

Vector CAN Driver

Technical Reference

Texas Instruments

TMS470

DCAN

Authors Georg Pflügel, Karol Kostolny, Sebastian Gaertner, Arthur Jendrusch

Versions: 1.05.00

Status: Released

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

2 /28

Contents

1 Introduction ... 5

2 Important References ... 6

2.1 Known Compatible Derivatives .. 6

3 Usage of Controller Features ... 8

3.1 [#hw_comObj] - Communication Objects ... 8

3.2 Miscellaneous ... 9

4 [#hw_sleep] - SleepMode and WakeUp .. 10

4.1 Global Power down mode ... 10

4.2 Local Power down mode ... 11

5 [#hw_loop] - Hardware Loop Check ... 12

6 [#hw_busoff] - Bus off .. 13

7 CAN Driver Features ... 14

7.1 [#hw_feature] - Feature List ... 14

7.2 Description of Hardware related features .. 16

7.2.1 [#hw_status] – Status .. 16

7.2.2 [#hw_stop] - Stop Mode ... 16

7.2.3 [#hw_int] - Control of CAN Interrupts ... 16

7.2.4 [#hw_cancel] - Cancel in Hardware ... 17

7.2.5 Polling Mode ... 18

8 [#hw_assert] - Assertions ... 19

9 API .. 20

9.1 Category ... 20

10 Implementations Hints .. 21

10.1 Important Notes ... 21

11 Configuration .. 22

11.1 Configuration by GENy .. 22

11.1.1 Compiler and Chip Selection ... 22

11.1.2 Bus Timing .. 23

11.1.3 Acceptance Filtering .. 24

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

3 /28

12 Known Issues / Limitations .. 27

13 Contact... 28

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

4 /28

History

Author Date Version Remarks

Georg Pflügel 12.06.2007 1.00 creation

Karol Kostolny 28.08.2007 1.01 Low level message transmit feature added

Sebastian Gärtner 28.07.2009 1.02 Support new derivative TMS470MSF542

Georg Pflügel 25.10.2010 1.03 Add description for DCAN Issue#22 workaround

Support new derivative TMS570PSFC66

Georg Pflügel 09.12.2010 1.03.01 Add description for the already supported derivatives
TMS570PSFC61, TMS570LS1x and TMS570LS2x

Georg Pflügel 29.09.2011 1.03.02 Add description for the already supported derivatives
TMS470MSF542, TMS470MF03107, TMS470MF04207
and TMS470MF06607.

Arthur Jendrusch 20.12.2011 1.03.03 CAN Driver Version changed to V1.14.01

Support new derivative TMS570LS30316U

Arthur Jendrusch 16.04.2012 1.03.04 Support new derivative TMS570LS12004U

Georg Pflügel 04.06.2012 1.04.00 Support of local dower down mode

Support of wakeup polling

Georg Pflügel 06.12.2012 1.05.00 Support new derivatives TMS570LS0322 and
TMS470PSF764

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

5 /28

1 Introduction

The concept of the CAN driver and the standardized interface between the CAN driver and
the application is described in the document TechnicalReference_CANDriver.pdf. The CAN
driver interface to the hardware is designed in a way that capabilities of the special CAN
chips can be utilized optimally. The interface to the application was made identical for the
different CAN chips, so that the "higher" layers such as network management, transport
protocols and especially the application would essentially be independent of the particular
CAN chip used.

This document describes the hardware dependent special features and implementation
specifics of the CAN Chip D-CAN on the microcontrollers TMS470 and TMS570.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

6 /28

2 Important References

The following table summarizes information about the CAN Driver. It gives you detailed
information about the versions, derivatives and compilers. As a very important information
the documentations of the hardware manufacturers are listed. The CAN Driver is based
upon these documents in the given version.

