

CANdesc
Technical Reference

Version 2.19.00

Authors: Oliver Garnatz, Mishel Shishmanyan, Stefan
Hübner, Matthias Heil

Version: 2.19.00
Status: released (in preparation/completed/inspected/released)

Technical Reference CANdesc

1 History

Author Date Version Remarks
Oliver Garnatz 2003-11-12 2.00.00 Splitting into separate documents

and general revision
Oliver Garnatz 2004-01-13 2.00.01 Added chapter ‘Application interface

flow’
Updated format template

Mishel Shishmanyan 2004-03-09 2.01.00 New application callback convention
(from CANdesc 2.09.00)

Mishel Shishmanyan 2004-03-29 2.02.00 New APIs:
- DescGetActivityState (from

CANdesc 2.10.00)
- DescSchedulerTask() (from

CANdesc 2.09.00)
Mishel Shishmanyan 2004-04-26 2.03.00 Added more information and

limitations about the ring-buffer
mechanism (6.6.8 “Ring Buffer
Mechanism”)
New feature:

- Support for generic user
service (from CANdesc
2.11.00)

- Force CANdesc to send
RCR-RP response (from
CANdesc 2.11.00)

Stefan Hübner 2004-07-16 2.03.01 Editorial revision
Oliver Garnatz 2004-08-12 2.04.00 Added chapter 4.2

ReadDataByIdentifier (SID $22)
within the Single- and the Multiple
PID mode is described

Oliver Garnatz 2004-10-08 2.05.00 ESCAN0000982: Description of
MainHandler structure is not
readable
ROE transmission unit is described
in detail

Stefan Hübner
Oliver Garnatz

2004-10-15 2.06.00 Some additional information are
provided

Peter Herrmann
Klaus Emmert

2005-06-22 2.07.00 Added: Service $2C description.
Added: Warning Text added

Mishel Shishmanyan
Oliver Garnatz

2005-08.03 2.08.00 API added:
- DescStateTask,
- DescTimerTask,

©2010, Vector Informatik GmbH Version: 2.19.00

2 / 117

Technical Reference CANdesc

- DescMayCallStateTaskAgai
n.

- ApplDescFatalError
API modified:

- DescTask,
- ApplDescCheckSessionTran

sition,
- DescGetActivityState,
- DescGetStateSession.

API removed:
- DescSchedulerTask

Modified description for
ReadDataByIdentifier with long data
and negative response in main-
handler.

Oliver Garnatz 2006-03-02 2.09.00 Added: ...prevent the ECU going to
sleep while diagnostic is active

Mishel Shishmanyan 2006-03-24 2.10.00 Added: document overview
Mishel Shishmanyan 2006-04-27 2.11.00 Modified:

-6.6.12
DynamicallyDefineDataIdentifier
($2C) (UDS) functions
-6.6.12.1
DescMayCallStateTaskAgain()

Mishel Shishmanyan 2007-02-22 2.12.00 Added:
 - 6.6.8.3 “DescRingBufferCancel()”

Matthias Heil 2008-01-03 2.13.00 Added:
Caution concerning user main
handler on protocol level

Matthias Heil 2008-02-29 2.14.00 Added:
Handling of read/write memory by
address:
 - 5.5 “Read/Write Memory by
Address”
- 6.6.7.2
“DescStartMemByAddrRepeatedCal
l()”
- 6.6.13 ”Memory Access Callbacks”

Mishel Shishmanyan 2008-06-06 2.15.00 Removed:
Chapter “ResponseOnEvent
Transmission Unit”
Added:

©2010, Vector Informatik GmbH Version: 2.19.00

3 / 117

Technical Reference CANdesc

 - 6.6.12.3 “Non-volatile memory
support”

Mishel Shishmanyan 2008-11-09 2.16.00 Modified:
- 6.6.8 and 6.6.8.1: Added limitation
for UDS and SPRMIB with the ring
buffer usage.
- 7.6 …work with the ring-buffer
mechanism
Added:
- 6.6.14 Flash Boot Loader Support
- 7.8 …send a positive response
without request after FBL flash job

Mishel Shishmanyan 2009-05-18 2.17.00 Modified:
6.6.5.1ApplDescCheckSessionTran
sition()
Added:
6.6.5.3DescIsSuppressPosResBitS
et ()

Mishel Shishmanyan 2009-08-11 2.18.00 Modified:
Minor editorial changes
5.2 Configure Handlers using
CANdela attributes – added new
data object attributes
Added:
7.9 …enforce CANdesc to use
ANSI C instead of hardware
optimized bit type
5.1 Configure DBC attributes for
diagnostics

Mishel Shishmanyan 2010-12-21 2.19.00 Modified:
6.6.8.2 DescRingBufferWrite()
6.6.13.1
ApplDescReadMemoryByAddress()
6.6.13.2
ApplDescWriteMemoryByAddress()

©2010, Vector Informatik GmbH Version: 2.19.00

4 / 117

Technical Reference CANdesc

Contents

1 History.. 2

2 Introduction ... 10

3 Documents this one refers to…... 11

4 Architecture Overview .. 12
4.1 CANdesc – Internal processing... 12
4.1.1 Diagnostic protocol.. 12
4.1.2 How does this flow actually work? .. 13
4.2 Application interface flow .. 16
4.2.1 Session- and CommunicationControl.. 16

5 Advanced Configuration .. 17
5.1 Configure DBC attributes for diagnostics 17
5.2 Configure Handlers using CANdela attributes 17
5.3 ReadDataByIdentifier (SID $22).. 23
5.3.1 Limitations of the service... 24
5.3.2 Single PID mode ... 25
5.3.2.1 Sending a positive response using linear buffer access 25
5.3.2.2 Sending a positive response using ring buffer access 26
5.3.2.3 Sending a negative response.. 27
5.3.3 Multiple PID mode... 27
5.3.3.1 Pure linear buffer configuration ... 28
5.3.3.1.1 Sending a positive response ... 28
5.3.3.1.2 Sending a negative response.. 29
5.3.3.2 Ring buffer active configuration... 29
5.3.3.2.1 Sending a positive response ... 32
5.3.3.2.2 Sending a negative response.. 33
5.3.3.2.3 PostHandler execution rule ... 34
5.4 DynamicallyDefineDataIdentifier (SID $2C) (UDS) 35
5.4.1 Feature set .. 35
5.4.2 API Functions.. 35
5.4.3 Sequence Charts .. 36
5.5 Read/Write Memory by Address (SID $23/$3D) (UDS) 39
5.5.1 Tasks performed by CANdesc .. 39
5.5.2 Task to be performed by the Application....................................... 39
5.5.3 Repeated service calls .. 39

©2010, Vector Informatik GmbH Version: 2.19.00

5 / 117

Technical Reference CANdesc

6 CANdesc API ... 41
6.1 API Categories .. 41
6.1.1 Single Context... 41
6.1.2 Multiple Context (only CANdesc) .. 41
6.2 Data Types.. 41
6.3 Global Variables.. 41
6.4 Constants .. 41
6.4.1 Component Version .. 41
6.5 Macros .. 42
6.5.1 Data exchange .. 42
6.5.1.1 Splitting 16 bit data.. 42
6.5.1.2 Splitting 32 bit data.. 42
6.5.1.3 Assembling 16 bit data.. 43
6.5.1.4 Assembling 32 bit data.. 43
6.6 Functions... 44
6.6.1 Administrative Functions ... 44
6.6.1.1 DescInitPowerOn().. 44
6.6.1.2 DescInit()... 45
6.6.1.3 DescTask().. 46
6.6.1.4 DescStateTask() ... 47
6.6.1.5 DescTimerTask()... 48
6.6.1.6 DescGetActivityState() .. 49
6.6.2 Service Functions.. 50
6.6.2.1 DescSetNegResponse() ... 50
6.6.2.2 DescProcessingDone() ... 51
6.6.3 Service Call-Back functions .. 52
6.6.3.1 Service PreHandler ... 52
6.6.3.2 Service MainHandler... 53
6.6.3.3 Service PostHandler ... 55
6.6.4 User (Unknown) Service Handling .. 56
6.6.4.1 How it works.. 56
6.6.4.2 ApplDescCheckUserService()... 57
6.6.4.3 DescGetServiceId()... 58
6.6.4.4 Generic User Service MainHandler... 59
6.6.4.5 Generic User Service PostHandler ... 60
6.6.5 Session Handling .. 61
6.6.5.1 ApplDescCheckSessionTransition().. 61
6.6.5.2 DescSessionTransitionChecked()... 62
6.6.5.3 DescIsSuppressPosResBitSet () .. 63
6.6.5.4 ApplDescOnTransitionSession() ... 64
6.6.5.5 DescSetStateSession() ... 65

©2010, Vector Informatik GmbH Version: 2.19.00

6 / 117

Technical Reference CANdesc

6.6.5.6 DescGetStateSession()... 66
6.6.6 CommunicationControl Handling .. 67
6.6.6.1 ApplDescCheckCommCtrl() .. 67
6.6.6.2 DescCommCtrlChecked() ... 68
6.6.7 Periodic call of ‘Service MainHandler’ ... 69
6.6.7.1 DescStartRepeatedServiceCall() .. 69
6.6.7.2 DescStartMemByAddrRepeatedCall() .. 70
6.6.8 Ring Buffer Mechanism... 71
6.6.8.1 DescRingBufferStart() ... 72
6.6.8.2 DescRingBufferWrite() .. 73
6.6.8.3 DescRingBufferCancel() ... 74
6.6.8.4 DescRingBufferGetFreeSpace() ... 75
6.6.8.5 DescRingBufferGetProgress() .. 76
6.6.9 Signal Interface of CANdesc ... 77
6.6.9.1 ApplDesc<Signal-Handler>() .. 77
6.6.9.2 Configuration of direct signal access .. 78
6.6.10 State Handling (CANdesc only) .. 78
6.6.10.1 DescGetState<StateGroup>()... 78
6.6.10.2 DescSetState<StateGroup>() ... 79
6.6.10.3 ApplDescOnTransition«StateGroup»() ... 80
6.6.11 Force “Response Correctly Received - Response Pending” transmission 81
6.6.11.1 DescForceRcrRpResponse() .. 82
6.6.11.2 ApplDescRcrRpConfirmation().. 83
6.6.12 DynamicallyDefineDataIdentifier ($2C) (UDS) functions.............. 84
6.6.12.1 DescMayCallStateTaskAgain() ... 85
6.6.12.2 ApplDescCheckDynDidMemoryArea().. 86
6.6.12.3 Non-volatile memory support .. 87
6.6.12.3.1 DescDynDefineDidPowerUp()... 90
6.6.12.3.2 DescDynIdMemContentRestored () .. 91
6.6.12.3.3 DescDynDefineDidPowerDown () ... 92
6.6.12.3.4 ApplDescStoreDynIdMemContent () ... 93
6.6.12.3.5 ApplDescRestoreDynIdMemContent () ... 94
6.6.13 Memory Access Callbacks .. 95
6.6.13.1 ApplDescReadMemoryByAddress() ... 95
6.6.13.2 ApplDescWriteMemoryByAddress().. 96
6.6.14 Flash Boot Loader Support ... 96
6.6.14.1 DescSendPosRespFBL() .. 97
6.6.14.2 ApplDescInitPosResFblBusInfo().. 98
6.6.15 Debug Interface / Assertion... 99
6.6.15.1 ApplDescFatalError() .. 99

©2010, Vector Informatik GmbH Version: 2.19.00

7 / 117

Technical Reference CANdesc

7 How To….. 104
7.1 …implement a protocol service MainHandler 104
7.2 …implement a service MainHandler ... 107
7.3 …implement a Signal Handler .. 108
7.4 …implement a Packet Handler ... 109
7.5 …implement a state transition function 109
7.6 …work with the ring-buffer mechanism....................................... 110
7.6.1 with asynchronous write.. 110
7.6.2 with synchronous write.. 112
7.7 …prevent the ECU going to sleep while diagnostic is active 113
7.8 …send a positive response without request after FBL flash job . 114
7.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type 114

8 Related documents ... 115

9 Glossary... 116

10 Contact... 117

©2010, Vector Informatik GmbH Version: 2.19.00

8 / 117

Technical Reference CANdesc

Illustrations
Figure 3-1: Manuals and References for CANdesc .. 11
Figure 4-1: General request flow .. 12
Figure 4-2: DESC run diagram ... 13
Figure 4-3: Request message mapping.. 14
Figure 4-4: Request processing stages .. 15
Figure 5-1: Dependency of CANdesc Handler configuration .. 22
Figure 5-2: Linearly written positive response on single PID request ... 25
Figure 5-3: “On the fly” response data writing... 26
Figure 5-4: Negative response on single PID ... 27
Figure 5-5: Linearly written positive response on multiple PIDs (global ring buffer option is off).... 28
Figure 5-6: Negative response on multiple PIDs (global ring buffer option is off) 29
Figure 5-7: Linearly written response data on multiple PIDs (global ring buffer option is on) 32
Figure 5-8: Negative response on multiple PIDs (global ring buffer option is on) 33
Figure 5-9: Post-Handler execution sequence.. 34
Figure 5-10: Defining a DDID.. 37
Figure 5-11: Reading a DDID. .. 38
Figure 6-1 DynDID definition restore and tester interaction.. 88
Figure 6-2 Store DynDID definitions ... 89

©2010, Vector Informatik GmbH Version: 2.19.00

9 / 117

Technical Reference CANdesc

2 Introduction

This document has not the job to describe the diagnostic itself. The focus of this document
is the technical aspects of the CANdesc component.

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2010, Vector Informatik GmbH Version: 2.19.00

10 / 117

Technical Reference CANdesc

3 Documents this one refers to…

 User Manuals CANdesc and CANdescBasic (one for both)

 Docu OEM

You are here

User Manual

Technical
Reference
General

Technical
Reference

OEM

Figure 3-1: Manuals and References for CANdesc

All common topics with CANdesc and CANdescBasic are described within this technical
reference very detailed.
Read all about OEM-specific differences in the TechnicalReference_OEM.
For faster integration, refer to the product’s corresponding user manual CANdesc or
CANdescBasic.

©2010, Vector Informatik GmbH Version: 2.19.00

11 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

12 / 117

4 Architecture Overview

This chapter should describe the internal structure and behavior of the CANdesc
component.

4.1 CANdesc – Internal processing

4.1.1 Diagnostic protocol
The communication described in the diagnostic protocol consists of a ping-pong
communication between a tester (client) and an ECU (server). The tester requests a
service in the ECU by transmitting a request to him. The ECU should response with a
positive response, if the result of this service is valid or the action is prepared to be done.
Is the result negative or the action could not be executed, the ECU should respond
negative.
The validity checks have typically the same pattern for all services (as shown in Figure
4-1: General request flow). These components which are included in this flow, build up the
main base of the CANdesc component.

t

Diagnostics - CANdesc

Application

Check Svc

Check Session

Check SvcInst

Check Format

Mainhandler

{
....
DescProcessingDone();

}

Prehandler optional

{

}

Posthandler optional

{

}

Request

negative Response
Tester

positive Response

ACK

Figure 4-1: General request flow

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

13 / 117

4.1.2 How does this flow actually work?
The picture below shows a simply structured description of the module functionality.

Request reception

Dispatching the request

Processing the request

Finishing processing of the
request

Idle mode/Awaiting request

Figure 4-2: DESC run diagram

Lets assume that the component is currently in the “Awaiting request” state. In this state
it waits for the next diagnostic request and if it is needed – it provides also timing
monitoring.
Once a diagnostic request transmission was initiated from the transport layer, the
component enters in the state “Request reception”. If the reception is finished, further
physical requests will be blocked until the response is sent. Depending on the used OEM a
functional request in the ISO 14230 standard will be handled parallel1 to physical request.
The ISO 14229-1 standard is more restricted to the parallel handling. Except the
TesterPresent Service no other service could be handled parallel.

1 Not all services could be handled parallel.

Technical Reference CANdesc

After the reception of the request is completed the request processing will be prepared.
The component is in the “Dispatching request” state. The processing of the request is
done at a task level within the next call of the DescTask() function.
First the SID is checked whether supported or not. If not a negative response
‘ServiceNotSupported’ (NRC $11) will be sent.
Next step is to check if the supported SID is permitted in the current Session (Diagnostic
Mode). If not, the negative response ‘ServiceNotSupportedInTheCurrentSession’ (NRC
$7F) is sent automatically by the CANdesc component.

n Bytes (n=0..N)

1Byte

m Bytes (m = 0..M)

Application dat a

SID

SID_EXT

Service instance qualification
“Request head“

Figure 4-3: Request message mapping

After that the CANdesc component validates, if the sub-service (service instance) is
supported or not. This is implemented with a powerful binary search. If the service
instance is not supported, the request will be rejected with the corresponding error code
‘SubFunctionNotSupported’ (NRC $11, for service which have SubFunctions) or
‘InvalidFormat’ (NRC $13, for service with data identifiers).
For each service instance which is supported by the current configuration, the CANdesc
component knows the exact length of most requests. (Some requests use variable data
length elements thus a fixed length doesn’t exist.) If the length is known and it does not
match, the dispatcher will reject this request (dependent to the manufacturer specification).
If the complete request length is not known, the application has to do this job.

If the service instance is found, the state checks (e.g. ‘Security Level’) will be performed. If
all of them are passed then the component enters the state “Processing request” in the
diagram above. This state consists of several parts that are represented in more detailed
structure shown below. The dotted lines reveal the optional parts for the implementation.
For example – the Pre-, Post- and SignalHandlers are optional and might not be
implemented.

