN Controller was put into sleep mode by calling the service function CanSleep (), and
afterwards there is a dominant level at the receive input of the CAN Controller, CAN Controller
generates a wake-up interrupt. The CAN Driver calls the callback function ApplCanWakeUp () to
handle further wake-up call activities, e.g. starting the Network Management.

m The Application must assure that the CAN transmit path is restored to its normal operating state,
typically by the activation of the bus transceiver.

m This wake-up functionality is not supported by all CAN Controllers. If there is no power-down mode
of the CAN Controller or if the microprocessor cannot detect an external wake-up condition by the
CAN bus, this callback function will never be called.

8.5.3.3 ApplCanOverrun

ApplCanOverrun
Prototype

Single Receive Channel void ApplCanOverrun (void)

Multiple Receive Channel | ;4 ApplCanOverrun (CanChannelHandle channel)
Parameter

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

This callback function is called if an overrun in a Basic CAN receive object was detected. It indicates a
possible loss of receive data. The function is called in the error interrupt, in the receive interrupt, in the
CanTask (), inthe CanRxTask (), orinthe CanErrorTask().

Particularities and Limitations
The overrun is completely handled by the CAN Driver. This callback function only notifies the

Application about such a condition.

8.5.3.4 ApplCanFullCanOverrun

ApplCanFullCanOverrun
Prototype

Single Receive Channel void ApplCanFullCanOverrun (void)

Multiple Receive Channel | i applcanFullCanOverrun (CanChannelHandle channel)
Parameter

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

This callback function is called if an overrun of a Full CAN receive object was detected. It indicates a
possible loss of receive data. The function is called in the error interrupt, in the receive interrupt, in the
CanTask (), in the CanRxTask () orinthe CanErrorTask ().

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

108 /149

TechnicalReference Vector CAN Driver VQCEO['

Particularities and Limitations

m The overrun is completely handled by the CAN Driver. This callback function only notifies the
Application about an overrun.

8.5.3.5 ApplCanMsgReceived
ApplCanMsgReceived

Prototype

Single Receive Channel vuint8 ApplCanMsgReceived(CanRxInfoStructPtr rxStruct)
Multiple Receive Channel

Parameter

rxStruct Pointer to receive information structure

Return code

kCanCopyData Receive processing will be continued

kCanNoCopyData Receive processing will be terminated

Functional Description

This callback function is called on every reception of a CAN message when the hardware acceptance
filter is passed. The function is called in the receive interrupt, in the CanTask () or in the
CanRxTask ().

Particularities and Limitations
m The callback function may be used for gateway functionality or any other purpose.

m There are preprocessor macros available to read the CAN identifier, the Data Length Code and the
data in the CAN Controller receive register.

8.5.3.6 ApplCanRangePrecopy
ApplCanRangePrecopy

Prototype

Single Receive Channel vuint8 ApplCanRangePrecopy (CanRxInfoStructPtr rxStruct)
Multiple Receive Channel

Parameter
rxStruct Pointer to the receive structure

Return code

kCanCopyData The CAN receive interrupt routine is continued with verifying a match to
the next range and ID search.

kCanNoCopyData The CAN receive interrupt routine is terminated immediately after the
CAN Controller is serviced

Functional Description

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

109/ 149

TechnicalReference Vector CAN Driver VeCtOf

This precopy function is not called on a specific message CAN identifier but on a complete CAN
identifier range. The function is called in the receive interrupt, in the CanTask (), in the

CanRxTask () orin CanHandleRxMsg (). The return code is not taken into account, if the range is
handled via the RX Queue. In this case, the handling of the received message will be terminated after
calling the range specific precopy function.

The name of this function is only a placeholder. The name could be set in the generation tool.
Up to four ranges with individual precopy functions can be specified per CAN channel.
Particularities and Limitations

m Ranges are normally used for Network Management or Transport Protocol services only

m In case a range configured to be handled via the Rx Queue, the return code of this function is
ignored.

8.5.3.7 ApplCanAddCanIinterruptDisable
ApplCanAddCaninterruptDisable

Prototype

Single Receive Channel void ApplCanAddCanInterruptDisable (CanChannelHandle
Multiple Receive Channel | channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
In case of Single Receive Channel channel is always 0.

Return code

Functional Description

Disabling of additional CAN interrupts (like separately implemented Wake-Up interrupts and Polling
Tasks) can be added to the standard mechanism of the CAN by this callback function. The function is
called on interrupt and task level.

Particularities and Limitations

B ApplCanAddCanInterruptDisable () is only called if configured

8.5.3.8 ApplCanAddCanIinterruptRestore
ApplCanAddCaninterruptRestore

Prototype

Single Receive Channel void ApplCanAddCanInterruptRestore (CanChannelHandle
Multiple Receive Channel |channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
In case of Single Receive Channel channel is always O.

Return code

Functional Description

©2010, Vector Informatik GmbH Version: 3.01.01 110/ 149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

Complementary callback function for ApplCanAddCanInterruptDisable ().The function is called
on interrupt and task level.

Particularities and Limitations

B ApplCanAddCanInterruptRestore () is only called if configured.

8.5.3.9 ApplCanFatalError
ApplCanFatalError

Prototype
Single Receive Channel void ApplCanFatalError (vuint8 errorNumber)

Multiple Receive Channel void ApplCanFatalError (CanChannelHandle channel, vuint8
errorNumber)

Parameter

Error identification: There is a predefined list with supported assertion

errorNumber
checks for each CAN Driver. All the function parameters starting with
kError.... Please refer to chapter Assertions and the CAN Controller
Specific documentation TechnicalReference CAN_<hardware>.pdf
[#hw_assert] for details.

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Functional Description

If assertions are configured, the callback function ApplCanFatalError (..) is called in case of
invalid user conditions (Application interface, reentrance), inconsistent generated data, hardware
errors or internal errors (queue). An error number is passed by the parameter. The function is called on
interrupt and task level.

Particularities and Limitations

m This callback function does not have to return to the CAN Driver.

8.5.3.10 ApplCanMsgNotMatched
ApplCanMsgNotMatched

Prototype

Single Receive Channel void ApplCanMsgNotMatched (CanRxInfoStructPtr rxStruct)
Multiple Receive Channel

Parameter

rxStruct Pointer to the receive structure

Functional Description

This callback function is called if a CAN message passes the hardware acceptance filter, but not the
software filter (inclusive the identifier specific predefined ranges). The function is called in the receive
interrupt, in the CanTask () orinthe CanRxTask ().

©2010, Vector Informatik GmbH Version: 3.01.01 1117149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

Particularities and Limitations

8.5.3.11 ApplCanlnit

ApplCanlnit
Prototype

Single Receive Channel void ApplCanInit(CanObjectHandle logTxHwObjectFirstUsed,
CanObjectHandle logTxHwObjectFirstUnused)

Multiple Receive Channel void ApplCanInit(CanChannelObject channel,
CanObjectHandle logTxHwObjectFirstUsed,
CanObjectHandle logTxHwObjectFirstUnused)

Parameter

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

1ogTxHwObjectFirstUsed Handle of the first CAN hardware transmit object of the current channel.

Handle of the first unused CAN hardware transmit object of the current

logTxHwObjectFirstUnused
channel.
example:

for (i = logTxHwObjectFirstUsed; i <
logTxHwObjectFirstUnused; i++)

{

/* loop over all used hardware transmit buffer of
the current
channel */

Return code

|
‘ I \—H

Functional Description

This callback function is called in CanInit () for general purposes. In CanInit () transmit requests in
the CAN Controller are canceled. This means the corresponding confirmation notification will never
occur. User defined actions started in ApplCanTxObjStart () have to be stopped in

ApplCanInit ().The function is called on interrupt and task level.

Particularities and Limitations

This callback is active only if ‘Tx observe’ functionality is activated.

©2010, Vector Informatik GmbH Version: 3.01.01 112/ 149

based on template version 2.1

TechnicalReference Vector CAN Driver

8.5.3.12 ApplCanTxObjStart

ApplCanTxObjStart

Prototype
Single Receive Channel

void ApplCanTxObjStart(CanObjectHandle logTxHwObject)

Multiple Receive Channel

Parameter

void ApplCanTxObjStart(CanChannelHandle channel,
CanObjectHandle logTxHwObject)

Return code

Functional Description

channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
logTxHwObject Handle of the CAN buffer transmit object. For indexed drivers this is a

This callback function is called every time, a transmit request is initiated in the CAN Controller. This is
done in the service CanTransmit (. .).The function is called in the transmit interrupt, in the
CanTask () orinthe CanTxTask (), if the transmit queue is enabled.

unique number over all CAN channels.

Particularities and Limitations

This callback is active only if ‘Tx observe’ functionality is activated.

8.5.3.13 ApplCanTxObjConfirmed

ApplCanTxObjConfirmed

Prototype
Single Receive Channel

void ApplCanTxObjConfirmed(CanObjectHandle logTxHwObject)

Multiple Receive Channel

Parameter

channel

void ApplCanTxObjConfirmed (CanChannelHandle channel,
CanObjectHandle logTxHwObject)

Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

logTxHwObject

Return code

Functional Description

This callback function is called every time, a successful transmission is confirmed by the CAN
Controller in the scope of a transmit interrupt, in the CanTask () orin the CanTxTask ().

Handle of the CAN buffer transmit object. For indexed drivers this is a
unique number over all CAN channels.

Particularities and Limitations

This callback is active only if ‘Tx observe’ functionality is activated.

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector’

1137149

TechnicalReference Vector CAN Driver VQCEO['

8.5.3.14 ApplCanTimerStart
ApplCanTimerStart

Prototype

Single Receive Channel void ApplCanTimerStart (vuint8 timerIdentification)

Multiple Receive Channel | y,i4 applcanTimerStart (CanChannelObject channel, vuint8
timerIdentification)

Parameter
Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

channel

timerTIdentification Identifier for the hardware dependent loop timer

Return code

Functional Description

This callback function is called before a CAN Controller dependent loop is started.

