

Vector Interaction Layer

Technical Reference

Il_Vector

Version 2.10.03

Authors Klaus Emmert, Gunnar Meiss, Heiko Hübler

Status Released

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

2 / 115

1 Document Information

1.1 History

Author Date Version Remarks

P. Jost 2000-05-05 1.0 creation

P. Jost 2000-06-29 1.1 some corrections

P. Jost 2000-07-13 1.2 changes in Figure 4 and some further corrections

P. Jost 2000-08-06 1.3 correction of the First-Value Class

P. Jost 2000-09-13 1.4 little corrections in the description of the TxTask and IlInit

P. Jost 2001-03-01 1.5 message related transmission modes
example for timeout monitoring
multi channel support
known problems
integration example

P. Jost 2001-06-22 1.6 some names of attributes changed
DataChanged flag
Tx timeout monitoring
Rx and Tx default values
new screen shots of the current Gentool
changes in the state machine
and further little corrections

S. Hoffmann 2001-07-05 1.61 some corrections and branch for an OEM

P. Jost 2001-07-13 1.62 adapted the corrections of version 1.61 for general IL

P. Jost 2002-04-05 1.63 Signal groups
Multiple physical and virtual ECU support
Multiplex Signals
Rx timeout monitoring: reload of timer and message
related notification
Notification in interrupt and task context (IL Polling)
IL<Tx/Rx>StateTask
Attributes for Rx timeout monitoring updated
Configuration Tool pictures updated

P. Jost 2002-08-16 1.7 Name of this document changed from User Manual to
Technical Reference

Multiple Indication Flags per Signal
Macro to Get and Clear at once
Chapter for Configuration Tool updated
”New Style” API
Data Type Prefix for Signal Access
Further Callbacks for State Machine
Initialization – IlInitPowerOn
ECU Timeout

H. Hörner 2003-06-16 1.8 Several wording and spelling issues corrected

List of abbreviations and glossary removed, replaced by
an own document

Implementation details moved to an Annex

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

3 / 115

K. Emmert 2003-09-02 1.9 Some design and link modifications.

H. Hörner 2004-05-14 2.0 Add usage of VStdLib

Documented return value of flag get macros

Difference between GenMsgDelayTime and
GenMsgStartDelayTime clarified

Some clarifications about signal groups

Wording enhanced for multiplexed signals

Klaus Emmert

Gunnar Meiss

2005-06-10 2.01 Added support for GENy

Added new feature dynamic timeout handling

Added raw API for multiplex signals

Reworked dbc attributes chapter

Added matrix with transmission modes

Gunnar Meiss

2005-08-02 2.02 Adapted GenMsgFastOnStart

Added GENy Multiplex Support

Klaus Emmert

Gunnar Meiss

2005-11-04 2.03 Added AUTOSAR API for GENy, configuration and signal
access.

Added GenMsgFastOnStart for multiplex messages in
GENy

Added ESCAN00014120 CANGen

Added ESCAN00008602 CANGen

Added ESCAN00008604 CANGen

Reworked ESCAN00010718

Gunnar Meiss 2006-02-16 2.04 Added GENy Multiple ECU Reference

Added ESCAN00013633

DynRxTimeout API postfix and data types have changed.

Klaus Emmert 2006-03-13 2.05 Signal Groups for GENy

Gunnar Meiss 2006-04-06 2.06 Added Indexed API discontinuation for GENy.

Corrected ApplIlFatalError Prototype

Improved GenSigTimeoutMsg_<ECU>

Corrected GenSigSendType description

Removed GenSigTimeoutMsg_<ECU> for GENy

Gunnar Meiss 2007-05-16 2.07 Opaque Data Types ESCAN00016935 GENy

Improved documentation of call contexts of API functions
ESCAN00017472, ESCAN00018014, ESCAN00014156,
ESCAN00013962, ESCAN00013423, ESCAN00008047,
ESCAN00008755

Gunnar Meiss 2007-12-17 2.08 Added GenSigSuprvResp, GenSigSuprvRespSubValue
and GenSigTimeoutMsg_<ECU> for GENy

Updated API descriptions

Updated GenMsgStartDelayTime

Updated GenMsgIlSupport

ESCAN00024092

Gunnar Meiss 2008-04-21 2.08.01 ESCAN00024091

Gunnar Meiss 2008-07-17 2.09.00 Reworked Document Structure

ESCAN00024902 Added Node Mapped dbc Attributes

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

4 / 115

Updated Abbreviations and Glossary with CIWI

ESCAN00028781 Added IlTxRepetitionsAreActive and
IlTxSignalsAreActive

ESCAN00028787 Reset Timeout Flags On Release

Added Geny attribute descriptions

ESCAN00023799 Added Limitation

ESCAN00025371 Updated Dynamic Timeout Monitoring

ESCAN00029109 Added Documentation of Generated
APIs

Gunnar Meiss 2008-10-17 2.09.01 ESCAN00030172 The description of IlRxWait()
is ‎incorrect

Gunnar Meiss 2011-05-19 2.09.02 ESCAN00049272 OnChangeAndIfActive and
OnChangeAndIfActiveWithRepetition is described
incorrect in Table 3-6 "Send Type Matrix"

ESCAN00049615 Incorrect Enumeration Values of the
dbc attribute "ILUsed"

ESCAN00048272 Incorrect Timing Diagram of the
Transmit Fast if Signal Active Transmission Mode

Heiko Hübler 2012-03-13 2.10.00 Added Signal status information (UpdateBits)

Heiko Hübler 2012-05-14 2.10.00 Added description for the GENy GUI attribute “timeout
time”

Heiko Hübler 2012-09-13 2.10.01 Added description for PreConfig Switch “Enable
UpdateBit Support”

Changed “Send on Init” description

Heiko Hübler 2012-11-07 2.10.02 ESCAN00041782: One 'e' too much in Technical
Reference

ESCAN00062898: Adapted description of Delimitation of
the Bus Load

Heiko Hübler 2013-05-13 2.10.03 ESCAN00052197: The OnChange Event is triggered if
the value for IlPut changes out of the range

Table 1-1 History of the Document

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

5 / 115

1.2 Reference Documents

No. Source Title Version

[1] Vector Vector CAN driver. Technical Reference

[2] Vector Vector Multiple ECUs. Technical Reference 1.00.00

[3] Vector Vector Configuration Tool. Online Documentation.

(no printed manual available)

[4] OSEK OSEK/COM, Version 3.0.3 3.00.03

[5] Z.120 (1996). Message Sequence Chart (MSC).

ITU-T, Geneva

April.1996

[6] Vector Interaction Layer User Manual

[7] AUTOSAR AUTOSAR Specification of Module COM 2.0.0 2.00.00

[8] AUTOSAR AUTOSAR Specification of Module COM 3.1.0 3.1.0

Table 1-2 Reference Documents

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

6 / 115

Contents

1 Document Information ... 2

1.1 History ... 2

1.2 Reference Documents ... 5

2 Introduction... 11

2.1 Architecture Overview .. 12

2.2 Data Access Concept ... 13

2.3 Adapt the Vector Interaction Layer ... 15

3 Functional Description ... 17

3.1 Features .. 17

3.2 Initialization .. 17

3.3 Interaction Layer State Machine ... 18

3.3.1 States .. 19

3.3.1.1 Uninit ... 19

3.3.1.2 Running ... 19

3.3.1.3 Waiting ... 19

3.3.2 State Transitions .. 19

3.3.2.1 Init .. 19

3.3.2.2 Start ... 19

3.3.2.3 Stop ... 20

3.3.2.4 Wait ... 20

3.3.2.5 Release ... 21

3.4 Main Functions .. 21

3.5 Interaction Layer Communication Concept... 23

3.5.1 Interface Concept ... 23

3.5.2 Notification Mechanisms .. 23

3.6 Data Access ... 23

3.6.1 Data Consistency ... 23

3.6.2 Signal Interface .. 24

3.6.3 AUTOSAR Signal Interface .. 25

3.6.4 Example: Writing and reading a signal value 26

3.6.5 Signal Groups .. 27

3.6.5.1 Il API .. 27

3.6.5.2 AUTOSAR API ... 28

3.6.5.3 GENy configuration .. 29

3.6.6 Default Values .. 29

3.7 Data Transmission ... 30

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

7 / 115

3.7.1 Transmission Concept.. 30

3.7.2 Signal Related Transmission Modes .. 33

3.7.2.1 Cyclic Transmission ... 34

3.7.2.2 OnEvent (OnWrite, OnChange) 34

3.7.2.3 OnEvent with Repetition (OnWrite, OnChange) 35

3.7.2.4 Transmit Fast if Signal is Active 36

3.7.2.5 Transmit Fast if Signal is Active with Repetition 38

3.7.3 Mixed Transmission Mode.. 39

3.7.3.1 Cyclic (Message) Transmission OR Cyclic (Signal)
Transmission ... 39

3.7.3.2 Cyclic (Message) Transmission OR OnEvent [Write] 39

3.7.3.3 Cyclic (Message) Transmission OR OnEvent [Write]
with Repetition ... 39

3.7.3.4 Cyclic (Message) Transmission OR OnEvent [Change] . 40

3.7.3.5 Cyclic (Message) Transmission OR OnEvent [Change]
with Repetition ... 40

3.7.3.6 Cyclic (Message) Transmission OR Transmit Fast If
Signal is Active ... 40

3.7.3.7 Cyclic (Message) Transmission OR Transmit Fast If
Signal is Active with Repetition 41

3.7.3.8 Cyclic (Message) Transmission OR NoSigSendType 42

3.7.4 Advanced Transmission Modes ... 42

3.7.5 Notification Classes.. 42

3.7.6 Reduction of Transmission Bursts .. 43

3.7.7 Delimitation of the Bus Load .. 43

3.7.8 Transmission Timeout Monitoring ... 44

3.7.9 Transmission of Initialization Messages ... 44

3.8 Data Reception .. 45

3.8.1 Reception Concept .. 45

3.8.2 Notification Classes.. 45

3.8.3 Timeout Monitoring .. 46

3.8.4 Dynamic Timeout Monitoring .. 47

3.9 Signal status information (UpdateBits) ... 48

3.9.1 Configuration.. 48

3.9.1.1 DBC File .. 49

3.9.2 UpdateBit Transmission ... 49

3.9.3 UpdateBit Reception .. 49

3.9.3.1 Timeout .. 49

3.10 Multiple Channel Support ... 50

3.10.1 Overview .. 50

3.10.2 Idx (Indexed) Interaction Layer ... 50

3.11 Advanced Communication Features .. 50

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

8 / 115

3.11.1 Physical Multiple and Multiple Configuration ECU 50

3.11.2 Multiplexed Signals .. 50

3.11.2.1 Standard API.. 50

3.11.2.2 Raw API ... 51

3.11.3 Manipulation of the Notification Frequency 53

4 Integration ... 54

4.1 Include structure .. 54

4.2 Scope of Delivery ... 54

4.2.1 Static Files ... 54

4.2.2 Dynamic Files .. 54

4.3 Operating Systems Requirements ... 55

5 Configuration .. 56

5.1 Configuration in Data Base .. 56

5.1.1 Send Type .. 57

5.1.2 Send Type Dependent ... 58

5.1.3 Advanced Attributes ... 60

5.1.4 Timeout Supervision Attributes ... 61

5.1.5 Former Attributes ... 63

5.1.6 Example ... 63

5.2 Configuration with GENy .. 65

6 API Description ... 81

6.1.1 TypeDefinitions .. 81

6.1.2 Services provided by Interaction Layer... 82

6.1.2.1 IlInitPowerOn ... 82

6.1.2.2 IlInit .. 82

6.1.2.3 IlRxStart ... 83

6.1.2.4 IlTxStart ... 83

6.1.2.5 IlRxStop ... 84

6.1.2.6 IlTxStop ... 84

6.1.2.7 IlRxWait ... 85

6.1.2.8 IlTxWait .. 86

6.1.2.9 IlRxRelease ... 86

6.1.2.10 IlTxRelease .. 87

6.1.2.11 IlRxTask ... 87

6.1.2.12 IlTxTask ... 88

6.1.2.13 IlRxStateTask ... 88

6.1.2.14 IlTxStateTask ... 89

6.1.2.15 IlSendOnInitMsg .. 89

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

9 / 115

6.1.2.16 IlGetStatus ... 90

6.1.2.17 IlTxRepetitionsAreActive .. 90

6.1.2.18 IlTxSignalsAreActive .. 91

6.1.3 Generated Services provided by the Interaction Layer 92

6.1.3.1 Read and Write Signals and Signal Groups 92

6.1.3.2 Read and Write Signals and SignalGroups in the RDS
Buffer. .. 98

6.1.3.3 Notification Flags of Signals, Signal Groups and
Grouped Signals .. 100

6.1.3.4 Dynamic Rx Timeout .. 102

6.1.4 Callback Functions ... 104

6.1.4.1 ApplIlInit ... 104

6.1.4.2 ApplIlRxStart .. 105

6.1.4.3 ApplIlTxStart .. 105

6.1.4.4 ApplIlRxStop .. 106

6.1.4.5 ApplIlTxStop .. 106

6.1.4.6 ApplIlFatalError .. 107

6.1.5 Generated Callback Functions ... 107

7 Limitations .. 110

7.1 CANgen Compatibility .. 110

7.1.1 Database attributes .. 110

7.1.2 Application Code .. 110

7.1.3 Generator ... 110

8 Glossary and Abbreviations .. 112

8.1 Glossary .. 112

8.2 Abbreviations ... 114

9 Contact .. 115

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

10 / 115

Illustrations

Figure 2-1 Example for Some ECU’s in a Modern Vehicle ... 11
Figure 2-2 Layer model of the Vector CAN communication components

CANbedded .. 13
Figure 2-3 Signal-oriented Access to Data provided by the Interaction Layer 14
Figure 2-4 Usage of the network database to generate parts of the Interaction Layer 15
Figure 3-1 Rx and Tx State Machines .. 18
Figure 3-2 State Machine of the Interaction Layer.. 18
Figure 3-3 Call of the Interaction Layer cyclic function ... 22
Figure 3-4 Synchronization Problem of Data Access ... 24
Figure 3-5 Timing Diagram of the Periodic Transmission Mode 34
Figure 3-6 Timing Diagram of the Transmission Mode OnEvent – OnWrite................ 35
Figure 3-7 Timing Diagram of OnEvent with Repetition - OnWrite 36
Figure 3-8 Timing Diagram of the Transmit Fast if Signal Active Transmission Mode . 37
Figure 3-9 Example for Combining Signals Related of the Send Fast if Signal Active

Mode to the Same Message ... 38
Figure 3-10 Timing Diagram of the Transmit Fast if Signal Active Transmission Mode . 38
Figure 3-11 Mixed Transmission Mode – Cyclic OR OnEvent [Write] 39
Figure 3-12 Mixed Transmission Mode – Cyclic OR OnEvent [Change] 40
Figure 3-13 Mixed Transmission Mode – Cyclic OR Fast If Signal is Active 41
Figure 3-14 Mixed Transmission Mode – Cyclic OR Fast If Signal is Active with

Repetition ... 42
Figure 3-15 Delay Time to Delimit Bus Load ... 44
Figure 4-1 Including Interaction Layer .. 54
Figure 5-1 A Signal with the Periodic Transmission Mode and one with the Direct

Transmission Mode Combined to a message. .. 65
Figure 5-2 OnScreen Help View for fast information .. 65
Figure 5-3 Overview of Vector Interaction Layer Configuration in GENy 66

Tables

Table 1-1 History of the Document ... 4
Table 1-2 Reference Documents .. 5
Table 3-1 Supported features ... 17
Table 3-2 Start transition events ... 20
Table 3-3 Stop transition events ... 20
Table 3-4 Wait transition events.. 21
Table 3-5 Release transition events ... 21
Table 3-6 Send Type Matrix .. 33
Table 4-1 Static files ... 54
Table 4-2 Generated files ... 55
Table 5-1 GENy attributes .. 80
Table 6-1 Type definitions ... 81

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

11 / 115

2 Introduction

Nowadays cars are growing to become more and more complex systems. The functionality
of a modern car is not dominated by mechanical components anymore. Electrical Control
Units (ECU), sensors and actors became irreplaceable parts of a car. They are responsible
for the reasonable functions of the power train, the chassis and the body of a car. An
example for some ECUs is shown in Figure 2-1 Example for Some ECU’s in a Modern
Vehicle.

In many ways the functionality of an ECU in a car depends on information provided by
other ECUs. For example the ECU of the dashboard needs the number of revolutions per
time of the wheels to display the car’s speed. As a result communication between the
ECUs is a significant component of a modern vehicle.

The communication between ECUs should essentially remain encapsulated. The
application working on an ECU should not need to know how to transmit or receive data
from other ECUs. Therefore Vector Informatik GmbH provides a set of components for the
communication of ECUs by the CAN bus.

Figure 2-1 Example for Some ECU’s in a Modern Vehicle

These communication components are called CANbedded. They relieve the application of
its communication assignment including the exchange of simple data, diagnostic data,

uc Ecu Use Cases

dashboard seat

engine control

light c ontrol door

air conditioning

central locking

wheel pressure

control

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

12 / 115

network management data, calibration data and more. This document is concerned with
the data exchange via an Interaction Layer.

The Vector Interaction Layer hides all the communication related parameters and physical
values from the application to ease the workload of the application. In case of transmission
the application just needs to pass data to be transmitted to the Interaction Layer. The
Interaction Layer decides when to transmit the data. Because the transmission depends of
the chosen Transmission Mode which defines for example a periodic or an event triggered
transmission of data. The other way round, in case of reception of data the Interaction
Layer will notify the application about the arrival of data. Then the application could decide
whether to read the updated data.

In any case the application does not need to know how the data is transmitted or received
by the lower communication layers. It follows that the data structures of the application will
be independent of the communication data structures (e.g. bus frames). The result is a
higher reusability of the application software.

To control the Interaction Layer by the means of starting, suspending or deactivating a
further API is provided. It is intended to be used for example by the Network Management.
By this API it is possible to realize some CAN related modes like Sleep Mode, Bus-off
Mode or Low-Voltage-Mode.

This manual is divided into three main chapters. The Overview introduces the features and
concepts of the Interaction Layer. Next, the Functional Description explains the state
machine, the communication flow, the data access and the transmission and reception of
data. Technical Description, the last of the main chapters concerns with details of code
generation, the API of the Interaction Layer and the usage or the Interaction Layer with or
without an operating system.

2.1 Architecture Overview

The implementation of the Interaction Layer is intended to relieve the application of
communication tasks. The Interaction Layer is one of the communications components of
CANbedded offered by Vector Informatik GmbH. In Figure 2-2 Layer model of the Vector
CAN communication components CANbedded it is shown how the Interaction Layer is
embedded in the CANbedded protocol stack.

The communication software user has to be supplied with suitable access mechanisms to
permit the adaptation of the ECU's behaviour to the network. Furthermore, the application
needs mechanisms which permit a structured access to the data of the network. Such
mechanisms are provided by the Interaction Layer of Vector Informatik GmbH and will be
described in this manual. The Interaction Layer is responsible for separation of the Data
Link Layer dependent low-level driver (CAN driver) and the application task which is
independent of the underlying bus system.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

13 / 115

Figure 2-2 Layer model of the Vector CAN communication components CANbedded

The CAN Driver provides a mostly hardware independent interface to the higher
communication layers. This enables the hardware independent implementation of the latter
components and the target platform independent reuse of them.

2.2 Data Access Concept

The CAN bus uses messages to transmit user data. A message is 0 to 8 bytes long. The
user information often does not match exactly 1, 2, 3 ... or 8 bytes. For example to transmit
the state of a switch only 1 bit will be needed. This single bit has to be send in a 1 byte
CAN frame. The 7 remaining bits will be left blank. To prevent such an overhead the
remaining bits could be used to transmit other short user information. The user information
combined to a message is called signals. Figure 2-3 Signal-oriented Access to Data
provided by the Interaction Layer shows the combination of signals in the transmit section

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

14 / 115

and the splitting of messages in the receive section of the Interaction Layer. This
mechanism, of cause, also lowers the bus load and raises the efficiency of data exchange.

The key aspect of the Interaction Layer is the transmission and the reception of data.
Therefore the Interaction Layer provides a signal oriented data interface called Signal
Interface. The Signal Interface offers an API to write and read data. If data was written by
the application, the Signal Interface decides depending on the Transmission Mode whether
to transmit the data. The Signal Interface is located on the top of the Message Manager
which is responsible for the transmission and reception of messages. By these options the
application will be relieved of this area of responsibility.

Figure 2-3 Signal-oriented Access to Data provided by the Interaction Layer

To transmit a signal the application just needs to write it to the Interaction Layer by calling

ILPut. The Interaction Layer will decide what to do with the updated data. The decision

depends on the chosen Transmission Mode and the delay timer. More information about
Transmission Modes and delay timer could be found in chapter 3.7 Data Transmission.
However, the application does not need to care about any further steps. The Vector
Interaction Layer results in a supplementary support for the application.