©2010, Vector Informatik GmbH Version: 2.19.00

14 / 117

Technical Reference CANdesc

Request analyzed

PreHandler

MainHandler

Signal-Handler #0

Signal-Handler #1

Signal-Handler #k

PostHandler

 Figure 4-4: Request processing stages

After the response is composed CANdesc must be informed about, to start the
transmission of the final response. CANdesc is doing the handshake with the Tester
(automatic transmission of RCR-RP) while the state “” is doing.
Within the end of the transmission the state “Finishing processing of the request” is
entered and the PostHandler (if configured) is called. In this PostHandler the application
has to do the closing (e.g. updating a state machine, prepare the ECU for a reset …). The
session state for example (which is managed by CANdesc) is also updated in a
PostHandler.

©2010, Vector Informatik GmbH Version: 2.19.00

15 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

16 / 117

4.2 Application interface flow

4.2.1 Session- and CommunicationControl
The services SessionControl and CommunicationControl are typically handled by
CANdesc. But the application still has the possibility to reject these service requests. You
can find a detailed description in chapter 6.6.5 Session Handling and in chapter 6.6.6
CommunicationControl Handling also.

IDLE

Receive a Request

Search
SID

IDLE

ApplDesc<PreHandler>
callback

SID $28
(SID $29)

ApplDescCheckCommCtrl
{
 ...
DescCommCtrlChecked();

}

Transmit positive
response $68

TX acknowledge
$68

ApplDescOnCommunicationEnabled
ApplDescOnCommunicationDisabled

>optional - not all OEMs<

WAIT

ApplDesc<PreHandler>
callback

Supported
SID $xx

ApplDesc<MainHandler>
{
 ...
 DescProcessingDone();
}

TX acknowledge
$xx

ApplDesc<PostHandler>

WAIT

ApplDesc<PreHandler>
callback

SID $10

ApplDescCheckSessionTransition
{
 ...
DescSessionTransitionChecked();

}

TX acknowledge
$50

ApplDescOnSessionTransition

WAIT

Unsupported
SID $xx

Transmit positive
response $50

Transmit
negative
response
NRC $11

Transmit positive
response $xx

Technical Reference CANdesc

5 Advanced Configuration

5.1 Configure DBC attributes for diagnostics
If the diagnostic messages shall be defined in the communication data-base file (DBC),
and not received via CANdriver ranges (e.g. in case of normal fixed or extended
addressing), the following attributes in the DBC file must exist and shall be set as shown
below.

Attribute Name Object

Type
Value
Type

Values
the default value is
written in bold

Description

DiagRequest Message Enum No
Yes

Specifies (Yes) that the message is a diagnostic
physical USDT request message.

DiagResponse Message Enum No
Yes

Specifies (Yes) that the message is a diagnostic
USDT response message.

DiagState Message Enum No
Yes

Specifies (Yes) that the message is a diagnostic
functional USDT request message.

DiagUudtResponse Message Enum false
true

Specifies (true) that the message is a diagnostic
UUDT response message.

Table 5-1: DBC file diagnostic message attributes

5.2 Configure Handlers using CANdela attributes
The following attributes are relevant for configuration of CANdela software components:

All attributes have the category ‘CANdesc’.

Caution
Please note: if you have a CDD file where one of the below listed attributes is already
set to “oem”, you are not allowed to change this attribute value, since this will affect the
proper CANdesc functionality for the OEM.

Diagnostic Class
attributes

MainHandlerSupport (on
Protocol Service Level)

Type: enum: none = 0, oem = 1, user = 2
Provide MainHandlers and select type for all Protocol
Services of Diagnostic class.

PreHandlerSupport (for all
Protocol Services)

Type: enum: none = 0; oem = 1; user = 2

©2010, Vector Informatik GmbH Version: 2.19.00

17 / 117

Technical Reference CANdesc

 Provide type of Service PreHandlers for all Protocol
Services of Diagnostic class.
Restriction: Only evaluated if ‘MainHandlerSupport (on
Protocol Service Level)’ is set, i.e. unequals to ‘none’.

PostHandlerSupport (for
all Protocol Services)

Type: enum: none = 0; oem =1; user = 2
Provide type of Service PostHandlers for all Protocol
Services of Diagnostic class.
Restriction: Only evaluated if ‘MainHandlerSupport (on
Protocol Service Level)’ is set, i.e. unequals to ‘none’.

PacketHandlerSupport

Type: enum: none = 0; all = 1
Switch on/off Packet Handlers support for each Diagnostic
instance of current Diagnostic class. Restriction: Only
evaluated if ‘MainHandlerSupport (on Protocol Service
Level)’ is set, i.e. unequals to ‘none’.

Table 5-2: Names of CANdela Diagnostic Class attributes

Caution
In some cases, the CANdesc service implementations of one service requires
subservice handling of other services. Which services - if any at all - are
affected by such a dependency is manufacturer specific. Thus, the attribute
‘MainHandler-Support (on Protocol Service Level)’ must be used carefully.
Before disabling the subservice handling (by setting the attribute to ‘user’),
check the manufacturer specific documentation. If you are in doubt, please
contact Vector to verify CANdesc will work correctly with your settings.

Diagnostic Instance
attributes

PacketHandlerOption

Type: enum: user= 0; generated= 1
Provide type of current Packet Handler for first found
Service Positive response. Restriction: Only evaluated if
Folder attribute ‘PacketHandlerSupport’ is set to ‘all’.

Table 5-3: Names of CANdela Diagnostic Instance attributes

Service attributes
MainHandlerSupport (on
Service Level)

Type: enum: user = 0; oem = 1; generated = 2
Provide MainHandler for current Service
(Service/Subfunction combination).
Restriction: Only evaluated if Folder attribute
‘MainHandlerSupport (on Protocol Service Level)’ is not set,
i.e. equals to ‘none’.

PreHandlerSupport

Type: enum: none = 0; oem = 1; user = 2
Provide type of Service PreHandler for current Service
(Service/Subfunction combination). The Service
PreHandler is executed directly before the MainHandler.
Restriction: Only evaluated if Folder attribute

©2010, Vector Informatik GmbH Version: 2.19.00

18 / 117

Technical Reference CANdesc

‘MainHandlerSupport (on Protocol Service Level)’ is not set,
i.e. equals to ‘none’.

PreHandlerOverrideName

Type: string: {empty}
Provide alternative name for Service PreHandler instead of
generated one (default prefix is added to
PreHandlerOverrideName).You can reuse one Service
PreHandler for different services, if you specify the same
Override Name.
Restriction: Only evaluated if Folder attribute
‘MainHandlerSupport (on Protocol Service Level)’ is not set,
i.e. equals to ‘none’.

PostHandlerSupport

Type: enum: none = 0; oem = 1; user = 2
Provide type of Service PostHandler for current Service
(Service/Subfunction combination). The Service
PostHandler is executed after a positive confirmation of the
positive response.
Restriction: Only evaluated if Folder attribute
‘MainHandlerSupport (on Protocol Service Level)’ is not set,
i.e. equals to ‘none’.

PostHandlerOverrideName

Type: string: {empty}
Provide alternative name for Service PostHandler instead of
generated one (default prefix is added to
PostHandlerOverrideName).You can reuse one Service
PostHandler for different Services, if you specify the same
Override Name.
Restriction: Only evaluated if Folder attribute
‘MainHandlerSupport (on Protocol Service Level)’ is not set,
i.e. equals to ‘none’.

Table 5-4: Names of CANdela Service attributes

©2010, Vector Informatik GmbH Version: 2.19.00

19 / 117

Technical Reference CANdesc

 Data Object attributes
VariableForDirectAccess

Type: string: {empty}
Specify name of application variable to be accessed by
CANdesc. Currently, no (extended) type specifiers are
allowed. If no variable for direct access is specified, a
callback function will be generated.

SignalHandlerOverrideName

Type: string: {empty}
Provide alternative name for Signal Handler instead of
generated one (default prefix is added to
SignalHandlerOverrideName). You can reuse one Signal
Handler for different signals, if you specify the same
Override Name. Pay attention that the function signature
must match the different use-cases.

SignalPrototype Type: enum: Generated = 0, GeneratedConst = 1,
GeneratedUserDefined = 2, None = 3
Provides the information about the generation type:
- "Generated" - RAM variables (default as we had up to
now)
 - "GeneratedConst" - ROM variables
 - "GenratedUserDefined" - use own types (use the
below attribute to determine the type (string))
 - "None" - no prototype will be generated. Instead a
header file will be included
"DescType.h" where the user have to define his typedefs
(for structure access for example).

Restriction: Only evaluated if:
- Service attribute ‘MainHandler (on Service Level)’ is set
to ‘generated’ or
 Diagnostic instance attribute ‘PacketHandlerOption’ is
set to ‘generated’.
- ‘VariableForDirectAccess’ is set to refer an object.

UserDefinedQualifier Type: string: {empty}
Provides the information about the generation prototype
name (e.g. instead using the Vector convention (vuint8,
vuint16, etc. you can use uint8, t_StructType, etc.).

Restriction: Only evaluated if:
- Service attribute ‘MainHandler (on Service Level)’ is set
to ‘generated’ or Diagnostic in-stance attribute
‘PacketHandlerOption’ is set to ‘generated’.
- ‘VariableForDirectAccess’ is set to refer an object.
- ‘SignalPrototype’ is set to ‘GenratedUserDefined’.

Table 5-5: Names of CANdela Data Object attributes

©2010, Vector Informatik GmbH Version: 2.19.00

20 / 117

Technical Reference CANdesc

Please note that not it is not possible to combine all kinds of handlers inside of one
Diagnostic instance (and sometimes, Diagnostic class).
The following flow chart shows the conditions and order in which the attributes are
evaluated.

©2010, Vector Informatik GmbH Version: 2.19.00

21 / 117

Technical Reference CANdesc

Diagnostic Class::
 MainHandlersSupport

(on Protocol Service level)

none

user

DiagClass::
PreHandlersSupport

(for all Protocol Services)

user

Create
UserPreHandler

Create
OemPreHandler

oem

none

Create
UserMainHandler

for Protocol
Service

Create
OemMainHandler

for Protocol
Service

oem

DiagClass::
PacketHandlerSupport

all

none

done.

DiagClass::
PostHandlerSupport

(for all Protocol Services)

user

Create
UserPostHandler

Create
OemPostHandler

oem

none

Diagnostic Instance::
PacketHandlerOption

Create
Generated

Packet Handler

usergenerated

Create
 UserPacket

Handler

done.
DataObject::

VariableForDirectAccess
== { empty}

Create
UserSignal

Handler, consider
override qualifer

noyes

Create
GeneratedSignal
Handler, consider
override qualifer

done.

Service::
PreHandlerSupport

user

Create
UserPreHandler,
consider override

qualifer

Create
OemPreHandler,
consider override

qualifer

oem

none

Service::
PostHandlerSupport

user

Create
UserPostHandler
consider override

qualifer

Create
OemPostHandler
consider override

qualifer

oem

none

Service::
MainHandlerSupport

oem

Create
OemService
MainHandler

Create
Generated

ServiceMain
Handler

generateduser

done.

Create
UserService
MainHandler

Figure 5-1: Dependency of CANdesc Handler configuration

©2010, Vector Informatik GmbH Version: 2.19.00

22 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

23 / 117

5.3 ReadDataByIdentifier (SID $22)
This service has the purpose to read some predefined data records (PID). Each PID has a
concrete data structure which is designed by CANdelaStudio.
As the standard case the request contains a single PID. This results in a single response
containing the data structure of the record.

$22 $12

Single PID mode (well know case) example for PID $1234

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

$22 $12

Single PID mode (well know case) example for PID $1234

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

The UDS allows to request multiple PIDs in a single request. This results is also a single
response including the data structure of each requested PID.

$22 $12

Multiple PID mode example for PIDs: $1234, $ABCD

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

ABCD

ABCD Data block

$22 $12

Multiple PID mode example for PIDs: $1234, $ABCD

$34

Tester‘s request:

$62 $12 $34

ECU‘s response:

Data block

ABCD

ABCD Data block

CANdesc will hide this multiple PID processing from the application. To do that some
minor limitations in the interface has to be made (see chapter 5.3.2 Single PID mode). To
show the differences, we discuss first the standard case. In the standard case there is no
multiple PID processing possible. The second chapter (5.3.3 Multiple PID mode) is
showing the multiple PID processing.
Which mode is used depends on the configuration (typically the OEM).

Technical Reference CANdesc

5.3.1 Limitations of the service
Session management
This service contains no sub-function identifier which means the global state group
“session” may not be selected as a “relevant group” for any instance of this service. If
there is a need for a PID to be rejected under a certain session, all PIDs must follow this
rule and be specified to be rejected for this session. As a result the whole SID $22 will be
rejected for this session. This behavior is harmonized with the UDS protocol specification,
which allows service identifiers to be rejected in a session but no parameter identifiers.

©2010, Vector Informatik GmbH Version: 2.19.00

24 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

25 / 117

5.3.2 Single PID mode
The Single PID mode is configured automatically, if the number of PIDs that can be
requested at the same time, is limited to one PID. If more than one PID is requested, the
request will be rejected with ‘RequestOutOfRange’ (NRC $31).
If the multiple PID mode of CANdesc is deactivated, the service $22 will be executed and
processed like any other diagnostic service without any additional specifics or limitations.

5.3.2.1 Sending a positive response using linear buffer access

Tester CANdesc Application

SId[$22],Pid[$x xxx]

ApplDescReadDataById_xxxx

DescProcessingDone()

Write data (pMsgContext->resData)

Set t otal response data length
(pMsgContext->resDataLen = N)

RSid[$62], PID[$xxxx], Data[N]

ApplDescPreReadDataById_xx xx

StateGroupsCheck for Pid

Check all states if the
"read PID" service can
be executed.

If available execute the pre-handler and
check if the application rejected the service.

Execute the main-handler
to fill the response data.

The positive response transmission will be
initiated after the DescProcessingDone
gets called.

Figure 5-2: Linearly written positive response on single PID request

Technical Reference CANdesc

5.3.2.2 Sending a positive response using ring buffer access

Tester CANdesc Application

SId[$22],Pid[$xxxx]

FF (RSid[$62], PID[$xxxx], Data[3])

ApplDescReadDataById_xxxx

DescRingBufferStart()

Write data (DescRingBufferWrite())

Set total response data length
(pMsgContext->resDataLen = N)

Write data (DescRingBufferWrite())

CF(Data[N-3])

StateGroupsCheck for Pid

ApplDescPreReadDataById_xxxx

Check all states i f the
"read PID" service may
be executed.

If available execute the pre-handler and check if
the application rejected the service.

Execute the main-handler
to fill the response data.

The positive response t ransmission wi ll be initiated after
the DescRingBufferStart gets called and there are at
least 7 by tes ready to be transmitted (i. e. 3 data bytes).

Figure 5-3: “On the fly” response data writing.

©2010, Vector Informatik GmbH Version: 2.19.00

26 / 117

Technical Reference CANdesc

5.3.2.3 Sending a negative response
Due to the fact that the negative response handling has changed in the multiple PID mode,
we recommend to do the same handling in the Single PID mode, too. Please refer the
chapter 5.3.3.2 “Ring buffer active configuration” for the recommended negative response
handling.

Tester CANdesc Application

Check all states if the
"read PID" service can
be executed.

If available execute the pre-handler and
check if the application rejected the service.

Ex ecute the m ain-handler
to fi ll the res ponse data.

The negative response transmission will be
ini tiat ed after the DescProc essingDone
gets called.

SId[$22],Pid[$xxxx]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for Pid

ApplDescReadDataBy Id_xxxx

DescProcessingDone()

DescSetNegresponse(errorCode)

ApplDescPreReadDataById_xxxx

The m ain-handler st ill can
register any errors.

Figure 5-4: Negative response on single PID

5.3.3 Multiple PID mode
The Multiple PID mode is configured automatically if the number of PIDs, that can be
requested at the same time, is greater than one. If more than this predetermined number
of PIDs is requested, the request will be rejected with ‘RequestOutOfRange’ (NRC $31).
In this configuration some minor limitations must be taken into account while using the
CANdesc interfaces.
For the service “ReadDataByIdentifier” the ring-buffer feature can be used. Depending on
the usage of this feature, there are two main use cases for the multiple PID mode.:

©2010, Vector Informatik GmbH Version: 2.19.00

27 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

28 / 117

5.3.3.1 Pure linear buffer configuration
The ring-buffer feature is deactivated in general.
If the system doesn’t use any ring buffer access for filling the response, the PID pipeline is
still quite simple and therefore with less limitations to the CANdesc API usage and
application performance.

5.3.3.1.1 Sending a positive response
Tester CANdesc Application

SId[$22],Pid0[$xxxx],Pid1[$yyy y]

FF (RSid[$62], PID0[$xxxx], Data[3])

CF[i](Data[N-3],PID1[$yyy y]Data[M)

ApplDescPreReadDataById_xxxx

Set total response data length
(pM sgContext->resDataLen = N)

Write data (pMsgContext->resData)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

ApplDescReadDataById_yyyy

Write data (pMsgContext->resData)

Set total response data length
(pM sgContext->resDataLen = M)

DescProcessingDone()

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

Before the requested PIDs wil l be proc essed, chec k
all PIDs':
1. States (may be executed)
2. Pre-handlers .

Execute the first PID's
main-handler to fill the response
data.

Once the service execution of
the current PID has been
accomplished...

...execute the next
queued one.

The positive response transmission will be
initiated after all PIDs have called
DescProcessingDone and all the data ...

Figure 5-5: Linearly written positive response on multiple PIDs (global ring buffer option is off)

Technical Reference CANdesc

5.3.3.1.2 Sending a negative response
This example depicts the case where from two requested PIDs the first one may not be
accessible and rejects the service execution.