Particularities and Limitations

8.5.3.15 ApplCanTimerLoop
ApplCanTimerLoop

Prototype

Single Receive Channel vuint8 ApplCanTimerLoop (vuint8 timerIdentification)

Multiple Receive Channel | ;i nt8 applCanTimerLoop (CanChannelObject channel, vuint8
timerIdentification)

Parameter
Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

channel

timerIdentification Identifier for the hardware dependent loop timer

Return code
FALSE (equal to 0) Exit loop, even if hardware is not correct

TRUE (not equal to 0) Continue with waiting for hardware condition

Functional Description
This callback function is called once in every loop cycle, i.e. multiple times for a specific condition.

Particularities and Limitations

©2010, Vector Informatik GmbH Version: 3.01.01 114 /149

based on template version 2.1

TechnicalReference Vector CAN Driver

8.5.3.16 ApplCanTimerEnd

ApplCanTimerEnd

Prototype
Single Receive Channel

void ApplCanTimerEnd (vuint8 timerIdentification)

Multiple Receive Channel

Parameter

channel

void ApplCanTimerEnd (CanChannelObject channel, wvuint8
timerIdentification)

Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

timerIdentification

Return code

Functional Description

This callback function is called after a hardware dependent loop is finished, due to return value also of
ApplCanTimerLoop or hardware condition met.

Identifier for the hardware dependent loop timer

Particularities and Limitations

8.5.3.17 ApplCanGenericPrecopy

ApplCanGenericPrecopy

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

rxStruct

Return code

kCanCopyData

vuint8 ApplCanGenericPrecopy (CanRxInfoStructPtr rxStruct)

Pointer to the receive structure

The UserPrecopy function will be called and the Received data will be
copied using the CAN Driver’s internal copy mechanism.

kCanNoCopyData
Functional Description

the CanRxTask ().

This precopy function is common to all receive messages. It will be called immediately after the DLC-
check. The call of the UserPrecopy functions or copy of data are influenced by
ApplCanGenericPrecopy (). The function is called in the receive interrupt, in the CanTask () orin

CAN Driver doesn’t copy data and doesn’t perform indication

Particularities and Limitations

8.5.3.18 ApplCanPreWakeup

ApplCanPreWakeup

Prototype

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector”

1157149

TechnicalReference Vector CAN Driver

Single Receive Channel

void ApplCanPreWakeUp (void)

Multiple Receive Channel
Parameter

channel

Functional Description
Is called just after the activation of the wakeup interrupt.

void ApplCanPreWakeUp (CanChannelHandle channel)

Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

Particularities and Limitations

8.5.3.19 ApplCanTxConfirmation

Prototype

ApplCanTxConfirmation

Single Receive Channel

Multiple Receive Channel
Parameter

txStruct

Return code

Functional Description

transmission. The function is
CanTxTask ().

void ApplCanTxConfirmation(CanTxInfoStructPtr txStruct)

This confirmation function is common to all transmit messages. It will be called after the successful

Pointer to transmit structure

typedef struct
{

CanChannelHandle Channel;
CanTransmitHandle Handle;
} tCanTxConfInfoStruct;

typedef tCanTxConfInfoStruct
*CanTxInfoStructPtr;

Handle:

-0 ... (kCanNumberOfTxMessages-1): the handle of the Tx message.
- kCanBufferMsgTransmit, in case the message was sent via
CanCancelMsgTransmit().

- ((CanTransmitHandle) OxFFFFFEFFEU)

in case the message was cancel by CanCanTransmit() or
CanCancelMsgTransmit() but sent on the bus

called in the transmit interrupt, in the CanTask () orinthe

Particularities and Limitations

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

vector”

116/ 149

TechnicalReference Vector CAN Driver VQCEO['

8.5.3.20 ApplCanMsgDIcFailed
ApplCanMsgDIcFailed

Prototype

Single Receive Channel void ApplCanMsgDlcFailed(CanRxInfoStructPtr rxStruct)
Multiple Receive Channel

Parameter

rxStruct Pointer to the receive structure

Return code

Functional Description

This callback function is called, if the DLC check fails. To activate this callback function the switch
C _ENABLE DLC FAILED FCT has to be setin a user configuration file. The function is called in the
receive interrupt, in the CanTask () orinthe CanRxTask ().

Particularities and Limitations

It depends on the OEM if ApplCanMsgDlcFailed() is available.

8.5.3.21 ApplCanCancelNotification
ApplCanCancelNotification

Prototype

Single Receive Channel void ApplCanCancelNotification (CanTransmitHandle txHandle)
Multiple Receive Channel

Parameter
txHandle Handle of cancelled transmit object

Return code

Functional Description

This function will be called if a transmit message is deleted (CanCancelTransmit, CanOffline or
Canlnit). This function could be called in Interrupt or Task context.

Particularities and Limitations

ApplCanCancelNotification () is only called if configured.

©2010, Vector Informatik GmbH Version: 3.01.01 117 /149

based on template version 2.1

TechnicalReference Vector CAN Driver

8.5.3.22 ApplCanOnline

vector”

ApplCanOnline

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

channel

Return code

Functional Description

called on task level.

void ApplCanOnline (CanChannelHandle channel)

CAN Channel on which the CAN driver was switched to online mode.

This callback function indicates that the CAN driver is switched to online mode. This function is called
by the CAN Driver if the mode change is initiated via CanOnline ().

Particularities and Limitations
Call context: This function is called within Canonline (). This service function is only allowed to be

8.5.3.23 ApplCanOffline

ApplCanOffline

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

channel

Return code

Functional Description

void ApplCanOffline (CanChannelHandle channel)

CAN Channel on which the CAN driver was switched to offline mode.

This callback function indicates that the CAN driver is switched to offline mode. This function is called
by the CAN Driver if the mode change is initiated via CanOffline ().

Particularities and Limitations

Call context: This function is called within CanOffline (). This service function is allowed to be
called on task level or on interrupt level.

8.5.3.24 ApplCanMsgCondReceived

Prototype
Single Receive Channel

Multiple Receive Channel
Parameter

rxStruct

ApplCanMsgCondReceived

void ApplCanMsgCondReceived (CanRxInfoStructPtr rxStruct)

Pointer to the receive information structure

©2010, Vector Informatik GmbH

Version: 3.01.01

based on template version 2.1

118 /149

TechnicalReference Vector CAN Driver VeCtOf

Return code

Functional Description

This callback function is conditionally called on every reception of a CAN message when the hardware
acceptance filter is passed.

There are preprocessor macros available to read the CAN identifier, the Data Length Code and the
data in the CAN Controller receive register.

Particularities and Limitations

Call context: The function is called in the receive interrupt, in the CanTask () orinthe
CanRxTask ().

8.5.3.25 ApplCanMemCheckFailed

ApplCanMemCheckFailed

Prototype

Single Receive Channel vuint8 ApplCanMemCheckFailed (void)

Multiple Receive Channel vuint8 ApplCanMemCheckFailed (CanChannelHandle channel)
Parameter

Channel Handle of the CAN channel on which the check failed. The generated

macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)

kCanEnableCommunication Allow communication.

kCanDisableCommunication | Pisable communication, no reception and no transmission is performed.

Functional Description

This callback function is called if the CAN driver has found at least one corrupt memory bit within the
CAN mailboxes. The application can decide if the CAN driver allows further communication by means
of the return value.

Particularities and Limitations

Call context: This function is called on task level or within the busoff interrupt.

8.5.3.26 ApplCanCorruptMailbox
ApplCanCorruptMailbox

Prototype

Single Receive Channel void ApplCanCorruptMailbox (CanObjectHandle hwObjHandle)
Multiple Receive Channel | ;4 applcanCorruptMailbox (CanChannelHandle channel,
CanObjectHandle hwObjHandle)
Parameter
hwObjHandle The index of the corrupt mailbox.
channel Handle of the CAN channel on which the corrupt mailbox is located. The
generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
©2010, Vector Informatik GmbH Version: 3.01.01 119/149

based on template version 2.1

TechnicalReference Vector CAN Driver VQCEO['

Return code

Functional Description

This callback function is called if the CAN driver has found a corrupt mailbox.

Particularities and Limitations
Call context: This function is called on task level or within the busoff interrupt.

©2010, Vector Informatik GmbH Version: 3.01.01 120/ 149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

9 Description of the API (High End extension)

9.1 Functions

9.1.1 Service Functions

9.1.1.1 CanTxObjTask
CanTxObjTask

Prototype

Single Receive Channel void CanTxObjTask (CanObjectHandle txObjHandle)

Multiple Receive Channel void CanTxObjTask (CanChannelHandle canHwChannel,
CanObjectHandle txObjHandle)

Parameter
Handle of a CAN Hardware channel. The generated macros should be

canHwChannel
used:
Normal Tx Object:
C_TX NORMAL <channel> HW CHANNEL (with <channel>=0 ... Number
of logical channel)
Full CAN Tx Object:
<message name> HW CHANNEL (with <message name> = Name of the
Message with pre and postfixes generated in “can_par.h"t)
Low Level Tx Object:
C TX LL <channel> HW CHANNEL (with <channel>=0 ... Number of logical
channel)
txObjHandle Handle of a Tx mailbox. The generated macros should be used:

Normal Tx Object:

C_TX NORMAL <channel> HW OBJ (with <channel>=0 ... Number of
logical channel)

Full CAN Tx Object:

<message name> HW OBJ (with <message name> = Name of the Message with
pre and postfixes generated in “can_par.h”)

Low Level Tx Object:

C _TX LL <channel> HW OBJ (with <channel>=0 ... Number of logical
channel)

Return code

Functional Description

The service function CanTxObjTask () does polling of specified transmit hardware objects in the
CAN controller. Confirmation functions will be called and confirmation flags will be set. If the transmit
queue is configured, this service function additionally transmits the queued messages.

Particularities and Limitations
B CanTxObjTask () is available, if the individual polling mode and at least one mailbox is configured

for polling.