For data exchange the Interaction Layer and the Data Link Layer need to copy the data
several times. For example in case of reading a signal by the application the data has to
be copied to the application’s memory. But the reception of messages is handled by an
interrupt which could intermit the copying of data. In case of reception, for example, the
data has to be copied from the receive buffer of the CAN interface to the memory of the
ECU by the interrupt handler. However, the Interaction Layer guarantees the consistency
of any transmitted or received data and relieves the application of this area of
responsibility, too. A further description of this problem will follow in chapter 3.6.1 Data
Consistency.

Application

CAN Driver

Interaction Layer

Transmit Message Receive Message

Write data Read data

Signal InterfaceSignal Interface

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

15 / 115

2.3 Adapt the Vector Interaction Layer

To allow the application to access data in a signal-oriented manner, the Signal Interface
provides macros and functions. The macro and function names are derived directly from
the signal short names in the network database (also known as data dictionary or
communication database). The signal names have prefixes and suffixes which can be
defined by the user.

Figure 2-4 Usage of the network database to generate parts of the Interaction Layer

These functions and macros will be generated by the Configuration Tool using the network
database related to a project. For this purpose, the car manufacturer makes the latest
version of the network database available to all suppliers. Each ECU producer receives -
in addition to the network component implementation for "her/his" processor - the
Configuration Tool by which the supplier generates the parts of the communication
components that are relevant to the particular ECU.

All application specific data which are made available by the supplier is saved in a
separate file to preserve this information in the case of a network database update. The
Configuration Tool checks for consistency of application specific data and the network
database.

Figure 2-4 Usage of the network database to generate parts of the Interaction Layer
shows the usage of the Configuration Tool.

Application
Specific

Data

Configuration Signal
Interface

CANbedded
Software

Components
Application Parameters

Configuration Tool

Executable

Generation

Includes

Compiler, Linker

Header

SourceCANdesc

Network
Database

CANdela
Database

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

16 / 115

If the communication components use more than one CAN-channel, the macros and
functions have to be generated for each CAN-channel with the corresponding network
database. In the Configuration Tool, a channel-index must be chosen that indicates on
which CAN-channel the data dictionary is used.

Syntactically, data is always accessed by a function. Nevertheless, this might actually
involve a macro. Whether there is a function call or a macro for direct access to the data
buffer underlying the command will depend on the signal's data type. This will make it
possible to change the implementation between functions and macros without having to
change the syntax in the source code of the application. The use of macros is preferable
with regard to run time. However, if two or more bytes have to be read for the signal
access a function has to be used. This would allow including synchronization mechanisms
(see section 3.6.1) for the data access within these functions. For reasons of efficiency,
values with more than 32 bits are passed by data pointers, i.e. if the function is called the
application passes a pointer to a memory location where the function stores the signal
value. The application is responsible for providing sufficient memory space. If a signal is
entered in the network database, e.g. as a 34 bit signal, the application must pass a
pointer to a memory area with 5 bytes. When signals are transmitted compressed in a
message, i.e. they only use a few bits within a byte, the Signal Interface expands
appropriately for reading by the application and compresses appropriately for writing by
the application. For example, reading of compressed signals take up 1 to 7 bits, the
signals are mapped to one byte each for the application. Internally the Signal Interface
continues to store these data in its memory in compressed form.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

17 / 115

3 Functional Description

3.1 Features

The interface is divided into different communication layers. The Interaction Layer
including the Signal Interface and the Message Manager put on the Data Link Layer
represented by the Vector CAN driver. These layers, as described in chapter 2.1
Architecture Overview, are responsible for a number of tasks listed below.

The following features are supported:

Supported Feature

Receive Messages:

Provide signal-oriented access to data which arrived over the CAN bus.

Notify the application on signal level, if a message has arrived (indication).

Monitors receive messages to determine whether they arrive periodically (timeout monitoring).

Use default values in case of timeout or when the reception was stopped.

Transmit Messages:

Provide signal-oriented access to data to be sent over the CAN bus.

Provide different Transmission Modes to offer the application various mechanisms to transmit
data.

Notify the application on signal level, if a message was transmitted (confirmation).

Monitor transmit messages to determine whether they had been actually transmitted (timeout
monitoring).

Always keep a delay time between send requests of a message. This should delimit the bus
load.

Use default values in case of timeout or when the transmission was stopped.

Table 3-1 Supported features

3.2 Initialization

If the CCL is not used in the software stack, the application has to initialize the
components.

Example
Here is an example, if the initialization has to be implemented by the application.

/* Disable interrupts during the initialization of the

Components */

DisableInterrupts();

/* Initialize all components */

CanInitPowerOn();

IlInitPowerOn();

TpInitPowerOn();

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

18 / 115

DiagInit();

/* Enable interrupts */

EnableInterrupts();

3.3 Interaction Layer State Machine

An ECU can be in several states. These are normal-operation, sleep mode, bus-off mode
and others. In different states the communication components have to meet different
requirements. Therefore a state machine is defined for the Interaction Layer which
consists of the states uninit, running, waiting and suspended (See in Figure 3-2 State
Machine of the Interaction Layer). The state machine is instantiated per channel and for
each communication direction (See in Figure 3-1 Rx and Tx State Machines).

Figure 3-1 Rx and Tx State Machines

Figure 3-2 State Machine of the Interaction Layer

stm State Machine

Running

Suspe nded

IlIn it,

IlInitPowerOn

Waiting

StopStartRele aseWait

Stop

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

19 / 115

3.3.1 States

3.3.1.1 Uninit

After power-on the Interaction Layer will be in the uninit-state. Initializing the Interaction
Layer will lead to a state transition to the state suspended.

3.3.1.2 Running

The running state is used for normal operation.

 Receive Section
Reception of data is enabled as well as timeout monitoring and notification.

 Transmit Section
Transmission of data is enabled. Signal Interface and Message Manager are working.
The notification and the timeout monitoring are activated.

3.3.1.3 Waiting

This state was designed for example to support bus-off mode or low-voltage mode.

 Receive Section
Reception of data is enabled as well as the notification for indication. The timeout
monitoring will be turned off to prevent timeout detection of messages from an ECU
which is in bus-off mode and does not transmit data.

 Transmit Section
Transmission of data and the timeout monitoring will be disabled and the API will keep
on working. So the application could request the transmission of data, but the
Interaction Layer won’t follow immediately. The transmit requests will be stored and
executed, when the state transits to Running. Transmission bursts are avoided if
GenMsgStartDelay timings are defined, if this state is used in the bus-off mode.

3.3.2 State Transitions

The transitions of the state machine are divided into transmit and receive sections of the
Interaction Layer and will usually be initiated by the Network Management. The application
does not need to get involved here.

3.3.2.1 Init

The component variables are initialized. There is an option for initializing the transmit
buffer and/or the receive buffer with default values. If no default value was configured, the
buffers will be initialized with 0. The content of the default values is defined at compile time
within the Configuration Tool. The flags will all be reset. If configured in the Configuration
Tool, the application will be notified by invoking signal related callback functions.

3.3.2.2 Start

The receive section and the transmit section respectively are started within this transition.

Communication
Section

Description

Receive Section > The flags used for notification will be reset. These are in particular: the
first value flag, the data changed flag, the indication flag and the Rx
timeout flag.

> Timeout monitoring will be started by a reload of the timers.
> The values of the messages will be set to their default values, if defined at

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

20 / 115

Communication
Section

Description

compile time.
> If configured in the Configuration Tool, the application will be notified by

invoking ApplIlRxStart() and/or signal related callback functions.

Transmit Section

> The flags used for notification will be reset. These are in particular: the

confirmation flag and the Tx timeout flag.
> The timers used for cycle times (e.g. for Send Periodic) will be initialized

and started after the start delay time.
> Timeout monitoring will be enabled by a reset of the timers.
> The values of the signals will be set to their default values, if defined at

compile time.
> If configured in the Configuration Tool, the application will be notified by

invoking ApplIlTxStart() and/or signal related callback functions.

Table 3-2 Start transition events

3.3.2.3 Stop

The reception and the transmission of messages respectively are stopped within this
transition.

Communication
Section

Description

Receive Section > The flags used for notification won’t be changed.
> The timer used for timeout monitoring will be stopped.
> If configured, the values of the signals will be set to their default values.

Otherwise they won’t be changed.
> If configured in the Configuration Tool, the application will be notified by

invoking ApplIlRxStop() and/or signal related callback functions.

Transmit Section

> The flags used for notification won’t be changed.
> If configured, the values of the messages will be set to their default

values. Otherwise they won’t be changed.
> Transmission and timeout monitoring will be stopped.
> If configured in the Configuration Tool, the application will be notified by

invoking ApplIlTxStop() and/or signal related callback functions.

Table 3-3 Stop transition events

3.3.2.4 Wait

The receive section and the transmit section respectively are deactivated within this
transition.

Communication
Section

Description

Receive Section > Timeout monitoring will be stopped.

Transmit Section

> The flags used for notification won’t be changed.
> The values of the messages won’t be changed but could be updated by

the application.
> Transmission and timeout monitoring will be stopped.
> Requests for direct transmissions are stored in the waiting state. The

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

21 / 115

Communication
Section

Description

related messages are transmitted after leaving the waiting state (release).

Table 3-4 Wait transition events

3.3.2.5 Release

The receive section respectively the transmit section are activated again within this
transition.

Communication
Section

Description

Receive Section > The timeout monitoring will be restarted by reloading the timers.
> The timeout flags are cleared, if configured (only GENy).

Transmit Section

> The timers used for cycle times and timeout monitoring will be continued.

The values won’t be changed to avoid interference between periodic
transmitted messages on the bus (bursts). Pending requests for direct
transmissions are performed. This can lead to a burst of messages after
leaving the waiting state.

Table 3-5 Release transition events

3.4 Main Functions

The Interaction Layer provides two functions (IlRxTask and IlTxTask) that have to be called
cyclically as configured in GENy by the Application, OS or CCL.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

22 / 115

Figure 3-3 Call of the Interaction Layer cyclic function

Example
Here is an example, if the task calls have to be implemented by the application.

for(;;)

{

 /* periodic call of IlRxTask() and IlTxTask() */

 if (flag_10ms)

 {

 IlRxTask();

 IlTxTask();

 flag_10ms = 0; /* clear flag which was set by a timer

*/

 }

}

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

23 / 115

3.5 Interaction Layer Communication Concept

3.5.1 Interface Concept

The Interaction Layer as placed in the layer model has got two interfaces - one to the
upper layer represented by the application and one to the layer below, the Data Link Layer.
The receipt and the transmission of data is the main task of the Interaction Layer. To fulfil
both of these tasks the Interaction Layer represented by its interfaces need to interact in
different ways with its communication partners. Therefore different techniques like
functions, interrupts and periodic tasks are used.

To enable the transmission of data for the application, functions and macros are provided
by the Interaction Layer. The application could call these functions and macros whenever it
needs to. The Interaction Layer usually copies the data to be transmitted to its local
memory, sets a transmit request and leaves the processor to the application. The data
actually will be transmitted later by a periodic task. This task checks at a defined period of
time for transmit requests and executes them by calling the Data Link Layer. However, the
application does not need to know anything about the process of transmission. It just
needs to call the function respectively macro related to a signal to start the transmission
process. A detailed description of this proceeding is given in chapter 3.7 Data
Transmission.

The received data has to be treated immediately when arrived. This will be done by a
receive interrupt. Inside the interrupt handler only the time critical work is done. The
remaining not time critical work will be done by a periodic task which for example is
responsible for the notification of the application. To get the signal values the application
has to poll these values by calling functions respectively macros related to the signals. To
decide whether to get new data the application will be notified about the arrival of new
data. The reception is described more detailed in chapter 3.8 Data Reception.

3.5.2 Notification Mechanisms

Two mechanisms are provided for the notification of the application. These are: flag-
interface and function-interface.

If the flag interface is used, the application has to poll the flags which were set by the
Interaction Layer. To maintain as much separation as possible between a message and
the signals of a message each signal can have its own flags or functions. Parameterization
for this is performed in the Configuration Tool. Flag access is done by C macros. The
macro name is comprised of the signal name and a postfix.

If the function interface is used, the application has to provide callback functions which are
called by the Interaction Layer. The function name comprises the signal name and its
indication-function’s pre- and postfixes.

3.6 Data Access

3.6.1 Data Consistency

Since the Data Link Layer operates interrupt-driven, the read and write access to CAN
data can be interrupted by a write or read request of the Data Link Layer. Under some
circumstances this can lead to incorrect data if the data access in the Interaction Layer
involves multiple bytes.
Figure 3-4 Synchronization Problem of Data Access describes a write operation of two
bytes performed by the application. After the first byte is read (r 0x01) from the memory the

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

24 / 115

read operation was interrupted by the write operation (w 0xAB and w 0xFF) of the IRQ of a
receive message. However, the application continues reading the second byte (r 0xAB)
after the interrupt routine finished. This causes an inconsistency of data read by the
application. The same problem could occur during any access to shared memory.

Figure 3-4 Synchronization Problem of Data Access

To prevent this, synchronization mechanisms were inserted for read/write into the
Interaction Layer. Accesses on signals which do not need any synchronization (e.g. bit
signals) could be executed as macros. The access to other signals must be routed through
functions, because suitable synchronization mechanisms can be inserted there. The signal
functions are generated by the Configuration Tool, where suitable synchronization
mechanisms are included.

The choice of the synchronization method depends on the particular processor type and
will be made by the Configuration Tool. One possibility for example is to disable interrupts
while reading or writing data. So the interrupts can’t disturb the access mechanism.

3.6.2 Signal Interface

The Signal Interface provides functions/macros for read access and writes access to the
shared CAN data memory. Each signal has its own function/macro whose argument is the
signal value or a data pointer. The function name comprises the signal name from the
network database and suitable application-specific prefixes and suffixes. The data access
functions can be implemented as macros or as actual functions as receive functions can
be. The two variants do not differ syntactically. The implementation reserves the option of
implementing signal access as a macro or as a function.

For read access to the transmit buffer and write access to the receive buffer, respectively,
macros are provided. E.g. the usual operation on a receive signal is reading new data.

Interrupted Read Operation

Application

Interaction Layer

Data Link Layer

m
e

s
s
a

g
e

R
 0

x
0

1

Signal memory

read operation interrupted

R
 0

x
A

B

W
 0

x
F

F

W
 0

x
A

B

0x02 0x01

0xAB 0xFF

0x02 0xFF 0xAB 0xFF

0xAB 0x01

In
te

rru
p

t

R
T

I

2 byte value
low byte high byte

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

25 / 115

Therefore, a function or a macro will be provided. Additionally a macro for write access to
this receive signal can be configured. By default these macros are switched off, but can be
configured by the Configuration Tool. If not needed, we recommend not switch the macros
on, because of the resources functions need.

Depending on the size of the signal, the type of argument for data access can differ. If the
signal length is lower than or equal to 8 bit, the signal argument is treated as a vuint8 (8-bit
unsigned char). Signals, which are between 9 bit and 16 bit are treated as vuint16 (16-bit
unsigned short) values. If the signal size is between 17 bit and 32 bit a vuint32 (unsigned
long) will be used as signal argument. For signals greater than 32 bit, the function requests
a pointer to the source data buffer. I.e. the Application has to pass a data pointer to a
memory area of sufficient size.

3.6.3 AUTOSAR Signal Interface

The Vector Interaction Layer can be configured to support the signal access as defined in
the AUTOSAR COM specification Version 2.0 [8].

The signal access is realized by using one function for write access and one function for
read access. The signal that has to be written or read is given as parameter, as well as the
value for a write access. The signal that is read is stored to the location given with the
second parameter. See in the API below and the examples in chapter 3.6.4 Example:
Writing and reading a signal value.

Example
A signal is written using

Com_ReturnType Com_SendSignal (Com_SignalIdType SignalId,

Com_ApplicationDataRefType SignalDataPtr);

A signal is read using

Com_ReturnType Com_ReceiveSignal(Com_SignalIdType SignalId,

Com_ApplicationDataRefType SignalDataPtr);

The AUTOSAR signal access is implementation via efficient macros. Due to this, the
SignalId is the unique name of the signal as displayed by GENy and not an own data type
as specified by [8]. The SignalDataPtr is a vuint8 pointer to the location where the
received signal should be written to.

Please note

 Signals defined in the dbc file can be accessed.

 No local communication is supported.

 The return value is always E_OK.

 Restrictions of the standard API are inherited.

 Opaque Data types are mapped to unit data types according to the following list:
Bit length 1..8 -> vuint8
Bit length 9..16 -> vuint16
Bit length 17..32 -> vuint32

.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

26 / 115

3.6.4 Example: Writing and reading a signal value

The database contains the signals "EngineSpeed" (36 bit), "InteriorLight" (1 bit signal),
"NewTemperature" (36 bit), “NewWindowPos” (16bit) and “EngineRPM” (30bit). The user
configures the prefixes "ILPut" and “ILGet” and the suffix "_Sig”. By this configuration the
Configuration Tool derives the functions shown below.

/* Application makes memory space available */

/* -- */

unsigned char EngineSpeed [5];

unsigned char InteriorLight;

unsigned char NewTemperature [5];

unsigned short NewWindowPos;

unsigned long EngineRPM;

/* Receive and transmit signals */

/* --- */

ILGetRxEngineSpeed_Sig(&EngineSpeed); /* Signal value > 32 Bit

*/

InteriorLight = ILGetRxInteriorLight_Sig(); /* Signal value <= 8

Bit */

ILPutTxTemperature_Sig(&NewTemperature); /* Signal value > 32

Bit */

ILPutTxWindowPos_Sig(NewWindowPos); /* Signal value <= 16 Bit

*/

EngineRPB = ILGetRxEngineRPM_Sig(); /* Signal value <= 32 Bit */

/* Receive and transmit signals using AUTOSAR API */

/* --- */

Com_ReceiveSignal(EngineSpeed_Sig, EngineSpeed); /* Signal value

> 32 Bit */

Com_ReceiveSignal(InteriorLight_Sig, &InteriorLight) /* Signal

value <= 8 Bit */

Com_SendSignal(Temperature_Sig, NewTemperature); /* Signal value

> 32 Bit */

Com_SendSignal(WindowPos_Sig, &NewWindowPos); /* Signal value

<= 16 Bit */

Com_ReceiveSignal(EngineRPM_Sig, &EngineRPB); /* Signal value

<= 32 Bit */

Caution

All generated signal access only provides unsigned integer values. Signed, float and
the scaling factors (as adjustable in CANdb++) are not supported and have to be
interpreted by the application.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

27 / 115

3.6.5 Signal Groups

Physically dependent signals often need to be transmitted together. Therefore, the
Interaction Layer provides the possibility to combine signals to a signal group. With a
signal group the application can collect the data of dependent signals and invoke the
transmission when the group is complete. The definition of the groups is done in the data
base file (DBC), the data collection in a reserved buffer.

With the configuration tool GENy settings for a whole group can be done, e.g. the way of
how to react in case of a group reception or the usage of a buffer provided by the
application.

The strategy for transmitting a signal group is to update all group signals and then sending
the group.

And vice versa is the strategy for receiving a signal group. The group is updated and then
every signal can be read.

There must be distinguished between two different APIs:

 IL API (with data buffer provided by the application or data buffer provided by the IL)

 AUTOSAR API

3.6.5.1 Il API

The IL API can be used with a buffer provided by the application or the buffer provided by
the IL. This can be selected on the configuration view of each signal group in GENy.

IL Buffer used

If the GENy checkbox Use Appl SignalGroupBuffer on the configuration view of the
single groups is not checked the standard buffer defined by the IL is used. The Interaction
Layer provides a structure in which the related signals are combined.

Example
Transmission of a signal group with IL API.

IlGetTx<groupname>();

IlPutTx<signalname>(data)

…

IlPutTx<groupname>();

Example
Reception of a signal group with IL API.

IlGetRx<groupname>()

value = IlGetRx<signalname>(dataPtr);

…

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

28 / 115

Appl SignalGroupBuffer used

With the GENy checkbox Use Appl SignalGroupBuffer on the configuration view of the
single groups the usage of the buffer provided by the application is activated. You have to
provide this buffer.

Example
Transmission of a signal group with IL API and buffer provided by the application.

/* declare the buffer */

V_MEMRAM0 V_MEMRAM1 _c_<groupname>_buf V_MEMRAM2

<groupname>;

/* initialize the buffer */

IlGetTx<groupname>ShadowBuffer(&<groupname>);

IlPutTx<signalname>SigShadowBuffer(&<groupname>, data);

…

IlPutTx<groupname>ShadowBuffer(&<groupname>);

Example
Reception of a signal group with AUTOSAR API and buffer provided by the application.

/* declare the buffer */

V_MEMRAM0 V_MEMRAM1 _c_IlRxGroup00_buf V_MEMRAM2

<groupname>;

/* initialize the buffer */

IlGetRx<groupname>ShadowBuffer(&<groupname>);

value = IlGetRx<groupname>SigShadowBuffer(&<groupname>,

dataPtr);

3.6.5.2 AUTOSAR API

Using the AUTOSAR API there is no way to define an own shadow buffer for the storage of
the signal groups. The predefined shadow buffer is used.

Updating the buffer for transmission:

Example
Transmission of a signal group with AUTOSAR API.

