

Nm_IndOsek
Technical Reference

Indirect Network Management

Version 1.12

Authors: Markus Schwarz
Version: 1.12
Status: released (in preparation/completed/inspected/released)

TechnicalReference Nm_IndOsek

1 Document Information

1.1 History

Author Date Version Remarks
Ralf Fritz 21.06.2001 1.00 Creation of this document
Ralf Fritz 01.10.2001 1.01 User value support added,

Multiple ECU added
Dieter Schaufelberger 2002-02-28 1.02 ApplInmNmInitVolatileCounters(

) and Macros added
Dieter Schaufelberger 2002-08-15 1.03 Adoptions to new system

structure
Dieter Schaufelberger 2002-09-11 1.04 Description of the database

attributes revised
Dieter Schaufelberger 2002-10-22 1.05 Revision

Inserted new chapter:
Particularities of RENAULT Bus
Off supervision

Dieter Schaufelberger 2002-11-28 1.06 Revision
New configuration features

Dieter Schaufelberger 2003-07-31 1.07 Correction in the attribute part
Dieter Schaufelberger 2004-04-05 1.08 Inserted Support of LEVEL 3
Dieter Schaufelberger 2004-10-20 1.09 New OSEK_INM Version 2.0
Markus Schwarz 2006-09-12 1.10 Changed chapter 1.1, new

layout
Markus Schwarz 2006-12-19 1.11 Revision and rework
Markus Schwarz 2008-01-21 1.12 added chapter on configuration

with GENy
Table 1-1 History of the Document

1.2 Reference Documents

Index Document
[UR_01] OSEK/VDX Network Management 2.53
[UR_02] Specification of the generic communication layers for CAN embedded networks

at RENAULT & PSA
Version 2.1 dated 04/01/98
referenced RENAULT: DIV/D3E/60601/98/032gb

Table 1-2 References Documents

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

2 / 55

TechnicalReference Nm_IndOsek

1.3 Abbreviations & Acronyms

Abbreviation Complete expression
CAN Controller Area Network
ECU Electronic Control Unit
IL Interaction Layer
NM Network Management

Note: Within this document, NM refers to Nm_IndOsek
OEM Original Equipment Manufacturer

Table 1-3 Abbreviations & acronyms

1.4 Naming Convention

Naming Description
Nm_IndOsek Refers to the Vector CANbedded software component that handles the

indirect network management.

Table 1-4 Naming convention

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

3 / 55

TechnicalReference Nm_IndOsek

Contents

1 Document Information ... 2
1.1 History .. 2
1.2 Reference Documents ... 2
1.3 Abbreviations & Acronyms ... 3
1.4 Naming Convention.. 3

2 Overview ... 9
2.1 Delivery Package ... 9
2.2 Concept.. 10

3 Features .. 11
3.1 General ...11
3.1.1 Overview ...11
3.1.2 Control...11
3.1.3 Event Notification ..11
3.1.4 Event Processing ..11
3.1.5 Status Information .. 12
3.2 RX Supervision .. 13
3.2.1 Overview .. 13
3.2.2 Control.. 13
3.2.3 Event Notification ... 13
3.2.4 Status Information .. 13
3.3 TX Supervision... 14
3.3.1 Overview .. 14
3.3.2 Control.. 14
3.3.3 Event Notification ... 14
3.3.4 Status Information .. 14
3.4 BusOff Supervision .. 15
3.4.1 Overview .. 15
3.4.2 Control.. 15
3.4.3 Event Notification ... 15
3.4.4 Status Information .. 15
3.4.5 Others .. 15
3.5 Generic Supervision... 16
3.5.1 Overview .. 16
3.5.2 Control.. 16
3.5.3 Event Notification ... 16
3.5.4 Status Information .. 16

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

4 / 55

TechnicalReference Nm_IndOsek

3.5.5 Others .. 16

4 Integration... 17
4.1 Involved Files ... 17
4.2 Include Structure .. 17
4.3 Necessary Steps to Integrate the NM in Your Project 18
4.4 Necessary Steps to Run the NM .. 18