Drivers RI Derivative Compiler
Hardware Manufacturer

Document Name
Version

1.14.01 1.5 TMS470PSF761

TMS570PSF762

TMS470PSF764

TMS470MSF542

TMS570PSFC66

TMS570PSFC61

TMS570LS30316U

TMS570LS12004U

TMS570LS0322

Texas
Instruments

ARM

TMS470PSF761 DesignSpec.pdf

TMS570PSF762_1.5.pdf

TMS470PSF764 Delphinus datasheet .pdf

TMS470MSF54x TRM (Draft)

TMS470MSF542PZ DesignSpec.pdf

TMS570PSFC66_design_specification_22.pdf

TMS570PSFC66_device_datasheet.pdf

TMS570PSFC61_Specification_044.pdf

Gladiator_design_specification_GM_Auto.pdf

SPNS186_TMS570LS0x32_DataSheet.pdf

DCAN_reference_guide_v0_23.pdf

Rev 0.8

Rev 1.5

SPNS146

02/2009

Rev 1.01

Rev 2.2

SPNS141

Rev 0.44

V2.5.1

SPNS186

V 0.23

Drivers: This is the current version of the CAN Driver
RI: Shows the version of the Reference Implementation and therefore the functional scope of the CAN Driver
Derivative: This can be a single information or a list of derivatives, the CAN Driver can be used on.
Compiler: List of Compilers the CAN Driver is working with
Hardware Manufacturer Document Name: List of hardware documentation the CAN Driver is based on.
Version: To be able to reference to this hardware documentation its version is very important.

2.1 Known Compatible Derivatives

Texas Instruments has established a new name space for the TMS570 derivatives. With
this name space it is possible to rename existing derivatives. Future planed derivatives will
named up to now with this name space too.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

7 /28

Old name supported
by Geny:

With this selection this derivatives
from new name space will run too:

Comment:

TMS570PSFC66 TMS570LS101xx

TMS570LS102xx

TMS570LS202xx

1M Flash 128k RAM

1M Flash 160k RAM

2M Flash 160k RAM

TMS470MSF542

TMS470MF03107

TMS470MF04207

TMS470MF06607

320k Flash 16k RAM

448k Flash 24k RAM

640k Flash 64k RAM

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

8 /28

3 Usage of Controller Features

3.1 [#hw_comObj] - Communication Objects

Depending of the controller the CAN cells provide a specific number of mailboxes.

Controller #Objects of CAN cell 1 #Objects of CAN cell 2 #Objects of CAN cell 3

TMS470PSF761 64 32 -

TMS570PSF762 64 32 -

TMS470PSF764 64 32 -

TMS470MSF542 16 32 -

TMS570PSFC61 64 64 32

TMS570PSFC66 64 64 32

TMS570LS30316U 64 64 64

TMS570LS12004U 64 64 64

TMS570LS0322 32 16 -

The generation tool supports a flexible allocation of message buffers. In the following
tables the configuration variants of the CAN driver are listed. The message buffers are
allocated in the following order for each channel:

Obj number Obj type No. of Objects comment

1 – n

Tx Full CAN

0-nmsg These objects are used by CanTransmit() to send
a certain message. The user must define
statically (Generation Tool) which CAN messages
are located in such Tx FullCAN objects. The
Generation Tool distributes the messages to the
FullCAN objects according to their identifier
priority.

m

Tx Normal

1 This object is used by CanTransmit() to send
several messages. If the transmit message object
is busy, the transmit request is stored in a queue

o

Low Level
Tx

0-1 This object is used by CanMsgTransmit() to send
it’s messages, if the low level transmit
functionality is selected.

p – q

unused

0-nmsg These objects are not used. It depends on the
configuration of receive and transmit objects if
unused objects are available.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

9 /28

r – x

Rx Full CAN

0-nmsg These objects are used to receive specific CAN
messages. The user defines statically
(Generation Tool) that a CAN message should be
received in a FullCAN message object. The
Generation Tool distributes the message to the
FullCAN objects.

y – z

Basic CAN

2-4 All other CAN messages (Application,
Diagnostics, Network Management) are received
via the Basic CAN message object.

nmsg = (Max number of objects) – (number of Tx Normal objects) – (number of Basic CAN objects)

Example

For a CAN cell with 32 objects the following values are assumed:

Configurations with Standard Id or Extended Id: x = 30, y = 31, z = 32

Configurations with Mixed Id: x = 28, y = 29, z = 32

If the configuration contains Standard Ids and Extended Ids (configuration with
Mixed Id), the Basic CAN use 4 hardware message objects. Two of them will be
used for the reception of the Standard Ids and two will be used for the reception
of the Extended Ids.