Com_UpdateShadowSignal(<signalname>, &data);

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

29 / 115

…

Com_SendSignalGroup(<groupname>);

Example
Reception of a signal group with AUTOSAR API.

Com_ReceiveSignalGroup(<groupname>);

Com_ReceiveShadowSignal(<signalname>, &ret);

…

3.6.5.3 GENy configuration

Almost any setting that is available for a single signal also is available for a signal group
and can be selected on the configuration view of the signal group in GENy. In detail this is:

 Put and get macros

 Indication flag and function

 Confirmation flag and function

 Timeout flag and function

 Notification in case of state machine transition: init, start, stop

 Default values

Caution

Signal groups and multiplex messages cannot be combined in one message!.

3.6.6 Default Values

Each signal may have a default value which is defined in the Configuration Tool at compile
time. These default values are used for

 Initializing the Interaction Layer (IlInitPowerOn)

 Starting the receive section (IlRxStart)

 Suspending the receive section (IlRxStop)

 Starting the transmit section (IlTxStart)

 Suspending the transmit section (IlTxStop)

 Replacing signal values in the case of receive errors (time out)

By initializing the Interaction the signal values will be set to 0 (zero), if no default values
were defined. The user can define a single default value for each signal and configure, if it
should be used when the Interaction Layer is initialized or when the receive section or the
transmit section were started or stopped.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

30 / 115

At compile time the user could define what the Interaction Layer should do, if a receive
error occurred. It is possible to keep the old signal values or to replace them by a default
value (only if defined).

The largest default value which can be set in the configuration tool is 0xffffffff (32 Bit). If
signals greater than 32 Bits are used, they have to be set by the application e.g. in
ApplIlTxStart().

3.7 Data Transmission

There are many ways data could be sent e.g. cyclic or triggered by a change of an initial
value, etc. The concept behind transmitting data with the Vector Interaction Layer is
explained in the following.

3.7.1 Transmission Concept

The Vector Interaction Layer offers a set of so-called transmission modes. According to
these modes the signals and messages are being sent. The setting of the modes has to be
done in the DBC file using the CANdb++ editor for any signal.

The following signal transmission modes are selectable:

 Cyclic

 OnWrite

 OnWriteWithRepetition

 OnChange

 OnChangeWithRepetition

 IfActive

 IfActiveWithRepetition

 NoSigSendType

 OnChangeAndIfActive

 OnChangeAndIfActiveWithRepetition

Additionally there are also transmission modes for messages:

 Cyclic

 IfActive

 NoMsgSendType

The resulting transmission mode is an OR between the message and the signal
transmission mode. The greyed fields describe the attribute to be set to for this specific
transmission mode.

 Signal Related
Transmission

Mixed
Transmission

Advanced
Transmission

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

31 / 115

 Message
Signal

NoMsgSendType Cyclic IfActive

Cyclic Cyclic Transmission Transmit fast if signal is
active
(automatically set for all
signals in this message)
or
Cyclic Transmission

GenMsgCycleTime

GenMsgCycleTime
GenMsgCycleTimeFast
GenSigInactiveValue

OnWrite OnEvent [Write]
Will be sent immediately
after a write access.

Cyclic
Transmission
or
OnEvent [Write]
(immediately)

Transmit fast if signal is
active
(automatically set for all
signals in this message)
or
OnEvent [Write]
Will be sent immediately after
a write access.

GenMsgCycleTime GenMsgCycleTimeFast
GenSigInactiveValue

OnWriteWithRepetition OnEvent [Write] with
Repetition

Cyclic
Transmission
or
OnEvent [Write]
with Repetition

Transmit fast if signal is
active
(automatically set for all
signals in this message)
or
OnEvent [Write] with
Repetition

GenMsgCycleTimeFast
GenMsgNrOfRepetition

GenMsgCycleTime
GenMsgCycleTimeFast
GenMsgNrOfRepetition

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

OnChange OnEvent [Change]
Will be sent immediately
after value changed.

Cyclic
Transmission

or
OnEvent [Change]
Will be sent
immediately after value
changed.

Transmit fast if signal is
active
(automatically set for all
signals in this message)
or
OnEvent [Change]
Will be sent immediately after
value changed.

GenMsgCycleTime GenMsgCycleTimeFast
GenSigInactiveValue

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

32 / 115

OnChangeWithRepetition OnEvent [Change]
with Repetition

Cyclic
Transmission
or
OnEvent [Change]
with Repetition

Transmit fast if signal is
active
(automatically set for all
signals in this message)
or
OnEvent [Change] with
Repetition

GenMsgCycleTimeFast
GenMsgNrOfRepetition

GenMsgCycleTime
GenMsgCycleTimeFast
GenMsgNrOfRepetition

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

IfActive Transmit fast if signal
is active.

Cyclic
Transmission

or
Transmit fast if
signal is active.

Transmit fast if signal is
active
(automatically set for all
signals in this message)

GenMsgCycleTimeFast
GenSigInactiveValue

GenMsgCycleTime
GenMsgCycleTimeFast
GenSigInactiveValue

GenMsgCycleTimeFast
GenSigInactiveValue

IfActiveWithRepetition Transmit fast if signal
is active with
Repetition

Cyclic
Transmission

or
Transmit fast if
signal is active with
Repetition

Transmit fast if signal is
active with Repetition
(automatically set for all
signals in this message)

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

GenMsgCycleTime
GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

NoSigSendType No Transmission Cyclic
Transmission
(GenMsgCycleTime
must be set)

Transmit fast if signal is
active
(automatically set for all
signals in this message,
GenMsgCycleTimeFast must
be set)

GenMsgCycleTime GenMsgCycleTimeFast
GenSigInactiveValue

OnChangeAndIfActive Transmit fast if signal
is active
or

OnEvent [Change]
Will be sent immediately

after value changed.

Cyclic
Transmission

or
Transmit fast if
signal is active with
Repetition
or

OnEvent [Change]
Will be sent
immediately

after value changed.

Transmit fast if signal is
active
(automatically set for all
signals in this message)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

33 / 115

GenMsgCycleTimeFast
GenSigInactiveValue

GenMsgCycleTime
GenMsgCycleTimeFast
GenSigInactiveValue

GenMsgCycleTimeFast
GenSigInactiveValue

OnChangeAndIfActiveWi
thRepetition

Transmit fast if signal
is active with
Repetition
or

OnEvent [Change]
Will be sent immediately

after value changed.

Cyclic
Transmission

or
Transmit fast if
signal is active with
Repetition
or

OnEvent [Change]
Will be sent
immediately

after value changed.

Transmit fast if signal is
active with Repetition
(automatically set for all
signals in this message)

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

GenMsgCycleTime
GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

GenMsgCycleTimeFast
GenSigInactiveValue
GenMsgNrOfRepetition

Table 3-6 Send Type Matrix

Caution
OnChange parameters will always trigger a send event if an overlapping bit of the value
written is equals one.

For the correct OnChange behaviour the application must cast the value of a signal to
the signal bit length on the bus, before the IlPut macro is called.

It is the job of the data base engineer (or a suitable program) to assign the signals to the
messages to get the desired transmission modes for any message and signal.

The application does not need to know the transmission mode of the signals. It just calls
the function to write or read the signal value (ILPutTxsignalname or

ILGetRxsignalname). Everything else will be done by the Signal Interface.

In case of periodic transmission modes only two different cycle times could be chosen for
signals combined in the same message. Therefore, the cycle time of a periodically
transmitted signal depends on the cycle time of other signals defined for periodic
transmission related to the same message. The application developer is responsible for
choosing sensible combinations of signals for a message. She/He will be supported by the
Configuration Tool.

The transmission modes resulted from the combinations as shown in the table above are
explained in detail in chapter 3.7.2 Signal Related Transmission Modes.

3.7.2 Signal Related Transmission Modes

This summarizes the first column of the table above. The message send type is set to

NoMsgSendType.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

34 / 115

3.7.2.1 Cyclic Transmission

A static period is used to transmit the signals cyclically using this transmission mode. This
mode could be used to transmit signals which are frequently changing their values like the
rpm of an engine for example. The period should be adapted to the speed the signals are
changing their values. Short periods causes high bus load.

As shown in Figure 3-5 Timing Diagram of the Periodic Transmission Mode signals could
be updated asynchronously to the period of transmission. Each time the transmission
takes place the Interaction Layer checks for the current value of the message. This, of
cause, could lead into the loss of data, if a signal was updated two or more times within a
period.

This Cyclic Transmission Mode actually just copies the signal data. The cyclic transmission
of the messages is done using the GenMsgSendType.

Figure 3-5 Timing Diagram of the Periodic Transmission Mode

3.7.2.2 OnEvent (OnWrite, OnChange)

Signals using this transmission mode will be transmitted once each time the IlPut-

function was called. The transmission of the signals may be delayed by the delay timer
(see chapter 3.7.6 Reduction of Transmission Bursts and 3.7.7 Delimitation of the Bus
Load) to delimit the bus load. This transmission mode, for example, could be used for
event triggered signals as the state of a switch.

Figure 3-6 Timing Diagram of the Transmission Mode OnEvent – OnWrite shows the
timing diagram of the event triggered transmission mode.

 Writing a signal which is related to the OnWrite transmission mode causes the
transmission of the message which contains this signal.

Cyclic Transmission Mode

Application

Interaction Layer

Data Link Layer

m
e

s
s
a

g
e

GenMsgCycleTime

m
e

s
s
a

g
e

 (5
)

IlP
u

t (5
)

asynchronous

writing

Signal memory

periodical

polling

t
IlTask IlTask

IlTask

IlTask IlTask IlTaskIlTask

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

35 / 115

 Changing a signal which is related to the OnChange transmission mode causes the
transmission of the message which contains this signal.

The TxTask checks if the delay time elapsed and decides whether to transmit the message
immediately or to delay the transmission until the delay time elapsed. This could cause the
loss of data, if the signal was updated two or more times while delay time.

Figure 3-6 Timing Diagram of the Transmission Mode OnEvent – OnWrite

The Diagram for OnEvent – OnChange looks like the same way but the decision on
whether to send or not is met by a comparison between the old and the new signal value.
It will only be sent if the value changes.

3.7.2.3 OnEvent with Repetition (OnWrite, OnChange)

The transmission of the signals using this transmission mode will be repeated n-times after

the ILPut-function was called once. For example, this mode could be used to transmit

important signals which have not to be missed like safety critical information.

Each call of the ILPut-function sets the repeat counter (repeat_counter

[GenMsgNrOfRepetitions] = n). The repeat counter is decremented with each
transmission of the signal. The transmission takes place each time the delay timer elapses

and the repeat counter is still greater than 0. After the ILPut-function the message will be

sent n times.

Send OnEvent - OnWrite

Application

Interaction Layer

Data Link Layer

IL
P

u
t_

(a
)

m
e

s
s
a

g
e

 (a
)

GenMsgDelayTime

IL
P

u
t_

(b
)

m
e

s
s
a

g
e

 (a
)

IL
P

u
t_

(a
)

lo
s

t s
ig

n
a

l

t
IlTask

IlTask

IlTask IlTask IlTask

IlTask IlTask

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

36 / 115

Figure 3-7 Timing Diagram of OnEvent with Repetition - OnWrite

The Diagram for OnEvent – OnChange looks like the same way but the decision on
whether to send or not is met by a comparison between the old and the new signal value.
It will only be sent if the value changes.

3.7.2.4 Transmit Fast if Signal is Active

This transmission mode is a Cyclic Transmission Mode with a trigger condition. If the
decision is met that the signal is active, the message will be send cyclically with the period
GenMsgCycleTimeFast.

In the Example in Figure 3-8 Timing Diagram of the Transmit Fast if Signal Active

Transmission Mode the condition is defined as x!=10. This will cause the transmission

mode to transmit the signal with the period GenMsgCycleTimeFast. If the signal value is

equal to 10 the signal is not sent.

OnEvent with Repetition - OnWrite

Application

Interaction Layer

Data Link Layer

m
e

s
s
a

g
e

 (5
)

IlP
u

t (5
)

m
e

s
s
a

g
e

 (5
)

Signal memory

m
e

s
s
a

g
e

 (5
)

GenMsgNrOfRepetitions = 3

t
IlTask IlTask IlTask IlTask IlTask IlTask IlTask IlTask

IlTask

IlTask

IlTask

IlTask

IlTask

GenMsgCycleTimeFast

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

37 / 115

Figure 3-8 Timing Diagram of the Transmit Fast if Signal Active Transmission Mode

If two or more signals using this transmission mode are combined to the same message, a
rule is needed to regulate switching between the periods.

Figure 3-9 Example for Combining Signals Related of the Send Fast if Signal Active
Mode to the Same Message shows an example where three signals (A, B and C) are
combined to the same message. If signal A was written and meet the defined condition,
the transmission starts with the fast period. This state is stored in a flag presented by the
three squares (grey = set, white = not set). The switch will cause the fast transmission of
all signals combined to this message. A second write command for signal A won’t cause
anything, if the value of A still meets the condition. If signal B was written and meet its
condition the flag for signal B will be set. This should cause the transmission mode to
switch to the fast period. But this was already done so nothing will happen. The signal
value for B which is written next does not meet the condition so the transmission should
stop. This won’t happen, because the flag for signal A is still set. To switch the transmission
off all flags need to be reset. This is shown by setting the flag for signal C, reset the flag for
signal A and reset the flag for signal C. After no set flag remains, the transmission stops.

Short: If signals using the Transmit Fast if Signal Active Mode are combined to the same
message, the message will be transmitted fast if one ore more of them meets its condition.
It will not be transmitted if none of them meet its condition.

Transmission Fast if Signal Active

Application

Interaction Layer

Data Link Layer

IlP
u

t (5
)

m
e

s
s
a

g
e

 (5
)

m
e

s
s
a

g
e

 (2
0

)
IlP

u
t (2

0
)

Decision

m
e

s
s
a

g
e

 (2
0

)

If(x!=10)

IlP
u

t (1
0

)

IlTask

IlTask IlTask

IlTask IlTask IlTask IlTask IlTask

IlTask

IlTask IlTask

IlTask

IlTask

t

the signal is active if its value is not 10.

GenMsgCycleTimeFast

IlTask IlTask IlTask

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

38 / 115

Figure 3-9 Example for Combining Signals Related of the Send Fast if Signal Active Mode to the Same Message

3.7.2.5 Transmit Fast if Signal is Active with Repetition

This is the same mode as above with the exception that the last transmission after the
signal became inactive will be sent n times.

Transmission Fast if Signal Active with Repetition

Application

Interaction Layer

Data Link Layer

IlP
u

t (5
)

m
e

s
s
a

g
e

 (5
)

m
e

s
s
a

g
e

 (2
0

)
IlP

u
t (2

0
)

m
e

s
s
a

g
e

 (1
0

)

Decision

m
e

s
s
a

g
e

 (2
0

)

If(x!=10)

IlP

u
t (1

0
)

m
e

s
s
a

g
e

 (1
0

)

IlTask

IlTask IlTask

IlTask IlTask IlTask IlTask IlTask

IlTask

IlTask IlTask

IlTask

IlTask

t

the signal is active if its value is not 10.

GenMsgCycleTimeFast

IlTask IlTask IlTask

GenMsgNrOfRepetitions = 2

GenMsgCycleTimeFast

Figure 3-10 Timing Diagram of the Transmit Fast if Signal Active Transmission Mode

Multiple Signals in Transmit Fast if Signal Active Mode

Application

Interaction Layer

Data Link Layer

A
m

e
s
s
a

g
e

Signal Interface

A B B C A C

S
e

t

S
e

t

S
e

t

S
e

t

S
to

p

S
to

p

S
to

p

IlTask

IlTask

IlTask

GenMsgCycleTimeFast

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

39 / 115

3.7.3 Mixed Transmission Mode

The mixed transmission modes are represented of the second column in the table above.
This is a combination of the already shown signal oriented transmission modes and the
cyclic transmission mode for the message the signals are assigned to.

3.7.3.1 Cyclic (Message) Transmission OR Cyclic (Signal) Transmission

This is absolutely the same as already described in 3.7.2.1, see there for more
information.

3.7.3.2 Cyclic (Message) Transmission OR OnEvent [Write]

The signal is sent cyclically with the period GenMsgCycleTime and additionally after an

IlPut-function call.

Figure 3-11 Mixed Transmission Mode – Cyclic OR OnEvent [Write]

The cyclic transmission is delayed because of the GenMsgDelayTime that has to be

waited until the next transmission is possible. As a result two cyclic messages can have a

distance that is smaller than GenMsgCycleTime.

3.7.3.3 Cyclic (Message) Transmission OR OnEvent [Write] with Repetition

The same behaviour as above but the event triggered message transmission will be

performed GenMsgNrOfRepetitions times with the period of GenMsgCycleTimeFast.

The delay times are taken into account.

Mixed Transmission Mode - Cyclic OR OnEvent [Write]

Application

Interaction Layer

Data Link Layer

m
e

s
s
a

g
e

 (c
y
c
le

)

GenMsgCycleTime

m
e

s
s
a

g
e

 (c
y
c
le

)

2
0

m
e

s
s
a

g
e

 (c
y
c
le

)

m
e

s
s
a

g
e

 (2
0

)

GenMsgCycleTime GenMsgCycleTime

m
e

s
s
a

g
e

 (c
y
c
le

)

GenMsgDelayTime GenMsgDelayTime GenMsgDelayTime GenMsgDelayTime

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

40 / 115

3.7.3.4 Cyclic (Message) Transmission OR OnEvent [Change]

This is the same transmission mode as shown in 3.7.3.2 with the exception that the trigger
for sending the event message is a change of the signal value. In the example below the
message value changes from 5 to 20. This change is the trigger for the transmission.

Figure 3-12 Mixed Transmission Mode – Cyclic OR OnEvent [Change]

3.7.3.5 Cyclic (Message) Transmission OR OnEvent [Change] with Repetition

The same behaviour as above but the event triggered message transmission will be

performed GenMsgNrOfRepetitions times with the period of GenMsgCycleTimeFast.

The delay times are taken into account.

3.7.3.6 Cyclic (Message) Transmission OR Transmit Fast If Signal is Active

Choosing this combination, the signal is transmitted cyclically with the GenMsgCycleTime

until the signal becomes active. Then the signal is transmitted with the

GenMsgCycleTimeFast until the signal becomes inactive. The period changes then back

to GenMsgCycleTime.

Mixed Transmission Mode - Cyclic OR OnEvent [Change]

Application

Interaction Layer

Data Link Layer

5
m

e
s
s
a

g
e

 (5
)

GenMsgCycleTime

m
e

s
s
a

g
e

 (5
)

2
0

m
e

s
s
a

g
e

 (2
0

)

Decision
m

e
s
s
a

g
e

 (2
0

)

GenMsgCycleTime GenMsgCycleTime

m
e

s
s
a

g
e

 (2
0

)

If(x>10)

GenMsgDelayTime GenMsgDelayTime GenMsgDelayTime GenMsgDelayTime

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

41 / 115

Figure 3-13 Mixed Transmission Mode – Cyclic OR Fast If Signal is Active

3.7.3.7 Cyclic (Message) Transmission OR Transmit Fast If Signal is Active with
Repetition

The same behaviour as above but the last message of the fast transmission phase is sent

GenMsgNrOfRepetions times before switching to the GenMsgCycleTime sending

period.

Transmission Fast if Signal Active Mode

Application

Interaction Layer

Data Link Layer

IlP
u

t (5
)

m
e

s
s
a

g
e

 (5
)

m
e

s
s
a

g
e

 (2
0

)
IlP

u
t (2

0
)

m
e

s
s
a

g
e

 (2
0

)
Decision

m
e

s
s
a

g
e

 (2
0

)

If(x!=10)

IlP
u

t (1
0

)

GenMsgCycleTime GenMsgCycleTime

m
e

s
s
a

g
e

 (1
0

)

m
e

s
s
a

g
e

 (1
0

)

IlTask

IlTask IlTask

IlTask IlTask IlTask IlTask IlTask

IlTask

IlTask

IlTask IlTask

IlTask

t

the signal is active if its value is not 10.

GenMsgCycleTimeFast

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

42 / 115

Figure 3-14 Mixed Transmission Mode – Cyclic OR Fast If Signal is Active with Repetition

3.7.3.8 Cyclic (Message) Transmission OR NoSigSendType

The message is sent cyclically with GenMsgCycleTime and with it all signals.

3.7.4 Advanced Transmission Modes

These combinations are only used by a few OEMs and described in the OEM-specific
Interaction Layer documentation.

3.7.5 Notification Classes

Two types of notification classes are available which cause the notification of the
application by flag or function. The flags are all set to 0 at the start of transmission

(Function IlTxStart()).

 The Configuration Tool can be used to assign a separate Confirmation Class for each
signal. This event will be set by the Data Link Layer if the particular message was sent
on the bus.
If a flag is used for notification, the application is responsible for clearing this flag.

Caution
This callback function is called in interrupt context! Reduce the runtime of this function to
a minimum

 The time between a transmit request and the actual transmission of a signal can be
supervised by timeout monitoring. A Timeout Class will be set, if the signals were not
transmitted within a defined period of time.