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

121 /149

TechnicalReference Vector CAN Driver

9.1.1.2 CanRxFullCANObjTask

Prototype

vector”

CanRxFullCANObjTask

Single Receive Channel

void CanRxFullCANObjTask (CanObjectHandle rxObjHandle)

Multiple Receive Channel

Parameter

canHwChannel

rxObjHandle

Return code

Functional Description

configured for polling.

void CanRxFullCANObjTask (CanChannelHandle canHwChannel,
CanObjectHandle rxObjHandle)

Handle of a CAN Hardware channel. The generated macros should be
used:

<message name> HW CHANNEL (with <message name> = Name of the
Message with pre and postfixes generated in “can_par.h”)

Handle of an Rx mailbox. The generated macros should be used:

<message name> HW OBJ (with <message name> = Name of the Message
with pre and postfixes generated in “can_par.h"t)

The service function CanRxFul 1CANOb7Task () does polling of specified Full CAN receive objects
according to the configured objects in polling mode.

Particularities and Limitations
B CanRxFullCANObjTask () mustnotrun on higher priority than other CAN functions.
B CanRxFullCANObjTask () is available, if the individual polling mode and at least one mailbox is

9.1.1.3

Prototype

CanRxBasicCANObjTask

CanRxBasicCANObjTask

Single Receive Channel

void CanRxBasicCANObjTask (void)

Multiple Receive Channel

Parameter

canHwChannel

txObjHandle

Return code

Functional Description

©2010, Vector Informatik GmbH

void CanRxBasicCANObjTask (CanChannelHandle canHwChannel,
CanObjectHandle rxObjHandle)

Handle of a CAN Hardware channel. The generated macros should be
used:

C BASIC<number of the BasicCAN> <channel>HW CHANNEL
(with <number_of_the_BasicCAN>= the logical number of the Basic CAN on this
channel

<channel> = 0 ... Number of logical channel)

Handle of a Rx mailbox. The generated macros should be used:

C BASIC<number of the BasicCAN> <channel> HW OBJ
(with

<number_of _the_BasicCAN>= the logical number of the Basic CAN on this channel
<channel> =0 ... Number of logical channel)

Version: 3.01.01

based on template version 2.1

122 /149

TechnicalReference Vector CAN Driver VeCtOf

The service function CanRxBasicCANObjTask () does polling of specified Basic CAN receive
objects according to the configured objects in polling mode.

Particularities and Limitations

B CanRxBasicCANObjTask () must not run on higher priority than other CAN functions.

B CanRxBasicCANObjTask () is available, if the individual polling mode and at least one mailbox is
configured for polling.

9.1.1.4 CanMsgTransmit

CanMsgTransmit
Prototype

Single Receive Channel vuint8 CanMsgTransmit (tCanMsgTransmitStruct *txData)

Multiple Receive Channel vuint8 CanMsgTransmit (CanChannelHandle channel,
tCanMsgObject *txData)

*txData Pointer to the structure with ID, DLC and data to send
channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

kCanTxOk if the message-buffer is free and the data could be copied to the CAN-
data-buffer or if passive mode (CanSetPassive ())is active.

kCanTxFailed if offline mode is active, the CAN buffer is not free.

Functional Description

This function is called by the application. The function sends the message which is defined in the
txData (Id, DLC, Data) to the CAN-Bus which is defined in the channel.

Particularities and Limitations

m the contents of txData may not be changed while CanMsgTransmit () is running

9.1.1.5 CanCancelMsgTransmit

CanCancelMsgTransmit
Prototype

Single Receive Channel void CanCancelMsgTransmit (void)

Multiple Receive Channel | i3 canCancelMsgTransmit(CanChannelHandle channel)

Parameter
channel Handle of a CAN channel. The generated macros should be used:
kCanIndexX (with X =0 ... Number of generated channel index)
Return code

Functional Description

The call of ApplCanMsgTransmitConf () is suppressed, if a message is already in the transmit
buffer of the CAN controller associated with CanMsgTransmit (). Dependent on the configuration
this function cancels a message in the CAN hardware.

©2010, Vector Informatik GmbH Version: 3.01.01 123 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VQCEO['

Particularities and Limitations

The function call of CanCancelTransmit () must not interrupt the transmit ISR,
CanMsgTransmit () orthe CanTxTask ().

Though a transmission is canceled it will be sent if the request has been already in the hardware
object. Only if activated and highly dependent on hardware and vehicle manufacturer the transmit
request which is initiated with CanMsgTransmit () can be deleted in the hardware transmit object,
too. The function CanCancelMsgTranmit () is only available if the confirmation
ApplCanMsgTransmitConf () is configured.

9.1.1.6 CanHandleRxMsg
CanHandleRxMsg

Prototype

Single Receive Channel void CanHandleRxMsg (void)
Multiple Receive Channel

Parameter

Return code

Functional Description

The service function CanHandleRxMsg () handles the received messages which are stored in the Rx
Queue. The standard mechanism (GenericPrecopy, UserPrecopy, copy of data, Indication Flag and
Userlndication) is started for each stored message.

Particularities and Limitations

This function is only allowed to be called on task level.

9.1.1.7 CanDeleteRxQueue

CanDeleteRxQueue
Prototype

Single Receive Channel void CanDeleteRxQueue (void)
Multiple Receive Channel

Parameter

Return code

Functional Description
The service function CanDeleteRxQueue () clears all pending messages in the Rx Queue.

Particularities and Limitations
This function is only allowed to be called on task level.

©2010, Vector Informatik GmbH Version: 3.01.01 124 /149

based on template version 2.1

TechnicalReference Vector CAN Driver

9.1.2 Callback Functions

9.1.2.1

ApplCanMsgTransmitConf

ApplCanMsgTransmitConf

Prototype
Single Receive Channel

void ApplCanMsgTransmitConf (void)

Multiple Receive Channel
Parameter

channel

void ApplCanMsgTransmitConf (CanChannelHandle channel)

Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)

Return code

Functional Description

This function will be called from the CAN Driver after sending the message. It is called directly in the
transmit Interrupt (Confirmation) from the CAN-Controller. On task level it is called in the CanTask ()
orin the CanTxTask () . With this callback function it is possible to implement a queue-functionality.

Particularities and Limitations

ApplCanMsgTransmitConf () is only called if configured.

9.1.2.2 ApplCanMsgTransmitlnit

ApplCanMsgTransmitlnit

Prototype

Single Receive Channel void ApplCanMsgTransmitInit(void)

Multiple Receive Channel | 534 applcanMsgTransmitInit (CanChannelHandle channel)

Parameter

channel Handle of a CAN channel. The generated macros should be used:

kCanIndexX (with X =0 ... Number of generated channel index)
Return code

Functional Description

This function will be called from the CAN Driver after a possible cancel of a transmit request in
CanInit ().

Particularities and Limitations

ApplCanMsgTransmitInit () is only called if ApplCanMsgTransmitConf () is configured.

9.1.2.3 ApplCanMsgCancelNotification

ApplCanMsgCancelNotification
Prototype

Single Receive Channel void ApplCanMsgCancelNotification(void)

©2010, Vector Informatik GmbH Version: 3.01.01

based on template version 2.1

vector”

125/149

TechnicalReference Vector CAN Driver

Multiple Receive Channel

Parameter

Channel

void ApplCanMsgCancelNotification(CanChannelHandle channel

|

CAN Channel on which the Tx Object was cancelled.

vector”

Return code

Functional Description

This function will be called if a transmit message is deleted (CanCancelMsgTransmit). It applies only
to Tx messages that have been transmitted via CanMsgTransmit. This function could be called in
Interrupt or Task context.

Particularities and Limitations

‘ ApplCanMsgCancelNotification () is only called if configured.

9.1.2.4 ApplCanPreRxQueue
ApplCanPreRxQueue

Prototype

Single Receive Channel vuint8 ApplCanPreRxQueue (CanRxInfoStructPtr rxStruct)

Multiple Receive Channel
Parameter

rxStruct Pointer to receive information structure

Return code

kCanCopyData The data of the received message will be stored in the Rx Queue.

The data of the received message are not stored in the Rx Queue. The

kCanNoCopyData e - -~ el
reception is handled within the receive interrupt.

Functional Description

This precopy function is called if a message is received which is a valid message in the receive
structures or has to be handled via a range (in case the use of the Rx Queue is configured for this
range). The application can decide whether to handle the message via the Rx Queue or the standard
CAN Driver mechanism within the receive interrupt.

Particularities and Limitations

Call context: This function is called within the receive interrupt.

9.1.2.5 ApplCanRxQueueOverrun
ApplCanRxQueueOverrun

Prototype

Single Receive Channel | 614 ApplCanRxQueueOverrun(void)

Multiple Receive Channel
Parameter

Return code

©2010, Vector Informatik GmbH Version: 3.01.01 126 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

Functional Description

This callback function indicates an overrun of the Rx Queue. This function is called by the CAN Driver,
in case a new message has to be stored in the Rx Queue, but the Queue if full. This new message will
be lost.

Particularities and Limitations
Call context: This function is called within the receive interrupt.

©2010, Vector Informatik GmbH Version: 3.01.01 127 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

10 Configuration (Standard and High End)

This chapter describes the common options for configuring (customizing) the CAN Driver.
CAN Controller dependent configuration is described in the CAN Controller specific
documentation TechnicalReference_ CAN_<hardware>.pdf [#hw_conf]. The configuration
can be done by the Generation Tool automatically.

10.1 Network Database — Attribute Definition

| Caution
- Attribute names in CANgen are case sensitive and not evaluated, if the name case is
incorrect.

Name GenMsgMinAcceptLength

Description The DLC check can be configured to verify the received DLC against the value
given by this attribute (Against minimum acceptance length). The value can be
smaller than the Application receive buffer of this message.

Value “-1” means the DLC of the received message will be compared to the
length of the Application receive buffer of this message.

Type Of Object Message
Value Type Integer
Default -1

10.2 Automatic Configuration by GENy

Using the Generation Tool GENy the configuration can be done by the tool. The
configuration options common to all CAN Drivers is described here. The CAN Controller
dependent options are described in the CAN Controller specific user manual. The following
dialog describes the CAN Driver common options. The configuration data is stored by the
tool in the file can_cfg.h for GENy.