3.2 Miscellaneous

The CAN driver was designed to run in privileged mode only. There is no support for user
mode.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

10 /28

4 [#hw_sleep] - SleepMode and WakeUp

The CAN module can be switched into sleep mode by calling the function CanSleep and
from sleep into operation mode by calling the function CanWakeUp. There are two power-
down modes available, the global power-down mode and the local power-down mode. The
first is supported by all TMS570 DCAN derivates, the second only if it is documented in the
datasheet. This is because the CAN controller has not initially supported the local power-
down mode. It was added to the DCAN cell since documented in the reference guide
revision 0.30.

4.1 Global Power down mode

The configuration-bits to set and reset the hardware of the D_CAN into and from global
power down mode are not inside the CAN-controller. It is part of the Power-down-
management of the CPU. To make the driver independent of access to the configuration
bits, there are two callback-functions inside CanSleep and CanWakeUp.

ApplCanGoToSleepModeRequest

This function will be called from CanSleep. The user has to add this function to the
application with some code inside to set the CAN-controller into sleep mode. Parameter
CAN_CHANNEL_CANTYPE_ONLY is void for Single Receive Channels (SRC) and
channel for Multiple Receive Channel (MRC).

Example:

vuint8 ApplCanGoToSleepModeRequest(CAN_CHANNEL_CANTYPE_ONLY)
{
 /* Quadrants are 256 bytes each, so DCAN1 is QUAD0 and QUAD1, DCAN2 is QUAD2
and QUAD3 */
 if (channel == 0)
 {
 *((vuint32 *)0xFFFFE084 /* Peripheral Power-Down Set Register 1 */) = 0x00000003; /*
QUAD0 and QUAD1 */
 }
 else if (channel == 1)
 {
 *((vuint32 *)0xFFFFE084 /* Peripheral Power-Down Set Register 1 */) = 0x0000000C; /*
QUAD2 and QUAD3 */
 }
 return kCanOk;
}

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

11 /28

ApplCanWakeUpFromSleepModeRequest

This function will be called from CanWakeUp. The user has to add this function to the
application with some code inside to reset the CAN-controller from sleep mode. Parameter
CAN_CHANNEL_CANTYPE_ONLY is void for Single channel and channel for Multiple
channel.

Example:

vuint8 ApplCanWakeUpFromSleepModeRequest(CAN_CHANNEL_CANTYPE_ONLY)
{
 /* Quadrants are 256 bytes each, so DCAN1 is QUAD0 and QUAD1, DCAN2 is QUAD2
and QUAD3 */
 if (channel == 0)
 {
 *((vuint32 *)0xFFFFE0A4 /* Peripheral Power-Down Clear Register 1 */) = 0x00000003;
/* QUAD0 and QUAD1 */
 }
 else if (channel == 1)
 {
 *((vuint32 *)0xFFFFE0A4 /* Peripheral Power-Down Clear Register 1 */) = 0x0000000C;
/* QUAD2 and QUAD3 */
 }

 return kCanOk;
}

4.2 Local Power down mode

If the local power down mode is selected, the PDR bit inside the CAN cell will be used to
set the CAN cell into the sleep mode. With this there are no callback functions necessary
and the application has not to handle some additional hardware register.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

12 /28

5 [#hw_loop] - Hardware Loop Check

For the feature Hardware Loop Check (see TechnicalReference_CANDriver in the chapter
Hardware Loop Check) this CAN Driver provides the following timer identifications:

KCanLoopIrqReq

Where is the loop implemented?