Mixed Transmission Mode - Cyclic OR

 Transmission Fast if Signal Active with Repetition

Application

Interaction Layer

Data Link Layer

IlP
u

t (5
)

m
e

s
s
a

g
e

 (5
)

m
e

s
s
a

g
e

 (2
0

)
IlP

u
t (2

0
)

m
e

s
s
a

g
e

 (1
0

)

Decision

m
e

s
s
a

g
e

 (2
0

)

If(x!=10)

IlP
u

t (1
0

)

GenMsgCycleTime

m
e

s
s
a

g
e

 (1
0

)

m
e

s
s
a

g
e

 (1
0

)

IlTask

IlTask IlTask

IlTask IlTask IlTask IlTask IlTask

IlTask

IlTask IlTask

IlTask

IlTask

t

the signal is active if its value is not 10.

GenMsgCycleTimeFast

IlTask IlTask IlTask

GenMsgNrOfRepetitions = 2

GenMsgCycleTimeFast

m
e

s
s
a

g
e

 (1
0

)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

43 / 115

3.7.6 Reduction of Transmission Bursts

To prevent transmission bursts caused by interference the start of periodic transmission
could be delayed. Therefore, a start delay time related to a message could be defined at
compile time. Take e.g. three periodically transmitted messages. If the transmission of the
three messages would be started at the same time, the simultaneous transmission of two
or three messages will take place at same points in time. To delay the beginning of the
periodic transmission of some messages is an appropriate way to reduce these
simultaneous transmissions.

3.7.7 Delimitation of the Bus Load

To delimit the bus load a delay time will be inserted after each transmission of data. A
defined delay time is related to a message. This means that delay time will be inserted no
matter what transmission mode was used or by which signal the transmission of the
message was caused.

The usage of a delay time may cause the delay of the transmission. For example the
combination of a periodically transmitted message and a directly transmitted message
could cause a delay as shown in Figure 3-15 Delay Time to Delimit Bus Load. The dashed
arrows stand for periodically transmitted messages. If the direct transmission of a signal
was requested by calling ILPut while the timer GenMsgDelayTime was not elapsed yet, the
transmission of the signal will be delayed till the timer GenMsgDelayTime is elapsed.

To ensure that the message is minimum delayed the GenMsgDelayTime, one tx task cycle
is added to the delay counter, so a message is delayed for GenMsgDelayTime + a time <
tx task cycle.

This ensures that the message is never transmitted before the expiration of
GenMsgDelayTime.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

44 / 115

Figure 3-15 Delay Time to Delimit Bus Load

3.7.8 Transmission Timeout Monitoring

The Interaction Layer provides a feature to monitor the transmission of signals. The
timeout monitoring for transmitted signals was intended to supervise the time between a
transmit request and the actual transmission of the signal. Therefore, a timer will be
activated, after a transmission was requested. If the successful transmission was notified
(confirmation), the timer will be deactivated. If the timer elapsed before the confirmation,
the application will be notified about the timeout.

To configure timeout monitoring for a signal the flag or function for the notification needs to
be chosen in the Configuration Tool. If no notification was chosen, the timeout monitoring
will be deactivated for this signal.

3.7.9 Transmission of Initialization Messages

The Interaction Layer provides a function to transmit a set of messages, called

IlSendOnInitMsg(). This function is intended to be used at initialization time. It will

transmit each of the messages in the set only once. The transmission modes of the signals
and messages will be ignored. The messages belonging to the set can be configured at
compile time by using the Configuration Tool.

Delay Time

Application

Interaction Layer

Data Link Layer

IL
P

u
t

m
e

s
s
a

g
e

GenMsgCycleTime

T
_

c
y
c
le

 e
la

p
s
e

d

GenMsgCycleTime

IL
P

u
t

GenMsgDelayTime GenMsgDelayTime

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

45 / 115

3.8 Data Reception

3.8.1 Reception Concept

To receive new data the Interaction Layer has to process the messages immediately.
Therefore all tasks will be interrupted to copy the new data to the RAM. On the other hand
the time of interrupt should be as short as possible. By that reason all the jobs which are
not time critical like for example the notification of the application are done by a periodic
task. Therefore the Interaction Layer provides several functions and an interrupt handler.
Further, the Interaction Layer provides several notification classes for example to notify the
application about updated values. The usual response of the application is to read the
updated signal values by calling functions or macros provided by the Signal Interface
(ILGetRxsignalname). Everything else will be done by the Signal Interface and the

underlying Message Manager.

3.8.2 Notification Classes

Four types of notification classes are available which cause the notification of the
application by flag or function. The flags are all set to 0 at the start of receiving (Function

IlRxStart()). All classes are optional and in order to save code and run time they can

be removed by a configuration switch at compile time, set in the Configuration Tool.

1) If a message was received an Indication Class will be set by the Interaction Layer. By
this event the application can determine whether a new message has arrived.
If a flag is used for notification, the application can always check the message contents
for changes and perform tasks accordingly, if the flag is set. The application is
responsible to clear the flag which was set by the Interaction Layer.
If needed, multiple indication flags for a single signal can be configured. By this feature
several parts of the application can be notified independently.

2) For periodic receive messages the Interaction Layer takes care of timeout monitoring. A
Timeout Class is set, if a message which should be received periodically arrives too
late. Too late means that a new message with the same ID was not received after
timeout time (Example: timeout time = 2.5x cycle time) elapsed. The timeout time of a
CAN-message is defined at compile time. All timeout functions are running in the same

context as the IlRxTask() does.

If a flag is used for notification, the flag will be set and cleared by the Interaction Layer.
The application is also allowed to clear the flag, but the Interaction Layer will always
overwrite it, if an event occurred.

3) The First-Value Class notifies the application about the first reception of a signal. This
is done by setting an event each time a signal has been received. Actually, the First-
Value Class and the Indication Class are working the same way.
Only a flag could be used as notification mechanism for this class. The flag will be set
by the Interaction Layer. The application is responsible to clear the flag. The flag will be

reset by IlRxStart to recognize for example the first received message after power-

on or bus-off.

4) A Data-Changed Class is provided for ECUs with processors of a higher performance
class. This event is set if the message contents of an incoming CAN message differs
from the contents of the memory in the controller's CAN buffer. For Full-CAN objects
this requires a copy of the message in RAM (increased RAM requirement in the

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

46 / 115

controller). Using a mask, portions of the message can be masked out for the
comparison. Since the mask is applied to the message bit wise, changes involving
partial information of a signal can be used (e.g. only the upper 12 bits of a 16 bit
signal).
Only a flag can be used as notification mechanism for this class. The flag will be set by
the Interaction Layer. The application is responsible to clear the flag.

3.8.3 Timeout Monitoring

The periodic receipt of messages which are periodically transmitted by another network
node could be overseen by timeout monitoring. For this purpose a time-out timer is
provided by the Interaction Layer. This timer will be restarted each time the related
message was received. If the timeout timer elapses before the next related message was
received, the application will be notified (see chapter 3.8.2 Notification Classes). When a
timeout occurs the current value of the message is not valid anymore. In this case the
message's memory area in the controller can be pre-filled with 0 (zero) or with a default
value (if defined) in order to preserve emergency operation of the application.

The attribute GenSigTimeoutTime_<ECU> in the network database needs to be set to

activate the timeout monitoring. The attribute GenSigTimeoutMsg_<ECU> may be set to
the default value. Then the message, which contains the current signal, will be monitored.

In the following example the configuration of the attributes in the network database will be
shown. A network node A transmits a signal to network node B by the Periodic
Transmission Mode. Network node B as the receiver of the signal wants to monitor the
periodic reception. Therefore, the attributes GenSigTimeoutMsg_<ECU> and
GenSigTimeoutTime_<ECU> needs to be adapted for this signal. For the timeout
monitoring by the network node B the name of the two attributes must be changed to
GenSigTimeoutMsg_B and GenSigTimeoutTime_B. If another network node, for example
network node XY, wants to monitor the reception of this signal, too, the attributes
GenSigTimeoutMsg_XY and GenSigTimeoutTime_XY have to be added. Further the
values need to be defined for the attributes. For the attribute GenSigTimeoutMsg_B we
need to fill in the message ID of the message which includes the signal to be monitored.
The attribute GenSigTimeoutTime_B contains the timeout time. If the signal was not
received within this time, the application will be notified.

The value of the dbc attribute GenSigTimeoutTime_<ECU> is displayed on each rx signal
in the GENy GUI.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

47 / 115

Caution
If the Timeout Time is editable the value is not derived from the dbc attribute
GenSigTimeoutTime_<ECU>, in this case the timeout time can only be edited in the
GENy GUI.

For diagnosis efforts the Interaction Layer provides an advanced timeout monitoring for
messages. This includes the possibility to reload the timeout timer and the message
related notification of the application when this timer elapsed again. I.e. after the first
timeout occurred the Interaction Layer will notify the application about the timeout of each
signal included in the message. Then the application can reload the timeout timer. After
this timer elapsed again, the Interaction Layer will notify the application about the timeout
of the whole message. After the reload of the timer the application won’t be notified about
the signal’s timeout again.

3.8.4 Dynamic Timeout Monitoring

If it is required to assign different timeout values to a timer or to start and stop at timer at
run-time, a special API can be activated for each signal. The change of one signal of a
message influences all signal timers of a message. The dynamic timeout counters are
treated by the state machine in the same way as normal timeout events. The timeout
defined in the database is the initial timer, which is set on IlInitPowerOn.

Example
You have to supervise a signal, which is received every 200 ms. If a first timeout after
500 ms is detected, another timeout is started. After the following timeout of 4 s, a fault
memory entry has to be logged.

/* check timeout flag */

if (IlGetRxGwDataTimeout())

{

 /* clear timeout flag */

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

48 / 115

 IlClrRxGwDataTimeout();

 /* read current timeout value */

 if (IlGetRxGwDataDynRxTimeout() == 500)

 {

 /* First Timeout Level */

 IlSetRxGwDataDynRxTimeout(4000); /* assign new timeout value */

 IlStartRxGwDataDynRxTimeout();/* start timer */

 ToggleEcuState();

 }else

 {

 /* Second Timeout Level */

 IlStopRxGwDataDynRxTimeout();/* stop timer */

 SetErrorMemoryEvent();

 /* Reset the timeout start,

 if the signal is received the next time */

 IlSetRxGwDataDynRxTimeout(500);

 }

}

Caution
The timeout value access is implemented as macro. The parameter
IlSetRx<SignalName>DynRxTimeout and the return value of
IlGetRx<SignalName>DynRxTimeout is always IltRxTimeoutCounter which is defined to
vuint16. Due to this, the maximum timeout counter is 65535.

3.9 Signal status information (UpdateBits)

The UpdateBit Support is used to indicate whether the application has updated the Signal
value.[8] Only Signals and Signal Groups can have UpdateBits. A partial signal cannot
have an UpdateBit. Multiplexed Signals can have UpdateBits if the UpdateBit is
multiplexed with the same multiplexor value.

Info
For detailed information see AUTOSAR Specification of Module COM [8]

3.9.1 Configuration

An UpdateBit has no configurable attributes in GENy. There is no special switch in GENy
to enable UpdateBit support.

Caution

 UpdateBits cannot be used in combination with Multiplex API Raw.

 UpdateBit Support needs the CanCopyToCan Driver API.[1]

 UpdateBit cannot be used in combination with dynamic DLC.

 GroupSignals (partial signals) cannot have UpdateBits.

 UpdateBit cannot be used if common buffer is used without identity manager.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

49 / 115

3.9.1.1 DBC File

In the DBC file an UpdateBit has the size of one Bit and the postfix “_UB”. The UpdateBit
name is a combination between the UpdateBit Signal name and the postfix “_UB” e.g. the
Signal <SignalName> has the UpdateBit <SignalName>_UB.

UpdateBit dbc file attributes:

GenSigSendType Fix: NoSigSendType

GenSigTimeoutTime_<ECU> Message specific timeout time

Signal with UpdateBit attributes:

GenSigTimeoutTime_<ECU> UpdateBit specific timeout time

3.9.2 UpdateBit Transmission

If the application writes via a Put Macro a Signal with an UpdateBit, the UpdateBit will be
set to one. The UpdateBit is reset to zero after the message is transmitted once.

Info

 If a message has signals with UpdateBits the PreTransmitt function is used
by the Il_Vector.

 RDS macros can’t be used in combination with UpdateBits.

 It is possible to use the AUTOSAR Signal Interface in combination with
UpdateBits.

3.9.3 UpdateBit Reception

The Indication Flag/Function of a Signal with UpdateBit will only be set/called if the
UpdateBit of the Signal is set.

3.9.3.1 Timeout

A Signal with an UpdateBit can have a Signal specific timeout. The Signal specific timeout
monitors the time between two UpdateBits equal 1. The value of the DBC Attribute
“GenSigTimeoutTime” on the Signal with the UpdateBit is the UpdateBit specific timeout
time.

The value of the DBC Attribute “GenSigTimeoutTime” is displayed as timeout time on each
RxSignal in the GENy GUI. If the timeout time is editable in the GENy GUI the value is not
derived from the DBC Attribute “GenSigTimeoutTime” and must be configured in the GUI.

Info

The UpdateBit specific timeout can be used in combination with Dynamic
Timeout Monitoring.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

50 / 115

3.10 Multiple Channel Support

3.10.1 Overview

Sometimes two or more CAN Controllers are used on the same CAN bus. Therefore, the
CAN Driver and the Interaction Layer have to be adapted to multi channel support. This
could be done in two ways. First, the whole source code could be doubled. We will refer to
this as Crx (Code replicated) Interaction Layer. Second, a single source code could work
with doubled data buffers. We will refer to this as Idx (Indexed) Interaction Layer because
the access to the data buffers will be controlled by an index. The following two sections will
describe these two possibilities.

Note that only API services which relate to one specific channel, i.e. one physical medium
have to distinguish between different channels. Signal access services are not channel
related.

3.10.2 Idx (Indexed) Interaction Layer

An Idx Interaction Layer will work on two or more CAN busses without doubling of code. It
will work with multiple data buffers which can be accessed by an index. This results in a
kind of array. And even the access by the application will be similar to an array. Function
names won’t get a suffix as for the Crx Interaction Layer. The access to the different
buffers will be done by a parameter. We will refer to this parameter as index.

For example the function call IlTxTask() of a single channel Interaction Layer will result

in IlTxTask(0) for channel number 0 and IlTxTask(1) for channel number 1 of

an Idx Interaction Layer. However, the initialization of all the channels will be handled by

the single function IlInitPowerOn().

3.11 Advanced Communication Features

3.11.1 Physical Multiple and Multiple Configuration ECU

Please see in [2].

3.11.2 Multiplexed Signals

To save message IDs the Interaction Layer supports the use of several message layouts
for a single message. The signals combined in this several layouts are called multiplexed
signals. The current message layout will be indicated by a multiplexor signal (mode
signal).

3.11.2.1 Standard API

The Interaction Layer will provide data access and notification mechanisms for all
multiplexed signals. I.e. multiplexed signals will be encapsulated by the Interaction Layer.
However, here are some restrictions and some helpful information for the use of
multiplexed signals:

The several layouts are defined in the network database

The current layout will be chosen by the use of a multiplexor signal (mode signal)

With multiplexed signals only the Cyclic transmission modes can be used

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

51 / 115

The actual cycle time of a multiplexed signal can be calculated by the following formula:
Message Cycle Time * Number of Message Layouts = Multiplexed Signal Cycle Time

A delay time has to be specified for messages with multiplexed signals by means of the
attribute GenMsgDelayTime.

Data changed flags are not supported for multiplexed signals

Note that multiplexed signals are provided by the Interaction Layer in version 3.27 and
higher.

3.11.2.2 Raw API

The Interaction Layer provides a raw interface for multiplex signals. The advantage is
runtime improvement, reduction of Ram and Rom requirements.

Example
The following code example demonstrates the implementation of a reception of a
multiplexed signal.

 Configure a PreCopy function for the multiplex message in the CAN Driver.
 Configure RDS access to the signals multiplexor signal and multiplexed signals, of

the message MultiplexMessage. MultiplexedSignal is for example valid, if the
MultiplexorSignal is 0x10

vuint16 MyMultiplexedSignal;

/* Implementation of the reserved indication function */

void ApplRawApiMultiplexMessagePrecopy(CanReceiveHandle

rxObject)

{

/* Get the multiplexor value */

vuint8 MyMultiplexorSignal;

MyMultiplexorSignal = IlGetRxCANMultiplexorSignal();

/* Check for the correct multiplexor */

if (MyMultiplexorSignal == 0x10)

{

/* Get the multiplexed signal */

MyMultiplexedSignal = IlGetRxCANMultiplexedSignal();

}

if (MyMultiplexorSignal == 0xA3)

{

/*

Implement the reception of other Multiplexed Signals

for the Multiplexorvalue 0xA3 here

*/

}

…………

/* The returnvalue kCanNoCopyData is mandatory */

return kCanNoCopyData;

}

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

52 / 115

Example
The following code example shows the implementation of a transmission of a
multiplexed signal.

 Configure a Pretransmit function for the multiplex message in the Can Driver.
 Configure Rds access to write the Multiplexor signal and multiplexed signals, of the

message multiplex message. MultiplexedSignal for example is valid, if the
MultiplexorSignal is 0x10

vuint16 MyMultiplexedSignal;

vuint16 MyMultiplexorValue;

void

ApplRawApiMultiplexMessagePretransmit(CanTransmitHandle

txObject)

{

 /* Implementation of the Multiplexor toggle mechanism */

if (MyMultiplexorValue == 0x43)

{

 IlPutTxCANMultiplexorSignal(0x10);

 IlPutTxCANMultiplexedSignal(MyMultiplexedSignal);

/*

Implement here the transmission of other signals for the

multiplexor 0x10

*/

MyMultiplexorValue = 0x10;

}

else if (MyMultiplexorValue == 0x10)

{

 IlPutTxCANMultiplexorSignal(0x43);

 /*

Implement here the transmission of other signals for the

multiplexor 0x43

*/

MyMultiplexorValue = 0x43;

}

…………

/* The returnvalue kCanNoCopyData is mandatory */

return kCanNoCopyData;

}

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

53 / 115

3.11.3 Manipulation of the Notification Frequency

The periodic tasks for transmission and reception (See 3.4 Main Functions) are
responsible for all the cyclic tasks the Interaction Layer has to do. Both need runtime and
for this reason the application developer wants to set the cycle time to invoke the tasks as
high as possible. A high cycle time has the major drawback that the notification about
urgent events will slow down, too. This is because the events will be checked within these
tasks. I.e. they are checked in the same cycle time.

To solve this problem the Interaction Layer provides a function called

IL<Tx/Rx>StateTask. This function is responsible for the notification of the application.

It will check, if there was any event the application wants to be notified about and notifies
the application. The function will be invoked by the IL<Tx/Rx>Task in the defined cycle
time. Further this function can be invoked by the application any time it is necessary. So
the developer can shorten the time between checking for new events and for notification.

To reduce the time between an event and the notification even more, the application can
be notified in interrupt context. This feature can be configured by the Configuration Tool for
each message and will have effect on each signal the message contains. Checking for
events in interrupt context means checking for events each time a message was
transmitted or received, respectively. This is the fastest way to be notified by the
Interaction Layer.

It’s recommended to think about the consequences of using the StateTask or the
notification in interrupt context, respectively. Both ways to speed up the notification has
pros and cons.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

54 / 115

4 Integration

This chapter gives necessary information for the integration of the Interaction Layer into an
application environment of an ECU.

4.1 Include structure

To use the Vector Interaction Layer, only the file il_inc.h must be included in all application
components that want to use Interaction Layer functionality. The file can_inc.h (which
provides the CAN Driver interface and data buffers) must not be included separately, it is
automatically included by il_inc.h.

Figure 4-1 Including Interaction Layer

4.2 Scope of Delivery

The delivery of the Interaction Layer contains the files which are described in the chapters
4.2.1 and 4.2.2:

4.2.1 Static Files

File Name Description

il_inc.h This is the header file to be included by other components to use the Interaction
Layer.

il_def.h This is the header file of the Interaction Layer.

il.c This is the source file of the Interaction Layer.

Table 4-1 Static files

4.2.2 Dynamic Files

The dynamic files are generated by the configuration tool GENy.

File Name Description

il_cfg.h This is the generated header file containing pre-compile switches.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

55 / 115

File Name Description

il_par.h This is the generated header file providing symbolic defines, macros and
prototypes.

il_par.c This is the generated source file containing generated parameters and functions.

Table 4-2 Generated files

4.3 Operating Systems Requirements

The CAN communication components are designed and programmed to work with or
without operating systems. Since the components have to work without an operating
system, resource locking mechanisms are not handled. To lock critical resources,
interrupts will be disabled and restored. The CAN driver (Data Link Layer) provides
functions to fulfil this task.

Each component has one or two functions (tasks) which have to be called periodically. For
operating systems it is advisable to create one task and call all the Interaction Layer

component functions subsequently. To implement different periods of time, the OS task
could have a counter to implement this.

Data consistency issues:

Cyclic IL tasks are not allowed to interrupt signal accesses. This has the following
consequences:

> No cyclic IL task shall be called on Interrupt level e.g. directly in a timer ISR.