Tester CANdesc Application

Before reques ted PIDs will be processed c heck all
PIDs':
1. States (may be executed)
2. Pre-handlers .

Execute the first PID's
main-handler to fill the response
data.

Once the service execution of
the current PID has been
accomplished...

...stops the further
processing a...

SId[$22],Pid0[$xxxx],Pid1[$yyy y]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

DescSetNegResponse(errorCode)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

The second PID's
Main-handler will not be
executed.

Skip further processing
of the list

Figure 5-6: Negative response on multiple PIDs (global ring buffer option is off)

5.3.3.2 Ring buffer active configuration
Attention: The Ring-Buffer in ‘Multiple PID‘ services can be first-time used since CANdesc
version 2.13.00
Different concepts for the buffer handling were discussed while development. Two
solutions with different pros and cons are discussed here:

• Multiple buffer
Normally each service handler (MainHandler routine) has the whole diagnostic buffer
available (apart from the protocol header bytes hidden by CANdesc). Based on this logic
the service $22 using PID pipelining has the same tasks as the normal service processor:
executing a PID handler and provide him the whole diagnostic buffer for response data.
This will hide the whole process and makes the application’s life easier (no exceptions for
the implementation). To realize this concept means to provide a separate diagnostic buffer
for each PID which size is the same as the main one (configured by GENtool). This is a
fast and quite simple solution but requires too much RAM to be reserved for only the case

©2010, Vector Informatik GmbH Version: 2.19.00

29 / 117

Technical Reference CANdesc

that sometimes the testers would like to use the maximum capacity of the ECU (i.e.
requests as many PIDs as possible for this ECU in a single request).

Pros: less ROM usage
Cons: very high RAM usage

• virtual multiple buffer

This concept is more generically designed and will not have additional ROM overhead if
the pipeline size will be increased. An intelligent buffer concept gives the application the
whole size of the buffer for each MainHandler call.
Once the whole data for the current PID has been written, the data supplement will stop
(because the next PID handler will not be called). The transmission in the transport layer is
started and some time later it runs into buffer under-run. This ‘signal’ is used to call the
next PID MainHandler. This MainHandler has to provide his data very quick. Otherwise the
response transmission will stop (due to a continuously buffer under-run).

Pros: less RAM usage (practically independent of the maximum list size).
Cons: moderate ROM overhead / the response data must be composed very

quickly.
The virtual multiple buffer concept is the implemented solution. The application can choose
for each PID separately to write the data linearly or by using the ring buffer.
performance requirements
The application has performance requirements:

- If linear access has been chosen, the whole response data of each MainHandler
must be filled within the lower duration of the P2 time and the TP confirmation
timeout. Normally the P2 time is shorter than the transport layers confirmation
timeout so just take into account that each Main-Handler must be able to fill its
response data within a time far shorter than the P2 time.

- If ring buffer access has been chosen, the application has to call the
“DescRingBufferWrite” fast enough to keep TP from confirmation timeout.

Negative response on PID
The negative response handling is changed in the multiple PID mode! This affects all
protocol-services with a activated ‘May be combined’ property. The UDS specification
encloses only the SIDs: $22 and $2A. For all other services the negative response
handling is not changed!
If the application has to reject a request (e.g. ignition key check) it has to do that in the
PreHandler. The application is not allowed to call “DescSetNegResponse()” to send a
negative response in any MainHandler.
This limitation is based on the concept to check all reject conditions in PreHandlers before
starting the transmission. This is necessary because after CANdesc has executed the first
MainHandler (which starts the positive response transmission) there will be no chance to
send a negative response.

©2010, Vector Informatik GmbH Version: 2.19.00

30 / 117

Technical Reference CANdesc

The usage of the concept: CANdesc starts to call all PreHandlers of this multiple PID
request. If no negative response is set, CANdesc will start to call the corresponding
MainHandlers. Within the first call of DescProcessingDone() the transmission is initiated.
Note (for version 3.02.00 of CANdesc and above):
In case the application sets an error code during the main-handler execution in non-debug
(released) version of the component, depending on the situation will lead to:
For service $22:

- First DID of the list main-handler: sending a negative response to service $22;
- Second or any of the succeeding DIDs in the list: transmission interruption.

For service $2A:
- Ignoring the scheduled response.

©2010, Vector Informatik GmbH Version: 2.19.00

31 / 117

Technical Reference CANdesc

5.3.3.2.1 Sending a positive response
Tester CANdesc Application

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

FF (RSid[$62], PID0[$xxxx], Data[3])

CF[i](Data[N-3])

StateGroupsCheck for PID0[$xxxx]

StateGroupsCheck for PID1[$yyyy]

ApplDescPreReadDataById_xxxx

Set total response data length
(pMsgContext->resDataLen = N)

Write data (pM sgCont ext->resData)

ApplDescPreReadDataById_yyyy

ApplDescReadDataById_xxxx

DescProcessingDone()

ApplDescReadDataById_yyyy

Write data (pM sgCont ext->resData)

Set total response data length
(pMsgContext->resDataLen = M)

DescProcessingDone()

CF[j](Data[N-k],PID1[$yyyy]Data[m])

CF[l](Data[M-m])

Before requested PIDs will be processed check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

Execute the first PID's
main-handler to fill the response
data.

With the first cal led
DescProcessingDone() starts
the response transm ission.

Once the whole data of the current PID has
been sent the next PID main-handler will be
called to supply the response data.

Figure 5-7: Linearly written response data on multiple PIDs (global ring buffer option is on)

©2010, Vector Informatik GmbH Version: 2.19.00

32 / 117

Technical Reference CANdesc

5.3.3.2.2 Sending a negative response

Tester CANdesc Applicat ion

Before requested PIDs wi ll be processed check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

If error has been s et - no
main-hadnler processing will
fol low.

Send immediately
negative response.

SId[$22],Pid0[$xxxx],Pid1[$yyyy]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroups Check for PID1[$yyy y]

ApplDescPreReadDataById_xxxx

ApplDescPreReadDataById_yyyy

DescSetNegResponse(errorCode)

Figure 5-8: Negative response on multiple PIDs (global ring buffer option is on)

©2010, Vector Informatik GmbH Version: 2.19.00

33 / 117

Technical Reference CANdesc

5.3.3.2.3 PostHandler execution rule
All PostHandlers are executed after the finished response transmission (like a normal
PostHandler).
Independent of the ring-buffer option setting (enabled or disabled), the execution of the
service $22 PostHandler(s) has the following rule which has to be taken into account:
calling the Post-Handler of a specific PID means: either the PreHandler of this PID
has been previously called or its MainHandler.
The following sequence chart depicts this:

Tester CANdesc Applicat ion

Before requested PIDs wi ll be processted check all
PIDs':
1. States (may be executed)
2. Pre-handlers.

If error has been s et - no
main-hadnler processing will
fol low.

Send immediately
negative response.

SId[$22],Pid0[$xxxx],Pid1[$yyyy],
Pid2[$zzzz]

RSid[$7F], Sid[$22], ErrorCode[errorCode]

StateGroupsCheck for PID0[$xxxx]

StateGroups Check for PID1[$yyy y]

ApplDescPreReadDataById_xxxx

ApplDescPreReadDataById_zzzz

DescSetNegResponse(errorCode)

StateGroupsCheck for PID2[$zzzz]

PID1 has no pre-handler
cofigured.

ApplDescPostReadDataById_xxxx

PID0, PID1and PID2 have all
post-handlers configured.

ApplDescPostReadDataById_zzzz

PID1 has a post-handler but since
the application doesn't know about
its reception - no post-handler will
be called.

Figure 5-9: Post-Handler execution sequence.

©2010, Vector Informatik GmbH Version: 2.19.00

34 / 117

Technical Reference CANdesc

5.4 DynamicallyDefineDataIdentifier (SID $2C) (UDS)
The DynamicallyDefineDataIdentifier service allows the client (tester) to dynamically define
in a server (ECU) a data identifier that can be read via the ReadDataByIdentifier service at
a later time.
The intention of this service is to provide the client with the ability to group one or more
data elements into a data superset that can be requested en masse via the
ReadDataByIdentifier or ReadDataByPeriodicIdentifier service. The data elements to be
grouped together can either be referenced by:

• a source data identifier, a position and size or,

• a memory address and a memory length, or,

• a combination of the two methods listed above using multiple requests to define the
single data element. The dynamically defined dataIdentifier will then contain a
concatenation of the data parameter definitions.

The definition of the dynamically defined data identifier can either be done via a single
request message or via multiple request messages. This allows for the definition of a
single data element referencing source identifier(s) and memory addresses. The server
has to concatenate the definitions for the single data element. A redefinition of a
dynamically defined data identifier can be achieved by clearing the current definition and
start over with the new definition.
At last the dynamically defined data identifier consists of a list of (non-dynamically) defined
data identifiers and memory area ranges that can be used in any combination.
For more information, see /ISO 14229-1/

5.4.1 Feature set
These are the supported subfunctions for service $2C (DynamicallyDefineDataIdentifier):

Subfunction Name Hex Value
defineByIdentifier 01
defineByMemoryAddress 02
clearDynamicallyDefinedDataIdentifier 03

5.4.2 API Functions
The reception of a Service $2C request will either delete a DynamicDataIdentifier (DDID)
or PeriodicDataIdentifier (PDID) by subfunction $03 or build a DDID/PDID by (several
times) using subfunction $01 and/or $02.
For subfunction $02 (defineByMemoryAddress) there is a new application callback
function (see chapter 6.6.12 “DynamicallyDefineDataIdentifier ($2C) (UDS) functions”). It
allows the application to permit or deny the extension of the DDID/PDID by accessing the
defined memory range. The callback function must check, if the requested memory area is
readable for the external Tester and if the current security state of the ECU permits the

©2010, Vector Informatik GmbH Version: 2.19.00

35 / 117

Technical Reference CANdesc

extension of the DDID/PDID. See chapter 6.6.12.2 for the full set of checks to be
executed.
Please note that later, when reading the DDID by using service $22
(ReadDataByIdentifier), further (security) checks for each element of the DDID’s list are
executed to verify that e.g. the (then active) security state permits the reading of the
memory area or DID. These checks (of Service $22 and $23) are done in the traditional
sequence of Pre-, Main- and PostHandler.
The reception of a Service $22 request starts a new context in CANdesc. Typically the
requested data can not be asked from the application by using one single callback function
but must be constructed sequentially by collecting data for each part of the DDID’s
definition list:

• A requested basic source data identifier (DID) is asked of the application by the
respective callback (as for Service $22 request), the result data is stripped down to
the defined position and size

• A memory address is read by its defined function (typically the same as used for a
Service $23 request) and the defined ‘size’ bytes are collected.

As recommended from /ISO 14229-1/ to prevent data consistency problems a recursive
definition of DDIDs is NOT supported.
The Service $22 response data is collected by splitting the service request into these basic
tasks, then running the well known internal functions that were defined for them, collect
their results and build up the Service $22 response. Therefore, each of the above tasks
starts a new context, executes the defined Pre-, Main- and Post-Handler where
Application-Callbacks get data, delivers its result and finally ends its context.
The recursive evaluation of DDIDs enforces the usage of MultiContext mode.
We would like to point out that the described operating sequence above is completely run
within CANdesc and totally transparent for the application except for the additional API
callback function. Using Service $2C or $2A switches CANdesc to MultiContext mode – if
your application isn’t prepared to support MultiContext mode (by using the defined macros)
you’ll get compiler errors about inconsistent argument lists.

5.4.3 Sequence Charts
Service $2C – Define a DDID
The following picture exemplifies the sequence of defining a DDID by several call of
Service DynamicallyDefineDataIdentifier ($2C).
In our example the first Service $2C request defines the DDID $F300 to return two
independent memory areas. For both areas the callback function
ApplDescCheckDynDidMemoryArea() is triggered and in this example the application
permits both accesses.
The consecutive Service $2C request extends the DDID $F300 by (some fragments of) the
existing DID $F010. As the here executed PreHandler does not set a Negative Response
Code, CANdesc considers the extension of the DDID valid and enlarges the DDID
definition.

©2010, Vector Informatik GmbH Version: 2.19.00

36 / 117

Technical Reference CANdesc

A third Service $2C request tries to extend the DDID $F300 once more by another
memory area. In our example the call fails, as the specified memory area ($0000) is not
valid for this ECU. The service is negative responded and the previous DDID specification
is left untouched.

sd Define a new DDID v ia Serv ice $2C request

Tester CANdesc Application

Define DDID $F300 as
4-byte memory block at
address $ABCD and
5-byte block at $FEDC check for

Addr. $ABCD,
Size $04

check for
Addr. $FEDC,
Size $05

Extend the DDID $F300
by using
existing DID $F010

Further extention fai ls
due inval id address
value ($0000) in
request check for Addr.

$0000 fai ls!

No Neg. RCode
set --> success

$2C 02 F300 12 ABCD04 FEDC05

ApplDescCheckDynDidMemoryArea

memBlockOk

ApplDescCheckDynDidMemoryArea

memBlockOk

PosResponse ($6C 02)

$2C 01 F300 F010 ...
PreHandler for DID F010

PosResponse ($6C 01)

$2C 02 F300 12 000004

ApplDescCheckDynDidMemoryArea

memBlockInvAddress

NegResponse ($7F 2C 31)

Figure 5-10: Defining a DDID.

©2010, Vector Informatik GmbH Version: 2.19.00

37 / 117

Technical Reference CANdesc

Service $22 – Read a DDID
The above defined DDID is now read by Service ReadDataByIdentifier ($22). Within
CANdesc the DDID is disassembled into its elements: One (virtual) request for the first
memory range, another request for the second memory range and finally a request for the
predefined DID $F010.

sd Read defined DDID v ia Serv ice $22 request

Tester Application

Read DDID $F300 that
was defined as:
 Addr ABCD, Size 04
 + Addr FEDC, Size 05
 + DID F010, Pos .., Size ..

CANdesc

execute vi rtual
$23 request

execute vi rtual
$23 request

execute vi rtual
$22 request ...

... and cut out the
required bytes
from the result

concatenate
the resul ts

$22 F300

$23 12 ABCD04

PreHandler
MainHandler
PostHandler

$23 12 FEDC05

PreHandler
MainHandler
PostHandler

$22 F010

PreHandler

MainHandler
PostHandler

PosResponse ($62)

Figure 5-11: Reading a DDID.

Between CANdesc and the application the sequence looks same as if the tester would
have sent 3 requests: (1) ReadMemoryByAddress ($23) on first address range, (2)
ReadMemoryByAddress ($23) on second address range, and finally (3)
ReadDataByIdentifier ($22) on the DID $F010. Keep in mind: this is just a picture for the
succession of events/API-calls - these requests are not real, the messages are never seen
on the bus, the internal sequence is actually slightly different but for the application it looks
the same!

©2010, Vector Informatik GmbH Version: 2.19.00

38 / 117

Technical Reference CANdesc

5.5 Read/Write Memory by Address (SID $23/$3D) (UDS)

Caution
This chapter does not apply to all ECU configurations. Only in special cases the
memory access support will be available!

The services $23 (ReadMemoryByAddress) and $3D (WriteMemoryByAddress) are
handled uniformly in CANdesc.
Basically the memory by address requests look like this:

$23 FID address length

$3D FID address length data

The application need not concern itself with the details how the address and length are
formatted. If a valid FID is recognized, CANdesc will extract the address and length
information from the request and call an appropriate application callback.
See also:
 ApplDescReadMemoryByAddress (6.6.13.1)
 ApplDescWriteMemoryByAddress (6.6.13.2)

5.5.1 Tasks performed by CANdesc
To a certain degree CANdesc validates the request.
The basic format checks and service level state validation – this means e.g. security and
session validation – are performed before calling the application callback.
Service level state validation means that the request will be denied if all diagnostic
instances of service $23 or $3D are not allowed in the current state.
In case of WriteMemoryByAddress the application has linear access to the whole data
block to write.

5.5.2 Task to be performed by the Application
CANdesc currently does not provide state validation on format identifier level or memory
address / memory block level.
This means, that for example different memory addresses shall require different security
levels, the application will have to verify that the ECU currently is in an appropriate state to
access the requested memory area.

5.5.3 Repeated service calls
The repeated service call feature is available for the memory access callbacks.
Because they have a different prototype than a normal main handler, the usual API
‘DescStartRepeatedServiceCall (see 6.6.7.1)’ can not be used with the memory access
callbacks.

©2010, Vector Informatik GmbH Version: 2.19.00

39 / 117

Technical Reference CANdesc

Instead, a new API call ‘DescStartMemByAddrRepeatedCall (see 6.6.7.2)’ has been
added.
To abort the repeated service call, use the usual API.

©2010, Vector Informatik GmbH Version: 2.19.00

40 / 117

Technical Reference CANdesc

6 CANdesc API

6.1 API Categories

6.1.1 Single Context
This API category is used if no parallel processing is necessary. This is typical for the ISO
14229 specification.

6.1.2 Multiple Context (only CANdesc)
This API category is used if parallel processing is necessary. This means not that
CANdesc can work with multiple instances, but only one functional request can be
processed parallel to a working physical request.

6.2 Data Types
The following standard data types are used in this document:

Represents 8 bit unsigned integer value. vuint8
Represents 8 bit signed integer value. vsint8
Represents 16 bit unsigned integer value. vuint16
Represents 16 bit signed integer value. vsint16
Represents 32 bit unsigned integer value. vuint32
Represents 32 bit signed integer value. vsint32

Table 6-1: standard data types

Additional data types used in this document are described in the corresponding function
description.