5 Configuration.. 19

6 Integration Hints ... 22
6.1 CANbedded stack .. 22
6.1.1 Vector Station Manager.. 22
6.2 Special use-cases .. 22
6.2.1 Multiple ECUs .. 22

7 Related Files ... 23
7.1 Static Files.. 23
7.2 Dynamic Files... 23

8 API Description... 24
8.1 General .. 24
8.1.1 Multi channel usage ... 24
8.2 API ... 25
8.2.1 NM Handler .. 26
8.2.2 RX Supervision .. 30
8.2.3 TX Supervision... 33
8.2.4 BusOff Supervision .. 36
8.2.5 User-specific Supervision... 39
8.3 Callbacks.. 42
8.3.1 NM Handler .. 43
8.3.2 RX Supervision .. 44
8.3.3 TX Supervision... 46
8.3.4 BusOff Supervision .. 48
8.3.5 Generic Supervision... 50
8.4 Other Interfaces ... 52
8.4.1 Version Information .. 52

9 Working with the Code... 53
9.1 Version Information .. 53
9.2 Application Interface... 53

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

5 / 55

TechnicalReference Nm_IndOsek

10 CANdb Attributes ... 54

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

6 / 55

TechnicalReference Nm_IndOsek

Illustrations
Figure 2-1 Concept of NM within the CANbedded stack.. 10
Figure 4-1 Include structure ... 17
Figure 5-1 System-specific configuration ... 19
Figure 5-2 Channel-specific configuration.. 21

Tables
Table 1-1 History of the Document .. 2
Table 1-2 References Documents ... 2
Table 1-3 Abbreviations & acronyms ... 3
Table 1-4 Naming convention .. 3
Table 3-1 Description of supervision error states... 12
Table 5-1 System-specific configuration .. 20
Table 5-2 Channel-specific configuration... 21
Table 8-1 Overview API ... 25
Table 8-2 Overview callbacks .. 42
Table 10-1 CANdb attributes ... 55

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

7 / 55

TechnicalReference Nm_IndOsek

Introduction

This document describes the software component that implements the indirect network
management.
The functionality of this NM is handled by the Vector CANbedded component
“Nm_IndOsek”.
This document contains

 A brief description of the NM (chapter “3 Features”)

 A description of how to integrate the NM (chapter “4 Integration”)

 A description of how to configure the NM (chapter “5 Configuration”)

 A description of the API of the NM (chapter “8 API Description”)

 Hints on integration (chapter “6 Integration Hints“)

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

8 / 55

TechnicalReference Nm_IndOsek

2 Overview

The component Nm_IndOsek provides network services for an application operating on a
CAN bus. These services are mainly:

 Supervision of one TX message for each channel

 Supervision of multiple RX messages

 Supervision of BusOff events for each channel

 Supervision of user-specific events for each channel

The overall task of the Nm_IndOsek is to detect communication problems and to inform
the application about these problems.

2.1 Delivery Package
The delivery package includes:

 source code and header files (see chapter “7 Related Files”)

 technical reference (this document)

 DLL for configuration tool GENy

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

9 / 55

TechnicalReference Nm_IndOsek

2.2 Concept

Application

CAN Controller

Transceiver

CAN Controller

Transceiver

Interaction
Layer

CAN Driver

Nm_IndOsek

Figure 2-1 Concept of NM within the CANbedded stack

The Nm_IndOsek supervises events. These events can be signaled from the CAN driver,
the IL and/or the application.
The NM is initialized and controlled by the application. Status changes are signalized with
the help of callback functions. These callback functions have to be provided by the
application (see chapter “8.3 Callbacks”).

The Nm_IndOsek can be used in following configurations

 Single channel ECUs

 Multi channel ECUs

 Multiple ECUs (refer to chapter “6.2.1 Multiple ECUs”)

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

10 / 55

TechnicalReference Nm_IndOsek

3 Features

3.1 General
The Nm_IndOsek is an NM that uses periodic application messages to determine the
network state.
It is a de-central NM. There is no NM master.