> In a priority driven multitasking operating system with preemptive scheduling such as
OSEK-OS cyclic IL tasks should have a lower priority than the tasks performing signal
accesses.

To ensure data consistency on pre-emptive multi-tasking operating systems or when using
IL signal access services on interrupt level, there are two things to keep in mind.

> The Interaction Layer provides mechanisms to keep data consistency on multi-byte
signals. That means, reading multi-byte data is always done while interrupts are locked.
In that case, no task switch can occur. The disadvantage to that mechanism is a longer
interrupt latency time. If your system is critical to long latency times, ensure that your
system works properly in all cases.

> Bit field manipulation is done by macros. Some compilers and processors realize bit
field manipulation by read-modify-write accesses. If data access to bit fields in the same
byte is used in pre-emptive tasks or on interrupt level, a problem could be caused. Try
to avoid this or make resource locking to such accesses.

These issues can be circumvented by using the Interaction Layer API only in non-
preemptive tasks.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

56 / 115

5 Configuration

In the Interaction Layer the attributes can be configured with the following methods:

> Configuration in GENy for a detailed description see 5.2 Configuration with GENy

> Configuration in Database, for a detailed description see chapter 5.1 Configuration in
Data Base

5.1 Configuration in Data Base

The following attributes can be used to configure the Interaction Layer in the DBC file.

Info
Bold Value Types should be Used as default. Value Types marked with * are available
for CANgen compatibility reasons.

Caution
Don’t mix up the order of enumeration values. Not the value of the attribute is
interpreted, the position of the selected value.

Caution
The “Type of Object” can be configured in the dbc file for some attributes as “Signal” or
“Node – Mapped Rx Signal”. Use only one “Type of Object” in a single dbc file. If the
“Type of Object” is “Signal”, the attribute must be defined in the dbc file for each Ecu.
Due to this, replace <ECU> in the attribute name by the Node name.

Name ILUsed

Description This attribute must be defined, to use the Vector Interaction Layer with this
node.

0 : The node is cannot be used with the Interaction Layer

1 : The node is can be used with the Interaction Layer

Type Of Object Node

Value Type Enumeration

Default No

Values No, Yes

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

57 / 115

Name GenMsgILSupport

Description Configurate the usage of the Interaction Layer for this message

0 : The message is not used by the Interaction Layer

1 : The message is used by the Interaction Layer

Type Of Object Message

Value Type Enumeration

Default Yes

Values No, Yes

5.1.1 Send Type

Info
The strings used for the GenMsgSendType is often OEM-specific and can differ from
here.

Name GenMsgSendType

Description Message related transmission mode.

Use only Cyclic for messages with multiplexed signals.

Type Of Object Message

Value Type Enumeration

Default NoMsgSendType (Use only signal related transmission modes.)

Values Cyclic, NotUsed, NotUsed, NotUsed, NotUsed, NotUsed, NotUsed, IfActive,
NoMsgSendType

Name GenSigSendType

Description Signal related transmission mode.

Use only NoSigSendType for messages with multiplexed signals.

Type Of Object Signal

Value Type Enumeration

Default NoSigSendType

Values Cyclic, OnWrite, OnWriteWithRepetition, OnChange,
OnChangeWithRepetition, IfActive, IfActiveWithRepetition, NoSigSendType,
OnChangeAndIfActive, OnChangeAndIfActiveWithRepetition

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

58 / 115

5.1.2 Send Type Dependent

Name GenMsgCycleTime

Description Time in ms between each cyclic transmission of a message.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Name GenMsgCycleTimeFast

Description Value of the second cycle time, if the GenMsgSendType/GenMsgSendType
IfActive or GenMsgFastOnStart is configured.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Name GenMsgNrOfRepetition

Description Number of repetitions used if the GenSigSendType is
OnChangeWithRepetition, OnWriteWithRepetition, IfActiveWithRepetition or
OnChangeAndIfActiveWithRepetition is defined.

The number of repetitions can be configured separately for each message. To
reduce Rom and Ram requirements configure the same number for each
message.

This value defines how often a message is sent before its transmission is
stopped. See e.g. Figure 3-7 Timing Diagram of OnEvent with Repetition -
OnWrite.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Caution
Please note, the attribute GenSigStartValue sets the Default value at initialization time,
not if IlRxStart or IlTxStart is called. Due to historical and compatibility reasons, this
confusing definition cannot be changed any more.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

59 / 115

Name GenSigStartValue

Description This Value is the default value for the signal, if IlInitPowerOn is called.

The string value type can represent hexadecimal and integer values.

Type Of Object Signal

Value Type String, Integer*, Float*

Default 0x0

Minimum 0x0

Maximum 0xffffffffffffffff

Name GenSigInactiveValue

Description Value for which Transmit Fast If Active will be set inactive. It is not
recommended to use Hex values, due to the range restriction.

The string value type can represent hexadecimal and integer values. The
usage of the hex value is not recommended, because it cannot represent
values greater than 0x7fffffff.

Type Of Object Signal

Value Type String, Hex*

Default 0x0

Minimum 0x0

Maximum 0xffffffffffffffff Hex : 0x7fffffff

Name GenSigTimeoutValue

Description This Value is the timeout default value for the signal, if a timeout occurs.

The integer value allows the definition of timeout values for signals with a
maximum Length of 4 Bytes.

Type Of Object Signal

Value Type Integer

Default 0x0

Minimum 0x0

Maximum 4294967296

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

60 / 115

5.1.3 Advanced Attributes

Name GenMsgDelayTime

Description This is the minimum time in ms between the transmissions of messages with
the same identifier.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Name GenMsgStartDelayTime

Description This is the time in ms after IlTxStart has been called, when the cyclic
transmission event starts.

If a transmission is triggered by OnEvent, OnEventWithRepetition, IfActive,
IfActiveWithRepetition within the MsgStartDelayTime, the transmission is not
performed within the GenMsgStartDelayTime.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Name GenMsgFastOnStart

Description This is the time in ms after IlTxStart has been called, where the message is
transmitted cyclic with GenMsgCycleTimeFast.

The value has to be an integer multiple of GenMsgCycleTimeFast.

Type Of Object Message

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

61 / 115

5.1.4 Timeout Supervision Attributes

Name ILTxTimeout

Description Value of the timeout time in ms for Tx used for all messages within the
channel. To use the timeout monitoring it must be activated for each signal in
the Configuration Tool.

Type Of Object Network

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Name GenSigTimeoutMsg_<ECU>

Description Message ID to enable the timeout monitoring for signals which are not
transmitted periodically by the receiver <ECU>. If this attribute is set to default
the message will chosen, which contains the current signal.

If you must reference extended IDs, use the following representation format,
where the CAN identifier is combined with 0x80000000 by a logical or.

Example: ID 0x208 is used for the standard ID and ID 0x80000208 for the
extended ID.

Type Of Object Signal

Value Type Hex

Default 0

Minimum 0x80000000

Maximum 0xfffffff

Name GenSigTimeoutMsg

Description Message ID to enable the timeout monitoring for signals which are not
transmitted periodically by the receiver Ecu. If this attribute is set to default the
message will chosen, which contains the current signal.

If you must reference extended IDs, use the following representation format,
where the CAN identifier is combined with 0x80000000 by a logical or.

Example: ID 0x208 is used for the standard ID and ID 0x80000208 for the
extended ID.

Type Of Object Node – Mapped Rx Signal

Value Type Hex

Default 0

Minimum 0x80000000

Maximum 0xfffffff

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

62 / 115

Please note
The database attribute GenSigTimeoutMsg has the following limitations:

Relations to messages containing multiplexed signals are not supported.

Relations from messages containing multiplexed signals are not supported.

Name GenSigTimeoutTime_<ECU>

Description Timeout time in ms used for this signal received by <ECU>.

If different GenSigTimeoutTime_<ECU> values are configured for a message,
the lowest timeout time (strongest definition) is used for timeout monitoring.

The value of the attribute is displayed as Timeout Time on each RxSignal in
the GENy GUI.

Type Of Object Signal

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Please note
If the timeout time on a RxSignal is editable, the value is not derived from the
database attribute GenSigTimeoutTime_<ECU>.

Name GenSigTimeoutTime

Description Timeout time in ms used for this signal received by Ecu.

If different GenSigTimeoutTime values are configured for a message, the
lowest timeout time (strongest definition) is used for timeout monitoring.

Type Of Object Node – Mapped Rx Signal

Value Type Integer

Default 0

Minimum 0

Maximum 65535

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

63 / 115

Name GenSigSuprvResp

Description This value preconfigurates the timeout flag and timeout default value.

0 : Preconfigurate nothing

1 : A timeout flag is configured for the signal

2 : A timeout default value is configured for the signal

3 : A timeout flag and timeout default value is configured for the signal

Type Of Object Node – Mapped Rx Signal

Value Type Enumeration

Default None

Values None, TimeoutFlag, TimeoutDefaultValue, TimeoutFlag and
TimeoutDefaultValue

Name GenSigSuprvRespSubValue

Description This Value is the timeout default value for the signal, if a timeout occurs.

The integer value allows the definition of timeout values for signals with a
maximum Length of 4 Bytes.

Type Of Object Node – Mapped Rx Signal

Value Type Integer

Default 0x0

Minimum 0x0

Maximum 4294967296

5.1.5 Former Attributes

The following attributes are not supported any more.

Name GenMsgNoIalSupport

Replaced by GenMsgILSupport

Description GenMsgILSupport is the inverted view of the attribute GenMsgNoIalSupport.

5.1.6 Example

A signal A and a signal B are included in the message XY. Signal A should be transmitted
periodically by the cycle time of 50ms. Signal B should be transmitted each time an event
occurs.

For signal A we chose the Periodic Transmission Mode (Transmission Modes see chapter
3.7.2). For the event driven transmission of signal B, the Direct Transmission Mode will fit
best.

Next step is to choose the attributes for this constellation. To chose the Periodic
Transmission Mode for signal A we need to set the GenSigSendType to Cyclic and the
GenMsgCycleTime to 200 [ms]. To choose the Direct Transmission Mode for signal B we
need to set the GenSigSendType to OnWrite. This will result to the attributes listed in the
table below.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

64 / 115

Node Attribute Value Comment

ILUsed Yes Yes, use the Interaction Layer within
this network node.

Attribute for Message XY Value Comment

GenMsgDelayTime Yes not necessary for this example

GenMsgCycleTime 50 [ms] Value of the cycle time of the
message. There can’t be signals with
different cycle times combined in one
message. Therefore this is the cycle
time of signal A.

GenMsgCycleTimeFast not necessary for this example

GenMsgStartDelayTime not necessary for this example

GenMsgILSupport Yes Enable the usage of the Interaction
Layer for this message (for messages
used by diagnosis, network
management ...).

GenMsgNrOfRepetition not necessary for this example

GenMsgSendType NoMsgSendType We use only signal related
transmission modes within this
example. Therefore, see
GenSigSendType.

Attribute for Signal A Value Comment

GenSigSendType Cyclic Use the Periodic Transmission Mode
for signal A.

GenSigInactiveValue not necessary for this example

GenSigTimeoutMsg_<ECU> not necessary for this example

GenSigTimeoutTime_<ECU> not necessary for this example

Attribute for Signal B Value Comment

GenSigSendType OnWrite Use the Direct Transmission Mode for
signal B.

GenSigInactiveValue not necessary for this example

GenSigTimeoutMsg_<ECU> not necessary for this example

GenSigTimeoutTime_<ECU> not necessary for this example

The result of combining signal A and signal B with different Transmission Modes to one
message XY will be shown in the timing diagram below. The dashed lines are used in
consideration of signal A. The solid lines are used in consideration of signal B.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

65 / 115

Figure 5-1 A Signal with the Periodic Transmission Mode and one with the Direct Transmission Mode Combined to a message.

5.2 Configuration with GENy

Info
The detailed information for all checkboxes and settings is given in the so-called
OnScreen Help view of GENy just by clicking the checkbox or the name of the switch.
This is activated via View | OnScreen Help.

Information about how to work with GENy can be found in the OnlineHelp of GENy
opened via Help | Help topics.

Figure 5-2 OnScreen Help View for fast information

In the Configuration Tool GENy all settings for the Vector Interaction Layer are done via
the marked tree items.

Message XY

Application

Interaction Layer

Data Link Layer

IL
P

u
tA

M
e

s
s
a

g
e

 X
Y

50ms

IL
P

u
tB

GenMsgCycleTime

signal A 50ms 50ms

IL
P

u
tA

IL
P

u
tB

IL
P

u
tA

IL
P

u
tA

50ms

IL
P

u
tB

IL
P

u
tB

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

66 / 115

Figure 5-3 Overview of Vector Interaction Layer Configuration in GENy

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

67 / 115

IL Vector

Configure the basic settings for the Vector Interaction Layer. Use the OnScreen Help View
of GENy to get more information about each option.

Support for AUTOSAR
The Vector Interaction Layer can be configured to support a signal API according to the
AUTOSAR Specification of Module COM [8]. This has effects on the signal API, see
more there…

Channels

Define the task call cycle times.

Tx/Rx Messages

Most of those entries are fixed and already set in the DBC file and explained for
information only.

Tx/Rx Signals

This is where to configure the settings for the signals, its access macros, the way of
notification, etc.

Attribute Name Value
Type

Default
Value

Description

ModuleInstance > Il_Vector

User Config File String N.a. The Interaction Layer configuration file (il_cfg.h) is
generated by GENy. If you want to overwrite settings in the
generated Il_Vector configuration file (il_cfg.h), you can
specify a path to a user defined configuration file.

The user defined configuration file will be included at the
end of the generated file il_cfg.h. Therefore definitions in
the user defined configuration file can overwrite definitions
in the generated configuration file.

Start/Stop API Boolean false The two API functions 'IlStartCycle' and 'IlStopCycle' are
enabled which enable or disable the transmission of one
single cyclic message. This option is necessary for
software tests or special use cases. It is recommended not
to use this option.

Timeout Monitoring on
first Reception

Boolean false If this option is enabled timeout monitoring of a message is
started when this message is received for the first time.
Normally timeout monitoring starts after the Rx part of the
Interaction Layer is started or resumed.

ModuleInstance > Il_Vector > Notification Classes > State Machine Transition

Init Boolean false This callback function is called after the Interaction Layer
has been initialized. The callback function itself
(ApplIlInit()) must be provided by the application.

Rx Start Boolean false This callback function is called if the Rx branch of the
Interaction layer is started. The callback function
(ApplIlRxStart()) itself must be provided by the application.

Tx Start Boolean false This callback function is called if the Tx branch of the
Interaction layer is started. The callback function itself

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

68 / 115

Attribute Name Value
Type

Default
Value

Description

(ApplIlTxStart()) must be provided by the application.

Rx Stop Boolean false This callback function is called if the Rx branch of the
Interaction layer is stopped. The callback function itself
(ApplIlRxStop()) must be provided by the application.

Tx Stop Boolean false This callback function is called if the Tx branch of the
Interaction layer is stopped. The callback function itself
(ApplIlTxStop()) must be provided by the application.

ModuleInstance > Il_Vector > Debug Support

Argument Check Boolean false Used to enable extended checks of the arguments passed
to functions of the Interaction Layer. If an error was
detected, the return value of the functions will contain an
error code. This option should be used for debugging
purposes only and not in production code.

Assertion Handling Boolean false The SW component provides built-in debug support
(assertion) to ease up the integration and test into the
user's project.
Please see the technical reference for detailed information
on the available options and how to use them.

In general, the usage of assertions is recommended during
the integration and pre-test phases. It is not recommended
to enable the assertions in production code due to
increased runtime and ROM needs.

The assertion checks the correctness of the assigned
condition and calls an error handler in case this fails. The
error handler is called with an error number. Information
about the defined error numbers is given in the technical
reference.

ModuleInstance > Il_Vector

AUTOSAR Signal API Boolean false Configure the Vector Interaction Layer to support the signal
access as defined in the AUTOSAR Specification of
Module COM Version 1.0.0.
Efficient macros are additionally generated if Put/Get
signal access is configured.

A signal is written using:
Com_ReturnType Com_SendSignal(<SigName>,
&<data>);

A signal is read using
Com_ReturnType Com_ReceiveSignal(<SigName>,
&<data>);

Please see the documentation chapter 'AUTOSAR Signal
Interface'.

AUTOSAR
Specification Version

Enum N.a. Select the AUTOSAR COM interface that shall be provided
by the Il_Vector.

Detect Active
Repetitions API

Boolean false If this option is enabled an API is activated, to detect, if
messages are transmitted with repetitions and the
repetitions are active.

API:
1 Channel :Il_Boolean IlTxRepetitionsAreActive()

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

69 / 115

Attribute Name Value
Type

Default
Value

Description

2..N Channels :Il_Boolean
IlTxRepetitionsAreActive(<channel>)

Detect Active Signals
API

Boolean false If this option is enabled an API is activated, to detect, if
signals are active and transmitted with the fast cycle time.

API:
1 Channel :Il_Boolean IlTxSignalsAreActive()
2..N Channels :Il_Boolean
IlTxSignalsAreActive(<channel>)

Reset Rx Timeout
Flags On IlRxRelease

Boolean false If this option is enabled and the transition IlRxRelease is
performed all rx timeout flags on the channel are cleared.

 Enable
UpdateBit Support

Boolean false This option enables UpdateBit Support

Channel > Il_Vector > Task Call Cycle Time

IlRxTask [ms] Integer 10 This is the time base of the receive branch of the
Interaction Layer.

Make sure that the value you enter here in the Generation
Tool is the same as the cycle time for calling the function
'IlRxTask'. If it is not, the timing of the receive branch in the
IL will not work properly (e.g. for timeout monitoring). All
timings of the Rx branch (e.g. timeouts) must be a multiple
of this cycle time.

If you enter e.g. 10 [ms] in the Generation Tool the function
'IlRxTask' must be called every 10ms.

IlTxTask [ms] Integer 10 This is the time base of the transmit branch of the
Interaction Layer.

Make sure that the value you enter here in the Generation
Tool is the same as the cycle time for calling the function
'IlTxTask'. If it is not, the timing of the transmit branch in
the IL will not work properly (e.g. wrong timing of cylic send
messages). All timings of the Tx branch (e.g. cycle times of
transmit messages) must be a multiple of this cycle time.

If you enter e.g. 10 [ms] in the Generation Tool the function
'IlTxTask' must be called every 10ms.

Message > Il_Vector > Database Attributes

CycleTime [ms] Integer 0 The CANdb attribute 'GenMsgCycleTime' is displayed as
defined in the dbc file. This value is only relevant for
messages with a cyclic transmission mode. For other
messages '0' is displayed.

CycleTimeFast [ms] Integer 0 The CANdb attribute 'GenMsgCycleTimeFast' is displayed
as defined in the dbc file. This value is only relevant for
messages with a transmission mode including a fast cyclic
rate. For other messages '0' is displayed.

DelayTime [ms] Integer 0 The CANdb attribute 'GenMsgDelayTime' is displayed as
defined in the dbc file. This attribute defines the minimum
transmit delay between two subsequent messages of the
same ID.

FastOnStart [ms] Integer 0 The CANdb attribute 'GenMsgFastOnStart' is displayed as
defined in the dbc file. 'GenMsgFastOnStart' is the duration

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

70 / 115

Attribute Name Value
Type

Default
Value

Description

in ms of a startup phase in which the message is
transmitted with a higher rate (GenMsgCycleTimeFast).

NrOfRepetition Integer 0 The CANdb attribute 'GenMsgNrOfRepetition' is displayed
as defined in the dbc file. This attribute defines the number
of repetitions of a message caused by signal updates of
signals which have transmission modes with repetition.

TxMessage > Il_Vector

Polling Boolean true The Interaction Layer confirmation of the sent message is
handled in the CAN driver confirmation context. This
context depends on the CAN driver Tx polling
configuration. For details please see the CAN driver
documentation.

CAN driver Tx polling is activated
===========================
If IL polling is activated, the message confirmation is
handled via the CAN driver confirmation flag that is polled
in the 'IlTxTask'. The Interaction Layer notification is
separated from the initial event.

If IL polling is deactivated, the message confirmation is
handled via the CAN driver confirmation function that is
called directly by the CAN driver in its own polling context.

CAN driver Tx polling is deactivated
=============================
If IL polling is activated, the message confirmation is
handled via the CAN driver confirmation flag that is polled
in the 'IlTxTask'. This is to minimize the interrupt load.

If IL polling is deactivated, the message confirmation is
handled via the CAN driver confirmation function that is
called directly by the CAN driver in the interrupt context.
Disabling the polling results in longer ISR run times.

PLEASE NOTE:
The implemented application code in this context must be
programmed interrupt context secure.

It's recommended to use the default.

Send on Init Boolean false If you enable the attribute 'Send on Init' the selected Tx
message is added to the set of messages which will be
transmitted when 'IlSendOnInitMsg()' is called.
If the DBC attribute "NetworkInitialization” is available at a
message, the value of “Send on Init” is derived of this dbc
attribute.

TxMessage > Il_Vector > Database Attributes

StartDelayTime [ms] Integer 0 The CANdb attribute 'GenMsgStartDelayTime' is displayed
as defined in the dbc file. This attribute defines the time
between 'IlTxStart()' and the begin of the cyclic
transmission of a message.