©2010, Vector Informatik GmbH Version: 3.01.01 128 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

{} ECU: CH1_Moded Configurable Options DirvCan_TricorebulticanHIl |

=-Bfe Companents |+ DriverTriCoretMutiC AN
----- E2 GenT ool_GenyPluginCaonfigh

- B2 MameD ecaorator

|: Common Driver Parameters

..... £ Hw TricareCpu [+ ©fline Modes
= £ DirvCan_TricoreMulticanHll |+ OSEK O3
E Individual Palling \+ Poling
E...g--iaBnSE_EHD |iL-:|w Level Messages Transmission
. @ Tu Meszages [+ B
- AxMessages |+ General Settings
E"-'-i DUT_CH1 &Dehug Support

-y TxMessages

: Dyratmic T Objects

- R Messages [+1B¥ J_
#-[E T Messages [+ I Search Algorithim
- R Messages |i|Rx Gl

----- E2 zBrs_EmbeddedBunTimeSys
[Tw Messages

[Fix Messages

My Tw Signalz

Ml Fx Signalz

| oy I ey B e B e |

Figure 10-1 Configuration of the common CAN Driver options with GENy

Feature \ | Explanation

Common Driver Parameters

Online/Offline Callback If canOnline () or CanOffline () is called the Application is notified that
Functions a certain CAN driver state was entered.

DLC check The DLC check can be configured to “disabled”, comparison of received

DLC “against data length” or “against minimum acceptance length”.

“against data length” means the number of bytes necessary for the ECU
and is equal to the length of the application data buffer.

The minimum acceptance length can be configured message specific via
database or on the Rx message view.

If DLC check is used, received Data messages with smaller DLC than
expected for this ID are ignored.

Data Copy Mechanism The Data Copy Mechanism can be configured to “copy number of
needed bytes” or “copy all received bytes”.

“copy number of needed bytes” means the CAN driver copies always the
number of bytes which is equal to the length of the application data
buffer.

“copy all received bytes” means if the number of received bytes is less
than the size of the application data buffer only the received bytes are
copied. Otherwise the number of bytes which is equal to the length of the
application data buffer will be copied.

RAM check The CAN driver supports a RAM check of the CAN controller mailboxes.
Sleep / Wakeup If this field is checked, the CAN controller can be switched to sleep
mode.

©2010, Vector Informatik GmbH Version: 3.01.01 129/ 149

TechnicalReference Vector CAN Driver V@CtOf

Cancel in Hardware CanCancelTransmit () and CanCancelMsgTransmit () Will delete a
pending request in the CAN controller hardware.

FullCAN Overrun If checked an overrun in the receive FullCAN objects will be signaled to

Notification the Application.

Receive Function The receive function applCanMsgReceived () is called by the CAN

Driver on every reception of a CAN message after the hardware
acceptance filter is passed. Within this callback function the Application
may preprocess the received message in any way (ECU specific
dynamic filtering mechanisms, preprocessing of the messages, gateway
functionality...).

If the callback function ApplCcanMsgReceived () returns kCanCopyData,
the CAN Driver continues to work on the message received.

If the callback function returns kCanNoCopyData, the CAN finishes
working on the message received.

The callback function has to be defined by the application.

Active / Passive State If this field is checked, the CAN Driver's transmit path can be switched to
the "Passive" state. In this state no CAN messages are sent to the CAN
bus. The transmit request always returns with "OK”.

This "passive” state functionality may be used to localize errors in a CAN
bus: If there are errors in a CAN bus, and the errors disappear when a
particular node is switched to passive state, the scapegoat is found. The
Application must be switched to the passive state and back to active
state by an external tester.

If active/passive state is enabled, the CAN Driver is in active state after
initialization.

If this field is not selected, the corresponding service functions are
available but without any effect on the CAN Driver status.

Extended Status This is the global checkbox for using hardware status information in the
CAN Driver service canGetStatus () or not.

Transmit Queue If this field is checked the CAN Driver is configured to use a transmit
queue.

If no transmit queue is used, the Application is responsible to restart a
transmit request if it wasn’t accepted by the CAN Driver. In the case of
using a transmit queue, a transmit request is almost accepted. But the
queue does only store the transmit request of a message. It doesn’t
store the data to be sent in any case. The CAN Driver inserts a transmit
request to the queue, if no hardware object is available when
CanTransmit () is called. On a transmit interrupt, this means a former
requested message is transmitted, the CAN Driver checks whether
transmit requests are stored in the queue. If so, these requests are
removed from the queue and the transmit request is executed. The
search algorithm in the queue is priority based, there is no FIFO
strategy. This means the identifier with the lowest number is removed
first from the queue.

Tx observation This is the global switch for using the Tx observe functionality of the
CAN Driver or not.

©2010, Vector Informatik GmbH Version: 3.01.01 130/ 149

TechnicalReference Vector CAN Driver V@CtOf

Message-Not-Matched This is the global switch for using the MsgNotMatched function of the
Function CAN Driver or not.
Overrun Notification If this field is checked the CAN Driver is configured to notify the

Application in case of an overrun.

The Application has to provide an Overrun callback function:

void ApplCanOverrun (void) /* Overrun in the CAN Controller */
The overrun handling itself is done by the CAN Driver.

Hardware Loop Check This is the global switch for using the hardware loop check of the CAN
Driver or not.

Partial Offline Mode If the checkbox “Use PartOffline Functionality” is checked, the partial
offline mode is available.

Generic Pre-copy This checkbox enables the use of the generic precopy function —
ApplCanGenericPrecopy (). This precopy function is common to all
receive messages. it will be called as soon as the receive handle is
determined.

CAN Copy from & to CAN | This checkbox enables the use of copy functions CopyFromcCan () and
CopyToCan () .

CAN cancel Notification The application will be notified via Appl1CanCancelNotification () ifa
message is canceled and therefore confirmation will occur. This is valid
for messages which have been requested via CanTransmit ().

CAN Interrupt Control There are two call back functions for the application. Within
Callbacks CanCanInterruptDisable () the function
ApplCanAddCanInterruptDisable () is called and within
CanCanInterruptRestore () the function
ApplCanAddCanInterruptRestore () is called.

These two functions have to be used to handle the wake-up interrupt if

the hardware treats this interrupt separately or if the Driver runs in
Polling Mode the polling tasks have to be disabled.

Common Confirmation If this field is checked the common confirmation function of the CAN
Function Driver is enabled.

Offline Modes

Name of Mode X with X =0..7.

If the partial Offline Mode is enabled the name of each send group can
be configured here. more...

Default Mapping

Message Class 0 All messages with don’t belong to an other class are assigned to this
class.
OfflineModeX with X = 0..7.

The message class 0 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

Message Class 1 (Appl) All application messages are assigned to this message class.

OfflineModeX with X =0..7.

The message class 1 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

©2010, Vector Informatik GmbH Version: 3.01.01 131/149

TechnicalReference Vector CAN Driver

Message Class 2 (NM)

All network mangement messages are assigned to this message class.

OfflineModeX

with X =0..7.

The message class 2 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

Message Class 3 (TP)

All transport layer messages are assigned to this message class.

OfflineModeX

with X =0..7.

The message class 3 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

Message Class 4 (Diag)

All diagnostic messages are assigned to this message class.

OfflineModeX

with X =0..7.

The message class 4 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

Message Class 5 (IL)

All interaction layer messages are assigned to this message class.

OfflineModeX with X = 0..7.
The message class 5 can be assigned to certain Offline Modes (send
goups) by selecting the check box.

OSEK OS

Use OsekOS Interrupt Cat
2

In case of using OSEK-OS the interrupt category of the CAN Driver
interrupts have to be defined. Normally category 1 is used. Instead of
this category 2 can be selected.

OSEK OS If this field is checked the CAN Driver is configured to support OSEK-
OS. The kind of OSEK-OS depends on the specific microprocessor.

Polling

Polling type The polling type can be switched between “None”, “Type specific” and

“individual”.
Individual: If enabled, each BasicCAN, Normal Tx, Low level Tx and
FullCAN can be selected to be polled individual

Rx Basic CAN Polling

Normally the CAN driver works interrupt driven. To use the reception via
Basic CAN objects in polling mode, check this field. This field is available
in “Type specific polling mode”.

Rx Full CAN Polling

Normally the CAN driver works interrupt driven. To use the reception via
Full CAN objects in polling mode, check this field. This field is available
in “Type specific polling mode”.

Tx Polling

Normally the CAN driver works interrupt driven. To use the transmission
in polling mode, check this field. This field is available in “Type specific
polling mode”.

Wakeup Polling

Normally the CAN driver works interrupt driven. To use the wake up
detection in polling mode, check this field.

CAN Status Polling

Normally the CAN driver works interrupt driven. To use the Status and
Error detection in polling mode, check this field.

Low Level Transmission

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

132 /149

TechnicalReference Vector CAN Driver V@CtOf

Cancel Notification The application will be notified if a message is canceled and therefore

Function confirmation will occur. This is valid if the transmission has been
requested via CanMsgTransmit ().

Enable Low Level If the checkbox “Use Low Level Message Transmit” is checked, the

Transmission function canMsgTransmit () can be used.

Confirmation Function This checkbox is only available, if “use Low Level Message Transmit” is

active. The confirmation and init callback functions of low level transmit
functionality can be activated by this checkbox.

API

Symbolic Names for If the database allows the assignment of value tables to individual

Signal Values signals, this feature is selectable. If this functionality is enabled, symbolic
names for values are generated for all signals that have an associated
value table

Indexed Component This switch determines whether the component should configure the

indexed or non-indexed version of the driver component.

General Settings

Security level This is the define value to configure the security level. Valid values are 0,
10, 20 or 30. more...
User Config File The CAN Diriver configuration file (can_cfg.h) is generated. If the user

wants to overwrite this automatically generated configuration file, the
user is able to define the name of a user defined configuration file which
is included at the end of the generated file can_cfg.h. This means entries
in the user defined configuration file overwrite the entries in can_cfg.h.

Debug Suport

Assertions There are different groups of assertions supported by the CAN Driver.
They can be selected depending of the development phase:

None: No debug functionality active.

User: User API is debugged. The CAN Driver service function
parameters are checked.

Hardware: The CAN Controller interface is checked. Depends on CAN
Controller.

Gen: The configuration data are checked.

Internal: CAN Driver internal checking.