3.1.1 Overview
The Nm_IndOsek is an event manager that can handle the following events

 RX messages

 TX messages

 BusOff events

 User-specific events (=”Generic”)

The Nm_IndOsek does not monitor/detect the events itself. Instead, it only supervises and
manages the state of these events.
It is up the IL and/or the application to inform the Nm_IndOsek about the occurrence/non-
occurrence (=timeout) of an event.
If an event is absent for approx. 2 seconds, the event-related system part is confirmed
absent.
If an event occurs again, the event-related system part is present again.
The Nm_IndOsek informs higher layers about the status of the supervised event. The
higher layers can use this information to store diagnostic entries in non-volatile memory.

3.1.2 Control
The Nm_IndOsek can be started/sopped by the application (InmNmStart(), InmNmStop()).
Any supervision is only possible when the NM is running.
The Nm_IndOsek can start/stop all supervisions globally (InmNmDiagOn(),
InmNmDiagOff()) as well as individually for each event handler.

3.1.3 Event Notification
The Nm_IndOsek offers an interface for each event handler that allows the components
that detect an event (e.g. IL) to notify an event and/or an event timeout.

3.1.4 Event Processing
When an event or an event timeout is notified, the Nm_IndOsek updates the status for this
event. The status consists of a supervision counter and a related error state.
The supervision counter is incremented upon an event timeout and decremented upon an
event notification. The values for the increment/decrement are mostly generated by the

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

11 / 55

TechnicalReference Nm_IndOsek

configuration tool. In case of RX or TX message events, these values are derived from the
message attributes in the DBC file (see chapter “10 CANdb Attributes”).
The values are chosen in a way that any event is reported confirmed absent approx. 2
seconds after its last occurrence.
The error state is related to the supervision counter (see Table 3-1).

State Description
OK This state is entered when an event is notified.

Note: This state can occur even if the supervision counter is not 0.
Failure This state is entered when an event timeout is notified.
Confirmed Failure This state is entered when there is no notification of the event for approx. 2

seconds, i.e. the supervision counter reaches its upper limit (0xFF).

Table 3-1 Description of supervision error states

3.1.5 Status Information
The Nm_IndOsek offers an interface that can be used to retrieve the current status of each
event handler individually.
The application is also notified about any status change with the help of a callback that is
unique for each event type.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

12 / 55

TechnicalReference Nm_IndOsek

3.2 RX Supervision
The Nm_IndOsek implements a supervision for RX messages.

3.2.1 Overview
The RX supervision is a message-specific event supervision. The RX supervision is
always enabled.
There can be multiple supervised RX messages. These messages are marked in the DBC
file (see chapter “10 CANdb Attributes”).
There should be only one supervised RX message for each network node that is meant to
be supervised.
All APIs related to RX supervision have a parameter “index”. This parameter is a handle of
the relevant RX message that has to be supervised. The index itself is provided by the
ECU configuration file (e.g. board1.h).

3.2.2 Control
The RX supervision gets activated/de-activated together with the NM generic supervision
(InmNmDiagOn(),InmNmDiagOff()).
There is an API that activates/de-activates the RX supervision individually, independent of
the NM generic supervision state (InmNmRxDiagOn(), InmNmRxDiagOff()).

3.2.3 Event Notification
The Nm_IndOsek offers an interface that allows the system to notify a RX event
(InmNmRxOk()) and a RX timeout event (InmNmRxTimeOut()).

3.2.4 Status Information
The application can retrieve the current status of the TX supervision
(InmNmRxTimeOut()).The status information contains the error state and the value of the
supervision counter.
The application is also notified about any status change with the help of callback
ApplInmNmStatusIndicationRx().

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

13 / 55

TechnicalReference Nm_IndOsek

3.3 TX Supervision
The Nm_IndOsek implements a supervision for TX messages.

3.3.1 Overview
The TX supervision is a channel-specific event supervision. The TX supervision is always
enabled.
There can be only one supervised TX message for each channel. This message is marked
in the DBC file (see chapter “10 CANdb Attributes”).