RxMessage > Il_Vector

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

71 / 115

Attribute Name Value
Type

Default
Value

Description

Polling Boolean false The Interaction Layer indication of the receive message is
handled in the CAN driver indication context. This context
depends on the CAN driver Rx polling configuration. For
details please see the CAN driver documentation.

CAN driver Rx polling is activated
===========================
If IL polling is activated, the message indication is handled
via the CAN driver indication flag that is polled in the
'IlRxTask'. The Interaction Layer notification is separated
from the initial event.

If IL polling is deactivated, the message indication is
handled via the CAN driver indication function that is called
directly by the CAN driver in its own polling context.

CAN driver Rx polling is deactivated
=============================
If IL polling is activated, the message indication is handled
via the CAN driver indication flag that is polled in the
'IlRxTask'. This is to minimize the interrupt load.

If IL polling is deactivated, the message indication is
handled via the CAN driver indication function that is called
directly by the CAN driver in the interrupt context.
PLEASE NOTE:
The implemented application code in this context must be
programmed interrupt context secure.

It's recommended to use the default.

RxMessage > Il_Vector > Notification Classes

Timeout Function String If a valid function name is defined in the IL 'Timeout
Function' field, this function is called by the Interaction
Layer when a timeout of this receive message occurs. The
timeout time for this message is defined in the data base
file (dbc).

API: void Appl<MsgName>MsgTimeout(void)

MsgSignal > Il_Vector > Database Attributes

InactiveValue String 0 The CANdb attribute 'GenSigInactiveValue' is displayed as
defined in the dbc file. This attribute is relevant for signals
with the transmission mode 'IfActive'.

RxSignal > Il_Vector > Signal Access

Put Boolean false The generation of signal value write access macros and -
functions for receive signals can be enabled or disabled. If
enabled, the Generation Tool will generate macros and
functions for signal access using the signal names in the
network data base (macros or functions, depending on the
type of the signal).

API:
 Length <=1Byte void IlPutRx<SigName>(vuint8 data)
1Byte< Length <=2Byte void IlPutRx<SigName>(vuint16

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

72 / 115

Attribute Name Value
Type

Default
Value

Description

data)
2Byte< Length <=4Byte void IlPutRx<SigName>(vuint32
data)
4Byte< Length void IlPutRx<SigName>(vuint8*
pData)

If the AUTOSAR signal API is enabled, set the signal value
via
Com_ReturnType Com_SendSignal(<SigName>,
&<data>);

Please see the documentation of Il_Vector, chapter
'AUTOSAR Signal Interface'.

Get Boolean true The generation of signal value read access macros and -
functions for receive signals can be enabled or disabled. If
enabled, the Generation Tool will generate macros and
functions for signal access using the signal names in the
network data base (macros or functions, depending on the
type of the signal).

API:
 Length <=1Byte vuint8 IlGetRx<SigName>(void)
1Byte< Length <=2Byte vuint16
 IlGetRx<SigName>(void)
2Byte< Length <=4Byte vuint32
 IlGetRx<SigName>(void)
4Byte< Length void IlGetRx<SigName>(vuint8*
pData)

If the AUTOSAR signal API is enabled, read the signal
value via
Com_ReturnType Com_ReceiveSignal(<SigName>,
&<data>)

Please see the documentation of Il_Vector, chapter
'AUTOSAR Signal Interface'.

RDS Boolean false Enable macros to read from the Rx register of the CAN
controller. This switch will be used for example by the
'DataChanged' flag.

CAUTION:
Use these macros in a PreCopy function only!

API:
 Length <=1Byte vuint8 IlGetRxCAN<SigName>(void)
1Byte< Length <=2Byte vuint16
 IlGetRxCAN<SigName>(void)
2Byte< Length <=4Byte vuint32
 IlGetRxCAN<SigName>(void)
4Byte< Length void IlGetRxCAN<SigName>(vuint8*
pData)

RxSignal > Il_Vector > Notification Classes > Indication

Flag Pool N.a. If this signal is received, one or more flags with the same
names plus pre- and postfix from the name decorator
configuration view will be set.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

73 / 115

Attribute Name Value
Type

Default
Value

Description

CAUTION:
The flag(s) must be reset by the application. It is
recommended to use the macros for flag manipulation.

API:
vuint8 IlGetRx<SigName>SigIndication(void)
void IlSetRx<SigName>SigIndication(void)
void IlClrRx<SigName>SigIndication(void)
vuint8 IlGetClrRx<SigName>SigIndication(void)

Function Pool N.a. If this signal is received, one or more functions with these
names plus pre- and postfix from the name decorator
configuration view will be called.

CAUTION:
- The function(s) may run in interrupt context (if polling is
not activated), so keep action short within.
- If you use more than one indication function they are
called in the order they are displayed in GENy.

API: void ApplIl<SigName>SigIndication(void)

RxSignal > Il_Vector > Notification Classes > Firstvalue

Flag Pool N.a. If this signal is received for the first time after the system
startup the 'FirstValue' flag will be set. This flag can not
and should not be reset. The only reset is a restart of the
Interaction Layer.

API:
vuint8 IlGetRx<SigName>SigFirstvalue(void)
void IlSetRx<SigName>SigFirstvalue(void)
void IlClrRx<SigName>SigFirstvalue(void)

RxSignal > Il_Vector > Notification Classes > DataChanged

Flag Pool N.a. If this signal is received and the new signal value differs
from the current signal value, the 'DataChanged' flag(s)
are set. The name of the flags are built-up using this name
plus pre- and postfixes from the name decorator
configuration view.

CAUTION:
The flag(s) must be reset by the application. It is
recommended to use the macros for flag manipulation.

API:
vuint8 IlGetRx<SigName>SigDataChanged(void)
void IlSetRx<SigName>SigDataChanged(void)
void IlClrRx<SigName>SigDataChanged(void)

RxSignal > Il_Vector > Notification Classes > Timeout

Flag Pool N.a. The interaction layer is able to supervise receive signals. If
the message containing the signal is not received within a
(in data base file dbc) predefined time one ore more
timeout flags are set. The name of the flags are built-up
using this name plus pre- and postfixes from the name
decorator configuration view.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

74 / 115

Attribute Name Value
Type

Default
Value

Description

CAUTION:
The flag(s) must be reset by the application. It is
recommended to use the macros for flag manipulation.

API:
vuint8 IlGetRx<SigName>SigTimeout(void)
void IlSetRx<SigName>SigTimeout(void)
void IlClrRx<SigName>SigTimeout(void)

Function Pool N.a. The interaction layer is able to supervise receive signals. If
the message containing the signal is not received within a
(in data base file dbc) predefined time one ore more
timeout functions are called. The name of the functions are
built-up using these names plus pre- and postfixes from
the name decorator configuration view.

CAUTION:
- The function(s) may run in interrupt context (if polling is
not activated), so keep action short within.
- If you use more than one indication function they are
called in the order they are displayed in GENy.

API: void ApplIl<SigName>SigTimeout(void)

RxSignal > Il_Vector > Notification Classes > State Machine Transition

Init String If you enter a function name you determine for this receive
signal that an init function shall be called after the
Interaction Layer was initialized. The default is the name of
the signal, but you can change this name. The final name
of the function will be determined out of the defined pre-
and postfixes on the name decorator configuration view
and the specified name.

API: void ApplIl<SigName>RxInit(void)

Start String If you enter a function name you determine for this receive
signal that this start function shall be called after the
Interaction Layer was switched to the running state. The
default is the name of the signal, but you can change this
name. The final name of the function will be determined
out of the defined pre- and postfixes on the name
decorator configuration view and the specified name.

API: void ApplIl<SigName>RxStart(void)

Stop String If you enter a function name you determine for this receive
signal that this stop function shall be called after the
Interaction Layer was suspended. The default is the name
of the signal, but you can change this name. The final
name of the function will be determined out of the defined
pre- and postfixes on the name decorator configuration
view and the specified name.

API: void ApplIl<SigName>RxStop(void)

RxSignal > Il_Vector > Default Value

Init Boolean false Use the default values below at initialization time to
initialize the signal buffer. If you enable this feature, the
fields

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

75 / 115

Attribute Name Value
Type

Default
Value

Description

- Start default
- Stop default
- Default value
will be activated and can be configured, too.

Start Boolean false Use the default value to initialize the signal buffer within
the callcontext of 'IlRxStart()'. To use this option the default
of 'Init' must be used, too.

Stop Boolean false Use the default value, which is set in the callcontext
'IlRxStop()' to initialize the signal buffer. To use this option
the default at 'IlInit()' must be used, too.

Value String 0 Use the default value within 'IlInit()', 'IlRxStart()' and
'IlRxStop()' to initialize the signal buffer. The data type of
the default value depends on the data type of the related
signal.

RxSignal > Il_Vector > Default Value > Timeout

Enable Boolean false Use the default value to replace the signal value in case of
a timeout.

Value String 0x0 Default value to replace the signal value in case of timeout.
The data type of the default value depends on the data
type of the related signal. The attribute in the data base file
must be set to be able to set the wanted default value.

RxSignal > Il_Vector > API

Dynamic Timeout Boolean false The timeout of the receive signals can be set dynamically.
If enabled an additional API to access the timer is
provided. This functionality is required for special use
cases and should normally be disabled.

API:
* IlGetRx<SigName>DynRxTimeout (void)
void IlSetRx<SigName>DynRxTimeout(*)
void IlStartRx<SigName>DynRxTimeout(void)
void IlStopRx<SigName>DynRxTimeout(void)
* This type depends on the configuration.

TxSignal > Il_Vector > Signal Access

Put Boolean true The generation of signal value write access macros and
functions for send signals can be enabled or disabled. If
enabled, the Generation Tool will generate macros and
functions for signal access using the signal names in the
network data base (macros or functions, depending on the
type of the signal).

API:
 Length <=1Byte void IlPutTx<SigName>(vuint8 data)
1Byte< Length <=2Byte void IlPutTx<SigName>(vuint16
data)
2Byte< Length <=4Byte void IlPutTx<SigName>(vuint32
data)
4Byte< Length void IlPutTx<SigName>(vuint8* pData)

If the AUTOSAR signal API is enabled, set the signal value
via
Com_ReturnType Com_SendSignal(<SigName>,
&<data>);

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

76 / 115

Attribute Name Value
Type

Default
Value

Description

For details please see the documentation of Il_Vector,
chapter 'AUTOSAR Signal Interface'.

Get Boolean false The generation of signal value read access macros and
functions for send signals can be enabled or disabled. If
enabled, the Generation Tool will generate macros and
functions for signal access using the signal names in the
network data base (macros or functions, depending on the
type of the signal).

API:
 Length <=1Byte vuint8 IlGetTx<SigName>(void)
1Byte< Length <=2Byte vuint16
 IlGetTx<SigName>(void)
2Byte< Length <=4Byte vuint32
 IlGetTx<SigName>(void)
4Byte< Length void IlGetTx<SigName>(vuint8* pData)

If the AUTOSAR signal API is enabled, read the signal
value via
Com_ReturnType Com_ReceiveSignal(<SigName>,
&<data>)

For details please see the documentation of Il_Vector,
chapter 'AUTOSAR Signal Interface'.

RDS Boolean false Macros to write and read the Tx register of the CAN
controller. These macros can only be used in the context of
the PreTransmit function.

Set API:
 Length <=1Byte void IlPutTxCAN<SigName>(vuint8
data)
1Byte< Length <=2Byte void
IlPutTxCAN<SigName>(vuint16 data)
2Byte< Length <=4Byte void
IlPutTxCAN<SigName>(vuint32 data)
4Byte< Length void IlPutTxCAN<SigName>(vuint8*
pData)

TxSignal > Il_Vector > Notification Classes > Confirmation

Flag Boolean false After successful transmission of a signal, the Interaction
Layer sets the confirmation flag.

API:
vuint8 IlGetIlTx<SigName>SigConfirmation()
void IlSetIlTx<SigName>SigConfirmation()
void IlClrIlTx<SigName>SigConfirmation()

Function String If you enter a function name you determine for this transmit
signal that a confirmation function shall be called after
transmission of this signal. The default is the name of the
signal, but you can change this name. The final name of
the function will be determined out of the defined pre- and
postfixes on the name decorator configuration view and
the specified name.

API: void ApplIl<SigName>SigConfirmation(void)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

77 / 115

Attribute Name Value
Type

Default
Value

Description

TxSignal > Il_Vector > Notification Classes > Timeout

Flag Boolean false To supervise the actual transmission of signals, a timeout
flag can be configured. If a signal is sent and the
confirmation is not received until timeout, the application
will be notified by this timeout flag.

API:
vuint8 IlGetIlTx<SigName>SigTimeout()
void IlSetIlTx<SigName>SigTimeout()
void IlClrIlTx<SigName>SigTimeout()

Function String If you enter a function name you determine for this transmit
signal that a timeout function shall be called if the
confirmation will not occur in time. The default is the name
of the signal, but you can change this name. The final
name of the function will be determined out of the defined
pre- and postfixes on the name decorator configuration
view and the specified name.

API: void ApplIl<SigName>SigTimeout(void)

TxSignal > Il_Vector > Notification Classes > State Machine Transition

Init String If you enter a function name you determine for this transmit
signal that an init function shall be called after the
Interaction Layer was initialized. The default is the name of
the signal, but you can change this name. The final name
of the function will be determined out of the defined pre-
and postfixes on the name decorator configuration view
and the specified name.

API: void ApplIl<SigName>TxInit(void)

Start String If you enter a function name you determine for this transmit
signal that a start function shall be called after the
Interaction Layer was switched to the running state. The
default is the name of the signal, but you can change this
name. The final name of the function will be determined
out of the defined pre- and postfixes on the name
decorator configuration view and the specified name.

API: void ApplIl<SigName>TxStart(void)

Stop String If you enter a function name you determine for this transmit
signal that a stop function shall be called after the
Interaction Layer was suspended. The default is the name
of the signal, but you can change this name. The final
name of the function will be determined out of the defined
pre- and postfixes on the name decorator configuration
view and the specified name.

API: void ApplIl<SigName>TxStop(void)

TxSignal > Il_Vector > Default Value

Init Boolean false Use the default value at initialization time to initialize the
signal buffer. If you activate the initialization default value
handling, the following fields (Start, Stop and Value) will be
enabled and can be configured, too.

Start Boolean false Use the default value to initialize the signal buffer within
the callcontext of 'IlTxStart()'. To use this option 'Init' in

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

78 / 115

Attribute Name Value
Type

Default
Value

Description

'Default Value' must be activated, too.

Stop Boolean false Use the default value with 'IlTxStop' to initialize the signal
buffer. To use this option 'Init' in 'Default Value' must be
activated, too.

Value String 0 Use the default value within 'IlInit()', 'IlTxStart()' and
'IlTxStop()' to initialize the signal buffer. The data type of
the default value depends on the data type of the related
signal. To use this option 'Init' in 'Default Value' must be
activated, too.

MsgSignalContainer > Il_Vector > Signal Access

Shadow Buffer Boolean false If this option is enabled, the appplication has to provide the
shadow buffer for signal groups.
Due to this setting, the signal group API changes. For
detailed information please see the technical reference of
IL_Vector.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Confirmation

Prefix String Appl Specify the prefix for the signal confirmation function.

Postfix String SigConfir
mation

Specify the postfix for the signal confirmation function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Indication

Prefix String Appl Specify the prefix for the signal indication function.

Postfix String SigIndica
tion

Specify the postfix for the signal indication function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Tx Timeout

Signal Prefix String Appl Specify the prefix for the signal based timeout function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Rx Timeout

Signal Prefix String Appl Specify the prefix for the signal based timeout function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Tx Timeout

Signal Postfix String TxSigTim
eout

Specify the postfix for the signal based timeout function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > Rx Timeout

Signal Postfix String RxSigTi
meout

Specify the postfix for the signal based timeout function.

Message Prefix String Appl Specify the prefix for the message based timeout function.

Message Postfix String MsgTime
out

Specify the postfix for the message based timeout
function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Rx Init

Prefix String Appl Specify the prefix for the Rx signal init callback function.

Postfix String RxInit Specify the postfix for the Rx signal init callback function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Tx Init

Prefix String Appl Specify the prefix for the Tx signal init callback function.

Postfix String TxInit Specify the postfix for the Tx signal init callback function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Rx Start

Prefix String Appl Specify the prefix for the Rx signal start callback function.

Postfix String RxStart Specify the postfix for the Rx signal start callback function.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

79 / 115

Attribute Name Value
Type

Default
Value

Description

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Tx Start

Prefix String Appl Specify the prefix for the Tx signal start callback function.

Postfix String TxStart Specify the postfix for the Tx signal start callback function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Rx Stop

Prefix String Appl Specify the prefix for the Rx signal stop callback function.

Postfix String RxStop Specify the postfix for the Rx signal stop callback function.

ModuleInstance > Il_Vector > Notification Mechanism > Functions > State Machine Transition > Tx Stop

Prefix String Appl Specify the prefix for the Tx signal stop callback function.

Postfix String TxStop Specify the postfix for the Tx signal stop callback function.

ModuleInstance > Il_Vector > Signal Access > Rx

Get Prefix String IlGetRx Specify the prefix for the Rx signal read access functions
and macros.

Put Prefix String IlPutRx Specify the prefix for the Rx signal write access functions
and macros.

ModuleInstance > Il_Vector > Signal Access > Tx

Get Prefix String IlGetTx Specify the prefix for the Tx signal read access functions
and macros.

Put Prefix String IlPutTx Specify the prefix for the Tx signal write access functions
and macros.

ModuleInstance > Il_Vector > RDS Signal Access

Rx Get Prefix String IlGetRxC
AN

Specify the prefix for the Rx signal read access functions
and macros.

Tx Put Prefix String IlPutTxC
AN

Specify the prefix for the Tx signal write access functions
and macros.

ModuleInstance > Il_Vector > Signal Access > Rx

SignalGroup Get
Prefix

String IlGetRx Specify the prefix for the Rx signal group read access
functions and macros.

SignalGroup Put
Prefix

String IlPutRx Specify the prefix for the Rx signal group write access
functions and macros.

ModuleInstance > Il_Vector > Signal Access > Tx

SignalGroup Get
Prefix

String IlGetTx Specify the prefix for the Tx signal group read access
functions and macros.

SignalGroup Put
Prefix

String IlPutTx Specify the prefix for the Tx signal group write access
functions and macros.

ModuleInstance > Il_Vector > Dynamic Rx Timeout API

Get Prefix String IlGetRx Specify a prefix for the user defined
IlGetRxDynamicTimeout function.

Set Prefix String IlSetRx Specify a prefix for the user defined
IlSetRxDynamicTimeout function.

Start Prefix String IlStartRx Specify a prefix for the user defined
IlStartRxDynamicTimeout function.

Stop Prefix String IlStopRx Specify a prefix for the user defined
IlStopRxDynamicTimeout function.

Postfix String DynRxTi
meout

Specify a postfix for the generated DynamicApi
macros/functions.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

80 / 115

Attribute Name Value
Type

Default
Value

Description

ModuleInstance > Il_Vector > Notification Mechanism > Flags > Prefixes

Get String IlGet Specify the prefix for macros to read flags.

Set String IlSet Specify the prefix for macros to write flags.

Clear String IlClr Specify the prefix for macros to clear flags.

Get + Clear String IlGetClr Specify the prefix for macros to read and clear flags.

ModuleInstance > Il_Vector > Notification Mechanism > Flags > Postfixes

Indication String Indicatio
n

Specify the postfix for indication flag macros.

Confirmation String Confirma
tion

Specify the postfix for confirmation flag macros.

FirstValue String Firstvalu
e

Specify the postfix for FirstValue flag macros.

Tx Timeout String TxTimeo
ut

Specify the postfix for Tx timeout flag macros.

Rx Timeout String RxTimeo
ut

Specify the postfix for Rx timeout flag macros.

DataChanged String DataCha
nged

Specify the postfix for DataChanged flag macros.

MsgSignal > Il_Vector > Database Attributes

MsgSendType Object N.a. CANdb attribute 'GenMsgSendType'

SigSendType Object N.a. CANdb attribute 'GenSigSendType'

Message > Il_Vector > Database Attributes

SendType Object N.a. CANdb attribute 'GenMsgSendType'

Table 5-1 GENy attributes

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

81 / 115

6 API Description

6.1.1 TypeDefinitions

The types defined by the Interaction Layer are described in this chapter.

Type Name C-Type Description Value Range

CanChannelHandle c-type Can Driver channel object
identifier.

0..<ChannelIdmax>

Zero-based integer number

IlReceiveHandle c-type Interaction Layer Rx message
object identifier.

0..<RxMessageIdmax>

Zero-based integer number

IlTransmitHandle c-type Interaction Layer Tx message
object identifier.

0..<TxMessageIdmax>

Zero-based integer number

Il_Status c-type Il_Status : the value must be
decoded with the following set
of macros.

The macros will return 0 (false)
or 1 (true).