Dynamic Tx Objects

ID If the checkbox “ID” is checked, the IDs of the dynamic transmit objects
can be changed by the service function canDynTx0ObjSet1d () and/or by
the service function canDynTx0ObjSetExtId (). The last mentioned
service function is only available if extended ID addressing is checked in
the Generation Tool.

DLC If the checkbox “DLC” is checked, the DLC of the dynamic transmit
objects can be changed by the service function canDynTx0ObjSetDlc.

Data Pointer If the checkbox “Data Pointer” is checked, the data pointers of the
dynamic transmit objects can be changed by the service function
CanDynTxObjSetDataPtr ().

©2010, Vector Informatik GmbH Version: 3.01.01 133/149

TechnicalReference Vector CAN Driver

Confirmation

If the checkbox “Confirmation” is checked, the confirmation function of
the dynamic transmit objects can be changed by the service function
CanDynTxObjSetConfirmationFct (). The occurrence of this switch is
CAN Controller dependent.

Pre-transmit

If the checkbox “Pre-transmit” is checked, the pretransmit function of the
dynamic transmit objects can be changed by the service function
CanDynTxObjSetPreTransmitFct ().The occurrence of this switch is
CAN Controller dependent.

ID Search Algorithm

Search Algorithm

For a Basic CAN Controller or the Basic CAN object of a Full CAN
Controller the hardware acceptance filtering provided by the CAN
Controller is not sufficient. Therefore a software acceptance filtering has
to be supported by comparing the incoming message identifier with the
complete list of all relevant message identifier. Here could the way how
to search in the table of the receive messages be defined. The optimum
algorithm depends on the number of the received messages to search in
and their identifier structure. The supported search algorithms are
dependent of the CAN Driver and the hardware. Refer to the CAN
controller specific documenation

TechnicalReference CAN_<hardware>.pdf [#hw_feature] for more
information.

m linear

m hash search
® index search
m table search

Additional Memory [Byes]

This shows the byte consumption when hash search is selected. It is
just for information.

Maximum Search Steps

This is only activated when hash search is selected. Enter here the
amount of maximum search steps that are necessary to find the received
message ID in the list of to be received messages. The little this value
the greater the additional memory bytes and the faster the receive ISR.

Rx Queue

Overrun Notification

The Application is informed, if the Rx Queue is full and a new message
should be copied into the Queue. The new message will be lost.

Enable Rx Queue

If the checkbox “Enable Rx Queue” is checked, the RX Queue is
enabled. Else the Rx Queue is disabled.

Pre Rx Queue Function

If the checkbox “Pre Rx Queue Function” is checked, a Callback function
is enabled where the application could decide what should happen with
the CAN Message which was received. The two possibilities are to store
the message in the queue, or to process the message in the interrupt.

Number of queued Rx
Messages

Specifies the depth of the queue ("Number of queued Rx messages").

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

134 /149

TechnicalReference Vector CAN Driver

{:} ECL: CH1_Modeld
=-Bfe Companents

- B2 MameD ecaorator
----- EZ Hiw_TricoreCpu

#-[=] Individual Paling

EI% Channels
El-_-,i DUT_CHO

=== DUT_CHT

-y TxMessages
- R Messages

=3 TrMessages
5 PxMessages
M, T Signals
‘Tl Rx Signals

| oy I ey B e B e |

El..
El..
El..
El..

Features
Configuration Options

----- E2 GenT ool_GenyPluginCaonfigh

= B2 DrvCan_TricoreMulticanH |l

@ Tu Meszages
- R Messages

-y Tx Messages
- R Messages

----- E2 zBrs_EmbeddedBunTimeSys

Configurable Options DUT_CHO

|i General Settings

|i Driveer THC OFetURiIC AN

|i Intialization

[+ TriCare MUliCAN (CPLI

|: Common Driver Parameters

|i Multiple BaszicC AN

|: Ranges Al

+ Range Delete

|i|Dynami|: Tx Ohijects

Figure 10-2 Channel Specific Configuration for GENy

‘ | Explanation

General Settings

Bus System Type Each channel is configured for a specific type of bus
system. The bus system is always CAN for CAN Driver.

Manufacturer Manufacturer with is specified in the database file for this
channel.

Common Driver Parameters

Multiple Basic CAN

Enable Multiple Basic
CAN

If checked, the number of Basic CAN objects can be
selected. The deselecting of this checkbox resets the
number of Basic CAN objects to the default.

Number Of BasicCAN
Objects

Enter number of needed Basic CAN objects. Each Basic
CAN object may consist of 2 hardware mailboxes. This
depends on the CAN controller.

Ranges / Range Precopy Functions

Range Ranges are normally used for Network Management,
Transport Protocol and so on. There are in maximum 4
ranges configurable.

Mask Acceptance mask of this identifier range.

Code Acceptance code of this identifier range.

Precopy function

Specific precopy function for this range.

Extended IDs

The range can be specified to receive extended IDs. If not
selected, this range will receive standard IDs.

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

135/149

TechnicalReference Vector CAN Driver VeCtOf

Use Own Filter

If there are enough Basic CAN filters available, one Basic
CAN filter can be used exclusive for this range.

Use Rx Queue

All messages which are received by this range can be
configured to be handled via the Rx Queue. This is only
possible, if the feature Rx Queue is activated.

Dynamic Tx objects

Number of dynamic Tx
objects

Maximum number of dynamic send objects which are
available at run time.

{:;} ECL: CHT_MNodell Dbject Type Chanmel Enable Palling
=B Componerts | Marml T Paling Nomal T+ =]|DUT_CHO =[[+
----- E® GenTool_GenyFluginConfigD - —
- NameDecorator Lowlevel Tx Polling Lowlevel T« | DUT_CHO =]/ *
----- B2 Hw_TricoreCpu TxhZG00000032_0 FUlCAM T =) DUT_CHO =] *
EIE:' DrvCan_TricoreMulticanHIl | TxMSG00000052_0 FUlCAN Tx =) DLIT_EHEIj BE
E ::”:"*“'dulf" el RxMSGO0D00411_0 FulCeN P =]|DUT_CHO =™ -
- annels —
5. DUT CHO FxMSG00000311_0 FullCak B B DUT_EHDj Bk
: &g Tw Messages BasicCAMD Rx Poling BasicCaM Rx =) DLIT_EHEIj ‘mE
: (g FxMessages Mortmeal Tx Paolling Maormal T« =]l DUT_CHT j BE
E""'L: %'TT—':E1 LawLevel Tx Poling Lowlevel Tx =]|DUT_CHT =™+
® Mezzages =
@f Ay Messaieg TxMSE00000714_1 FulCaN Ts =][DUT_CHT =]
-y Tx Messages FxM=G00000713_1 FulCAN Rz = || DUT_CH1 =
- [54 Py Messages BasicCANMD Rx Paolling BasicCAN Rx =] DUT_CHT j BE
----- E® zBrz_EmbeddedRunTimeSys
-y Tx Messages
- [54 Py Messages
[T Tx Signals
[y A% Signals

Features
Configuration Options

Figure 10-3 Configuration of individual polling with GENy

‘ | Explanation ‘

Enable Polling

If checked, the associated mailbox will be handled in
polling mode. This is only selectable, if the polling mode is
configured to individual polling.

©2010, Vector Informatik GmbH

Version: 3.01.01 136 /149

based on template version 2.1

TechnicalReference Vector CAN Driver

{:} ECL: CH1_Modeld
=-Bfe Companents

- B2 MameD ecaorator
----- EZ Hiw_TricoreCpu

i Individual Poling
EI% Channels
-=& DUT_CHO

[#-== DUT_CH1
-y TxMessages
- R Messages

=3 TrMessages
5 PxMessages
M, T Signals
‘Tl Rx Signals

| oy I ey B e B e |

El..
El..
El..
El..

Features
Configuration Options

----- £ GenT ool _GenyPluginConfigl ocurmentar

= B2 DrvCan_TricoreMulticanH |l

-3 TxMessages

: ----- (3 TCC_Responze 0
e DUT_Alive 0
-4 RxMessages

----- E22 zBrz_EmbeddedRunTimeSpstemn

Configurable Options | TCC_Responze_0

&Message ! Frame Properties

|: Cotmmon Driver Parameters

Signal Access Macros |r
&Offline Modes
|+ RAhd
|iFIags
[+ Functions
|i|FuII CAR T

Figure 10-4 Configuration of a Tx message with GENy

‘ | Explanation

Message / Frame Properties

Generate

If unchecked, the generation of this message will be
suppressed.

Common Driver Parameters

Signal Access Macros

Signal access macros can be used by the application for
an easy access to signals specified within a message.

Offline Modes

<Part offline group>/<Mode X name>

Usage Standard: configuration via default mapping
User Defined: the user can set or reset the “Real Value”

Real Value It set, the message belongs to this group and the
transmission of this message will be disabled if this group
is switched offline.

Flags

Confirmation Flag

After successful transmission of a message the driver sets
the confirmation flag of the message.

Functions

Confirmation Function

After successful transmission of a message the driver call
the user defined confirmation function of the message. The
name of this function has to be specified in this field.

Pretransmit Function

The used defined pretransmit function can be called before
the transmission of a message is started. The name of this
function has to be specified in this field.

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

137 /149

TechnicalReference Vector CAN Driver VeCtOf

Full CAN Tx

Tx FullCAN A Tx message can be assigned to a Full CAN objects.
{:;I ECU: CH1_Moded Configurable Options ITEE_Hequest_El
EI“' Companents [+ Message [Frame Propertties

----- E% GenT ool GenyPluginConfigD ocurmertar

o @ M O t |: Common Driver Parameters
+- arnellecarator

..... £ Huw TricoreCpu Data Length [bytes) o
EI%;:' DirvCan_Tricoret ulticanHIl Signal Access Macros r
B ::n:ividuial Palling + RN
= annels
T TEL-} DUT_CHO + Flags
EI@ Tx Meszages |+ Functions
----- = TCC_Responze_0 |i|FuII CAN
o DUT_Alive_0

El@ Fx Meszzages

#-== DUT_CH1
-y TwMessages
-5 RxMessages
----- E2 zBrz EmbeddedRunTimesSpstem

-y TwMessages
-4 R Messages
-y Tw Signalz
[F--Mg FAx Signals
Figure 10-5 Configuration of an Rx message with GENy
Features ‘ | Explanation ‘

Configuration Options

Message / Frame Properties

Generate If unchecked, the generation of this message will be
suppressed.