3.3.2 Control
The TX supervision gets activated/de-activated together with the NM generic supervision
state (InmNmDiagOn(),InmNmDiagOff()).
There is an API that activates/de-activates the TX supervision individually, independent of
the NM generic supervision (InmNmTxDiagOn(), InmNmTxDiagOff()).

3.3.3 Event Notification
The Nm_IndOsek offers an interface that allows the system to notify a TX event
(InmNmTxOk()) and a TX timeout event (InmNmTxTimeOut()).

3.3.4 Status Information
The application can retrieve the current status of the TX supervision
(InmNmGetTxCondition()).The status information contains the error state and the value of
the supervision counter.
The application is also notified about any status change with the help of callback
ApplInmNmStatusIndicationTx().

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

14 / 55

TechnicalReference Nm_IndOsek

3.4 BusOff Supervision
The Nm_IndOsek implements a BusOff supervision and a notification mechanism for
BusOff recovery.
The Nm_IndOsek does not do any BusOff recovery itself!

3.4.1 Overview
The BusOff supervision is a channel-specific event supervision. This supervision can be
enabled/disabled within the component configuration, i.e. during configuration time.
Any data or API is only available and relevant if this feature is enabled.

3.4.2 Control
The BusOff supervision gets activated/de-activated together with the NM generic
supervision (InmNmDiagOn(),InmNmDiagOff()).
There is an API that can activate/de-activate the BusOff supervision individually,
independent of the NM generic supervision state (InmNmBusOffDiagOn(),
InmNmBusOffDiagOff()).

3.4.3 Event Notification
The Nm_IndOsek offers an interface that allows the system to notify a BusOff event
(InmNmBusOff()). This event is typically signaled by the CAN driver and can occur on
interrupt level.
There is no API to indicate a non-BusOff. The disappearance of the BusOff is detected
within the component Nm_IndOsek as soon as successful RX or TX event is reported.

3.4.4 Status Information
The application can retrieve the current status of the BusOff supervision
(InmNmGetBusOffStatus()).
The application is also notified about any status change with the help of callback
ApplInmNmStatusIndicationBusOff().

3.4.5 Others
As the BusOff supervision is based on a timer and not directly on an event counter, the
Nm_IndOsek needs a constant time base. This time base is provided by the cyclic task
function InmNmTask(). This function has to be called cyclically by the application with the
constant period defined within the configuration (see chapter “5 Configuration”).

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

15 / 55

TechnicalReference Nm_IndOsek

3.5 Generic Supervision
The Nm_IndOsek implements a supervision for a user-specific event. This user-specific
event is called “GenericUser”

3.5.1 Overview
The GenericUser supervision is a channel-specific event supervision. This supervision can
be enabled/disabled within the component configuration, i.e. during configuration time.
Any data or API is only available and relevant if this feature is enabled.

3.5.2 Control
The GenericUser supervision gets activated/de-activated together with the NM generic
supervision (InmNmDiagOn(),InmNmDiagOff()).
There is an API that can activate/de-activate the GenericUser supervision individually,
independent of the NM generic supervision (InmNmGenericDiagOn(),
InmNmGenericDiagOff()).

3.5.3 Event Notification
The Nm_IndOsek offers an interface that allows the system to notify a GenericUser event
(InmNmGenericOk(), InmNmGenericTimeOut()).

3.5.4 Status Information
The application can retrieve the current status of the GenericUser supervision
(InmNmGetGenericCondition()). The status information contains the error state and the
value of the supervision counter.
The application is also notified about any status change with the help of callback
ApplInmNmStatusIndicationGeneric().