- IlIsTxRun(state) : Tx is
running

- IlIsTxWait(state) : Tx is
waiting

- IlIsTxSuspend(state) : Tx is
suspended

- IlIsRxRun(state) : Rx is
running

- IlIsRxWait(state) : Rx is
waiting

- IlIsRxSuspend(state) : Rx is
suspended

Il_Boolean c-type A boolean result defined by the
Interaction Layer.

IL_FALSE

IL_TRUE

"_c_" and
the network signal group
name
and the postfix "_buf".

c-type The SignalGroupBufferType is
a generated data type for each
signal group.

tIlModuleContextStructPtr c-type pointer to a
tIlModuleContextStruct struct

Table 6-1 Type definitions

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

82 / 115

6.1.2 Services provided by Interaction Layer

Caution
The APIs of the IL do not support reentrant calls and must not interrupt each other.
Exceptions are described in the API description. See also chapter 4.3 Operating
Systems Requirements.

6.1.2.1 IlInitPowerOn

IlInitPowerOn

Prototype

void IlInitPowerOn (void)

Parameter

void none

Return code

void none

Functional Description

This method initializes the Il_Vector on all channels.
IlInit is called for every channel.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

The function must be called with disabled interrupts.
The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInit, IlRxStart, IlTxStart,
IlRxStop, IlTxStop.

6.1.2.2 IlInit

IlInit

Prototype

Single Channel

Single Receive Channel void IlInit (void)

Multi Channel

Indexed (MRC) void IlInit (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

83 / 115

Functional Description

This method initializes the Il_Vector on a channel.
Rx and Tx data buffers and flags are set to the initial state. If no default value for a message is defined, the
data buffer is set to 0x00.

Particularities and Limitations

The function is called by the Application, Ccl (Communication Control Layer) or IlInitPowerOn.

Call context

The function must be called with disabled interrupts.
The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlRxStart,
IlTxStart, IlRxStop, IlTxStop.

6.1.2.3 IlRxStart

IlRxStart

Prototype

Single Channel

Single Receive Channel void IlRxStart (void)

Multi Channel

Indexed (MRC) void IlRxStart (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method enables the reception of messages. The transition "start" of the Rx state machine is
performed.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function must be called on task level.
The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

6.1.2.4 IlTxStart

IlTxStart

Prototype

Single Channel

Single Receive Channel void IlTxStart (void)

Multi Channel

Indexed (MRC) void IlTxStart (CanChannelHandle channel)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

84 / 115

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method enables the transmission of messages and starts the transmission of periodic messages. The
transition "start" of the Tx state machine is performed.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function must be called on task level.
The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

6.1.2.5 IlRxStop

IlRxStop

Prototype

Single Channel

Single Receive Channel void IlRxStop (void)

Multi Channel

Indexed (MRC) void IlRxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method disables the reception of messages. The transition "stop" of the Rx state machine is
performed. The method is used for example to enter the Sleep Mode of an ECU.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function must be called on task level.
The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

6.1.2.6 IlTxStop

IlTxStop

Prototype

Single Channel

Single Receive Channel void IlTxStop (void)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

85 / 115

Multi Channel

Indexed (MRC) void IlTxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method disables the transmission of messages (Sleep Mode). The transition "stop" of the Tx state
machine is performed. The method is used for example to enter the Sleep Mode of an ECU.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function must be called on task level.
The function must not interrupt IlInitPowerOn, IlInit, IlRxTask, IlRxStateTask, IlRxTimerTask, IlTxTask,
IlTxStateTask, IlTxTimerTask, IlRxStart, IlTxStart, IlRxStop

6.1.2.7 IlRxWait

IlRxWait

Prototype

Single Channel

Single Receive Channel void IlRxWait (void)

Multi Channel

Indexed (MRC) void IlRxWait (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method halts the timeout monitoring of reception messages. The transition "wait" of the Rx state
machine is performed. The method is used for example when the bus-off mode of an ECU was entered.‎

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function can be called on task and interrupt level.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

86 / 115

6.1.2.8 IlTxWait

IlTxWait

Prototype

Single Channel

Single Receive Channel void IlTxWait (void)

Multi Channel

Indexed (MRC) void IlTxWait (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method halts the transmission of messages. The transition "wait" of the Tx state machine is
performed. The method is used for example when the bus-off mode of an ECU was entered.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function can be called on task and interrupt level.

6.1.2.9 IlRxRelease

IlRxRelease

Prototype

Single Channel

Single Receive Channel void IlRxRelease (void)

Multi Channel

Indexed (MRC) void IlRxRelease (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

The transition "release" of the Rx state machine is performed.
-Restart the Rx Timeout Monitoring
-Clear the timeout flags if IL_ENABLE_SYS_RX_RESET_TIMEOUT_FLAGS_ON_ILRXRELEASE is
defined.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function can be called on task and interrupt level.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

87 / 115

6.1.2.10 IlTxRelease

IlTxRelease

Prototype

Single Channel

Single Receive Channel void IlTxRelease (void)

Multi Channel

Indexed (MRC) void IlTxRelease (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method resumes the transmission of messages from the "Waiting" state. The transition "release" of the
Tx state machine is performed.

Particularities and Limitations

The function is called by the Application or Nm (Network Management).

Call context

The function can be called on task and interrupt level.

6.1.2.11 IlRxTask

IlRxTask

Prototype

Single Channel

Single Receive Channel void IlRxTask (void)

Multi Channel

Indexed (MRC) void IlRxTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method must be called periodically in the Rx task cycle time configured in the generation tool. The
IlRxTimerTask and IlRxStateTask are called by this method.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

88 / 115

The function must be called on task level.
The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.2.12 IlTxTask

IlTxTask

Prototype

Single Channel

Single Receive Channel void IlTxTask (void)

Multi Channel

Indexed (MRC) void IlTxTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method must be called periodically in the Tx task cycle time configured in the generation tool. The
IlTxTimerTask and IlTxStateTask are called by this method.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

The function must be called on task level.
The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.2.13 IlRxStateTask

IlRxStateTask

Prototype

Single Channel

Single Receive Channel void IlRxStateTask (void)

Multi Channel

Indexed (MRC) void IlRxStateTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method is called periodically by the IlRxTask. The function can be called in a faster rate than the
IlRxTask to check additionally for polled indication events. The usage of the IlRxTask shall be preferred.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

89 / 115

Particularities and Limitations

The function is called by the Application or IlRxTask.

Call context

The function must be called on task level.
The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.2.14 IlTxStateTask

IlTxStateTask

Prototype

Single Channel

Single Receive Channel void IlTxStateTask (void)

Multi Channel

Indexed (MRC) void IlTxStateTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method is called periodically by the IlTxTask. The function can be called in a faster rate, than the
IlTxTask, to check additionally for polled confirmation events. The usage of the IlTxTask shall be preferred.

Particularities and Limitations

The function is called by the Application or IlTxTask.

Call context

The function must be called on task level.
The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.2.15 IlSendOnInitMsg

IlSendOnInitMsg

Prototype

Single Channel

Single Receive Channel void IlSendOnInitMsg (void)

Multi Channel

Indexed (MRC) void IlSendOnInitMsg (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

90 / 115

Functional Description

This method serves to set a transmission request flag for all messages configured as SendOnInit
messages.

Particularities and Limitations

The function is called by the Application.

Call context

The function must be called on task level.

6.1.2.16 IlGetStatus

IlGetStatus

Prototype

Single Channel

Single Receive Channel Il_Status IlGetStatus (void)

Multi Channel

Indexed (MRC) Il_Status IlGetStatus (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

Il_Status Il_Status : the value must be decoded with the following set of macros.
The macros will return 0 (false) or 1 (true).
- IlIsTxRun(state) : Tx is running
- IlIsTxWait(state) : Tx is waiting
- IlIsTxSuspend(state) : Tx is suspended
- IlIsRxRun(state) : Rx is running
- IlIsRxWait(state) : Rx is waiting
- IlIsRxSuspend(state) : Rx is suspended

Functional Description

Gets the current state of the Interaction Layer state machine.

Particularities and Limitations

The function is called by the Application.

Call context

The function can be called on task and interrupt level.

6.1.2.17 IlTxRepetitionsAreActive

IlTxRepetitionsAreActive

Prototype

Single Channel

Single Receive Channel Il_Boolean IlTxRepetitionsAreActive (void)

Multi Channel

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

91 / 115

Indexed (MRC) Il_Boolean IlTxRepetitionsAreActive

(CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

Il_Boolean IL_TRUE : Messages with repetitions are queued for transmission.
IL_FALSE : No message with repetitions is queued for transmission.

Functional Description

This method can be used to detect if messages with repetitions are queued for transmission on a channel.

Particularities and Limitations

The function is called by the Application.

Caution
The function does not support Virtual Networks.

Call context

The function can be called on task and interrupt level.

6.1.2.18 IlTxSignalsAreActive

IlTxSignalsAreActive

Prototype

Single Channel

Single Receive Channel Il_Boolean IlTxSignalsAreActive (void)

Multi Channel

Indexed (MRC) Il_Boolean IlTxSignalsAreActive (CanChannelHandle

channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

Il_Boolean IL_TRUE : Signals are in the active state.
IL_FALSE : No signal is in the active state.

Functional Description

This method can be used to detect if signals are active on a channel.

Particularities and Limitations

The function is called by the Application.

Caution
The function does not support Virtual Networks.

Call context

The function can be called on task and interrupt level.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

92 / 115

6.1.3 Generated Services provided by the Interaction Layer

Info
The generated service declarators in this chapter are depending on the configuration.

6.1.3.1 Read and Write Signals and Signal Groups

WriteSignalByValue

Prototype

void WriteSignalByValue (vuintx sigData)

Parameter

sigData new value of the signal.
 (vuint8) : The length of the network signal is between 1 and 8 bits.
 (vuint16) : The length of the network signal is between 9 and 16 bits.
 (vuint32) : The length of the network signal is between 17 and 32 bits.

Return code

void none

Functional Description

Write a signal value to the message buffer and evaluate the transmission mode for Tx signals. The function
is generated optimized for the configuration and can be a function like macro or generated function. The
generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlPutTx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

WriteSignalByReference

Prototype

void WriteSignalByReference (vuint8 *pData)

Parameter

pData pointer to a vuint8 array with the new value of the signal. The length of the
network signal is between 33 and 64 bits.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

93 / 115

Functional Description

Write a signal value to the message buffer and evaluate transmission mode for Tx signals. The function is
generated optimized for the configuration and can be a function like macro or generated function. The
generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlPutTx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

ReadSignalByValue

Prototype

vuintx ReadSignalByValue (void)

Parameter

void none

Return code

vuintx (vuint8) : The length of the network signal is between 1 and 8 bits.
(vuint16) : The length of the network signal is between 9 and 16 bits.
(vuint32) : The length of the network signal is between 17 and 32 bits.

Functional Description

Read a signal value from the message buffer. The function is generated optimized for the configuration and
can be a function like macro or generated function. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlGetRx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

ReadSignalByReference

Prototype

void ReadSignalByReference (vuint8 *pData)

Parameter

pData pointer to a vuint8 array where the value of the signal shall be stored. The
length of the network signal is between 33 and 64 bits.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

94 / 115

Functional Description

Read a signal value from the message buffer. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlGetRx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

WriteGroupedSignalByValue

Prototype

void WriteGroupedSignalByValue (SignalGroupBufferType pBuffer, vuintx

sigData)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

sigData new value of the signal.
 (vuint8) : The length of the network signal is between 1 and 8 bits.
 (vuint16) : The length of the network signal is between 9 and 16 bits.
 (vuint32) : The length of the network signal is between 17 and 32 bits.

Return code

void none

Functional Description

Write a grouped signal value to the signal group buffer. The function is generated optimized for the
configuration and can be a function like macro or generated function. The generated prototype declarator is
composed of
- a configurable prefix for writing signals and
- the network signal name and
- "ShadowBuffer" e.g. <IlPutTx><NetworkSignalName>ShadowBuffer.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

WriteGroupedSignalByReference

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

95 / 115

Prototype

void WriteGroupedSignalByReference (SignalGroupBufferType pBuffer,

vuint8 *pData)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

pData pointer to a vuint8 array with the new value of the signal. The length of the
network signal is between 33 and 64 bits.

Return code

void none

Functional Description

Write a grouped signal value to the signal group buffer. The function is generated optimized for the
configuration and can be a function like macro or generated function. The generated prototype declarator is
composed of
- a configurable prefix for writing signals and
- the network signal name and
- "ShadowBuffer"
e.g. <IlPutTx><NetworkSignalName>ShadowBuffer.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

ReadGroupedSignalByValue

Prototype

vuintx ReadGroupedSignalByValue (SignalGroupBufferType pBuffer)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

Return code

vuintx (vuint8) : The length of the network signal is between 1 and 8 bits.
(vuint16) : The length of the network signal is between 9 and 16 bits.
(vuint32) : The length of the network signal is between 17 and 32 bits.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

96 / 115

Functional Description

Read a signal value from the message buffer. The function is generated optimized for the configuration and
can be a function like macro or generated function. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name and
- "ShadowBuffer"
e.g. <IlGetRx><NetworkSignalName>ShadowBuffer.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

ReadGroupedSignalByReference

Prototype

void ReadGroupedSignalByReference (SignalGroupBufferType pBuffer,

vuint8 *pData)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

pData pointer to a vuint8 array where the value of the signal shall be stored. The
length of the network signal is between 33 and 64 bits.

Return code

void none

Functional Description

Read a signal value from the message buffer. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name and
- "ShadowBuffer"
e.g. <IlGetRx><NetworkSignalName>ShadowBuffer.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

WriteSignalGroup

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

97 / 115

Prototype

void WriteSignalGroup (SignalGroupBufferType pBuffer)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

Return code

void none

Functional Description

Write a signal group from the signal group buffer to the message buffer and evaluate the transmission
mode for Tx signals. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal group name and
- "ShadowBuffer" e.g. <IlPutTx><NetworkSignalGroupName>ShadowBuffer.

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

ReadSignalGroup

Prototype

void ReadSignalGroup (SignalGroupBufferType pBuffer)

Parameter

pBuffer pointer to the signal group buffer.
 (SignalGroupBufferType) : the generated data type for each signal group.
 ->"Shadow Buffer" is enabled in the configuration for the signal group:
 The application has to provide a shadow buffer with the generated type.
 The generated data type name can be identified by the prefix "_c_" and the
network signal group name and the postfix "_buf".
 ->"Shadow Buffer" is disabled in the configuration for the signal group:
 The parameter is omitted and the IL provides the shadow buffer.

Return code

void none

Functional Description

Read a signal group from the message buffer to the signal group buffer. The generated prototype
declarator is composed of
- a configurable prefix for writing signals and
- the network signal group name and
- "ShadowBuffer"
e.g. <IlGetRx><NetworkSignalGroupName>ShadowBuffer.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

98 / 115

Particularities and Limitations

The function is called by the application.

Call context

The function can be called on task and interrupt level.

6.1.3.2 Read and Write Signals and SignalGroups in the RDS Buffer.

WriteSignalByValue2RDS

Prototype

void WriteSignalByValue2RDS (vuintx sigData)

Parameter

sigData new value of the signal.
 (vuint8) : The length of the network signal is between 1 and 8 bits.
 (vuint16) : The length of the network signal is between 9 and 16 bits.
 (vuint32) : The length of the network signal is between 17 and 32 bits.

Return code

void none

Functional Description

Write a signal or grouped signal value to the register of the CAN controller. The function is generated
optimized for the configuration and can be a function like macro or generated function. The generated
prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlPutTx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function must be called in the context of the signals message specific CAN Driver PreTransmit
function.

WriteSignalByReference2RDS

Prototype

void WriteSignalByReference2RDS (vuint8 *pData)

Parameter

pData pointer to a vuint8 array with the new value of the signal. The length of the
network signal is between 33 and 64 bits.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

99 / 115

Functional Description

Write a signal or grouped signal value to the register of the CAN controller. The function is generated
optimized for the configuration and can be a function like macro or generated function. The generated
prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlPutTx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function must be called in the context of the signals message specific CAN Driver PreTransmit
function.

ReadSignalByValueFromRDS

Prototype

vuintx ReadSignalByValueFromRDS (void)

Parameter

void none

Return code

vuintx (vuint8) : The length of the network signal is between 1 and 8 bits.
(vuint16) : The length of the network signal is between 9 and 16 bits.
(vuint32) : The length of the network signal is between 17 and 32 bits.

Functional Description

Read a signal or grouped signal value from the register of the CAN controller. The function is generated
optimized for the configuration and can be a function like macro or generated function. The generated
prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlGetRx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function must be called within the context of the signals message specific CAN Driver PreCopy
function.

ReadSignalByReferenceFromRDS

Prototype

void ReadSignalByReferenceFromRDS (vuint8 *pData)

Parameter

pData pointer to a vuint8 array where the value of the signal shall be stored. The
length of the network signal is between 33 and 64 bits.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

100 / 115

Return code

void none

Functional Description

Read a signal or grouped signal value from the register of the CAN controller. The length of the network
signal is between 33 and 64 bits. The generated prototype declarator is composed of
- a configurable prefix for writing signals and
- the network signal name
e.g. <IlGetRx><NetworkSignalName>.

Particularities and Limitations

The function is called by the application.

Call context

The function must be called within the context of the signals message specific CAN Driver PreCopy
function.

6.1.3.3 Notification Flags of Signals, Signal Groups and Grouped Signals

GetNotificationFlag

Prototype

vuint8 GetNotificationFlag (void)

Parameter

void none

Return code

vuint8 (vuint8) 0 : The notification is NOT set.
> 0 : The notification is set.

Functional Description

This macro is used to detect the notification of a signal, signal group or grouped signal. The generated
prototype declarator is composed of
- a configurable prefix for the notification flag to get flags and
- the network signal, signal group or grouped signal name and
- a configurable postfix for the notification flag.
e.g. <IlGet><NetworkSignalName><Indication>.

Particularities and Limitations

The macro is called by the application.

Call context

The macro can be called on task and interrupt level.

SetNotificationFlag

Prototype

void SetNotificationFlag (void)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

101 / 115

Parameter

void none

Return code

void none

Functional Description

This macro sets the notification flag of a signal, signal group or grouped signal. The generated prototype
declarator is composed of
- a configurable prefix for the notification flag to set flags and
- the network signal, signal group or grouped signal name and
- a configurable postfix for the notification flag.
e.g. <IlSet><NetworkSignalName><Indication>.

Particularities and Limitations

The macro is called by the application.

Call context

The macro must be called with disabled interrupts or in a non-preemptive task.

ClearNotificationFlag

Prototype

void ClearNotificationFlag (void)

Parameter

void none

Return code

void none

Functional Description

This macro clears the notification flag of a signal, signal group or grouped signal. The generated prototype
declarator is composed of
- a configurable prefix for the notification flag to clear flags and
- the network signal, signal group or grouped signal name and
- a configurable postfix for the notification flag.
e.g. <IlClr><NetworkSignalName><Indication>.

Particularities and Limitations

The macro is called by the application.

Call context

The macro must be called with disabled interrupts or in a non-preemptive task.

GetAndClearNotificationFlag

Prototype

vuint8 GetAndClearNotificationFlag (void)

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

102 / 115

Parameter

void none

Return code

vuint8 (vuint8) 0 : The notification is NOT set
> 0 : The notification is set.

Functional Description

This macro is used to determine and clear the notification of a signal, signal group or grouped signal. The
generated prototype declarator is composed of
- a configurable prefix for the notification flag to get and clear flags
- and the network signal, signal group or grouped signal name and
- a configurable postfix for the notification flag.
e.g. <IlGetClr><NetworkSignalName><Indication> The get and clear macro is only provided for the signal,
signal group or grouped signal indication flag.

Particularities and Limitations

The macro is called by the application.

Call context

The macro can be called on task and interrupt level.

6.1.3.4 Dynamic Rx Timeout

GetDynamicRxTimeout

Prototype

IltRxTimeoutCounter GetDynamicRxTimeout (void)

Parameter

void none

Return code

IltRxTimeoutCounter (IltRxTimeoutCounter) The current Rx timeout counter in milliseconds with the
maximum value 65535.

Functional Description

This method is used to receive the timeout counter in milliseconds for a message. The generated prototype
declarator is composed of
- a configurable prefix for the reception of the dynamic timeout counter and
- the network signal, signal group or grouped signal name and
- a configurable postfix for the dynamic timeout.
e.g. <IlGetRx><NetworkSignalName><DynRxTimeout>.

Particularities and Limitations

The macro is called by the application.

Caution
This API is signal oriented, but the effect will take place for all signals in the message.

Call context

The macro can be called on task and interrupt level.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

103 / 115

SetDynamicRxTimeout

Prototype

void SetDynamicRxTimeout (IltRxTimeoutCounter msTimer)

Parameter

msTimer The new Rx timeout counter in milliseconds with the maximum value 65535.

Return code

void none

Functional Description

This method is used to set the timeout counter in milliseconds for a message. The generated prototype
declarator is composed of
- a configurable prefix for setting the dynamic timeout counter and
- the network signal, signal group or grouped signal name and
- a configurable postfix for setting the dynamic timeout.
e.g. <IlSetRx><NetworkSignalName><DynRxTimeout>.