 CAN Interrupt service routine.

What is the loop for?

 Loop over all pending interrupts (Rx, Tx).

Is the loop channel dependent? Can this timer identification be called reentrant?

 One loop for each channel, no reentrant call.

How often is ApplCanTimerLoop called?

Once with every pending interrupt request or permanently until loop exit.

Maximum expected duration of the loop or maximum expected calls of the loop

 Depend on interrupt occurrence.

Reasons for a delay - why is the maximum expected duration exceeded?

Defect in hardware (what leads to a longer duration than the maximum expected time)

If the loop does not end and the application has to terminate the loop, what has to be done
then?

Exit loop and retrigger interrupt after application action is done.

kCanLoopBusyReq

Where is the loop implemented?

CanCopyDataAndStartTransmission, CanBasicCanMsgReceived, CanFullCanMsgReceived

CanHL_TxConfirmation, CanMsgTransmit

What is the loop for?

 Check that the CAN-cell leaves the busy state.

Is the loop channel dependent? Can this timer identification be called reentrant?

One loop for each channel, reentrant call.

How often is ApplCanTimerLoop called?

Permanently until CAN-cell leaves the busy state.

Maximum expected duration of the loop or maximum expected calls of the loop

The busy state need 3-6 CAN_CLK periods.

Reasons for a delay - why is the maximum expected duration exceeded?

Defect in hardware (what leads to a longer duration than the maximum expected time)

If the loop does not end and the application has to terminate the loop, what has to be done
then?

If the loop does not end and the application has to terminate the loop, CanInit has to be called.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

13 /28

6 [#hw_busoff] - Bus off

The DCAN CAN-controller contains an Auto-Bus-On mode. Using this mode, the DCAN
automatically starts a bus-off-recovery sequence by resetting bit Init to zero after a delay
defined by register „Auto Bus On Time“, when DCAN is getting bus-off.

The feature Auto-Bus-On is deactivated by the CAN-driver and the software has to decide,
whether to leave DCAN in bus-off state or to start the bus-off-recovery sequence by
resetting the Init bit. The CAN-driver supports the application with the call-back function
ApplCanBusOff and the macro CanResetBusStart, that is defined to CanInit.

The application has to call CanResetBusStart as soon as possible after the CAN driver has
made a busoff notification by calling ApplCanBusOff. After this the CAN-controller will be
initialized again and the Init bit will be reset.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

14 /28

7 CAN Driver Features

7.1 [#hw_feature] - Feature List

CAN Driver Functionality

 Standard HighEnd

Texas Instruments /

ARM
Texas Instruments /

ARM
Initialization

Power-On Initialization

Re-Initialization

Transmission

Transmit Request

Transmit Request Queue

Internal data copy mechanism

Pretransmit functions

Common confirmation function

Confirmation flag

Confirmation function

Offline Mode

Partial Offline Mode

Passive Mode

Tx Observe mode

Dynamic TxObjects ID

 DLC

 Data-Ptr

Full CAN Tx Objects

Cancellation in Hardware

Low Level Message Transmit

Reception

Receive function

Search algorithms Linear

 Table

 Index

 Hash

Range specific precopy functions (min. 2, typ.4) 4 4
DLC check

Internal data copy mechanism

Generic precopy function

Precopy function

Indication flag

Indication function

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

15 /28

Message not matched function

Overrun Notification

FullCAN overrun notification

Multiple BasicCAN

Rx Queue

Bus off

Notification function

Nested Recovery functions

Sleep Mode

Mode Change

Preparation

Notification function

Special Feature

Status

Security Level

Assertions

Hardware loop check

Stop Mode

Support of OSEK operating system

Polling Mode Tx

 Rx (FullCAN objects)

 Rx (BasicCAN objects)

 Error

 Wakeup

Individual Polling

Multi-channel

Support extended ID addressing mode

Support mixed ID addressing mode

Support access to error counters

Copy functions

CAN RAM check

Interrupt-lock-level

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

16 /28

7.2 Description of Hardware related features

7.2.1 [#hw_status] – Status

If a status is not supported, the related macro returns always false.