3.5.5 Others
The GenericUser supervision has to be configured by the application.
The application has to provide the following arrays:
V_MEMROM0 extern V_MEMROM1 inmNmCounterType V_MEMROM2
inmkIncGeneric[INM_CHANNELS];

V_MEMROM0 extern V_MEMROM1 inmNmCounterType V_MEMROM2
inmkDecGeneric[INM_CHANNELS];

These arrays must contain the channel-specific values that are used to
increment/decrement the supervision counter in case the application reports an event or a
timeout of the event.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

16 / 55

TechnicalReference Nm_IndOsek

4 Integration

4.1 Involved Files
To integrate the NM in your project, you need the files that are listed in chapter “7 Related
Files”.

4.2 Include Structure
The include structure of the involved files is shown in Figure 4-1.

id IncludeStructure

SystemHeader

v _cfg.h v _def.h

CANdriv erHeader

can_inc.h

board1.h

dynamic fi les
generated by
configuration tool
=> do not modify

static fi les
=> do not modify

user-specific fi le
=> al lowed to
modify

Nm_IndOsek

inm_osek.h

inm_par.c

inm_osek.c

inm_cfg.h

Application

Figure 4-1 Include structure

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

17 / 55

TechnicalReference Nm_IndOsek

4.3 Necessary Steps to Integrate the NM in Your Project
Following steps may be necessary to integrate the NM in your project:

 Copy the NM related files into your project tree.

 Make these files available in your project settings, e.g. set the correct paths in your
makefile.

 In order to make the NM available to your application, include the component header
file (inm_osek.h) into all files that make use of NM services and functions.

 Configure the NM according to your needs (see chapter “5 Configuration”).

 Implement all necessary callbacks in your application (see chapter “8.3 Callbacks”).

 Build your project (compile & link).

4.4 Necessary Steps to Run the NM
The NM should already have been integrated in your project and the building process
should complete without any errors.
There are two main steps that have to be performed:
Initialization

 Initialize the CAN Driver by calling CanInitPowerOn() after each reset during start-up
and before initializing the NM. Interrupts have to be disabled until the complete
initialization procedure is done.

 Initialize the NM by calling InmNmInit() during start-up. This API has to be called for
each NM channel separately.

Cyclic call of task functions
 If you are using the BusOff supervision, add a cyclic function call of InmNmTask() to

your runtime environment. Ensure that the call cycle matches the value that is
configured in the configuration file.

Add the required NM services to your application.
Especially use the API InmNmStart()and InmNmStop() to start and stop the Nm_IndOsek.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

18 / 55

TechnicalReference Nm_IndOsek

5 Configuration

The configuration data is stored in the following files:
 Inm_cfg.h contains system-specific value definitions and defines that

enable/disable system-specific features

 Inm_par.c contains channel-specific value definitions

These files are created with the help of a PC-based configuration tool.
Settings for the NM can be selected in the GUI. These settings are used to generate the
configuration files, which are needed to compile the component.
The configuration options for Nm_IndOsek are mainly derived from the settings in the DBC
file. There are not much options in the GUI.
Note: The Nm_IndOsek is configured together with an OEM-specific station manager.

Figure 5-1 System-specific configuration

There are some configurations options that are directly related to the attribute definitions in
the DBC file, mostly the used OEM. These configuration options can’t be changed in the
GUI of the configuration tool.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

19 / 55

TechnicalReference Nm_IndOsek

Attribute Description
User Configuration File A configuration file is generated by GENy. If you want to overwrite settings in the

generated configuration file, you can specify a path to a user defined
configuration file. The user defined configuration file will be included at the end of
the generated file. Therefore definitions in the user defined configuration file can
overwrite definitions in the generated configuration file.

Callback for
ConfirmedPresent

Enables/disables a feature that reports the presence of a supervised event not
before it gets” confirmed present”, i.e. the supervision counter reaches 0.
If enabled, the callback for status indication is only executed when the
corresponding error counter reaches 0.
If disabled, the callback is executed each time when the corresponding error
counter is decremented.

Init on DiagOn Enables/disables a feature that re-initializes the status of a supervised event
when the supervision for this event is started.

Init on DiagOff Enables/disables a feature that re-initializes the status of a supervised event
when the supervision for this event is stopped.

Clear Counter Enables/disables a feature that confirms the presence of an event upon the first
detection of that event, i.e. the event supervision counter is immediately set to 0
when the event happens.
If enabled, the error counter of the sub module (RX, TX, Generic) is reset when
the message/event is reported present the first time.
If disabled, the error counter is decremented upon each reported presence.