Common Driver Parameters

Minimum Data Length

Signal Access Macros Signal access macros can be used by the application for
an easy access to signals specified within a message.

Flags

Indication Flag After successful reception of a message the driver sets the
indication flag of the message

Functions

Indication Function The name of the used defined indication function can be
specified in this field.

Precopy Function The name of the used defined precopy function can be
specified in this field.

Full CAN

Full CAN An Rx message can be assigned to a Full CAN objects.

Lock Full CAN If set, the assignment of a Rx message to a Full CAN

©2010, Vector Informatik GmbH Version: 3.01.01 138/ 149

TechnicalReference Vector CAN Driver V@CtOf

object cannot be changes by the filter optimization.

Hardware Channel In case a receive message is configured to be ‘FullCAN’
and Common CAN is activated then the user can configure
this message to be received on the first (Channel A) or the
second (Channel B) CAN controller on this channel.

10.3 Automatic Configuration by CANgen

Using the Generation Tool CANgen the configuration can be done by the tool. The
configuration options common to all CAN Drivers is described here. The CAN Controller
dependent options are described in the CAN Controller specific user manual. The following
dialog describes the CAN Driver common options. The configuration data is stored by the
tool in the file can_cfg.h for CANgen.

Overview CAM driver | CaM driver [.-’-'-.dvanu:edi I Send messag-es I Receive mess-ages I I
Pathrame of user CAM config file: I cah.cfg Browsze. . |
¥ Usze Receive Function [&pplCantdzoR eceived) [T Support [ntermupt Contral by Spplication
[T Support Sctive/Passive State [T Extended status
[T Uze Transmit Queue [T Txobserwve
[Support for OSEK-OS [Use Meghathdstched function
™ Support Overun Motification [T Hardware Loop Check
¥ Uze Low Level Meszage Transmit [~ Use Pandfiline Functionality
¥ Usze Low Level Message Transmit Confimation ™ Use Generic Precopy

[Use Corfirmation Function [ApplCanT 2Confirmation]

Debug level Ilnternal, Gen, Hardware, Uzer j Security level: |3|:| vI

—Ranges
[T Extended|Ds=

[Userange 0 Range 0 mask:IDHD Range Oid: IEI:-:EI

Fange 0 precopy function; I

[T Usze range 1 Ratge 1 mask:lﬂ:-:[l Range 1 id: IEI:-:EI

Range 1 precopy function; I

[Use range 2 Range 2 mask:IUHD Range 2 id: IEI:-:EI

Range 2 precopy function: I

[Use range 3 Range 3 mask:IDHU Range 3 id: IEI:-:EI

Range 3 precopy function; I

— Dynamic objects
MHumber of dynamic k= objects |2_ ¥ Dynamic =0 T Dynamic TsCarfimation
¥ | Dyramic TeOLE ™| Dyramic T«Frelransmit

[T Dwnamic T=0atal

Figure 10-6 CAN Driver configuration tab

©2010, Vector Informatik GmbH Version: 3.01.01 139/ 149

TechnicalReference Vector CAN Driver V@CtOf

Path of the CAN config file | The CAN Driver configuration file (can_cfg.h) is generated. If the user
wants to overwrite this automatically generated configuration file, the
user is able to define the name of a user defined configuration file which
is included at the end of the generated file can_cfg.h. This means entries
in the user defined configuration file overwrite the entries in can_cfg.h.

Use Receive Function The receive function applCanMsgReceived () is called by the CAN
(rpplCanMsgReceived) Driver on every reception of a CAN message after the hardware
acceptance filter is passed. Within this callback function the Application
may preprocess the received message in any way (ECU specific
dynamic filtering mechanisms, preprocessing of the messages, gateway
functionality...).

If the callback function ApplCcanMsgReceived () returns kCanCopyData,
the CAN Driver continues to work on the message received.

If the callback function returns kCanNoCopyData, the CAN finishes
working on the message received.

Support Active/Passive If this field is checked, the CAN Driver's transmit path can be switched to
State the "Passive" state. In this state no CAN messages are sent to the CAN
bus. The transmit request always returns with "OK”.

This "passive” state functionality may be used to localize errors in a CAN
bus: If there are errors in a CAN bus, and the errors disappear when a
particular node is switched to passive state, the scapegoat is found. The
Application must be switched to the passive state and back to active
state by an external tester.

If active/passive state is enabled, the CAN Driver is in active state after
initialization.

Use Transmit Queue If this field is checked the CAN Driver is configured to use a transmit
queue.

If no transmit queue is used, the Application is responsible to restart a
transmit request if it wasn’t accepted by the CAN Driver. In the case of
using a transmit queue, a transmit request is almost accepted. But the
queue does only store the transmit request of a message. It doesn’t
store the data to be sent in any case. The CAN Driver inserts a transmit
request to the queue, if no hardware object is available when
CanTransmit () is called. On a transmit interrupt, this means a former
requested message is transmitted, the CAN Driver checks whether
transmit requests are stored in the queue. If so, these requests are
removed from the queue and the transmit request is executed. The
search algorithm in the queue is priority based, there is no FIFO
strategy. This means the identifier with the lowest number is removed
first from the queue.

Support for OSEK OS If this field is checked the CAN Driver is configured to support OSEK-
OS. The kind of OSEK-OS depends on the specific microprocessor.

Use OsekOS Interrupt Cat | In case of using OSEK-OS the interrupt category of the CAN Driver
2 interrupts have to be defined. Normally category 1 is used. Instead of
this category 2 can be selected.

©2010, Vector Informatik GmbH Version: 3.01.01 140/ 149

TechnicalReference Vector CAN Driver V@CtOf

Support Overrun If this field is checked the CAN Driver is configured to notify the
Notification Application in case of an overrun.

The Application has to provide an Overrun callback function:
void ApplCanOverrun (void) /* Overrun in the CAN Controller */
The overrun handling itself is done by the CAN Driver:

Security Level This is the define value to configure the security level. Valid values are
0,10, 20 or 30.
Extended Status This is the global checkbox for using hardware status information in the

CAN Diriver service canGetStatus () or not.

Debug level There are different Debug Levels supported by the CAN Driver:

None: No debug functionality active.

User: User APl is debugged. The CAN Driver service function
parameters are checked.

Hardware: The CAN Controller interface is checked. Depends on CAN
Controller.

Gen: The configuration data are checked.

Internal: CAN Driver internal checking (consistency of transmit queue).

Extended IDs This checkbox is available only if extended CAN identifiers are selected
in the channel configuration dialog. It has to be enabled if extended CAN
identifiers have to be received by the range specific acceptance filtering
and the appropriate precopy function has to be called. In such case no
standard identifiers can be received by any acceptance range.

Use Range X This is the global switch to select identifier range specific precopy
functions. These ranges are normally used for Network Management,
Transport Protocol and so on. There are in maximum 4 ranges
configurable, where ‘X’ is the number of the specified range. If a range is
enabled, the following additional settings has to be done:

Range X mask Acceptance code of the identifier range X.

Range X ID Acceptance mask of the identifier range X.

Range X precopy function | Specific precopy function for range X.

Tx observe This is the global switch for using the tx observe functionality of the CAN
Driver or not.

Use MsgNotMatched This is the global switch for using the MsgNotMatched function of the
function CAN Driver or not.

Hardware Loop Check This is the global switch for using the hardware loop check of the CAN
Driver or not.

Number of dynamic tx Maximum number of dynamic send objects which are available at run
objects time.
Dynamic TxId If the checkbox “DynamicTxId” is checked, the IDs of the dynamic

transmit objects can be changed by the service function
CanDynTxObjSetId () and/or by the service function
CanDynTxObjSetExtId (). The last mentioned service function is only
available if extended ID addressing is checked in the Generation Tool.

©2010, Vector Informatik GmbH Version: 3.01.01 141/149

TechnicalReference Vector CAN Driver VeCtOf

Dynamic TxDLC If the checkbox “DynamicTxDLC” is checked, the DLCs of the dynamic
transmit objects can be changed by the service function
CanDynTxObjSetDlc ().

Dynamic TxDataPtr If the checkbox “DynamicTxDataPtr” is checked, the data pointers of the

dynamic transmit objects can be changed by the service function
CanDynTxObjSetDataPtr (). The occurrence of this switch is CAN
Controller dependent.

Dynamic TxConfirmation | If the checkbox “DynamicTxConfirmation” is checked, the confirmation

function of the dynamic transmit objects can be changed by the service
function CanDynTxObjSetConfirmationFct (). The occurrence of this
switch is CAN Controller dependent.

Dynamic TxPreTransmit If the checkbox “DynamicTxPretransmit” is checked, the pretransmit
function of the dynamic transmit objects can be changed by the service
function canbynTx0ObjSetPreTransmitFct ().The occurrence of this
switch is CAN Controller dependent.

Use Low Level Message | If the checkbox “Use Low Level Message Transmit” is checked, the

Transmit function canMsgTransmit () can be used.

Use Low Level Message | This checkbox is only available, if “use Low Level Message Transmit” is

Transmit Confirmation active. The confirmation and init callback functions of low level transmit
functionality can be activated by this checkbox.

Use PartOffline If the checkbox “Use PartOffline Functionality” is checked, the partial

Functionality offline mode is available.

Use Generic Precopy This checkbox enables the use of the generic precopy function —

ApplCanGenericPrecopy (). This precopy function is common to all
receive messages. It will be called as soon as the receive handle is
determined.

The next figure shows the Configuration of the partial offine mode. Every transmit
message can be assigned to up to eight partial offline groups.