6.3 Global Variables
-

6.4 Constants

6.4.1 Component Version
The version of the CANdesc component consist of 3 parts in the following format:
MM.SS.BB,
Where:

 MM is the main version of the component,

 SS is the subversion of the component,

 BB is the bug-fix version of the component.

To get the current CANdesc version, the application could use the following shared data:

©2010, Vector Informatik GmbH Version: 2.19.00

41 / 117

Technical Reference CANdesc

Name Type Description
g_descMainVersion BCD Contains the main version part.

g_descSubVersion BCD Contains the subversion part.

g_descBugFixVersion BCD Contains the bug-fix version part.

Table 6-2: Version API data

Note: The version of the module is the same as the version of the generator’s DLL file.

6.5 Macros

6.5.1 Data exchange
The CANdesc provides a generic API for splitting a multi-byte (up to 4 bytes) variable to a
byte sequence with platform transparent access to each byte, and assembling a multi-byte
(up to 4 bytes) variable from a sequence of bytes.

6.5.1.1 Splitting 16 bit data
The following function could be used to get platform independent access to the
corresponding bytes of 16 bit data variable:
vuint8 DescGetHiByte(16BitData)

vuint8 DescGetLoByte(16BitData)

6.5.1.2 Splitting 32 bit data
The following function could be used to get platform independent access to the
corresponding bytes of 32 bit data variable:
vuint8 DescGetHiHiByte(32BitData)

vuint8 DescGetHiLoByte(32BitData)

vuint8 DescGetLoHiByte(32BitData)

vuint8 DescGetLoLoByte(32BitData)

©2010, Vector Informatik GmbH Version: 2.19.00

42 / 117

Technical Reference CANdesc

6.5.1.3 Assembling 16 bit data
The application can create the 16 bit signal from a byte stream using the following API:
uint16 DescMake16Bit(hiByte, loByte)
where the hiByte, loByte are the corresponding bytes for the returned 16 bit data.

6.5.1.4 Assembling 32 bit data
The application can create the 32 bit signal from a byte stream using the following API:
uint32 DescMake32Bit(HiHiByte, HiLoByte, LoHiByte, LoLoByte)
where the HiHiByte, HiLoByte, LoHiByte, LoLoByte are the corresponding bytes for the
returned 32 bit dat

©2010, Vector Informatik GmbH Version: 2.19.00

43 / 117

Technical Reference CANdesc

6.6 Functions

6.6.1 Administrative Functions

6.6.1.1 DescInitPowerOn()
DescInitPowerOn

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescInitPowerOn (DescInitParam initParameter)

Multi Context

void DescInitPowerOn (DescInitParam initParameter)

Parameter
initParameter Manufacturer specific type, please refer ‘CANdesc: OEM

specifics’ document
Return code

- -

Functional Description
PowerOn Initialization of the CANdesc.
This function has to be called once before all other functions of CANdesc after PowerOn.
Pre-conditions
Correctly initialized CAN-driver via CanInitPowerOn() and TransportLayer via
TpInitPowerOn().
Call context
Background-loop level with global disabled interrupts
Particularities and Limitations

 DescInitPowerOn (initParameter) must be called after TpInitPowerOn() was called
(please, refer the /TPMC/ documentation), otherwise the reserved diagnostic
connection will be los

©2010, Vector Informatik GmbH Version: 2.19.00

44 / 117

Technical Reference CANdesc

6.6.1.2 DescInit()
DescInit

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescInit (DescInitParam initParameter)

Multi Context

void DescInit (DescInitParam initParameter)

Parameter
initParameter Manufacturer specific type, please refer ‘CANdesc Part IV:

OEM specifics’ document
Return code

- -

Functional Description
Re-initialization of CANdesc.
This function can be called to re-initialize CANdesc (e.g. after WakeUp). All internal states
will be set to default, except the states in this initParameter (e.g. Session or
CommunicationControl).
Pre-conditions
CANdesc was once initialized via DescInitPowerOn ()
Call context
Background-loop level with global disabled

©2010, Vector Informatik GmbH Version: 2.19.00

45 / 117

Technical Reference CANdesc

6.6.1.3 DescTask()
DescTask

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescTask (void)

Multi Context

void DescTask (void)

Parameter
- -

Return code
- -

Functional Description
The function DescTask() has to be called periodically (cycle time TDescCallCycle) by the
application.
Within the context of this function the interaction with the application is performed. In
addition the monitoring of the timings is done, therefore the accuracy of the timings
depends on the call cycle and on the accuracy of the calls.
Pre-conditions
-
Call context
Background-loop level or OSEK-OS Task. The task should have a lower or equal priority
than all other interaction to the CANdesc component.
Particularities and Limitations

 May not be called if the DescStateTask() and DescTimerTask() are called.

©2010, Vector Informatik GmbH Version: 2.19.00

46 / 117

Technical Reference CANdesc

6.6.1.4 DescStateTask()
DescStateTask

Available since 4.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescStateTask (void)

Multi Context

void DescStateTask (void)

Parameter
- -

Return code
- -

Functional Description
Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).
The function DescStateTask() has to be called periodically by the application. It is not a
timer task – it has no specific time period. As smaller this tasks call period is, so faster will
be the service processing.
This task function will process received request and to control the transmission of the
responses. Depending on the ECU requirements it is recommended to call this task as
soon as possible to avoid delays of the response (e.g. dynamically defined DID,
scheduled data, etc.), but take into account that within this task the corresponding
MainHandler will be executed too.
Pre-conditions
-
Call context
Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.
Particularities and Limitations

 May not be called if the DescTask() is used (reentrancy is forbidden).

©2010, Vector Informatik GmbH Version: 2.19.00

47 / 117

Technical Reference CANdesc

6.6.1.5 DescTimerTask()
DescTimerTask

Available since 4.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescTimerTask (void)

Multi Context

void DescTimerTask (void)

Parameter
- -

Return code
- -

Functional Description
Motivation: Using a single task function for timers and processing leads either to slow
processing or to faster timers which costs runtime for the ECU. The timers need very
stable cyclical call but the processing tasks may be done “as soon as possible” (i.e. using
OSEK to be assigned to lower priority task).
The function DescTimerTask() has to be called periodically by the application in the
configured task period. It can be called as slow as possible to free run time resources.

Pre-conditions
-
Call context
Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.
Particularities and Limitations

 May not be called if the DescTask() is used. This will lead to either reentrancy
(consistency) problems or/and to timing issues.

©2010, Vector Informatik GmbH Version: 2.19.00

48 / 117

Technical Reference CANdesc

6.6.1.6 DescGetActivityState()
DescGetActivityState
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

DescContextActivity DescGetActivityState (void)

Multi Context

DescContextActivity DescGetActivityState (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
1. kDescContextIdle

2. kDescContextActiveRxBegin

3. kDescContextActiveRxEnd

4. kDescContextActiveProcess

5. kDescContextActiveProcessEnd

6. kDescContextActiveTxReady

7. kDescContextActiveTx

8. kDescContextActivePostProcess

1. There is currently no request processing (even
when scheduler is active).

2. Currently request reception is active.
3. Reception finished, request will be processed.
4. The request was received, is under processing

now
5. DescProcessingDone called waiting for data

before starting the transmission.
6. Ready for response transmission.
7. Transmission of the response is currently active.
8. Transmission/processing ended. Post-processing

will be performed.
Functional Description
Motivation: Sometimes the knowledge about the presence of a tester is necessary. A typical
use-case is to avoid the ECU from going into sleep mode.
A non-default session indicates that a tester is present. But how can this be done, if the ECU is
in the default session?
Due to that fact the ECU application can call the function DescGetActivityState() any time to
check if CANdesc has something to do or is in idle mode. This can be used e.g. to change the
state of the ECU sleep mode.
Note: The return value is bit coded and any senseful combination of the above mentioned
values is possible (e.g. kDescContextActiveRxBegin | kDescContextActivePostProcess).
Please check always with bit test (and operation) and not using the value comparison.
Pre-conditions
-
Call context
-
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

49 / 117

Technical Reference CANdesc

6.6.2 Service Functions

6.6.2.1 DescSetNegResponse()
DescSetNegResponse

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescSetNegResponse (DescNegResCode errorCode)

Multi Context

void DescSetNegResponse (vuint8 iContext, DescNegResCode errorCode)

Parameter
iContext reference to the corresponding request context

errorCode the errorCode is the one of the provided error code constants
of CANdesc in the desc.h file with the following naming
convention:
kDescNrc<error name>.

Return code
- -

Functional Description
In the PreHandler or in the MainHandler function the application has the possibility of
forcing negative response with a certain negative response code for the current request
when it is necessary.
Pre-conditions
-
Call context
Within a ‘Service PreHandler’ function and within or after a ‘Service MainHandler’ function
Particularities and Limitations

 Once an error was set it can not be overwritten or reset.
 This function does not finish the processing of the request. It just sets a certain error

and after that the application must confirm that the request processing was completely
finished by calling DescProcessingDone().

©2010, Vector Informatik GmbH Version: 2.19.00

50 / 117

Technical Reference CANdesc

6.6.2.2 DescProcessingDone()
DescProcessingDone
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

void DescProcessingDone (void)

Multi Context

void DescProcessingDone (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
- -

Functional Description
After completing the request execution the application must call the API function.
By calling this function, depending on the previous actions of the application the CANdesc
module will either send a response (positive/negative depending on the error state
machine) or no response will be send if the application/CANdesc decides that there must
be no response (please refer the Part III User Manual)
Pre-conditions
-
Call context
Within or after a ‘Service MainHandler’ function
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

51 / 117

Technical Reference CANdesc

6.6.3 Service Call-Back functions

6.6.3.1 Service PreHandler
ApplDescPre<Service-Qualifier + Instance-Qualifier>>

Available since 2.00.00
Is callback

Prototype
Single Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (void)

Multi Context

void ApplDescPre<Service-Qualifier + Instance-Qualifier> (vuint8 iContext)

Parameter
iContext the current request context location

Return code
- -

Functional Description
The PreHandler is executed before the Service MainHandler is called. In the PreHandler,
the application can hook any (especially application-specific) state validations. One
PreHandler implementation may be shared with different service instances (only
CANdesc).
To allow quite complex operations to take place, the application has access to the request
data using the context data structure (if given).
Pre-conditions
Must be configured to ‘User’ in attribute ‘PreHandlerSupport’’
Call context
From DescTask()
Particularities and

©2010, Vector Informatik GmbH Version: 2.19.00

52 / 117

Technical Reference CANdesc

6.6.3.2 Service MainHandler
ApplDesc<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback

Prototype
Single Context

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Multi Context

void ApplDesc<Service-Qualifier + Instance-Qualifier> (DescMsgContext* pMsgContext)

Parameter

pMsgContext
typedef struct
{
 DescMsg reqData;
 DescMsgLen reqDataLen;
 DescMsg resData;
 DescMsgLen resDataLen;
 DescMsgAddInfo msgAddInfo;
 vuint8 iContext;
 t_descUsdtNetBus busInfo;
} DescMsgContext;

DescMsgAddInfo
 DescBitType reqType :2; /* 0x01: Phys 0x02: Func */
 DescBitType resOnReq :2; /* 0x01: Phys 0x02: Func */
 DescBitType suppPosRes:1; /* 0x00: No 0x01: Yes */

Read access pMsgContext->reqData
pointer to the first byte of the already extracted request data.
pMsgContext->reqDataLen
length of the extracted request data.
pMsgContext->iContext
the current request context location
(used only as a handle - DO NOT MODIFY).
pMsgContext->msgAddInfo.reqType
the current request addressing method. Could be either
‚kDescFuncReq’ or ‚kDescPhysReq’ (bitmapped).
pMsgContext->msgAddInfo.suppPosRes
if set, no positive response will be sent. (UDS only).
pMsgContext->busInfo
the current request communication information (i.e. driver type (CAN,
MOST, FlexRay, etc.), addressing information, communication channel
number, tester address (if applicable) etc.

Write access pMsgContext->resData
pointer to the first position where the response data can be written.
pMsgContext->resDataLen
length of the written data.
pMsgContext->msgAddInfo.resOnReq
can be used to disable the response transmission on the current
request. If set to ‘0’ no response will be transmitted. Physical and
function can be set separately (bitmapped).

Return code

©2010, Vector Informatik GmbH Version: 2.19.00

53 / 117

Technical Reference CANdesc

- -

Functional Description
The MainHandler processes the service request.

• Perform length validation for varying length information of request.

• Disassemble any data received with the request telegram and process it,.

• Assemble any data to be send with the response and update current response
length.

• Confirm that the processing is finished.
Pre-conditions
Must be configured to ‘User’ in attribute ‘MainHandlerSupport’
Call context
From DescTask()
Particularities and Limitations

 If used as MainHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

©2010, Vector Informatik GmbH Version: 2.19.00

54 / 117

Technical Reference CANdesc

6.6.3.3 Service PostHandler
ApplDescPost<Service-Qualifier + Instance-Qualifier>

Available since 2.00.00
Is callback

Prototype
Single Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 status)

Multi Context

void ApplDescPost<Service-Qualifier + Instance-Qualifier> (vuint8 iContext,
vuint8 status)

Parameter
iContext the current request context location

KDescPostHandlerStateOk
The positive response was transmitted successfully
KDescPostHandlerStateNegResSent
It was a negative response

status (bit-coded)

kDescPostHandlerStateTxFailed
A transmission error occurred

Return code
- -

Functional Description
Any state transition may not be performed before the current service is finished
completely (the last frame of the response is sent successfully).
The PostHandler is executed after a confirmation of the message transmission is received
and is designated for state adaptation – all other things are already done when the
PostHandler is called.
Pre-conditions
Must be configured to ‘User’ in attribute ‘PostHandlerSupport’
Call context
From DescTask()
Particularities and Limitations

 If used as PostHandler for Protocol Services, the Protocol-Service-Qualifier is used
instead

 You can override the given name extension (Service-Qualifier + Instance-Qualifier) by
using the ‘PostHandlerOverrideName’.

©2010, Vector Informatik GmbH Version: 2.19.00

55 / 117

Technical Reference CANdesc

6.6.4 User (Unknown) Service Handling
In some cases the ECU shall support a service which is not described in the common way
for CANdesc (by means of CANdelaStudio/GENtool). With a little bit more effort inside the
application than for the “known” services the ECU is still be able to support those user
defined services. The effort comes form the fact that CANdesc knows nothing about this
service (e.g. session, security or other states described in the CDD configuring CANdesc,
addressing methods allowed for those services, etc.) and therefore the application must do
this work for each user defined service by itself. In fact for CANdesc there is only one
“unknown” service and it is up to the application to differentiate between multiple unknown
service(s).
Attention: This feature is available since version 2.11.00 of CANdesc(Basic).

6.6.4.1 How it works
If the feature “Support Generic User Service” is enabled in the GENtool CANdesc uses
following handling:

- if a service was not recognized by its SID, before the automatic negative
response transmission will be sent, the application will be called (see 6.6.4.2
ApplDescCheckUserService) to check this SID too. If it can not recognize it
as a valid one the usual negative response will be sent.

- If the application has accepted the SID, then a special “user service”
MainHandler will be called (see 6.6.4.4 Generic User Service MainHandler).

- If in GENtool “Support Generic User Service PostHandler” is set, after the
request processing has been accomplished, a special “user service”
PostHandler will be called (see 6.6.4.5 Generic User Service PostHandler).

Note:
- Since CANdesc doesn’t distinguish user defined services, a special API was

designed to get the application the opportunity to dispatch among the SIDs
(in MainHandler and in the PostHandler).

- The user defined services are processed on service id level which means the
application shall dispatch and do the whole format check of these requests.
The state management shall be performed bye application, too.

©2010, Vector Informatik GmbH Version: 2.19.00

56 / 117

Technical Reference CANdesc

6.6.4.2 ApplDescCheckUserService()
ApplDescCheckUserService

Available since 2.11.00
Is callback

Prototype
Single Context

vuint8 ApplDescCheckUserService (DescMsgItem sid)

Multi Context

vuint8 ApplDescCheckUserService (DescMsgItem sid)

Parameter
sid The service identifier which is currently under processing.

Return code
1. Return this value if the service id is a “user defined” one.1. kDescOk
2. Return this value if the service id is unknown for the

application too.
2. kDescFailed

Functional Description
The currently received request contains an unknown for CANdesc service Id. Within this
function the ECU application has to decide immediately if the SID is one of the user
defined or not. Depending on the return value, CANdesc will process further this request
or will reject it by sending negative response ‘ServiceNotSupported’.
Pre-conditions
The “Support Generic User Service” option was enabled in the GENtool configuration.
Call context
From DescTask() (in KWP diagnostics also from RxInterrupt).
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

57 / 117

Technical Reference CANdesc

6.6.4.3 DescGetServiceId()
DescGetServiceId

Available since 2.11.00
Is Reentrant

Is callback
Prototype
Single Context

DescMsgItem DescGetServiceId (void)

Multi Context

DescMsgItem DescGetServiceId (vuint8 iContext)

Parameter
iContext The current request context location

Return code
The service id which is currently under processing. DescMsgItem

Functional Description
Reports the service id of the currently processed user-service request.
Pre-conditions
The “Support Generic User Service” option was enabled in the GENtool configuration.
Call context
From DescTask()
Particularities and Limitations

 This function may be called at any time within a diagnostic request life cycle starting at
the call of the MainHandler and ending by the PostHandler (if configured) or (if none
configured) by calling DescProcessingDon

©2010, Vector Informatik GmbH Version: 2.19.00

58 / 117

Technical Reference CANdesc

6.6.4.4 Generic User Service MainHandler
ApplDescUserServiceHandler

Available since 2.11.00
Is callback

Prototype
Single Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)

Multi Context

void ApplDescUserServiceHandler (DescMsgContext* pMsgContext)

Parameter
pMsgContext Refer the section 6.6.3.2 Service MainHandler for details about this

parameter.