User-specific
initialization

Enables/disables a feature that lets the application set the (re-)initialization status
of the supervised events. Instead of using the internal default values, the
application is notified to set the initial status within callbacks ApplInm…UserInit()
and ApplInmNm…UserReInit()
If enabled, the initialization and re-initialization of the sub modules (RX, TX,
Generic, BusOff) can be done by the application. The application is notified by
callbacks about the need for the corresponding (re-)initialization.
If disabled, the Nm_IndOsek (re-)initializes the status itself to the (internal) default
values.

Assertions The SW component provides built-in debug support (assertion) to ease up the
integration and test into the user's project. Please see the technical reference for
detailed information on the available options and how to use them.
In general, the usage of assertions is recommended during the integration and
pre-test phases. It is not recommended to enable the assertions in production
code due to increased runtime and ROM needs.
The assertion checks the correctness of the assigned condition and calls an error
handler in case this fails. The error handler is called with an error number.
Information about the defined error numbers is given in the technical reference.

User Event Supervision Enables/disables a feature to supervise user-specific events. The
increment/decrement values for event occurrence are channel-specific, i.e. they
are configured within the channel-specific settings.

BusOff Supervision Enables/disables a feature to supervise BusOff events.

Table 5-1 System-specific configuration

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

20 / 55

TechnicalReference Nm_IndOsek

Figure 5-2 Channel-specific configuration

Attribute Description
Increment Defines the increment value that is used when the user-specific event is detected

as absent (timeout of event).

This value can be calculated with the folllowing formula:
(<Time_EventTimeout> / 2000) * 255

This value is only configurable if the system-specific NM attribute 'User Event
Supervision' is enabled.

Decrement Defines the increment value that is used when the user-specific event is detected
as present (occurrence of event).
This value can be calculated with the following formula:
(<Time_EventCycle> / 2000) * 255
This value is only configurable if the system-specific NM attribute 'User Event
Supervision' is enabled.

Cycle Time [ms] Defines the cycle time of the NM task function in [ms].
This value is only configurable when the system-specific NM attribute 'BusOff
Supervision' is enabled, as task is only required for BusOff supervision.
Please ensure that the configured value matches the actual call cycle of the task
function in your system.

Table 5-2 Channel-specific configuration

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

21 / 55

TechnicalReference Nm_IndOsek

6 Integration Hints

6.1 CANbedded stack

6.1.1 Vector Station Manager
The Vector Station Manager uses the Nm_IndOsek.
The Station Manager completely covers the necessary interfaces and control methods for
the Nm_IndOsek. The Station Manager

 Handles the RX timeout monitoring

 Handles the TX timeout monitoring

 Handles the initialization and the re-initialization

 Handles the start/stop of the Nm_IndOsek

6.2 Special use-cases

6.2.1 Multiple ECUs
The Nm_IndOsek supports multiple ECUs. A multiple ECU contains more than one ECU.
The currently active ECU can be determined dynamically at power-on.
The Nm_IndOsek of multiple ECUs handles the RX and TX messages of all ECU
instances in a common algorithm.
The Nm_IndOsek uses only one TX supervision. As there are multiple supervised TX
messages when using multiple ECUs, the Nm_IndOsek would react on all event
notifications of any supervised TX message. Therefore the IL has to ensure that the
timeout notifications of all TX messages that are not relevant for the current ECU are not
processed.
Please refer to the documentation of the IL for more details.
However, it is not necessary to stop the event notification of irrelevant RX messages within
the IL. These RX messages might still be processed by the Nm_IndOsek. It is up to the
application to ignore the related status indications of those RX messages.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

22 / 55

TechnicalReference Nm_IndOsek

7 Related Files

7.1 Static Files
Inm_osek.c This is the source file of the NM. It contains all API and

algorithms.
Inm_osek.h This is the header file of the NM. It contains all static prototypes

for the API and definitions, such as symbolic constants.

Caution
It is not allowed to change the NM source code during the integration into the
application. Please contact the Vector hotline if any problems arise.

7.2 Dynamic Files
The dynamic files are created by the configuration tool (see chapter “5 Configuration”).
inm_cfg.h This is the configuration file for system-specific items of the NM.