CanHwIsOk(state)

CanHwIsWarning(state)

CanHwIsPassive(state)

CanHwIsBusOff(state)

CanHwIsWakeup(state)

CanHwIsSleep(state)

CanHwIsStart(state)

CanHwIsStop(state)

CanIsOnline(state)

CanIsOffline(state)

7.2.2 [#hw_stop] - Stop Mode

The function CanStop can be called to switch the CAN driver into stop mode. Then the
CAN module will enter the listen only mode. In this mode the CAN interface does not
communicate, i.e. no acknowledge and no active error flags are driven to the CAN bus.
The error counters stay at the current value.

The function CanStart has to be called to leave the stop mode and to switch the CAN
hardware back into operation mode.

CanOffline must be called before calling CanStop. CanOnline must be called after
CanStart to enable message transmission.

7.2.3 [#hw_int] - Control of CAN Interrupts

The application has to initialize the CAN I/O port pins and the CAN interrupt request
register before calling function CanInitPowerOn.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

17 /28

7.2.4 [#hw_cancel] - Cancel in Hardware

With the feature “cancel in hardware” it is possible to clear a transmit request direct inside
the CAN-controller hardware. This feature can be used to clear the pending transmit
request of a CAN-message that can not be send out of the hardware, because the CAN-
message can not arbitrate the bus.

If the feature cancel in Hardware is used, it is necessary to call the Tx-Task cyclic.

 Yes No
Has the CanTxTask() to be called by the application to handle the
canceled transmit request in the hardware?

Cancelling transmission of messages via CanCancelTransmit or
CanCancelMessageTransmit:

In some cases the callback function ApplCanTxConfirmation is called for an already

cancelled message. This is how this CAN Driver reacts:

 Yes No
ApplCanConfirmation() is only called for transmitted messages.

Successfully cancelled messages are not notified. That means the CAN
Driver is able to detect whether is message is transmitted even if the

application has tried to cancel the message.

After a message has finished the arbitration of the bus, it is no more possible to cancel this
message. Because of this, after cancel in Hardware was used, it is necessary to wait a
security delay time to be sure that a message, that was not able to cancel, was send. This
delay time must be the maximal length of a CAN-message (132 Bittimings). So the wait
time depends from the used Baudrate and is:

wait time [sec] = 132Bit * (1 / Baudrate [Bit/sec])

Example

Time for 100 kBaud:

wait time [sec] = 132Bit * (1 / 100000 [Bit/sec]) = 0,00132 sec

This wait time can be produced with the two call back functions
ApplCanTxCancelInHwStart and ApplCanTxCancelInHwConfirmed.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

18 /28

void ApplCanTxCancelInHwStart(CanObjectHandle txHwObject)

{

}

This call back function will be called once time after the transmit request is cleared from
the hardware. It can be used from the application to start a wait time. This wait time
depends on the used baudrate.

vuint8 ApplCanTxCancelInHwConfirmed(CanObjectHandle txHwObject)

{

}

This call back function will be called from the CanTxTask. If the CanTxTask is called cyclic,
ApplCanTxCancelInHwConfirmed can be used from the application to count a wait time
down. The return value of this call back function has to be False after the delay time is
over, and True during the delay time.

7.2.5 Polling Mode

The driver supports Rx Full-CAN Polling, Rx Basic-CAN Polling, Tx Polling and Error
Polling. Wake-up polling is not supported. If the hardware wakes up, a Status Interrupt will
be generated. It is not possible to notify a Wakeup with a polling mode. Because of this, it
is not allowed to activate the feature Sleep-Wakeup if Error Polling is configured.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