Read Access pMsgContext->reqData
pointer to the first byte after the service Id.
The other members of the parameter are described in 6.6.3.2 Service
MainHandler

Write access pMsgContext->resData
pointer to the first byte after the response SID, where the data (incl. sub-
parameters) will be written.
The other members of the parameter are described in 6.6.3.2 Service
MainHandler

Return code
- -

Functional Description
This MainHandler is called for all unknown service requests at service id level, so the
application has to do following:

• Perform service id dispatching (if more than one user defined service shall be
used).

• Perform length validation for varying length information of request.

• Perform parameter (if any) validation.

• Disassemble any data received with the request telegram and process it.

• Assemble any data to be send with the response and update current response
length

• Confirm that the processing is finished.
Pre-conditions
The “Support Generic User Service” option was enabled in the GENtool configuration.
Call context
From DescTask()
Particularities and Limitations

 Refer the section 6.6.3.2 Service MainHandler.
 DescGetServiceId() may be called here to dispatch the SID of the currently processed

user service (refer 6.6.4.3 DescGetServiceId

©2010, Vector Informatik GmbH Version: 2.19.00

59 / 117

Technical Reference CANdesc

6.6.4.5 Generic User Service PostHandler
ApplDescPostUserServiceHandler

Available since 2.11.00
Is callback

Prototype
Single Context

void ApplDescPostUserServiceHandler (vuint8 status)

Multi Context

void ApplDescPostUserServiceHandler (vuint8 iContext, vuint8 status)

Parameter
iContext, status Refer 6.6.3.3 Service PostHandler for information.

Return code
- -

Functional Description
The functionality of the user service PostHandler is the same as the one of the normal
service PostHandler. Refer 6.6.3.3 Service PostHandler for more details.
Pre-conditions
The “Support Generic User Service PostHandler” option was enabled in the GENtool
configuration.
CANdesc version >= 2.11.00
Call context
From DescTask()
Particularities and Limitations

 Refer the section 6.6.3.3 Service PostHandler for information.
 DescGetServiceId() may be called here to dispatch the SID of the currently post-

processed user service (refer 6.6.4.3 DescGetServiceId

©2010, Vector Informatik GmbH Version: 2.19.00

60 / 117

Technical Reference CANdesc

6.6.5 Session Handling

6.6.5.1 ApplDescCheckSessionTransition()
ApplDescCheckSessionTransition

Available since 2.00.00
Is callback

Prototype
Single Context

void ApplDescCheckSessionTransition (DescStateGroup newState, DescStateGroup
formerState)

Multi Context

void ApplDescCheckSessionTransition (vuint8 iContext, DescStateGroup newState,
DescStateGroup formerState)

Parameter
iContext the current request context location

the CANdesc component has change to this session state newState

the CANdesc component has change from this session state formerState

Return code
- -

Functional Description
This hook function will be called, while session request is received (SID $10). If the
application wants to discard this request, an error must be set (via
DescSetNegResponse()).
The application always has to confirm this hook function via
DescSessionTransitionChecked().
Both above functions can be called also outside of the context of this function (e.g.
application task waiting for results form an I/O port). CANdesc will send RCR-RP
response as long as the application delays the confirmation for the session transition.

In some cases the application has to know whether the SPRMIB in the request was set or
not. Since this API call does not contain this information, a dedicated API in CANdesc
provides it: DescIsSuppressPosResBitSet ().
Pre-conditions
At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’
Call context
From DescTask()
Particularities and Limitations

 Call the API function DescSessionTransitionChecked() to end the service processing

©2010, Vector Informatik GmbH Version: 2.19.00

61 / 117

Technical Reference CANdesc

6.6.5.2 DescSessionTransitionChecked()
DescSessionTransitionChecked

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescSessionTransitionChecked (void)

Multi Context

void DescSessionTransitionChecked (vuint8 iContext)

Parameter
iContext the current request context location

Return code
- -

Functional Description
After the application has finished the processing in the hook function
ApplDescCheckSessionTransition() this function must be called.
Pre-conditions
At least one DiagnosticSessionControl service must be configured to ‘OEM’ in attribute
‘MainHandlerSupport’
Call context
Within or after a ‘ApplDescCheckSessionTransition()’ function
Particularities and Limitations

 If this function will be called late, the CANdesc component sends automatically the
RCR-RP responses

©2010, Vector Informatik GmbH Version: 2.19.00

62 / 117

Technical Reference CANdesc

6.6.5.3 DescIsSuppressPosResBitSet ()
DescIsSuppressPosResBitSet

Available since 5.07.14
Is Reentrant

Is callback
Prototype
Single Context

DescBool DescIsSuppressPosResBitSet (void)

Multi Context

DescBool DescIsSuppressPosResBitSet (vuint8 iContext)

Parameter
iContext the current request context location

Return code
The SPRMIB is set. kDescTrue
The SPRMIB is NOT set. kDescFalse

Functional Description
This API can be always called while a diagnostic service processing is ongoing to get the
information about the SPRMIB state. All main-handlers do contain this information already
in the pMsgContext parameter so use it instead of this API.
In some other cases the application does not have access to the pMsgContext, and there
the API can be used.
Pre-conditions
Only for UDS configurations.
May be called only while a diagnostic service processing is ongoing. Otherwise invalid
data can be reported.
Call context
Any.
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

63 / 117

Technical Reference CANdesc

6.6.5.4 ApplDescOnTransitionSession()
ApplDescOnTransitionSession

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void ApplDescOnTransitionSession (DescStateGroup newState,
 DescStateGroup formerState)

Multi Context

void ApplDescOnTransitionSession (DescStateGroup newState,
 DescStateGroup formerState)

Parameter
newState the CANdesc component has change to this session state

the CANdesc component has change from this session state formerState

Return code
- -

Functional Description
After the positive response of a SessionControl request the session will transit to the
requested session. This function informs the application that such a transition occurs.
Pre-conditions
-
Call context
From DescTask()
interrupts might be disabled
Particularities and Limitations

 Only informational function

©2010, Vector Informatik GmbH Version: 2.19.00

64 / 117

Technical Reference CANdesc

6.6.5.5 DescSetStateSession()
DescSetStateSession
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

void DescSetStateSession (DescStateGroup newSession)

Multi Context

void DescSetStateSession (DescStateGroup newSession)

Parameter
newSession the CANdesc component will change to this session state

Return code
- -

Functional Description
By this function the state of the SessionState-group can be changed by the ECU
application. The transition notification function ‘ApplDescOnTransitionSession’ will be
called to notify the application about the new session.

Pre-conditions
-
Call context
-
Particularities and Limitations

 Refer the section 6.6.10.2 "DescSetState<StateGroup>()” for more details.

©2010, Vector Informatik GmbH Version: 2.19.00

65 / 117

Technical Reference CANdesc

6.6.5.6 DescGetStateSession()
DescGetStateSession
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

currentSession DescGetStateSession (void)

Multi Context

currentSession DescGetStateSession (void)

Parameter
-

Return code
 currentSession

Functional Description
This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.
Example: Code execution only when either default or extended session is active.
lState = DescGetStateSession();
if ((lState & (kDescStateSession<Default>) | kDescStateSession<Extended>)) != 0)
{
 /*execute code*/
}

Pre-conditions
-
Call context
-
Particularities and Limitations

 Refer the section 6.6.10.1 “DescGetState<StateGroup>()” for more details.

©2010, Vector Informatik GmbH Version: 2.19.00

66 / 117

Technical Reference CANdesc

6.6.6 CommunicationControl Handling
This API is provided, if the ECU supports the serviceCommunicationControl (UDS) or
service 0x28/0x29 Dis-/EnableNormalMessageTransmission (KWP).

6.6.6.1 ApplDescCheckCommCtrl()
ApplDescCheckCommCtrl

Available since 2.00.00
Is callback

Prototype
Single Context

void ApplDescCheckCommCtrl (DescOemCommControlInfo* commControlInfo)

Multi Context

void ApplDescCheckCommCtrl (vuint8 iContext,
 DescOemCommControlInfo* commControlInfo)

Parameter
iContext The current request context location

OEM dependent commControlInfo

Return code
- -

Functional Description
The execution of this service is completely done within the CANdesc component. This
hook function can be used to permit the application to reject the execution under some
circumstance. If the application wants to discard this request, an error must be set (via
DescSetNegResponse()).
The application always has to confirm this hook function (via DescCommCtrlChecked()).
Pre-conditions
The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’
Call context
From DescTask()
Particularities and Limitations

 If the API function DescCommCtrlChecked() will be not called, the service processing
will not end

©2010, Vector Informatik GmbH Version: 2.19.00

67 / 117

Technical Reference CANdesc

6.6.6.2 DescCommCtrlChecked()
DescCommCtrlChecked

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescCommCtrlChecked (void)

Multi Context

void DescCommCtrlChecked (vuint8 iContext)

Parameter
iContext the current request context location

Return code
- -

Functional Description
The CANdesc component calls a hook function to check for the execution permission of
the CommunicationControl service. Within or after this hook function
(ApplDescCheckCommCtrl()) the application can set an error
(DescSetNegResponse()) to reject the request. This function is used to terminate the
hook function ApplDescCheckCommCtrl().
Pre-conditions
The CommunicationControl service must be activated and the attribute
‘MainHandlerSupport’ has to be set to ‘OEM’
Call context
Within or after ApplDescCheckCommCtrl()
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

68 / 117

Technical Reference CANdesc

6.6.7 Periodic call of ‘Service MainHandler’

6.6.7.1 DescStartRepeatedServiceCall()
DescStartRepeatedServiceCall

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescStartRepeatedServiceCall (DescMainHandler descMainHandler)

Multi Context

void DescStartRepeatedServiceCall (vuint8 iContext, DescMainHandler descMainHandler)

Parameter
descMainHandler Reference to a function. The function prototype must be based

on a ‘Service MainHandler’.
The current request context location iContext

Return code
- -

Functional Description
The application can use this function to get a periodic call to the specified function (in the
parameter) from the CANdesc component.
It is possible to use the same ‘Service MainHandler’ function as it is called in.
Pre-conditions

Call context
Within or after a ‘Service MainHandler’ function
Particularities and Limitations

 CANdesc can do no validation, if this pointer is valid.
 Is the parameter NULL, the periodic calls will get stopped.
 The function is called in the same cycle time (context) as the DescTask()

©2010, Vector Informatik GmbH Version: 2.19.00

69 / 117

Technical Reference CANdesc

6.6.7.2 DescStartMemByAddrRepeatedCall()
DescStartMemByAddrRepeatedCall

Available since 5.06.04
Is Reentrant

Is callback
Prototype
Single Context

void DescStartMemByAddrRepeatedCall ()

Multi Context

void DescStartMemByAddrRepeatedCall (vuint8 iContext)

Parameter
iContext The current request context location

Return code
- -

Functional Description
The application can use this function to get a periodic call to the current Read/Write
memory by address handler.
Pre-conditions

Call context
Within ApplDescReadMemoryByAddress or ApplDescWriteMemoryByAddress.
Particularities and Limitations

 The memory access handler is called in the same cycle time (context) as the
DescTask()

©2010, Vector Informatik GmbH Version: 2.19.00

70 / 117

Technical Reference CANdesc

6.6.8 Ring Buffer Mechanism
The ring-buffer option can be used to save RAM when some responses are quite long and
reserving such space of RAM is impossible. In contrast to the linear responses, where the
response data will be first written and then the transmission to the tester will be initiated,
the ring-buffer concept starts a transmission as soon as it has either the whole data (for
short [single frame] responses) or at least enough data to fill a first-frame of a multi-frame
transmission. Once the ring buffer has been activated and the response transmission
initiated the application must supply enough data to keep the transmission away from lack
of data. Therefore the ring-buffer can not be used in diagnostic services which allow
multiple data to be combined in a single request (e.g. in CANdelaStudio the flag “multiple
identifiers of different instances may be combined in one request” is set). Such services
are existing in both KWP 14230 (OBD) and the UDS 14229OBD, ReadDataByIdentifier
($22), ReadDataByPeriodicIdentifier ($2A)) standard.

Caution
On UDS: Always check the SPRMIB prior starting the ring-buffer. If this bit is set, the
ring-buffer may not be started. Instead the API DescProcessingDone() must be
called. The response length can be set to zero since there will be no response on the
bus.

©2010, Vector Informatik GmbH Version: 2.19.00

71 / 117

Technical Reference CANdesc

6.6.8.1 DescRingBufferStart()
DescRingBufferStart
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

void DescRingBufferStart (void)

Multi Context

void DescRingBufferStart (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
- -

Functional Description
After completing the request validation the application can decide (in runtime), if the ring-
buffer mechanism should be used or not.
By calling this function, the decision is made to use the ring-buffer. Otherwise
DescProcessingDone() should be called, after filling the response data (in a linear way).
Either DescProcessingDone() or DescRingBufferStart() will finish the response handling.
Depending on the previous actions of the application the CANdesc module will either send
a response (positive/negative depending on the error state machine) or no response will
be send if the application/CANdesc decides that there must be no response (please refer
the Part III User Manual).
The transmission of the positive response will not start immediately. The application has
to fill the ring-buffer first. If the ring-buffer has enough data, the transmission will be
started (internally).
Pre-conditions
- ring-buffer has been enabled in the configuration
Call context
Within or after a ‘Service MainHandler’ function
Particularities and Limitations

 This API must not be called from any of the other handler type (Pre- or PostHandlers)
 Either DescProcessingDone() or DescRingBufferStart() must be used to finish the

response handling.
 Total response length must be written before!
 No response data must be written before!
 This function must not be called in interrupt context
 Limitation: Until CANdesc version 2.13.00 it was not possible to use the Ring-Buffer in

‘Multiple PID’ services (as described in section 5.3.3 Multiple PID mode)
 UDS limitation: Always check the SPRMIB prior starting the ring-buffer. If this bit is

set, the ring-buffer shall not be started. Instead DescProcessingDone() must be called
(see 7.6).

©2010, Vector Informatik GmbH Version: 2.19.00

72 / 117

Technical Reference CANdesc

6.6.8.2 DescRingBufferWrite()

DescRingBufferWrite
Available since 2.00.00

Is Reentrant
Is callback

Prototype
Single Context

vuint8 DescRingBufferWrite (DescMsg data, DescMsgLen dataLength)

Multi Context

vuint8 DescRingBufferWrite (vuint8 iContext, DescMsg data, DescMsgLen dataLength)

Parameter
iContext Reference to the corresponding request context

Pointer to application data, which should be copied into ring-
buffer.

DescMsg

Amount of data, which should be copied (from pointer data) into
ring-buffer.

DescMsgLen

Return code
kDescOk
If the copy process was successful

vuint8

kDescFailed
if the data are not copied into the ring-buffer

Functional Description
The application writes data into the ring-buffer by this function. It is not necessary that the
application must write the data in the context of a special API function.
The write order is always linear! The first written byte is the first byte in the response
message.
Pre-conditions
- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism
Call context
- This API shall not interrupt the DescTask. Required for the case the currently ongoing
transmission is interrupted due to a communication error, and the application still writes
into the buffer.
Particularities and Limitations

 dataLength must be lower or equal to the ring-buffer size, else the function will
always fail

 CANdesc has already filled the first bytes (SID, etc.) into the ring-buffer. So in the first
call of DescRingBufferWrite() the dataLength must lower as the buffer size + these
byte

©2010, Vector Informatik GmbH Version: 2.19.00

73 / 117

Technical Reference CANdesc

6.6.8.3 DescRingBufferCancel()
DescRingBufferCancel

Available since 5.01.00
Is Reentrant

Is callback
Prototype
Single Context

void DescRingBufferCancel (void)

Multi Context

void DescRingBufferCancel (vuint8 iContext)

Parameter
iContext Reference to the corresponding request context

Return code
- -

Functional Description
The application may call this API once the a data acquisition error has been occurred after
the ring-buffer has been activated via DescRingBufferStart().

CANdesc will automatically determine the appropriate action depending on its current
internal state:

- if the response data transmission has not been started yet, a negative
response will be sent back.

- If the response transmission has been started – a transmission interrupt
will occur – the tester will not get a complete response.

Pre-conditions
- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism
Call context
-
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

74 / 117

Technical Reference CANdesc

6.6.8.4 DescRingBufferGetFreeSpace()
DescRingBufferGetFreeSpace

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

DescMsgLen DescRingBufferGetFreeSpace (void)

Multi Context

DescMsgLen DescRingBufferGetFreeSpace (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
The amount of free space/bytes in the ring-buffer. DescMsgLen

Functional Description
This function returns the amount of free space/bytes in the ring-buffer.
Pre-conditions
- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism
Call context
-

©2010, Vector Informatik GmbH Version: 2.19.00

75 / 117

Technical Reference CANdesc

6.6.8.5 DescRingBufferGetProgress()
DescRingBufferGetProgress

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

DescMsgLen DescRingBufferGetProgress (void)

Multi Context

DescMsgLen DescRingBufferGetProgress (vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
Current byte position in the whole response. DescRingBufferProgress

Functional Description
This function returns the progress of the copy process.
Pre-conditions
- ring-buffer has been enabled in the configuration
- DescRingBufferStart() must be called before to activate the ring-buffer mechanism
Call context
-
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

76 / 117

Technical Reference CANdesc

6.6.9 Signal Interface of CANdesc
CANdesc will provide a signal interface to the ECU application. This can help the ECU
application to assemble the response automatically. No further code changes are
necessary, if a signal will move or change its size.
The current implementation has only support for a synchronous signal interface. This
means the ECU application has to provide the signal value within the call/context of the
Signal Handler function (while reading) or to write thewithin the call/context of the Signal
Handler function (while writing).