Particularities and Limitations

The macro is called by the application.

Caution
This API is signal oriented, but the effect will take place for all signals in the message.

Call context

The macro must be called with disabled interrupts or in a non-preemptive task.

StartDynamicRxTimeout

Prototype

void StartDynamicRxTimeout (void)

Parameter

void none

Return code

void none

Functional Description

This method is used to start a stopped timeout counter for a message. The generated prototype declarator
is composed of
- a configurable prefix for starting the dynamic timeout counter and
- the network signal, signal group or grouped signal name and
- a configurable postfix for starting the dynamic timeout.
e.g. <IlSetRx><NetworkSignalName><DynRxTimeout>.

Particularities and Limitations

The macro is called by the application.

Caution
This API is signal oriented, but the effect will take place for all signals in the message.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

104 / 115

Call context

The macro can be called on task and interrupt level.

StopDynamicRxTimeout

Prototype

void StopDynamicRxTimeout (void)

Parameter

void none

Return code

void none

Functional Description

This method is used to stop the timeout counter for a message. The generated prototype declarator is
composed of
- a configurable prefix for stopping the dynamic timeout counter and
- the network signal, signal group or grouped signal name and
- a configurable postfix for stopping the dynamic timeout.
e.g. <IlSetRx><NetworkSignalName><DynRxTimeout>.

Particularities and Limitations

The macro is called by the application.

Caution
This API is signal oriented, but the effect will take place for all signals in the message.

Call context

The macro can be called on task and interrupt level.

6.1.4 Callback Functions

All callback functions can be activated or deactivated by a switch in the Configuration Tool.
If a callback function is activated by the user, the application has to provide this function.

6.1.4.1 ApplIlInit

ApplIlInit

Prototype

Single Channel

Single Receive Channel void ApplIlInit (void)

Multi Channel

Indexed (MRC) void ApplIlInit (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

105 / 115

Functional Description

This method is called to indicate the performed initialization.

Particularities and Limitations

none

Call context

The function is called by the IL in the context of IlInit.

6.1.4.2 ApplIlRxStart

ApplIlRxStart

Prototype

Single Channel

Single Receive Channel void ApplIlRxStart (void)

Multi Channel

Indexed (MRC) void ApplIlRxStart (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method is called to indicate the performed transition start for the Rx state machine.

Particularities and Limitations

none

Call context

The function is called by the IL in the context of IlRxStart.

6.1.4.3 ApplIlTxStart

ApplIlTxStart

Prototype

Single Channel

Single Receive Channel void ApplIlTxStart (void)

Multi Channel

Indexed (MRC) void ApplIlTxStart (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

106 / 115

Functional Description

This method is called to indicate the performed transition start for the Tx state machine.

Particularities and Limitations

none

Call context

The function is called by the IL in the context of IlTxStart.

6.1.4.4 ApplIlRxStop

ApplIlRxStop

Prototype

Single Channel

Single Receive Channel void ApplIlRxStop (void)

Multi Channel

Indexed (MRC) void ApplIlRxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Functional Description

This method is called to indicate the performed transition stop for the Rx state machine.

Particularities and Limitations

none

Call context

The function is called by the IL in the context of IlRxStop.

6.1.4.5 ApplIlTxStop

ApplIlTxStop

Prototype

Single Channel

Single Receive Channel void ApplIlTxStop (void)

Multi Channel

Indexed (MRC) void ApplIlTxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical Can Driver channel.

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

107 / 115

Functional Description

This method is called to indicate the performed transition stop for the Tx state machine.

Particularities and Limitations

none

Call context

The function is called by the IL in the context of IlTxStop.

6.1.4.6 ApplIlFatalError

ApplIlFatalError

Prototype

void ApplIlFatalError (vuint8 errorNumber)

Parameter

errorNumber numeric error code

Return code

void none

Functional Description

If assertions are configured, this function is called to indicate invalid user conditions (API, reentrance),
inconsistent generated data, hardware errors and internal errors.

Particularities and Limitations

none

Call context

The function is be called by the IL on task and interrupt level.

6.1.5 Generated Callback Functions

All callback functions can be activated or deactivated by a switch in the Configuration Tool.
If a callback function is activated by the user, the application has to provide this function.

Info
The generated callback declarators in this chapter are depending on the configuration.

NotificationFunction

Prototype

void NotificationFunction (void)

Parameter

void none

Return code

void none

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

108 / 115

Functional Description

This function is used to determine the notification of a signal, signal group or grouped signal. The
generated prototype declarator is composed of
a configurable prefix for the notification and
the network signal, signal group or grouped signal name and
a configurable postfix for the notification.
e.g. <ApplIl><NetworkSignalName><SigIndication>.

Particularities and Limitations

The function is called by the IL and implemented by the application.

Call context

The function is called notification class and configuration dependent:
- Indication :
->Il polling is enabled in the configuration for the message:
The function is called in the context of the IlRxTask or IlRxStateTask.
->Il polling is disabled in the configuration for the message:
The function is called in the context of the CAN Driver message indication function.
- Confirmation :
->Il polling is enabled in the configuration for the message:
The function is called in the context of the IlTxTask or IlTxStateTask.
->Il polling is disabled in the configuration for the message:
The function is called in the context of the CAN Driver message confirmation function.
- RxTimeout :
->The function is called in the context of the IlRxTask or IlRxTimerTask.
- TxTimeout :
->The function is called in the context of the IlTxTask or IlTxTimerTask.

TransitionChangeNotificationFunction

Prototype

void TransitionChangeNotificationFunction (void)

Parameter

void none

Return code

void none

Functional Description

This function is used to determine the transition change of a signal, signal group or grouped signal. The
generated prototype declarator is composed of
- a configurable prefix for the transition notification and
- the network signal, signal group or grouped signal name and
- a configurable postfix for the transition notification.
e.g. <ApplIl><NetworkSignalName><TxStart>.

Particularities and Limitations

The function is called by the IL and implemented by the application.

Call context

The function is called in the context of IlInitPowerOn, IlInit, IlRxStart, IlTxStart, IlRxStop, IlTxStop.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

109 / 115

RxMessageTimeoutFunction

Prototype

void RxMessageTimeoutFunction (void)

Parameter

void none

Return code

void none

Functional Description

This function is used to determine the Rx timeout of a message. The generated prototype declarator is
composed of
- a configurable prefix for the Rx message timeout and
- the network message name and
- a configurable postfix for the Rx message timeout.
e.g. <ApplIl><NetworkMessageName><MsgTimeout>.

Particularities and Limitations

The function is called by the IL and implemented by the application.

Call context

The function is called in the context of the IlRxTask or IlRxTimerTask.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

110 / 115

7 Limitations

7.1 CANgen Compatibility

7.1.1 Database attributes

Signal value definitions are defined sometimes as decimal or hexadecimal value. Due to
this signal values can be defined as string attribute in the database. Both value
representations are interpreted by GENy. GENy is fully compatible to attributes used with
CANGen. Deviations are described in chapter 5.1.5 Former Attributes.

7.1.2 Application Code

If you want to use your existing application with generated GENy code, pay attention to:

Rx Rds Write access and Tx Rds Read access is not supported any more.

The IlOldstyleAPI is not supported any more.

A strict Naming concept is introduced with GENy. The default Pre- and Postfixes have
changed. (The prefix „_a_“ is now „Appl“) It is possible for you, to restore the CANGen
compatible Pre- and Postfixes in the NameDecorator.

Data Type Prefixes are not supported any more.

The Prefixes of Signal Handles have been changed to „IlTxSigHnd“ and „IlRxSigHnd“
instead of „ILTx“.

The Can Driver Interface is in GENy strictly separated from the Interaction Layer. Due to
this, a used Appl message must be adapted.

> The Can Driver message Indication flag postfix is now separately configurable from
the IL Indication Flag.

> If Can Driver Signal access macros are used for signals <= 1 Byte, the function style
interface is not supported any more. The signal value is assigned like a value to a
variable

CANGen supported a configuration switch, to activate the multiple channel interfaces in
single channel configurations. This feature is discontinued in GENy.

7.1.3 Generator

> ESCAN00024091

If “Common Buffer” is configured between Rx or Tx messages which are used in
different identities of the ECU, configure both messages in the CAN Driver as Basic
CAN message and use the same Basic CAN object.

> ESCAN00017472

Do not configure Common Buffer for messages containing multiplexed signals.

> ESCAN00023799

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

111 / 115

Do not configure Common Buffer for tx messages which are used in the same identitiy
containing signals the GenSigSendType OnChange or OnChangeWithRepetition.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

112 / 115

8 Glossary and Abbreviations

8.1 Glossary

Term Description

API Application Program Interface, for OSEK: The description of the user
interface to the operating system, communications and network
management functions.

AUTOSAR Automotive Open System Architecture

bus Defines what we call internal as channel or connection.

CAN Controller Area Network protocol originally defined for use as a
communication network for control applications in vehicles.

CANGen Generation tool for CANbedded components

configuration The communication configuration adapts the communication stack to the
specific component requirements by means of the Generation Tool.

DBC CAN data base format of the Vector company which is used by Vector
tools

ESCANXXXXXXXX Vector PES Clearquest Database ID. Replace XXXXXXXX by the
numeric identifier.

generation tool See CANgen, DBKOMGen and GENy. The generation tool configures the
communication stack, Flash Bootloader, etc. based on database
attributes (vehicle manufacturer), project settings (module supplier) and
license information (Vector).

GENy Generation tool for CANbedded and MICROSAR components

ID Identifier (e.g. Identifier of a CAN message)

manufacturer Vehicle manufacturer

message A message is responsible for the logical transmission and reception of
information depending on the restrictions of the physical layer. The
definition of the message contents is part of the data base given by the
vehicle manufacturer.

module A module designates a controller (Identical with ECU).

MRC Multiple Receive Channel

MSC Message Sequence Chart

Mutual exclusion To modify shared data, a task must be able to get exclusive access for a
limited time, i.e. all other tasks must be excluded to access this data. All
tasks modifying shared data must be able to do this exclusion. Therefore
this exclusion is called mutual exclusion.

Node A network topological entity. Nodes are connected by data links forming
the network. Each node is separately addressable on the network.

Online (Normal) state of the data link layer. Application and Network
Management communication are possible.

OSEK Name of the overall project: Abbreviation of the German term "Offene
Systeme und deren Schnittstellen fÃ¼r die Elektronik im Kraftfahrzeug" -
Open Systems and the Corresponding Interfaces for Automotive
Electronics.

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

113 / 115

Protocol A formal set of conventions or rules governing the exchange of
information between protocol entities. Protocol comprises syntax and
semantics of the protocol messages as well as the instructions on how to
react to them.

Register A register is a memory area in the controller, e.g. in the CAN controller.
Distinguish register from Buffer.

Release State transition of a task from waiting to ready. At least one event has
occurred which a task has waited on.

Request A service primitive in compliance with the ISO/OSI Reference Mode (ISO
7498). With the service primitive 'request' a service user requests a
service from a service provider.

Resource Generally, resources are hardware or software components which are
managed by the operating system. The OSEK operating system provides
resources to support task coordination by mutual exclusion of critical
sections. As an example, the scheduler is treated like a resource. A task
which holding the scheduler cannot be interrupted by all other tasks.
Resource Management. Access control for inseparable operations to
jointly used (logic) resources or devices, or for control of a program flow.

Response A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
The service primitive 'response' is used by a service user in order to reply
to a preceding indication from service provider.

Running A task state. In the running state, the CPU is assigned to the task, so that
its instructions can be executed. Only one task can be in this state at any
point in time. The state is entered by the state transition start and can be
exited via the state transitions Wait, Preempt or Terminate.

Safety A situation in which the risk is equal or lower than the limit risk. Risk is a
measure which considers both the probability of an accident and the
expected extend of damage in the case of an accident. The limit risk is
the highest risk which is still justifiable.

Software specification A software specification is a set of requirements that can be of different
types, as behavior, interfaces, timing constraints, needed resources,
safety, etc.

Start State transition of a task from ready to running. A ready task selected by
the scheduler is executed.

SWC Software Component, application software entity in AUTOSAR

Task A task provides the framework for the execution of functions. Therefore a
task has a context of its own, i.e. a stack, a register retrieval range and a
memory of its own. A task can be executed in principle on a processor
concurrently with other tasks. A task is executed under the control of the
scheduler according to the task priority assigned to it, and to the selected
scheduling policy. A distinction is made between basic tasks and
extended task.

Task level Processing level where the actual application software, is executed.
Tasks are executed according to the priority assigned to them, and to the
selected scheduling policy. Other processing levels are: Interrupt level
and operating system level.

Task priority The priority of a task is a measure for the precedence with which the task
is to be executed. In principle, priorities are defined statically. However, in
particular cases (see Priority Ceiling Protocol) a task can be processed

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

114 / 115

by the operating system with a defined higher priority. As a capability of
the CC, tasks of the same priority are admissible within a system. Tasks
of equal priority are started according to the order in which they are
called. To this effect, extended tasks which change from the waiting state
into the ready state are treated like new tasks.

Validation Confirmation by examination and provision of objective evidence that the
particular requirements for a specific intended use are fulfilled. Ensuring
the correctness of a specification.

wait State transition of a task from running to waiting. The running task
requires an event to continue operation. It causes its transition into the
waiting state by using a system service.

Window Communication object of the data link layer for sending and receiving NM
messages.

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CCL Communication Control Layer

COM Communication Layer

CPU Central Processing Unit

DM Deadline Monitoring

ECU Electronic Control Unit

IL Interaction Layer

IRQ Interrupt Request

ISO International Standardization Organization

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

NM Network Management

OEM Original Equipment Manufacturer

OS Operating System

OSI Open Systems Interconnection

RAM Random Access Memory

RDS Read Data Segment

ROM Read-Only Memory

SRS Software Requirement Specification

SWC Software Component

SWS Software specification

Technical Reference Vector Interaction Layer

2013, Vector Informatik GmbH Version: 2.10.03

based on template version 3.7

115 / 115

9 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Introduction
	2.1 Architecture Overview
	2.2 Data Access Concept
	2.3 Adapt the Vector Interaction Layer

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 Interaction Layer State Machine
	3.3.1 States
	3.3.1.1 Uninit
	3.3.1.2 Running

	 Receive Section Reception of data is enabled as well as timeout monitoring and notification.
	 Transmit Section Transmission of data is enabled. Signal Interface and Message Manager are working. The notification and the timeout monitoring are activated.
	3.3.1.3 Waiting

	 Receive Section Reception of data is enabled as well as the notification for indication. The timeout monitoring will be turned off to prevent timeout detection of messages from an ECU which is in bus-off mode and does not transmit data.
	 Transmit Section Transmission of data and the timeout monitoring will be disabled and the API will keep on working. So the application could request the transmission of data, but the Interaction Layer won’t follow immediately. The transmit requests...
	3.3.2 State Transitions
	3.3.2.1 Init
	3.3.2.2 Start
	3.3.2.3 Stop
	3.3.2.4 Wait
	3.3.2.5 Release

	3.4 Main Functions
	3.5 Interaction Layer Communication Concept
	3.5.1 Interface Concept
	3.5.2 Notification Mechanisms

	3.6 Data Access
	3.6.1 Data Consistency
	3.6.2 Signal Interface
	3.6.3 AUTOSAR Signal Interface
	3.6.4 Example: Writing and reading a signal value
	3.6.5 Signal Groups

	 IL API (with data buffer provided by the application or data buffer provided by the IL)
	 AUTOSAR API
	3.6.5.1 Il API
	3.6.5.2 AUTOSAR API
	3.6.5.3 GENy configuration

	 Put and get macros
	 Indication flag and function
	 Confirmation flag and function
	 Timeout flag and function
	 Notification in case of state machine transition: init, start, stop
	 Default values
	3.6.6 Default Values
	3.7 Data Transmission
	3.7.1 Transmission Concept
	3.7.2 Signal Related Transmission Modes
	3.7.2.1 Cyclic Transmission
	3.7.2.2 OnEvent (OnWrite, OnChange)
	3.7.2.3 OnEvent with Repetition (OnWrite, OnChange)
	3.7.2.4 Transmit Fast if Signal is Active
	3.7.2.5 Transmit Fast if Signal is Active with Repetition

	3.7.3 Mixed Transmission Mode
	3.7.3.1 Cyclic (Message) Transmission OR Cyclic (Signal) Transmission
	3.7.3.2 Cyclic (Message) Transmission OR OnEvent [Write]
	3.7.3.3 Cyclic (Message) Transmission OR OnEvent [Write] with Repetition
	3.7.3.4 Cyclic (Message) Transmission OR OnEvent [Change]
	3.7.3.5 Cyclic (Message) Transmission OR OnEvent [Change] with Repetition
	3.7.3.6 Cyclic (Message) Transmission OR Transmit Fast If Signal is Active
	3.7.3.7 Cyclic (Message) Transmission OR Transmit Fast If Signal is Active with Repetition
	3.7.3.8 Cyclic (Message) Transmission OR NoSigSendType

	3.7.4 Advanced Transmission Modes
	3.7.5 Notification Classes

	 The Configuration Tool can be used to assign a separate Confirmation Class for each signal. This event will be set by the Data Link Layer if the particular message was sent on the bus. If a flag is used for notification, the application is respons...
	3.7.6 Reduction of Transmission Bursts
	3.7.7 Delimitation of the Bus Load
	3.7.8 Transmission Timeout Monitoring
	3.7.9 Transmission of Initialization Messages
	3.8 Data Reception
	3.8.1 Reception Concept
	3.8.2 Notification Classes
	3.8.3 Timeout Monitoring
	3.8.4 Dynamic Timeout Monitoring

	3.9 Signal status information (UpdateBits)
	3.9.1 Configuration
	3.9.1.1 DBC File

	3.9.2 UpdateBit Transmission
	3.9.3 UpdateBit Reception
	3.9.3.1 Timeout

	3.10 Multiple Channel Support
	3.10.1 Overview
	3.10.2 Idx (Indexed) Interaction Layer

	3.11 Advanced Communication Features
	3.11.1 Physical Multiple and Multiple Configuration ECU
	3.11.2 Multiplexed Signals
	3.11.2.1 Standard API
	3.11.2.2 Raw API

	3.11.3 Manipulation of the Notification Frequency

	4 Integration
	4.1 Include structure
	4.2 Scope of Delivery
	4.2.1 Static Files
	4.2.2 Dynamic Files

	4.3 Operating Systems Requirements

	5 Configuration
	5.1 Configuration in Data Base
	5.1.1 Send Type
	5.1.2 Send Type Dependent
	5.1.3 Advanced Attributes
	5.1.4 Timeout Supervision Attributes
	5.1.5 Former Attributes
	5.1.6 Example

	5.2 Configuration with GENy

	6 API Description
	6.1.1 TypeDefinitions
	6.1.2 Services provided by Interaction Layer
	6.1.2.1 IlInitPowerOn
	6.1.2.2 IlInit
	6.1.2.3 IlRxStart
	6.1.2.4 IlTxStart
	6.1.2.5 IlRxStop
	6.1.2.6 IlTxStop
	6.1.2.7 IlRxWait
	6.1.2.8 IlTxWait
	6.1.2.9 IlRxRelease
	6.1.2.10 IlTxRelease
	6.1.2.11 IlRxTask
	6.1.2.12 IlTxTask
	6.1.2.13 IlRxStateTask
	6.1.2.14 IlTxStateTask
	6.1.2.15 IlSendOnInitMsg
	6.1.2.16 IlGetStatus
	6.1.2.17 IlTxRepetitionsAreActive
	6.1.2.18 IlTxSignalsAreActive

	6.1.3 Generated Services provided by the Interaction Layer
	6.1.3.1 Read and Write Signals and Signal Groups
	6.1.3.2 Read and Write Signals and SignalGroups in the RDS Buffer.
	6.1.3.3 Notification Flags of Signals, Signal Groups and Grouped Signals
	6.1.3.4 Dynamic Rx Timeout

	6.1.4 Callback Functions
	6.1.4.1 ApplIlInit
	6.1.4.2 ApplIlRxStart
	6.1.4.3 ApplIlTxStart
	6.1.4.4 ApplIlRxStop
	6.1.4.5 ApplIlTxStop
	6.1.4.6 ApplIlFatalError

	6.1.5 Generated Callback Functions

	7 Limitations
	7.1 CANgen Compatibility
	7.1.1 Database attributes
	7.1.2 Application Code

	Rx Rds Write access and Tx Rds Read access is not supported any more.
	The IlOldstyleAPI is not supported any more.
	A strict Naming concept is introduced with GENy. The default Pre- and Postfixes have changed. (The prefix „_a_“ is now „Appl“) It is possible for you, to restore the CANGen compatible Pre- and Postfixes in the NameDecorator.
	Data Type Prefixes are not supported any more.
	The Prefixes of Signal Handles have been changed to „IlTxSigHnd“ and „IlRxSigHnd“ instead of „ILTx“.
	The Can Driver Interface is in GENy strictly separated from the Interaction Layer. Due to this, a used Appl message must be adapted.
	CANGen supported a configuration switch, to activate the multiple channel interfaces in single channel configurations. This feature is discontinued in GENy.
	7.1.3 Generator

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