19 /28

8 [#hw_assert] - Assertions

In case of a user assertion:

kErrorInitObjectHdlTooLarge CanInit() called with parameter too large

kErrorTxHdlTooLarge CanTransmit() called with transmit handle too large

kErrorIntRestoreTooOften CanInterruptRestore() called too often

kErrorIntDisableTooOften CanInterruptDisable() called too often

kErrorAccessedInvalidDynObj CanGetDynTxObj(), CanReleaseDynTxObj() or

CanDynTxObjSet...() is called with wrong transmit

handle (transmit handle too large)

kErrorAccessedStatObjAsDyn CanGetDynTxObj(), CanReleaseDynTxObj() or

CanDynTxObjSet...() is called with wrong transmit

handle (transmit handle depends on a static object)

kErrorDynObjReleased UserConfirmation() or UserPreTransmit() is called for a
dynamic object which is already released.

In case of a generation assertion:

kErrorToManyFullCanObjects The generated number of Full-CAN Objects is too big.

In case of a hardware assertion:

kErrorTxBufferBusy Hardware transmit object is busy, but this is not expected.

kErrorRxBufferBusy Hardware receive object is busy, but this is not expected.

kErrorHwObjNotInPolling

In case of a internal assertion:

kErrorIllIrptNumber A CAN-Interrupt occurs with a not valid Interruptnumber.

kErrorHwObjNotInPolling A Hardwareobject that is configured to Pollingmode
generates an unexpected CAN-Interrupt.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

20 /28

9 API

9.1 Category

Single Receive Channels (SRC)

A “Single Receive Channel” CAN Driver supports one CAN channel.)

Multiple Receive Channel (MRC):

A "Single Receive Channel" CAN Driver is typically extended for
multiple channels by adding an index to the function parameter list (e.g.
CanOnline() becomes to CanOnline(channel)) or by using the handle
as a channel indicator (e.g. CanTransmit(txHandle)).

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

21 /28

10 Implementations Hints

These options are highly compiler dependent. The necessary options are described in the
installation instructions.

10.1 Important Notes

1.) The following condition will lead to an endless recursion in the CAN Driver:

recursive call of 'CanTransmit' within a confirmation routine, if the CAN Driver has been

set into the passive state by CanSetPassive.

recommendations =>

- NO CALL OF CanTransmit WITHIN CONFIRMATION-ROUTINES

- PLEASE USE CanSetPassive ONLY ACCORDING TO THE DESCRIPTION

2.) Only the transmit line of the CAN Driver is blocked by the functions CanOffline().

However, messages in the transmit buffer of the CAN-Chip, are still sent. For a reliable

prevention of this fact, call function CanInit after calling CanOffline(). The order of

the two function calls is urgently required, due to the fact, that CanInit() is only

allowed in offline mode.

3.) Resetting indication flags and confirmation flags is done by Read-Modify-Write. The

application is responsible for consistence. CanGlobalInterruptDisable() and

CanGlobalInterruptRestore() must be called to avoid interruption by the CAN.

Confirmations or indications can be lost otherwise.

4.) [TMS470MSF542 only:] The CAN driver will suspend all interrupts by disabling all
interrupts of the same or lower level (i.e. larger priority value). The chosen level must
be equal or higher than the highest level of any functionality of the CAN Driver
(Wakeup Interrupt, signal access, etc). To allow this the interrupt nesting option has to
be disabled during all CAN driver operations.

5.) [TMS470MSF542 only:] All external interrupts (i.e. all interrupts controlled by M3VIM)
have to be configured as ISR type. NMI exceptions would pass the global interrupt
suspension of the CAN driver.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

22 /28

11 Configuration

11.1 Configuration by GENy

Using the Generation Tool the complete configuration can be done by the tool. The
configuration options common to all CAN Drivers are described in the CAN Driver manual
TechnicalReference_CANDriver.pdf.

Info
To get further information please refer to the Online-Help of the Generation Tool.