6.6.9.1 ApplDesc<Signal-Handler>()
ApplDesc<Signal-Handler>

Available since 2.00.00
Is callback

Prototype
Single Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)

Multi Context

- ApplDesc<Service-Qualifier + Data-Object-Qualifier + Instance-Qualifier> (-)

Parameter
vuint8, vsint8,
vuint16, vsint16,
vuint32, vsint32,
DescMsg (vuint8*)

Available for write services.
Type depend on signal type

DescMsg (vuint8*) Available for read services and signals > 32 bit (N bit)

Return code
Available for read services. vuint8, vsint8,

vuint16, vsint16,
vuint32, vsint32

Type depend on signal type.

Functional Description
A Signal Handler is generated if the Service MainHandler is configured to be generated. In
this case, writing Signal Handlers are generated for all dataObjects transported with the
request and reading Signal Handlers are generated for all dataObjects transported with
the response (read/write from application point of view).
The data type of the Signal Handler argument depends on the dataObject which is to be
processed.
Pre-conditions
Must be configured to ‘generated’ in attribute ‘MainHandlerSupport’
Call context
From DescTask()
Particularities and Limitations

 You can override the given name extension (Service-Qualifier + Data-Object-Qualifier
+ Instance-Qualifier) by using the SignalHandlerOverrideName.

©2010, Vector Informatik GmbH Version: 2.19.00

77 / 117

Technical Reference CANdesc

6.6.9.2 Configuration of direct signal access
• Application variable for direct access (default = not set)

If this variable is specified, an access to the given external (= application) variable is
generated. Nothing has to be done by the application. The external variable must
be defined inside the application.

• SignalHandlerOverrideName (default = not set).
You can adapt the name of the Signal Handler setting this value. By using this
“Override Name” it is also possible to reuse an already existing Signal Handler

6.6.10 State Handling (CANdesc only)

6.6.10.1 DescGetState<StateGroup>()
DescGetState<StateGroup>

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

DescStateGroup DescGetState<StateGroup-Qualifier> (void)

Multi Context

DescStateGroup DescGetState<StateGroup-Qualifier> (void)

Parameter
- -

Return code
The current state of the state group DescStateGroup

Functional Description
This function returns the current session state. Since the states are bit-coded the
evaluation expressions may be optimized for multiple use cases.
Example: Code execution only when either the current state of this group is either state X
or state Y.
lState = DescGetState< StateGroupQualifier >();
if ((lState & (kDescState< StateGroupQualifier ><StateQualifier_X>) |
 kDescState< StateGroupQualifier ><StateQualifier_Y>)) != 0)
{
 /*execute code*/
}
Pre-conditions
-
Call context
-
Particularities and Limitations

 For each state of a state-group a constant is defined in desc.h:
kDescState<StateGroup-Qualifier><StateQualifier>

©2010, Vector Informatik GmbH Version: 2.19.00

78 / 117

Technical Reference CANdesc

6.6.10.2 DescSetState<StateGroup>()
DescSetState<StateGroup>

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)

Multi Context

void DescSetState<StateGroup-Qualifier> (DescStateGroup newState)

Parameter
DescStateGroup the state in which the state group should be changed

Return code
- -

Functional Description
By this function the state of the state-group can be changed by the ECU application. The transition
notification function ‘ApplDescOnTransition< StateGroupQualifier >’ will be called to notify the
application about the new state.
Example:
 DescSetState<StateGroupQualifier>(kDescState<StateGroupQualifier><StateQualifier>);

This line will force CANdesc to change the state of the given state group to the new one.
Pre-conditions
-
Call context
-
Particularities and Limitations

 For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><State-Qualifier>

 The ApplDescOnTransition<StateGroup-Qualifier>() notification function is called in any
case. Also if the newState is the same as the current stat

©2010, Vector Informatik GmbH Version: 2.19.00

79 / 117

Technical Reference CANdesc

6.6.10.3 ApplDescOnTransition«StateGroup»()
ApplDescOnTransition«StateGroup»

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void ApplDescOnTransition<StateGroup-Qualifier>(DescStateGroup newState,
 DescStateGroup formerState)

Multi Context

void ApplDescOnTransition<StateGroup-Qualifier> (DescStateGroup newState,
 DescStateGroup formerState)

Parameter
newState the CANdesc component has changed to this session state

the CANdesc component has changed from this session state formerState

Return code
- -

Functional Description
This notification function will be called each time a transition has happened.
Pre-conditions
-
Call context
From DescTask()
interrupts might be disabled
Particularities and Limitations

 For each state of a state-group a constant will be defined in desc.h:
kDescState<StateGroup-Qualifier><StateName-Qualifier>

 For some exceptions (e.g. Session) the newState can be the same as the formerState.

©2010, Vector Informatik GmbH Version: 2.19.00

80 / 117

Technical Reference CANdesc

6.6.11 Force “Response Correctly Received - Response Pending” transmission
In some cases it is useful for the application to be sure that it has enough time to
accomplish a process without causing the tester to get response timeout. In such cases
the application can use the “force RCR-RP” mechanism of CANdesc, which prevents
timeout between the tester and the ECU application.
How it works:
This feature is mostly applicable when a FlashBootLoader (FBL) is available for the ECU.
Before starting it, the application wants to assure that there is enough time to perform
reset and activate the FBL before the tester gets response timeout. The RCR-RP
mechanism notifies the tester that some action is ongoing and so resets the timeout timer
in the tester.
To transmit a ‘Response Correctly Received - Response Pending’ response the
application has to call the DescForceRcrRpResponse() function. To be sure this response
is transmitted, the application has to wait for the transmission confirmation of this forced
RCR-RP response (the function ApplDescRcrRpConfirmation). Depending on its
transmission status parameter the application can decide how the processing shall
continue (a jump to FBL or to close the request processingth negative response).

©2010, Vector Informatik GmbH Version: 2.19.00

81 / 117

Technical Reference CANdesc

6.6.11.1 DescForceRcrRpResponse()
DescForceRcrRpResponse

Available since 2.11.00
Is Reentrant

Is callback
Prototype
Single Context

void DescForceRcrRpResponse(void)

Multi Context

void DescForceRcrRpResponse(vuint8 iContext)

Parameter
iContext reference to the corresponding request context

Return code
- -

Functional Description
Calling this function the application can force CANdesc to send immediately (not later than
the next call of DescTask() function) a RCR-RP response.
Pre-conditions
CANdesc was configured to use this option (enabled in the GENtool).
Call context
Task or interrupt.
Particularities and Limitations

 This function can be called:
after a call of a MainHandler function (e.g. ApplDescCheckSessionTransition())
and until the call of ApplDescResponsePendingOverrun() or
ApplDescResponsePendingOvertimed() orpConfirmation().

©2010, Vector Informatik GmbH Version: 2.19.00

82 / 117

Technical Reference CANdesc

6.6.11.2 ApplDescRcrRpConfirmation()
ApplDescRcrRpConfirmation

Available since 2.11.00
Is callback

Prototype
Single Context

void ApplDescRcrRpConfirmation(vuint8 status)

Multi Context

void ApplDescRcrRpConfirmation(vuint8 iContext, vuint8 status)

Parameter
iContext Reference to the corresponding request context

If the transmission was successful, the parameter value will be
kDescOk. Otherwise – kDescFailed.

status

Return code
- -

Functional Description
Once the RCR-RP response has been forced, this function will be called in any case. The
transmission status is reported by the status parameter.
Pre-conditions
CANdesc was configured to use this option (enabled in the GENtool).
Call context
CAN Driver TX-ISR TP Confirmation this function
Particularities and Limitations

 Be aware of time consuming implementation for this function (interrupt call context).

©2010, Vector Informatik GmbH Version: 2.19.00

83 / 117

Technical Reference CANdesc

6.6.12 DynamicallyDefineDataIdentifier ($2C) (UDS) functions
Since this feature is only for some OEM available, please refer to the OEM specific documentation
to find out if is applicable for your configuration.

©2010, Vector Informatik GmbH Version: 2.19.00

84 / 117

Technical Reference CANdesc

6.6.12.1 DescMayCallStateTaskAgain()
DescMayCallStateTaskAgain

Available since 4.00.00
Is Reentrant

Is callback
Prototype
Single Context

DescBool DescMayCallStateTaskAgain (void)

Multi Context

DescBool DescMayCallStateTaskAgain (void)

Parameter
- -

Return code
 TRUE if you may call again the state task within this application
task cycle.

kDescTrue

kDescFalse
 FALSE if the DescStateTask() must not be called again.

Functional Description
Motivation: The DescStateTask() can be called as fast as possible but it still can not be
enough fast for complex service processing (e.g. DDIDs containing long descriptions) to
match fast timing-performance requirements. This function provides the info if the
application may call again the state-task in the same task context without causing endless
loop (important for non-preemptive OS environments).
Example of the API usage:
void ApplDiagTask(void) /* application function called as fast as possible */
{
 do /* pump the state task as long as needed */
 {
 DescStateTask();
 }
 while(DescMayCallStateTaskAgain() == kDescTrue);
}

Pre-conditions
- Preprocessor define “DESC_ENABLE_HIPERFORMANCE_DYNDID_MODE” is
available (using user-config file in GENtool).
- The application uses the split-task concept (i.e. calls DescState-/TimerTask() instead of
DescTask()).
Call context
Background-loop level or OSEK-OS Task. The Task should have a lower or equal priority
than all other interaction to the CANdesc component.
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

85 / 117

Technical Reference CANdesc

6.6.12.2 ApplDescCheckDynDidMemoryArea()
ApplDescCheckDynDidMemoryArea

Available since 3.02.00
Must be Reentrant

Is callback
Prototype
Any Context

DescDynDidMemCheckResult ApplDescCheckDynDidMemoryArea (
 DescDynDidMemBlockAddress srcAddr,
 DescDynDidMemBlockSize len);

Parameter

srcAddr Start address (Service $2C 02 request parameter ‘memoryAddress’).

Length of block to read (Service $2C 02 request parameter
‘memorySize’).

len

Return code
memBlockOk Permit the access to requested memory block and extend the DDID.
memBlockInvAddress Forbid the access due invalid requested memory address

(requestOutOfRange).
memBlockInvSize Forbid the access due invalid requested block length

(requestOutOfRange).
memBlockInvSecurity Forbid the access due current security mode settings prohibit the DDID

definition (securityAccessDenied).
memBlockInvCondition Forbid the access due other restrictions (conditionsNotCorrect).
If the memory access if forbidden, the Service $2C Request is negative responded with NRC 22
(conditionsNotCorrect), 31 (requestOutOfRange) or 33 (securityAccessDenied).
Functional Description
This callback function is triggered when defining a DDID that shall read bytes from the ECU’s
memory (Service Request $2C 02). The application can permit the (re-)definition of the DDID or
forbid it.
The service request is responded according to this.
The application must check

• if the given srcAddr and following len bytes are valid ECU addresses and if they are
readable,

• if the current security state allows to define the DDID right now,
• if there are other conditions that may forbid the definition of the DDID.

If all checks allow the DDID definition, the callback function must return memBlockOk.
FYI: When later reading the defined DDIDs by service $22, the standard checks [of Service $23
ReadMemoryByAddress] are executed, that perform security checks before accessing the
memory.
So, above security check with service $2C shall prove that the current security state permits the
definition of the DDID, the security check in service $22 (resp. $23) proves [in the context of the
then existing security state] the actual reading of the memory range.
Pre-conditions

©2010, Vector Informatik GmbH Version: 2.19.00

86 / 117

Technical Reference CANdesc

-
Call context
From DescTask()
Particularities and Limitations

•

6.6.12.3 Non-volatile memory support
For some car-manufactures CANdesc provides NVRAM support for the dynamically
defined DID definitions. There are some APIs that must be operated and some call-backs
to be implemented by the application in order to get the NVRAM support fully operational.

The following diagrams show the two oeprations on NVRAM – restore (at power on) and st
ore (usuall prior power off) data.

Restore data at ECU power on

Caution
At each CANdesc initialization (e.g. ECU reset/ power on) the “restore” procedure must
be performed!

©2010, Vector Informatik GmbH Version: 2.19.00

87 / 117

Technical Reference CANdesc

sd NVram_Restore

CANdesc ApplicationTester

alt Synchronous acknowledge

[E2PROM data available immediately]

alt Asynchronous acknowledge

[E2PROM data need more time to be retrieved]

Response type
depends on the
request data
validity.

Reset/PowerOn/()

DescInitPowerOn()

[E2PROM manager ready]:DescDynDefineDidPowerUp()

ApplDescRestoreDynIdMemContent(targetPtr, Size)

DescDynIdMemContentRestored(Size, CheckSum)

RQ: 0x2C(any)

RS: 0x7F(0x22)

DescDynIdMemContentRestored(Size, CheckSum)

RQ:0x2C(any)

RS: 0x7F/0x6C(any)

Figure 6-1 DynDID definition restore and tester interaction

©2010, Vector Informatik GmbH Version: 2.19.00

88 / 117

Technical Reference CANdesc

Store data at ECU power down

Info
The store operation can be performed at any time not only at power down.

sd NVram_Store

CANdesc Application

On System
Shutdown()

DescDynDefineDidPowerDown()

ApplDescStoreDynIdMemContent(targetPtr, Size, Checksum)

<shutdown>()

Store the Data()

Perform Shutdown()

Figure 6-2 Store DynDID definitions

©2010, Vector Informatik GmbH Version: 2.19.00

89 / 117

Technical Reference CANdesc

6.6.12.3.1 DescDynDefineDidPowerUp()
DescDynDefineDidPowerUp

Available since 5.06.09
Is Reentrant

Is callback
Prototype
Single Context

void DescDynDefineDidPowerUp (void)

Multi Context

void DescDynDefineDidPowerUp (void)

Parameter
- -

Return code
- -

Functional Description
Once the ECU has been powered one/reset or just need to be reinitialized, this API must
be called to restore the dynamically defined DID content.

Usually called after the NVRAM manager is initialized.
Pre-conditions
- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)
Call context
- any
Particularities and Limitations

 Must be called after DescInitPowerOn().

©2010, Vector Informatik GmbH Version: 2.19.00

90 / 117

Technical Reference CANdesc

6.6.12.3.2 DescDynIdMemContentRestored ()
DescDynIdMemContentRestored

Available since 5.06.09
Is Reentrant

Is callback
Prototype
Single Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)

Multi Context

void DescDynIdMemContentRestored (DescDynDidStorageInfo storageInfo)

Parameter
storageInfo.nvData Not used

storageInfo.nvDataSize

storageInfo.checkSum

The size (in bytes) of the restored table.
The stored checksum, calculated by CANdesc at store time.

Return code
- -

Functional Description
After CANdesc has requested the application to restore the DynDID data
(“ApplDescRestoreDynIdMemContent ()”), this API must be called to notify CANdesc that
the DynDID content has been restored and can be used.

Pre-conditions
- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)
Call context
- any
Particularities and Limitations

 none

©2010, Vector Informatik GmbH Version: 2.19.00

91 / 117

Technical Reference CANdesc

6.6.12.3.3 DescDynDefineDidPowerDown ()
DescDynDefineDidPowerDown

Available since 5.06.09
Is Reentrant

Is callback
Prototype
Single Context

void DescDynDefineDidPowerDown (void)

Multi Context

void DescDynDefineDidPowerDown (void)

Parameter
- -

Return code
- -

Functional Description
If the ECU has to be reset or just power off /shutdown, this API must be called to store the
current DID definitions.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.
Pre-conditions
- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)
Call context
- any
Particularities and Limitations

 Shall be called prior power-down/shutdown execution
 May be called any time to store the current content of the DynDID tables.

©2010, Vector Informatik GmbH Version: 2.19.00

92 / 117

Technical Reference CANdesc

6.6.12.3.4 ApplDescStoreDynIdMemContent ()
ApplDescStoreDynIdMemContent

Available since 5.06.09
Is Reentrant

Is callback
Prototype
Single Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Multi Context

void ApplDescStoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Parameter
storageInfo.nvData The pointer to the data to be stored;

storageInfo.nvDataSize

storageInfo.checkSum

The size (in bytes) of the table;
The checksum value, calculated by CANdesc, to be stored.

Return code
- -

Functional Description
Once this API is called by CANdesc, the application must trigger a write E2PROM
procedure to store the data given by CANdesc and the checksum value.

In order to save E2PROM write cycles, the application may perform compare to the
current E2PROM content and decide whether to store the table content or not.

Pre-conditions
- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)
Call context
- any
Particularities and Limitations

 CANdesc does not keep the data pointed by the parameter pointer during the write
operation! The application must mirror the data if needed!

©2010, Vector Informatik GmbH Version: 2.19.00

93 / 117

Technical Reference CANdesc

6.6.12.3.5 ApplDescRestoreDynIdMemContent ()
ApplDescRestoreDynIdMemContent

Available since 5.06.09
Is Reentrant

Is callback
Prototype
Single Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Multi Context

void ApplDescRestoreDynIdMemContent (DescDynDidStorageInfo storageInfo)

Parameter
storageInfo.nvData The pointer to the data to where the stored data shall be written

storageInfo.nvDataSize

storageInfo.checkSum

The size (in bytes) of the table expected.
Not used

Return code
- -

Functional Description
Once this API is called by CANdesc, the application must trigger a read E2PROM
procedure to restore the data for CANdesc and the checksum value.