©2010, Vector Informatik GmbH Version: 3.01.01 142 /149

TechnicalReference Vector CAN Driver VeCtOf

Send messages I

tezzage Properties
= P R R R e

0+75F ResT=0Ob| [r - - r r r 0)
04750 FiestzaRi [r r r r r r 0)
Ox743 ResCanC| [- - r - r - 0 oo
0x741 Restipph [~ r r r r r r . M
04714 BitButeds [I r r r r r 0 oo
0+70C SteTwPria| [r r r r r r 0 o)
0+70B RiesT«Prid [r r - r r r 0)
07 0 FiesTxPrig [~ r r r r r r 0)
0+708 RiesT«Prid [r - - r r r 0)
04706 FiangePrd [~ r r r r r r 0)
0704 HwlLoopd [r r - r - r 0)
0x702 HighPulsg [~ r r r r r r 0 o)
0701 HighPulsg [- - r - r - 0 oo
0+E5F SigMacral [~ r r r r r r 0)
OxE5E SigMacra| [r - r - r - 0 oo
[+B50 SigMacral [r r r r r r 0 o)
OxBRC SigMacra| [r - r - r - 0 oo
04556 SigMacral [r r r r r r 0 o)
OxER, SigMacra| [r - r - r - 0 oo
0+659 SigMacral [r r r r r r 0 o)
OxE5E SigMacra| [r - r - r - 0

e

« | T Functions"y, R, FUICAR, Offiine modes / |

F

Edit part offline mode names. .. |

Load defaults |

Figure 10-7Configuration of Partial Offline Mode

‘ ’ Explanation
Edit part offline mode this button can be used to change the names of the eight partial offline
names groups

The following features cannot be configured by the Application. They are set automatically
depending on the used OEM:

m DLC check
= Data Copy Mechanism

m Cancel in Hardware

©2010, Vector Informatik GmbH Version: 3.01.01 143 /149

based on template version 2.1

TechnicalReference Vector CAN Driver VeCtOf

10.4 Manual configuration via user configuration file

This chapter describes additional configuration options for special features which can only
be configured via user configuration file.

In the following table you will find a list of configuration switches, used to control the
functional units of the CAN Driver:

Switch Value / Range Use of ...

C_xxx_APPLCANPREWAKEUP_FCT |ENABLE, DISABLE Activate call of ApplCanPreWakeUp() if
an WakeUp Interrupt occurs.
C_xxx_NOTIFY_CORRUPT_MAILBOX | ENABLE, DISABLE Activate call of ApplCanCorruptMailbox()

in case the CAN RAM Check fails for a
certain mailbox.

If the Generation Tool CANgen is used, some additional configurations can only be due via
user configuration file:

Switch Value / Range Use of ...

C_xxx_ONLINE_OFFLINE_CALLBACK | ENABLE, DISABLE Activate call of ApplCanOnline() and

_FCT ApplCanOffline() if the associated CAN
driver state was entered.

C_xxx_INTCTRL_ADD_CAN_FCT ENABLE, DISABLE Activate call of
ApplCanAddCanInterruptDisable ()
and

ApplCanAddCanInterruptRestore ().

These two functions have to be used to
handle the wake-up interrupt if the
hardware treats this interrupt separately
or if the Driver runs in Polling Mode the
polling tasks have to be disabled.

©2010, Vector Informatik GmbH Version: 3.01.01 144 /149

based on template version 2.1

TechnicalReference Vector CAN Driver

11 Glossary

Abbreviations and

Expressions
Acceptance filtering

Explanation

Mechanism which decides whether each received protocol frame is
to be taken into account by the local Node or ignored.

API

Application Program Interface.

Application Interface

An application interface is the prescribed method of a SW
component for using the available functionality.

Arbitration Mechanism which guarantees that a simultaneous access made by
multiple stations results in a contention where one frame will
survive uncorrupted.

ASAP Arbeitskreis zur Standardisierung von Applikationssystemen.
Standardization of Application and Calibration system task force

BCD Binary Coded Decimal

Buffer A buffer in a memory area normally in the RAM. It is an area, the
application reserved for data storage

Bus Defines what we call internal as channel or connection.

BusOff A node is in the state bus off when it is switched off from the bus

due to a request of fault confinement entity. In the bus off state, a
node can neither send nor receive any frames. A node can start the
recovery from bus off state only upon a user request.A node is in
the state BusOff when it is switched off from the bus. In the state
BusOff a node can neither send nor receive any protocol frames.

Callback function

This is a function provided by an application. E.g. the CAN Driver
calls a callback function to allow the application to control some
action, to make decisions at runtime and to influence the work of
the Driver.

CAN

Controller Area Network protocol originally defined for use as a
communication network for control applications in vehicles.

CAN Controller

A hardware unit integrated into a micro controller (or as a separate
unit) handling the CAN protocol.

CAN Driver

The CAN driver encapsulates a specific CAN controller handling. It
consists of algorithms for HW initialization, CAN message
transmission and reception. The application interface supports both
event and polling notification and WR/RD access to the message
buffers.

Channel

A channel defines the assignment (1:1) between a physical
communication interface and a physical layer on which different
modules are connected to (either CAN or LIN). 1 channel consists
of 1..X network(s).

Configuration

The communication configuration adapts the communication stack
to the specific component requirements by means of the
Generation Tool.

Confirmation

A service primitive defined in the ISO/OSI Reference model (1ISO

©2010, Vector Informatik GmbH

Version: 3.01.01 145/ 149

based on template version 2.1

vector’

TechnicalReference Vector CAN Driver V@CtOf

7498). With the service primitive ‘confirmation’ a service provider
informs a service user about the result of a preceding service
request of the service user. Notification by the CAN Driver on
asynchronous successful transmission of a CAN message.

Data consistency Data consistency means that the content of a given application
message correlates unambiguously to the operation performed
onto the message by the application. This means that no
unforeseen sequence of operations may alter the content of a
message hence rendering a message inconsistent with respect to
its allowed and expected value.

DBC CAN database format of the Vector company which is used by
Vector tools

DLC Data Length CodeNumber of data bytes of a CAN message

ECU Electronic Control Unit

Error Error is a local problem which could be solved locally. If not, the

error will be given as an exception to the application. An error is not
the specification conform misbehavior of a system (e.g. a not
responded diagnostic request after three requests without
response is no error). Discrepancy between a computed, observed
or measured value or condition and the true, specified or
theoretically correct value or condition (IEC 61508-4).

FIFO First In First Out

FILO First In Last Out

Gateway A gateway is designed to enable communication between different
bus systems, e.g. from CAN to LIN.

Generation Tool See CANgen, DBKOMGen and GENy. The generation tool

configures the communication stack based on database attributes
(vehicle manufacturer), project settings (module supplier) and
license information (Vector).

HIS Hersteller-Initiative Software

HW Hardware

ID Identifier (e.g. Identifier of a CAN message)

Indication A service primitive defined in the ISO/OSI Reference Model (ISO

7498). With the service primitive 'indication' a service provider
informs a service user about the occurrence of either an internal
event or a service request issued by another service user.
Notification of application in case of events in the Vector software
components, e.g. an asynchronous reception of a CAN message.

Interrupt Processor-specific event which can interrupt the execution of a
current program section.

Interrupt level Processing level provided for time-critical activities. To keep the
interrupt latency brief, only absolutely indispensable actions should
be effected in the Interrupt Service Routine, which ensures
reception of the interrupt and trigger its (post) processing within a
task. Other processing levels are: Operating System Level and
Task Level.

ISO International Standardization Organization

©2010, Vector Informatik GmbH Version: 3.01.01 146/ 149

TechnicalReference Vector CAN Driver

ISR Interrupt Service Routine

LIN Local Interconnect Network

Manufacturer Vehicle manufacturer

Message A message is responsible for the logical transmission and reception
of information depending on the restrictions of the physical layer.
The definition of the message contents is part of the database
given by the vehicle manufacturer.

MISRA Motor Industry Software Reliability Association

MRC Multiple Receive Channel

Network A network defines the assignment (1:N) between a logical
communication grouping and a physical layer on which different
modules are connected to (either CAN or LIN). 1 network consists
of 1 channel, Y networks consists of 1..Z channel(s). We say
network if we talk about more than 1 bus.

NM Network Management

Node A network topological entity. Nodes are connected by data links
forming the network. Each node is separately addressable on the
network.

OEM Original Equipment Manufacturer

Offline State of the data link layer. In the Offline state, no application
communication is possible. Only the network management is
allowed to communicate.

Online (Normal) state of the data link layer. Application and Network
Management communication are possible.

0S Operating System

OSEK Name of the overall project: Abbreviation of the German term
"Offene Systeme und deren Schnittstellen fAVar die Elektronik im
Kraftfahrzeug" - Open Systems and the Corresponding Interfaces
for Automotive Electronics.

Overrun Overwriting data in a memory with limited capacity, e.g. Queued
message object

Platform The sum of micro controller derivative, communication controller
implementation and compiler is called platform.

RAM Random Access Memory

Register Aregister is a memory area in the controller, e.g. in the CAN
Controller. Distinguish Register from Buffer

RI Reference Implementation

ROM Read-Only Memory

Signal A signal is responsible for the logical transmission and reception of

information depending on the restrictions of the physical layer. The
definition of the signal contents is part of the database given by the
vehicle manufacturer. Signals describe the significance of the
individual data segments within a message. Typically bits, bytes or
words are used for data segments but individual bit combinations
are also possible. In the CAN data base, each data segment is
assigned a symbolic name, a value range, a conversion formula

©2010, Vector Informatik GmbH

Version: 3.01.01 147 /1 149

vector’

TechnicalReference Vector CAN Driver V@CtOf

and a physical unit, as well as a list of receiving nodes.

SRC Single Receive Channel

Status A status describes the properties (parameters) of an entity. A state
is interpreted as an information, e.g. an error, by the entity which
uses a status, and is frequently determined by the history.

Task Level Processing level where the actual application software, is
executed. Tasks are executed according to the priority assigned to
them, and to the selected scheduling policy. Other processing
levels are: Interrupt level and Operating System Level.

Transceiver A transceiver adapts the physical layer to the communication
interface.

Vehicle Manufacturer We use this instead of OEM

Watchdog A monitoring entity.