11.1.1 Compiler and Chip Selection

Target system Hw_Tms470/570Cpu (Dcan)

Compiler Texas Instruments

ARM

Derivative TMS470PSF761

TMS570PSF762

TMS470PSF764

TMS470MSF542

TMS570PSFC66

TMS570LS30316U

TMS570LS12004U

TMS570LS0322

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

23 /28

11.1.2 Bus Timing

In the Bus Timing dialog it is possible to select a Clock frequency and a Baudrate for the
calculation of the Bus timing register 1-3. The calculated values will be generated and
used by the can-driver.

Moreover it is possible to recalculate a Baudrate out of the values of given Bus timing
registers or the used Clock frequency of a configuration from values of given Bus timing
registers and the Baudrate.

You find detailed information concerning the bus timing settings in the online help of the
Generation Tool.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

24 /28

11.1.3 Acceptance Filtering

The dialog of the acceptance filter settings depends from the Id-types in the used
database. If there are only standard Id’s used, the type of the acceptance filter is standard
and if there are only extended Id’s used, the type of the acceptance filter is extended (see
the two next pictures). Only if there are standard and extended Id’s used inside the
database, or if the configuration use both types of Id’s (for example there is a extended Id-
range configured in a standard Id database), there will be two acceptance filter used. The
type of the first acceptance filter will be standard and the second will be extended.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

25 /28

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

26 /28

The following mask and code values are the raw values written in the CAN cell registers, to set the
„Acceptance Filter“.

For multiple Basic CANs there will be one Acceptance Filter for each Basic CAN.

Please use one standard and one extended Filter to handle mixed ID systems. (mixed Filters lead
to problems for none fully opened filters because received messages may change the filter during
runtime – this is a hardware specific behavior)

MaskHi “Arbitration Mask Register High” value of the BasicCAN object.

The value can be modified by changing “Acceptance Filter” or by using “Open
filters” or “Optimize” button.

MaskLo “Arbitration Mask Register Low” value of the BasicCAN objects.

The value can be modified by changing “Acceptance Filter” or by using “Open
filters” or “Optimize” button.

This box is only available, if extended IDs are used.

CodeHi ”Arbitration Register High” value of the BasicCAN objects.

The value can be modified by changing “Acceptance Filter” or by using “Open
filters” or “Optimize” button.

CodeLo “Arbitration Register Low” value of the BasicCAN objects.

The value can be modified by changing “Acceptance Filter” or by using “Open
filters” or “Optimize” button.

This box is only available, if extended IDs are used.

To get further information please refer to the help file of the Generation Tool GENy.

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

27 /28

12 Known Issues / Limitations

1. Please refer to the errata sheets of Texas Instruments.

2. Errata DCAN#22:
It could happen that an incorrect payload (data bytes) is stored in mailbox under certain
conditions. This is a HW issue present in several revisions (A and earlier). For details
please refer to silicon errata. The CAN driver implements the workaround proposal no.1 as
it can be applied also to the families without local power down-mode and it does not
disturb the other peripherals.

For that purpose the user has to calibrate a “6 NOPs” dummy loop, i.e. the software has to
wait for at least 6 CAN clocks cycles (corresponding to the CAN clock input and not CAN
bus). The 6 NOPs are not optimized and the group cannot take less than 6 CPU cycles
even if the core has a pipeline.
The number of iterations through the “6 NOPs” has the following formula:

ErrataDcan22Iterations = CPU_CLOCK/CAN_CLOCK

Info
If the used version of the silicon is affected by this issue, the calculated value
corresponding to ErrataDcan22Iterations has to be entered in the configuration:

1) A user config file has to be created; this will be installed in the CAN driver
component of the configuration.

2) This used config file will contain the following line:
#define kCanErrata22Iterations <ErrataDcan22Iterations>

Please note that the workaround is by default activated and ErrataDcan22Iterations = 255.

Info
If the used version of the silicon is not affected by this issue, the workaround can
be disabled as followings:

1) A user config file has to be created; this will be installed in the CAN driver
component of the configuration.

2) This used config file will contain the following line:
#define C_DISABLE_DCAN_ISSUE22_WORKAROUND

Vector CAN Driver Technical Reference TMS470 DCAN

2012, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

28 /28

13 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