Once the read process has completed, the API “DescDynIdMemContentRestored ()” must
be called to acknowledge the operation status to CANdesc.
Pre-conditions
- Service 0x2C needs to store the DynDID definitions to the NVRAM (OEM specific
requirement)
Call context
- any
Particularities and Limitations

©2010, Vector Informatik GmbH Version: 2.19.00

94 / 117

Technical Reference CANdesc

6.6.13 Memory Access Callbacks

6.6.13.1 ApplDescReadMemoryByAddress()
ApplDescReadMemoryByAddress

Available since 5.06.04
Is Reentrant

Is callback
Prototype
Any Context

void ApplDescReadMemoryByAddress (DescMsgContext* pMsgContext,
t_descMemByAddrInfo* pMemInfo)

Parameter
pMsgContext Refer the section 6.6.3.2 Service MainHandler for details

about this parameter.
The response buffer pointer pMsgContext->resData

The actual response length pMsgContext->resDataLen

The address to read from pMemInfo->address

The number of bytes to read pMemInfo->length

Return code
- -

Functional Description
This callback is called for read memory by address requests. The application has to do
following:

• Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

• Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

• Copy the requested memory contents into the response buffer.

• Set the response data length to the number of bytes copied.

• Confirm that the processing is finished (by calling DescProcessingDone()).
Pre-conditions

 The read memory by address service is supported.
 Refer to chapter 5.5Read/Write Memory by Address (SID $23/$3D) (UDS) for more

details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

Call context
From DescTask()
Particularities and Limitations

 To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

©2010, Vector Informatik GmbH Version: 2.19.00

95 / 117

Technical Reference CANdesc

6.6.13.2 ApplDescWriteMemoryByAddress()
ApplDescWriteMemoryByAddress

Available since 5.06.04
Is Reentrant

Is callback
Prototype
Any Context

void ApplDescWriteMemoryByAddress (DescMsgContext* pMsgContext,
t_descMemByAddrInfo* pMemInfo)

Parameter
pMsgContext Refer the section 6.6.3.2 Service MainHandler for details

about this parameter.
The pointer to the data to store pMsgContext->reqData

The address to write to pMemInfo->address

The number of bytes to write pMemInfo->length

Return code
- -

Functional Description
This callback is called for write memory by address requests. The application has to do
following:

• Perform memory block validation (negative response can be set by calling
DescSetNegResponse()).

• Optional: Perform additional state validations (negative response can be set by
calling DescSetNegResponse()).

• Copy the provided data into the memory area.

• Confirm that the processing is finished (by calling DescProcessingDone()).
Pre-conditions

 The write memory by address service is supported.
 Refer to chapter 5.5Read/Write Memory by Address (SID $23/$3D) (UDS) for more

details of the availability of this API. If you don’t see this API provided in desc.h, then
this feature is not supported for your project.

Call context
From DescTask()
Particularities and Limitations

 To call this handler periodically, ‘DescStartMemByAddrRepeatedCall’ needs to be used

6.6.14 Flash Boot Loader Support
CANdesc provides some features to comply with the HIS flash boot loader procedures.
These features are not released for all OEMs so if the below listed APIs are not available
in your CANdesc version, then for the OEM, you currently use CANdesc, does not require,
resp. has another FBL procedures.

©2010, Vector Informatik GmbH Version: 2.19.00

96 / 117

Technical Reference CANdesc

6.6.14.1 DescSendPosRespFBL()
DescSendPosRespFBL

Available since 4.05.00
Is Reentrant

Is callback
Prototype
Any Context

void DescSendPosRespFBL (t_descFblPosRespType posRespSId)

Parameter
posRespSId One of the following values are allowed:

 kDescSendFblPosRespEcuHardReset
 kDescSendFblPosRespDscDefault.

Return code
- -

Functional Description
The application shall call this function as soon as possible after the initialization of the
CANdesc component is done and the ECU is able to communicate.

Once this function called, CANdesc will try to send the corresponding positive response
as follows:

 kDescSendFblPosRespEcuHardReset – a positive response to EcuHardReset ($51
$01) will be sent.

 kDescSendFblPosRespDscDefault – a positive response to DiagnosticSessionControl
Default session ($50 $01 $P2time $P2Star/10) will be sent.

If CANdesc is currently busy with a new tester request, there will be no response sent by
this API.
Pre-conditions
The FBL positive response feature is supported.
Call context
Any.
Particularities and Limitations

 See 7.8

©2010, Vector Informatik GmbH Version: 2.19.00

97 / 117

Technical Reference CANdesc

6.6.14.2 ApplDescInitPosResFblBusInfo()
ApplDescInitPosResFblBusInfo

Available since 5.07.04
Is Reentrant

Is callback
Prototype
Any Context

vuint8 ApplDescInitPosResFblBusInfo (t_descUsdtNetBus* pBusInfo)

Parameter
pBusInfo Reference to the bus information structure that will be

initialized here.
The bus driver that will send the response pBusInfo->busType

The communication channel on which the response will be
sent. (relevant only on multi channel systems)

pBusInfo->comChannel

The tester address which will be respond to. (relevant only on
bus systems with source/target addresses)

pBusInfo->testerId

Return code
Operation was successful, the FBL positive response will be
sent.

kDescOk

Operation failed – no FBL positive response will be sent. kDescFailed

Functional Description
This callback is called once the application decided to call the API DescSendPosRespFBL
to get the concrete addressing information.

The application shall initialize only the parameter described above. The optional ones can
be skipped if not relevant on your system.

Pre-conditions
The FBL positive response feature is supported.
Call context
From DescSendPosRespFBL context.
Particularities and Limitations

 -

©2010, Vector Informatik GmbH Version: 2.19.00

98 / 117

Technical Reference CANdesc

6.6.15 Debug Interface / Assertion

6.6.15.1 ApplDescFatalError()
ApplDescFatalError

Available since 2.00.00
Is Reentrant

Is callback
Prototype
Single Context

void ApplDescFatalError (vuint8 errorCode, vuint16 lineNumber)

Multi Context

void ApplDescFatalError (vuint8 errorCode, vuint16 lineNumber)

Parameter
errorCode The errorCode is a classification of the assertion. The

errorCodes can be also found in file ‘desc.h’. The errorCodes
are listed below:
A line number of file ‘desc.c’ from which this function is called. lineNumber

Return code
- -

Functional Description
The CANdesc debug interface is similar to assertion constructof common programming
languages. Assertions are code checks which are written so that they should always
evaluate to true. If an assertion is false, it indicates a possible bug in the program, corrupt
system state or a misoperation of the user-interface.
CANdesc is calling the function ApplDescFatalError() function to indicate a evaluation of
an assertion to false. If this will happen it is recommended to halt the program's execution
immediately. This could be reach by an endless loop in that call-back.
The assertions can be disabled in the GenTool settings. The resource (ROM and runtime)
consumption can be reduced by disabling the assertions.
Error codes
kDescAssertWrongTpTxChannel (0x00):
The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescAssertIndexTableInvalidReference (0x02):
Internal generation failure.

kDescAssertSvcTableUnreachableItem (0x03):
Internal generation failure.

kDescAssertSvcTableInvalidReference (0x04):
Internal generation failure.

©2010, Vector Informatik GmbH Version: 2.19.00

99 / 117

Technical Reference CANdesc

kDescAssertSvcTableInconsistentNumber (0x05):
Internal generation failure.

kDescAssertMissingMainHandler (0x06):
Internal generation failure.

kDescAssertInvalidContextId (0x08):
Wrong iContext should be used - Check the consistency of the iContext parameter in the
application.

kDescAssertSvcTableIndexOutOfRange (0x09):
Internal generation failure.

kDescAssertSvcInstTableIndexOutOfRange (0x0A):
Internal generation failure.

kDescAssertContextIdWasModified (0x0B):
The iContext member of the pMsgContext parameter in the MainHandler functions are
illegal modified – verify the MainHandler functions in the application

kDescAssertProcessingDoneCallAfterResFlushing (0x0E):
DescProcessingDone() is called at least twice for one request – check the call of
DescProcessingDone() in the application.

kDescAssertTooLongSingleFrameResponse (0x0F):
Response lengthof a periodic DID is exceeding the SingleFrame length – check the
response length for periodic DIDs.

kDescAssertApplLackOfConfirmation (0x11):
The time for response processing is too long – verify if the call of DescProcessingDone()
is done in any case.

kDescAssertZeroStateValue (0x13):
The state parameter is zero – check state handling

kDescAssertInvalidContextMode (0x16):
Internal runtime error

kDescAssertUnexpectedWriteIntoRingBuffer (0x17):
DescRingBufferWrite() is called without activated ring-buffer

©2010, Vector Informatik GmbH Version: 2.19.00

100 / 117

Technical Reference CANdesc

kDescAssertRingBufferWriteExceedsTheResLen (0x18):
DescRingBufferWrite() is called to often

kDescAssertIllegalUsageOfNegativeResponse (0x1A):
After call of DescProcessingDone() a negative response is set

kDescAssertDiagnosticBufferOverflow (0x1B):
currently not available

kDescAssertFuncReqWoResMayNotUseRingBuffer (0x1C):
It is not possible to use the ring-buffer feature for functional request (KWP only)

kDescAssertSchedulerTimerEventWithoutAnyPID (0x1E):
Internal runtime error

kDescAssertSchedulerRingBufferIsActivated (0x1F):
For periodic DIDs it is not possible to use the ring-buffer.

kDescAssertUnknownTpTransmissionType (0x21):
Internal runtime error

kDescAssertIllegalAddRequestCount (0x22):
Internal runtime error

kDescAssertNoSidCanBeReportedInIdleMode (0x23):
Call of DescGetSeriveId() while not a user-service is processed

kDescAssertInvalidUsageOfForceRcrRpApi (0x24):
The DescForceRcrRpResponse() function is used illegal.

kDescAssertPidResLenToCddDefNotMatched (0x26):
The response length set by the application do not fit to the response length defined in
CANdela (cdd).

kDescAssertPidResLenToCurrLinearFreeSpace (0x27):
Internal runtime error

kDescAssertMissingDataForTransmission (0x28):
Internal runtime error

©2010, Vector Informatik GmbH Version: 2.19.00

101 / 117

Technical Reference CANdesc

kDescAssertSchedulerFreeCellNotFound (0x29):
Internal runtime error

kDescAssertInvalidStateParameterValue (0x2A):
The state parameter value is wrong – check state handling in your application

kDescAssertNoFreeICNChannel (0x2B):
Internal runtime error

kDescAssertInvalidDescICNClient (0x2C):
Internal runtime error

kDescAssertNoFreeMsgContext (0x2D):
Internal runtime error

kDescAssertUnExpectedContextWithResponse (0x2E):
A response will be sent out of a wrong context.

kDescAssertIllegalCallOfRingBufferCancel (0x2F):
The API DescRingBufferCancel() has been called for a response that is not using the ring-
buffer concept (e.g. DescRingBufferStart() was not called).

kDescNetAssertWrongIsoTpRxChannel (0x40):
The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescNetAssertWrongIsoTpTxChannel (0x41):
The wrong TP channel is used – verify the TP interface to the CANdesc component

kDescNetAssertWrongBusType (0x42):
The wrong bus type is used – verify the TP interface to the CANdesc component

kDescAssertDescIcnIllegalTargetPointer (0x50):
Internal runtime assertion

Pre-conditions
At least on type of assertions are activated
Call context
Form ISR or task level. The interrupts might be disabled
Particularities and Limitations

 After a call of this function the system is not stable anymore. It can not be guaranteed
that this component or the whole system is still working in correct manner.

©2010, Vector Informatik GmbH Version: 2.19.00

102 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

103 / 117

Technical Reference CANdesc

7 How To…

7.1 …implement a protocol service MainHandler

//1. Read ProtocolService
// - dynamic length
// - PIDs

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Check the length */
 if(pMsgContext->reqDataLen > 2)
 {
 /* Check the sub-parameters */
 vuint16 param;
 /* Compose one parameter combining the HiByte and the LoByte in this order*/
 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */
 switch(param)
 {
 case 0xFFFF:
 if(pMsgContext->reqDataLen != 0xFFFF)
 {
 /* Write some data (skip the parameter offsets 0 und 1) */
 pMsgContext->resData[2] = DescGetLoByte(0x1234);
 pMsgContext->resData[3] = DescGetHiByte(0x1234);
 /* Set the response length */
 pMsgContext->resDataLen = 4;
 }
 else
 {
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }
 break;
 default:
 /* unknown parameter */
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }
 }
 else
 {
 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);
 }
 /* In this case we did everything in the main-handler */
 DescProcessingDone(pMsgContext->iContext);
}

//2. Read ProtocolService
// - dynamic length
// - sub-function

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*

©2010, Vector Informatik GmbH Version: 2.19.00

104 / 117

Technical Reference CANdesc

pMsgContext)
{
 /* Check the length */
 if(pMsgContext->reqDataLen > 1)
 {
 /* Dispatch the sub-function */
 switch(pMsgContext->reqData[0])
 {
 case 0xFF:
 if(pMsgContext->reqDataLen != 0xFFFF)
 {
 /* Format check ok: write some data (skip the parameter) */
 pMsgContext->resData[1] = DescGetLoByte(0x1234);
 pMsgContext->resData[2] = DescGetHiByte(0x1234);
 /* Set the response length */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 pMsgContext->resDataLen = 3;
 }
 else
 {
 /* Wrong sub-parameter format */
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }
 break;
 default:
 /* Unknown sub-function */
 DescSetNegResponse(pMsgContext->iContext,
 kDescNrcSubfunctionNotSupported);
 }
 }
 else
 {
 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);
 }
 /* In this case we did everything in the main-handler */
 DescProcessingDone(pMsgContext->iContext);
}

//3. Write ProtocolService
// - dynamic length
// - PIDs

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Check the sub-parameters */
 vuint16 param;

 /* Check the length */
 if(pMsgContext->reqDataLen > 2)
 {
 /* Compose one parameter combining the HiByte and the LoByte in this order
*/
 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */
 switch(param)
 {
 case 0xFFFF:
 if(pMsgContext->reqDataLen != 0xFFFF)

©2010, Vector Informatik GmbH Version: 2.19.00

105 / 117

Technical Reference CANdesc

 {
 /* Copy from the request data to your application */
 /* Use the data pointed by: pMsgContext->reqData[2],
 pMsgContext->reqData[3], etc.*/
 }
 else
 {
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }
 break;
 default:
 /* unknown parameter */
 DescSetNegResponse(pMsgContext->iContext, kDescNrcRequestOutOfRange);
 }
 }
 else
 {
 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);
 }
 /* In this case we did everything in the main-handler */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 DescProcessingDone(pMsgContext->iContext);
}

//4. Write ProtocolService
// - dynamic length
// - Sub-function

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Check the sub-parameters */
 vuint16 param;

 /* Check the length */
 if(pMsgContext->reqDataLen > 2)
 {
 /* Compose one parameter combining the HiByte and the LoByte in this order*/
 param = DescMake16Bit(pMsgContext->reqData[0], pMsgContext->reqData[1]);

 /* Dispatch the parameter */
 switch(param)
 {
 case 0xFFFF:
 if(pMsgContext->reqDataLen != 0xFFFF)
 {
 /* Copy from the request data to your application */
 /* Use the data pointed by: pMsgContext->reqData[2],
 pMsgContext->reqData[3], etc.*/
 }
 else
 {
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }
 break;
 default:
 /* unknown sub-function /
 DescSetNegResponse(pMsgContext->iContext,
 kDescNrcSubfunctionNotSupported);
 }

©2010, Vector Informatik GmbH Version: 2.19.00

106 / 117

Technical Reference CANdesc

 }
 else
 {
 DescSetNegResponse(pMsgContext-iContext, kDescNrcInvalidFormat);
 }
 /* In this case we did everything in the main-handler */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 DescProcessingDone(pMsgContext->iContext);
}

7.2 …implement a service MainHandler

//5. Read Service
// - dynamic length
// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Check the length */
 if(pMsgContext->reqDataLen != 0xFFFF)
 {
 /* Format check ok: write some data */
 pMsgContext->resData[0] = DescGetLoByte(0x1234);
 pMsgContext->resData[1] = DescGetHiByte(0x1234);
 /* Set the response length */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 pMsgContext->resDataLen = 2;
 }
 else
 {
 /* Wrong sub-function format */
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }

 /* In this case we did everything in the main-handler */
 DescProcessingDone(pMsgContext->iContext);
}

//6. Read Service
// - static length
// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Format check ok: write some data */
 pMsgContext->resData[0] = DescGetLoByte(0x1234);
 pMsgContext->resData[1] = DescGetHiByte(0x1234);
 /* Set the response length */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 pMsgContext->resDataLen = 2;

 /* In this case we did everything in the main-handler */
 DescProcessingDone(pMsgContext->iContext);
}

©2010, Vector Informatik GmbH Version: 2.19.00

107 / 117

Technical Reference CANdesc

//7. Write Service
// - dynamic length
// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Check the length */
 if(pMsgContext->reqDataLen != 0xFFFF)
 {
 /* Format check ok: write some data */
 /* Copy from the request data to your application */
 /* Use the data pointed by: pMsgContext->reqData[0],
 pMsgContext->reqData[1], etc.*/
 }
 else
 {
 /* Wrong sub-function format */
 DescSetNegResponse(pMsgContext->iContext, kDescNrcInvalidFormat);
 }

 /* In this case we did everything in the main-handler */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 DescProcessingDone(pMsgContext->iContext);
}