©2010, Vector Informatik GmbH Version: 3.01.01 148 /149

TechnicalReference Vector CAN Driver

12 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVVVYV

www.vector-informatik.com

©2010, Vector Informatik GmbH

Version: 3.01.01

vector’

149 /149

	1 Document Information
	1.1 History
	1.2 Reference Documents
	1.3 Contents1

	2 About this Document
	2.1 Documents this one refers to…
	2.2 Naming Conventions

	3 Reference Implementations
	3.1 Version 1.0
	3.1.1 What's new?
	3.1.2 What's changed?

	3.2 Version 1.1
	3.2.1 What's new?
	3.2.1.1 Mandatory (for all CAN Drivers)
	3.2.1.2 Optional (for some specific CAN Drivers)

	3.2.2 What's changed?

	3.3 Version 1.2
	3.3.1 What’s new?
	3.3.2 What’s changed?

	3.4 Version 1.3
	3.4.1 What’s new?
	3.4.2 What’s changed?

	3.5 Version 1.4
	3.5.1 What’s new?
	3.5.1.1 Mandatory (for all CAN Drivers)
	3.5.1.1.1 Common features
	3.5.1.1.2 Transmission features

	3.5.1.2 Optional (for some specific CAN Drivers)
	3.5.1.2.1 Transmission features
	3.5.1.2.2 Reception features

	3.5.2 What’s changed?
	3.5.2.1 Transmission features

	3.6 Version 1.5
	3.6.1 What’s new?
	3.6.2 What’s changed?

	4 Overview
	4.1 Short Summary of the Functional Scope
	4.1.1 Initialization
	4.1.2 Transmission
	4.1.3 Reception
	4.1.4 Bus-Off
	4.1.5 Sleep Mode
	4.1.6 Special Features

	4.2 Data Structures for CAN Driver Customization
	4.2.1 ROM Data
	4.2.1.1 Initialization Structures
	4.2.1.2 Transmit Structures
	4.2.1.3 Receive Structures

	4.2.2 RAM Data

	5 Detailed Description of the Functional Scope (Standard)
	5.1 Initialization
	5.1.1 Power-On Initialization of the CAN Driver
	5.1.2 Re-Initialization of the CAN Controller

	5.2 Transmission
	5.2.1 Detailed Functional Description
	5.2.2 Transmit Queue
	5.2.3 Data Copy Mechanisms
	5.2.3.1 Internal
	5.2.3.2 User defined (“Pretransmit Function”)

	5.2.4 Notification
	5.2.4.1 Data Interface (Confirmation Flag)
	5.2.4.2 Functional Interface (Confirmation Function for each message)
	5.2.4.3 Functional Interface (Common Confirmation Function for all messages)

	5.2.5 Offline Mode
	5.2.6 Partial Offline Mode
	5.2.6.1 Partial Offline Mode with GENy

	5.2.7 Passive State
	5.2.8 Tx Observe
	5.2.9 Cancellation of a Transmission
	5.2.9.1 Cancel a Transmission via CanInit
	5.2.9.2 Cancel a Transmission via CanCancelTransmit or CanCancelMsgTransmit
	5.2.9.3 Notification about Cancellation of a message

	5.2.10 Overview of Transmit Objects
	5.2.11 Normal Transmit Object
	5.2.12 Full CAN Transmit Objects
	5.2.13 Dynamic Transmit Objects
	5.2.14 Priority of Transmit Objects

	5.3 Reception
	5.3.1 Detailed Functional Description
	5.3.2 Receive Function
	5.3.3 Range-Specific Precopy Functions
	5.3.4 Identifier Search Algorithms
	5.3.5 DLC check
	5.3.6 Data Copy Mechanism
	5.3.6.1 Internal
	5.3.6.2 User-defined Precopy Functions

	5.3.7 Notification
	5.3.7.1 Data Interface (Indication Flag)
	5.3.7.2 Functional Interface (Indication Function)

	5.3.8 Not-Matched Function
	5.3.9 Overrun Handling
	5.3.10 Full CAN Overrun Handling
	5.3.11 Conditional Message Received

	5.4 Bus-Off Handling
	5.5 Sleep Mode
	5.6 Special Features
	5.6.1 Status
	5.6.2 Stop Mode
	5.6.3 Remote Frames
	5.6.4 Interrupt Control
	5.6.4.1 Security Level
	5.6.4.2 Control of CAN interrupts

	5.6.5 Assertions
	5.6.6 Hardware Loop Check
	5.6.7 Support of OSEK-Compliant Operating Systems
	5.6.8 Multiple-Channel CAN Driver
	5.6.8.1 Indexed CAN Driver

	5.6.9 Standard Polling Mode
	5.6.9.1 Application Hints

	5.6.10 Handling of different identifier types
	5.6.11 Copying Mechanisms
	5.6.12 Common CAN
	5.6.13 Multiple ECU
	5.6.14 Signal Access Macros
	5.6.15 CAN RAM Check

	6 Detailed Description of the Functional Scope (High End extension)
	6.1 Transmission
	6.1.1 Low-Level Message Transmit

	6.2 Reception
	6.2.1 Multiple Basic CAN
	6.2.2 Rx Queue
	6.2.2.1 Handling in Receive Interrupt
	6.2.2.2 Handling on Task Level
	6.2.2.3 Resetting the Rx Queue

	6.3 Special Features
	6.3.1 Individual Polling

	7 Feature List (Standard and High End)
	8 Description of the API (Standard)
	8.1 API Categories
	8.1.1 Single Receive Channel (SRC)
	8.1.2 Multiple Receive Channel (MRC)

	8.2 Data Types
	8.3 Constants
	8.3.1 Version Number

	8.4 Macros
	8.4.1 Conversion between Logical and Hardware Representation of CAN Parameter DLC
	8.4.2 Direct Access to the CAN Controller Registers
	8.4.3 Interpretation of the CAN Status
	8.4.4 Access to low level transmit structure

	8.5 Functions
	8.5.1 Service Functions
	8.5.1.1 CanInitPowerOn
	8.5.1.2 CanInit
	8.5.1.3 CanTransmit
	8.5.1.4 CanTask
	8.5.1.5 CanTxTask
	8.5.1.6 CanRxFullCANTask
	8.5.1.7 CanRxBasicCANTask
	8.5.1.8 CanErrorTask
	8.5.1.9 CanWakeUpTask
	8.5.1.10 CanOnline
	8.5.1.11 CanOffline
	8.5.1.12 CanPartOnline
	8.5.1.13 CanPartOffline
	8.5.1.14 CanGetPartMode
	8.5.1.15 CanGetStatus
	8.5.1.16 CanSleep
	8.5.1.17 CanWakeUp
	8.5.1.18 CanStart
	8.5.1.19 CanStop
	8.5.1.20 CanGlobalInterruptDisable
	8.5.1.21 CanGlobalInterruptRestore
	8.5.1.22 CanCanInterruptDisable
	8.5.1.23 CanCanInterruptRestore
	8.5.1.24 CanSetPassive
	8.5.1.25 CanSetActive
	8.5.1.26 CanResetBusOffStart
	8.5.1.27 CanResetBusOffEnd
	8.5.1.28 CanResetBusSleep
	8.5.1.29 CanGetDynTxObj
	8.5.1.30 CanReleaseDynTxObj
	8.5.1.31 CanDynTxObjSetId
	8.5.1.32 CanDynTxObjSetExtId
	8.5.1.33 CanDynTxObjSetDlc
	8.5.1.34 CanDynTxObjSetDataPtr
	8.5.1.35 CanCancelTransmit
	8.5.1.36 CanCopyFromCan
	8.5.1.37 CanCopyToCan
	8.5.1.38 CanTxGetActHandle
	8.5.1.39 CanResetMsgReceivedCondition
	8.5.1.40 CanSetMsgReceivedCondition
	8.5.1.41 CanGetMsgReceivedCondition

	8.5.2 User Specific Functions
	8.5.2.1 UserPrecopy
	8.5.2.2 UserIndication
	8.5.2.3 UserPreTransmit
	8.5.2.4 UserConfirmation

	8.5.3 Callback Functions
	8.5.3.1 ApplCanBusOff
	8.5.3.2 ApplCanWakeUp
	8.5.3.3 ApplCanOverrun
	8.5.3.4 ApplCanFullCanOverrun
	8.5.3.5 ApplCanMsgReceived
	8.5.3.6 ApplCanRangePrecopy
	8.5.3.7 ApplCanAddCanInterruptDisable
	8.5.3.8 ApplCanAddCanInterruptRestore
	8.5.3.9 ApplCanFatalError
	8.5.3.10 ApplCanMsgNotMatched
	8.5.3.11 ApplCanInit
	8.5.3.12 ApplCanTxObjStart
	8.5.3.13 ApplCanTxObjConfirmed
	8.5.3.14 ApplCanTimerStart
	8.5.3.15 ApplCanTimerLoop
	8.5.3.16 ApplCanTimerEnd
	8.5.3.17 ApplCanGenericPrecopy
	8.5.3.18 ApplCanPreWakeup
	8.5.3.19 ApplCanTxConfirmation
	8.5.3.20 ApplCanMsgDlcFailed
	8.5.3.21 ApplCanCancelNotification
	8.5.3.22 ApplCanOnline
	8.5.3.23 ApplCanOffline
	8.5.3.24 ApplCanMsgCondReceived
	8.5.3.25 ApplCanMemCheckFailed
	8.5.3.26 ApplCanCorruptMailbox

	9 Description of the API (High End extension)
	9.1 Functions
	9.1.1 Service Functions
	9.1.1.1 CanTxObjTask
	9.1.1.2 CanRxFullCANObjTask
	9.1.1.3 CanRxBasicCANObjTask
	9.1.1.4 CanMsgTransmit
	9.1.1.5 CanCancelMsgTransmit
	9.1.1.6 CanHandleRxMsg
	9.1.1.7 CanDeleteRxQueue

	9.1.2 Callback Functions
	9.1.2.1 ApplCanMsgTransmitConf
	9.1.2.2 ApplCanMsgTransmitInit
	9.1.2.3 ApplCanMsgCancelNotification
	9.1.2.4 ApplCanPreRxQueue
	9.1.2.5 ApplCanRxQueueOverrun

	10 Configuration (Standard and High End)
	10.1 Network Database – Attribute Definition
	10.2 Automatic Configuration by GENy
	10.3 Automatic Configuration by CANgen
	10.4 Manual configuration via user configuration file

	11 Glossary
	12 Contact