//8. Write Service
// - static length
// - sub-function/PID

void DESC_API_CALLBACK_TYPE ApplDescManiOnTimerEvent_storeEvent(DescMsgContext*
pMsgContext)
{
 /* Copy from the request data to your application */
 /* Use the data pointed by: pMsgContext->reqData[0], pMsgContext->reqData[1],
 etc.*/

 /* In this case we did everything in the main-handler */
 /* Hint: if the response length wasn't set, zero value is assumed! */
 DescProcessingDone(pMsgContext->iContext);
}

7.3 …implement a Signal Handler

//1. ReadSignalHandler
// - length <= 4Byte
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

vuintx DESC_API_CALLBACK_TYPE ApplDescGetTemp(void)
{
 /* Return directly the signal value */
 return (vuintx)0xFFFF;
}

//2. ReadSignalHandler

©2010, Vector Informatik GmbH Version: 2.19.00

108 / 117

Technical Reference CANdesc

// - length > 4Byte
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

DescMsgLen DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg tgt)
{
 /* Copy the signal data into the buffer pointed by "tgt".*/
 /* Return the amount of written bytes */
 return 0;
}

//3. WriteSignalHandler
// - length <= 4Byte
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

void DESC_API_CALLBACK_TYPE ApplDescGetTemp(vuintx data)
{
 /* "data" contains the signal value as-is from the request.
 Copy it into your application. */
}

//4. ReadSignalHandler
// - length > 4Byte
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

DescMsgLen DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg src)
{
 /* Copy the signal data from the buffer pointed by "src".*/
 /* Return the amount of copied bytes */
 return 0;
}

7.4 …implement a Packet Handler
//1. ReadPacketHandler
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

void DESC_API_CALLBACK_TYPE ApplDescGetTemp(DescMsg pMsg)
{
 /* Copy the signal value into the "pMsg" buffer. */
 pMsg[0] = DescGetLoByte(0x1234);
 pMsg[1] = DescGetLoByte(0x1234);
}

7.5 …implement a state transition function

//1. StateTransitionNotification
// Limitations: No DescProcessingDone() or DescSetNegResponse() allowed.

void DESC_API_CALLBACK_TYPE ApplDescOnTransitionSession(DescStateGroup
formerState, DescStateGroup newState)
{
 /* You are just notified that this state group has performed a transition from
 * "formerState" to the "newState". */

©2010, Vector Informatik GmbH Version: 2.19.00

109 / 117

Technical Reference CANdesc

}

7.6 …work with the ring-buffer mechanism

7.6.1 with asynchronous write

TPMC Des c Appl_MainHandler Appl_MainHandler_2 EEPROM
Driver

Appl_PostHandler

call

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

DescRingBufferGetProgress

return currentBytePosition

Analyze and validate request

Write response length

DescRingBufferStart()

DescRingBufferWrite(* dataPtr, dataLength)

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

Not enough free
bytes to write
new data

Now - it is possibel to
writ e data to the ring-buffer

It is not possible to write data as in
the standard way if a ring-buffer will
be used (standard way is, to write to
DescMsgContext->ResData)

StartTransmission

FinishTransmission

TpCopyToCan

TpCopyToCan

TP reads
asynchronous the
data out of the
ring-buffer

Enough data are
stored in the
ring-buffer to start
the transmission

Call of Service Post Handler

©2010, Vector Informatik GmbH Version: 2.19.00

110 / 117

Technical Reference CANdesc

//1. Read Service (with asynchronous Ring-Buffer)
// - static length
// - sub-function/PID

vuint8 g_iContext;

void DESC_API_CALLBACK_TYPE ApplDescReadDTC(DescMsgContext* pMsgContext)
{
 vuint8 lData;
 /* Format check already done by CANdesc */

 /* Analysis of request has to done by ECU application */

 /* Set the response length */
 pMsgContext->resDataLen = 16;

 /* Fill the first data */
 lData = 5;

 /* Store iContext for further interaction with CANdesc */
 g_iContext = pMsgContext->iContext;
 /* check only on services with sub-function (e.g. 0x19) */
 if(pMsgContext->msgAddInfo.suppPosRes != 0)
 {
 /* since no response required – skip further processing */
 DescProcessingDone(pMsgContext->iContext);
 }
else

 {
 /* Now we have to set CANdesc into the Ring-Buffer mode */
 DescRingBufferStart(pMsgContext->iContext);
 /* Now it is possible to write into the Ring-Buffer */
 DescRingBufferWrite(pMsgContext->iContext, &lData, 1);

 /* Now trigger e.g. an EEPROM read event */
 ...
 }
}

EEPROM_TASK(xyz)
{
 vuint8 lDTC[3];

 ...
 /* Wait for EEPROM event */
 /* EEPROM event is finished with reading */
 {
 DescRingBufferWrite(g_iContext, &lDTC, 3);
 /* Now trigger next EEPROM reading */
 }
}

©2010, Vector Informatik GmbH Version: 2.19.00

111 / 117

Technical Reference CANdesc

7.6.2 with synchronous write
Desc Appl_M ainHandler Appl_MainHandler_2 EEPROM

Driver
Appl_PostHandler

call

PostHandler

call GetEEPROMData

DescRingBufferWrite(* dataPtr, dataLength)

call

DescRingBufferGetFreeSpace

call

DescRingBufferGetFreeSpace

return countOfFreeBytesInRingBuffer

return countOfFreeBytesInRingBuffer

DescRingBufferWrite(* dataPtr, dataLength)

GetEEPROMData

Analyze and validate request

write response length

DescRingBufferStart

Desc RingBufferW ri te(* dataPtr, dataLength)

DescStartRepeatedServiceCall(&ApplMainHandler_2)

Activate the
multiple service
call to get a
periodic call from
CANdesc

Within this function
call the data can be
written synchronous.

//2. Read Service (with synchronous Ring-Buffer)
// - static length
// - sub-function/PID

extern void ApplDescReadDTC_AddOn(DescMsgContext* pMsgContext);

void DESC_API_CALLBACK_TYPE ApplDescReadDTC(DescMsgContext* pMsgContext)
{
 vuint8 lData;
 /* Format check already done by CANdesc */

©2010, Vector Informatik GmbH Version: 2.19.00

112 / 117

Technical Reference CANdesc

 /* Analysis of request has to done by ECU application */

 /* Set the response length */
 pMsgContext->resDataLen = 16;

 /* Fill the first data */
 lData = 5;

 /* check only on services with sub-function (e.g. 0x19) */
 if(pMsgContext->msgAddInfo.suppPosRes != 0)
 {
 /* since no response required – skip further processing */
 DescProcessingDone(pMsgContext->iContext);
 }
else
{

 /* Now we have to set CANdesc into the Ring-Buffer mode */
 DescRingBufferStart(pMsgContext->iContext);
 /* Now it is possible to write into the Ring-Buffer */
 DescRingBufferWrite(pMsgContext->iContext, &lData, 1);

 /* Use RepeatedSeriveCall feature to poll e.g. EEPROM driver */
 DescStartRepeatedServiceCall(pMsgContext->iContext, &ApplDescReadDTC_AddOn);
}

}

void ApplDescReadDTC_AddOn(DescMsgContext* pMsgContext)
{
 vuint8 lDTC[3];
 DescMsgLen freeSpace;
 /* Check if enough space is free in ring-buffer */
 freeSpace = DescRingBufferGetFreeSpace();
 if (freeSpace >= 3)
 /* try to read from EEPROM */
 {
 /* Success - result is in lDTC */
 DescRingBufferWrite(pMsgContext->iContext, &lDTC, 3);
 }
 else
 {
 /* nothing to do, wait for next MainHandler call, ring-buffer is full */
 }
}

7.7 …prevent the ECU going to sleep while diagnostic is active
Most car manufactures have the requirement to keep the ECU alive while the diagnostic
layer is active; including a pending request or a non-default session is currently active.
This requirement is handled by CANdesc for some car manufactures (see OEM specific
TechnicalReference_CANdesc document for details)
The following code example shows all necessary steps to keep the ECU alive while
diagnostic jobs are running (e.g. non-default session):
{
 DescContextActivity lActivity;
 DescStateGroup lState;

©2010, Vector Informatik GmbH Version: 2.19.00

113 / 117

Technical Reference CANdesc

 lAcitvity = DescGetActivityState();
 lState = DescGetStateSession();

 /* check for a pending request or a non-default session */
 if (((lState & kDescStateSessionDefault) == 0) ||
 (lActivity != kDescContextIdle))
 {
 /* Force to stay alive */
 }
 else
 {
 /* Ready for sleeping */
 }
}

7.8 …send a positive response without request after FBL flash job
According to the DC ECU programming specification after successful flashing of the ECU
the application shall send a positive response either to “diagnostic session control –
default session” or “ECU reset – hard reset” immediately after restart of the application.
The Vector Flash Boot Loader will set a flag (reset response flag) in RAM or EEPROM
which has to be evaluated by the application at startup. Depending on its value the
application has to call the CANdesc function DescSendPosRespFBL with the appropriate
response ID.

CANdesc provides the API DescSendPosRespFBL for this purpose.

Due to bus communication is necessary to send the positive response; some limitations
have to be handled by the application:
1) Bus communication is to be requested by the application

2) If bus communication is possible, the application has to call DescSendPosRespFBL.
CANdescBasic will send the positive response.
3) The application will be called to provide the concrete addressing information of the
response.
4) Bus communication can be released by the application.

7.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type
CANdesc uses per default the bit-type definition provided by the CANdriver, since it is
selected as optimal for the concrete CPU. On this way the CANdesc ROM and RAM
resource consumption is kept as low as possible.
Due to the complexity of some CANdesc data structures there can be problems on certain
compilers with special bit-structure compiler options.
If you encounter such problems either at compile or at run-time, you can turn the ANSIC C
bit-type support in CANdesc on. To do that, just add a user configuration file in GENy with
the following content:
#define DESC_USE_ANSI_C_BIT_TYPE

©2010, Vector Informatik GmbH Version: 2.19.00

114 / 117

Technical Reference CANdesc

8 Related documents

Abbreviation File Name Description
/KWP2000/ Keyword 2000 protocol

/TPMC/ User manual of the multi-connection transport layer
module. The transport layer is implemented
according to /ISO 15765/

/ISO 15765/ This ISO standard describes diagnostics and
diagnostics on CAN.

Note: If no file name is given, the document is not provided by Vector.

©2010, Vector Informatik GmbH Version: 2.19.00

115 / 117

Technical Reference CANdesc

9 Glossary

Abbreviation Description
CAN database by Vector which is used by Vector tools. CANdb
CAN diagnostics embedded software component CANdesc
CANdela Diagnostic Database CDD
Consecutive Frame (transport protocol frame) CF
Communication Control Layer CCL
CAN database format of the Vector company, which is used by the
GENtool to gather information about the ECUs in the network, their
communication relations, message definitions, signals of
messages, network related information (e.g. manufacturer type,
network management type, etc.).

DBC

Electronic Control Unit ECU
Flash Boot Loader FBL
Keyword Protocol 2000 KWP 2000
German abbreviation, “Offene Systeme und deren Schnittstellen
für die Elektronik im Kraftfahrzeug”, means “open systems and the
corresponding interfaces for automotive electronics”

OSEK

Request Correctly Received – Response Pending RCR-RP
Single Frame SF
Service Identifier SID
Suppress Positive Response Message Indication Bit SPRMIB
Transport Protocol TP
Unified Diagnostic Services UDS

©2010, Vector Informatik GmbH Version: 2.19.00

116 / 117

Technical Reference CANdesc

©2010, Vector Informatik GmbH Version: 2.19.00

117 / 117

10 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

	1 History
	2 Introduction
	3 Documents this one refers to…
	4 Architecture Overview
	4.1 CANdesc – Internal processing
	4.1.1 Diagnostic protocol
	4.1.2 How does this flow actually work?

	4.2 Application interface flow
	4.2.1 Session- and CommunicationControl

	5 Advanced Configuration
	5.1 Configure DBC attributes for diagnostics
	5.2 Configure Handlers using CANdela attributes
	5.3 ReadDataByIdentifier (SID $22)
	5.3.1 Limitations of the service
	5.3.2 Single PID mode
	5.3.2.1 Sending a positive response using linear buffer access
	5.3.2.2 Sending a positive response using ring buffer access
	5.3.2.3 Sending a negative response

	5.3.3 Multiple PID mode
	5.3.3.1 Pure linear buffer configuration
	5.3.3.1.1 Sending a positive response
	5.3.3.1.2 Sending a negative response

	5.3.3.2 Ring buffer active configuration
	5.3.3.2.1 Sending a positive response
	5.3.3.2.2 Sending a negative response
	5.3.3.2.3 PostHandler execution rule

	5.4 DynamicallyDefineDataIdentifier (SID $2C) (UDS)
	5.4.1 Feature set
	5.4.2 API Functions
	5.4.3 Sequence Charts

	5.5 Read/Write Memory by Address (SID $23/$3D) (UDS)
	5.5.1 Tasks performed by CANdesc
	5.5.2 Task to be performed by the Application
	5.5.3 Repeated service calls

	6 CANdesc API
	6.1 API Categories
	6.1.1 Single Context
	6.1.2 Multiple Context (only CANdesc)

	6.2 Data Types
	6.3 Global Variables
	6.4 Constants
	6.4.1 Component Version

	6.5 Macros
	6.5.1 Data exchange
	6.5.1.1 Splitting 16 bit data
	6.5.1.2 Splitting 32 bit data
	6.5.1.3 Assembling 16 bit data
	6.5.1.4 Assembling 32 bit data

	6.6 Functions
	6.6.1 Administrative Functions
	6.6.1.1 DescInitPowerOn()
	6.6.1.2 DescInit()
	6.6.1.3 DescTask()
	6.6.1.4 DescStateTask()
	6.6.1.5 DescTimerTask()
	6.6.1.6 DescGetActivityState()

	6.6.2 Service Functions
	6.6.2.1 DescSetNegResponse()
	6.6.2.2 DescProcessingDone()

	6.6.3 Service Call-Back functions
	6.6.3.1 Service PreHandler
	6.6.3.2 Service MainHandler
	6.6.3.3 Service PostHandler

	6.6.4 User (Unknown) Service Handling
	6.6.4.1 How it works
	6.6.4.2 ApplDescCheckUserService()
	6.6.4.3 DescGetServiceId()
	6.6.4.4 Generic User Service MainHandler
	6.6.4.5 Generic User Service PostHandler

	6.6.5 Session Handling
	6.6.5.1 ApplDescCheckSessionTransition()
	6.6.5.2 DescSessionTransitionChecked()
	6.6.5.3 DescIsSuppressPosResBitSet ()
	6.6.5.4 ApplDescOnTransitionSession()
	6.6.5.5 DescSetStateSession()
	6.6.5.6 DescGetStateSession()

	6.6.6 CommunicationControl Handling
	6.6.6.1 ApplDescCheckCommCtrl()
	6.6.6.2 DescCommCtrlChecked()

	6.6.7 Periodic call of ‘Service MainHandler’
	6.6.7.1 DescStartRepeatedServiceCall()
	6.6.7.2 DescStartMemByAddrRepeatedCall()

	6.6.8 Ring Buffer Mechanism
	6.6.8.1 DescRingBufferStart()
	6.6.8.2 DescRingBufferWrite()
	6.6.8.3 DescRingBufferCancel()
	6.6.8.4 DescRingBufferGetFreeSpace()
	6.6.8.5 DescRingBufferGetProgress()

	6.6.9 Signal Interface of CANdesc
	6.6.9.1 ApplDesc<Signal-Handler>()
	6.6.9.2 Configuration of direct signal access

	6.6.10 State Handling (CANdesc only)
	6.6.10.1 DescGetState<StateGroup>()
	6.6.10.2 DescSetState<StateGroup>()
	6.6.10.3 ApplDescOnTransition«StateGroup»()

	6.6.11 Force “Response Correctly Received - Response Pending” transmission
	6.6.11.1 DescForceRcrRpResponse()
	6.6.11.2 ApplDescRcrRpConfirmation()

	6.6.12 DynamicallyDefineDataIdentifier ($2C) (UDS) functions
	6.6.12.1 DescMayCallStateTaskAgain()
	6.6.12.2 ApplDescCheckDynDidMemoryArea()
	6.6.12.3 Non-volatile memory support
	6.6.12.3.1 DescDynDefineDidPowerUp()
	6.6.12.3.2 DescDynIdMemContentRestored ()
	6.6.12.3.3 DescDynDefineDidPowerDown ()
	6.6.12.3.4 ApplDescStoreDynIdMemContent ()
	6.6.12.3.5 ApplDescRestoreDynIdMemContent ()

	6.6.13 Memory Access Callbacks
	6.6.13.1 ApplDescReadMemoryByAddress()
	6.6.13.2 ApplDescWriteMemoryByAddress()

	6.6.14 Flash Boot Loader Support
	6.6.14.1 DescSendPosRespFBL()
	6.6.14.2 ApplDescInitPosResFblBusInfo()

	6.6.15 Debug Interface / Assertion
	6.6.15.1 ApplDescFatalError()

	7 How To…
	7.1 …implement a protocol service MainHandler
	7.2 …implement a service MainHandler
	7.3 …implement a Signal Handler
	7.4 …implement a Packet Handler
	7.5 …implement a state transition function
	7.6 …work with the ring-buffer mechanism
	7.6.1 with asynchronous write
	7.6.2 with synchronous write

	7.7 …prevent the ECU going to sleep while diagnostic is active
	7.8 …send a positive response without request after FBL flash job
	7.9 …enforce CANdesc to use ANSI C instead of hardware optimized bit type

	8 Related documents
	9 Glossary
	10 Contact