It defines features and certain values of the NM.
inm_par.c This is the configuration file for channel-specific items of the

NM. It defines features and certain values of the NM.

Caution
Do not change anything within the dynamic files, as the changes will be overwritten
when the configuration tool generates these files the next time.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

23 / 55

TechnicalReference Nm_IndOsek

8 API Description

The API of the NM consists of services that are realized by function calls. These services
can be called whenever they are required. They transfer information to the NM or take over
information from the NM.

If not stated otherwise, the API of the NM is not re-entrant.

Info
A function is re-entrant if it can be safely called recursively or from multiple processes.

Note
The application functions must match the required interfaces.
This can be ensured by including the header file *.h in the modules which provide the
required application functions. If these interfaces do not match, unexpected run-time
behavior may occur.
These functions are not allowed to change the interrupt status.

8.1 General

8.1.1 Multi channel usage
Most API functions of multi-channel systems require a channel parameter.
The channel parameter inm_channel represents an NM-internal channel. Possible values
are: 0…max(NM channel).

Note
The Nm_IndOsek uses internal NM channels within the parameter list.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

24 / 55

TechnicalReference Nm_IndOsek

8.2 API

 NM RX
supervision

TX
supervision

BusOff
supervision

User-specific
supervision

Init InmNmInit()
 InmNmReInit

()

Control InmNmStart()
 InmNmStop()

Control
supervision

 InmNmDiag
On()

 InmNmRxDia
gOn()

 InmNmDiag
Off()

 InmNmRxDia
gOff()

 InmNmTxDia
gOn()

 InmNmTxDia
gOff()

 InmNmBusOf
fDiagOn()

 InmNmBusOf
fDiagOff()

 InmNmGener
icDiagOn()

 InmNmGener
icDiagOff()

Status
information

 InmNmGetSt
atus()

 InmNmGetR
xCondition()

 InmNmGetTx
Condition()

 InmNmGetB
usOffStatus()

 InmNmGetG
enericConditi
on()

Event
notification

 InmNmRxOk
()

 InmNmRxTi
meOut()

 InmNmTxOk(
)

 InmNmTxTim
eOut()

 InmNmBusOf
f()

 InmNmGener
icOk()

 InmNmGener
icTimeOut()

Others InmNmTask()

Table 8-1 Overview API

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

25 / 55

TechnicalReference Nm_IndOsek

8.2.1 NM Handler
InmNmInit()

Prototype
Single channel void InmNmInit (void)

Multi channel void InmNmInit (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function initializes the component Nm_IndOsek.
All internal states and variables are initialised.
This function has to be called once after power-on reset, while interrupts are disabled.
This function initializes all available sub-components.
Particularities and Limitations

 Has to be called with disabled CAN interrupts.

InmNmReInit()
Prototype
Single channel void InmNmReInit (void)

Multi channel void InmNmReInit (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function re-initializes the Nm_IndOsek.
Only some internal states and variables are re-initialised.
A re-initialization does not affect the status of the NM handler, i.e. the NM itself stays in the same state as
before (started or stopped).
This function re-initializes all available sub-components.
Particularities and Limitations

 The NM has to be initialized before.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

26 / 55

TechnicalReference Nm_IndOsek

InmNmStart()
Prototype
Single channel void InmNmStart (void)

Multi channel void InmNmStart (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function starts the Nm_IndOsek if it is not already running.
The application is informed about the current status of all available sub-components with the help of the
corresponding callback functions.
The application is informed about the start of the NM with the help of callback ApplInmNmStartCanIl().
Particularities and Limitations

 The NM has to be initialized before.

InmNmStop()
Prototype
Single channel void InmNmStop (void)

Multi channel void InmNmStop (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function stops the Nm_IndOsek if it is not already stopped.
The supervision of all available sub-components is stopped.
The application is informed about the stop of the NM with the help of callback ApplInmNmStopCanIl().
Particularities and Limitations

 The NM has to be initialized before.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

27 / 55

TechnicalReference Nm_IndOsek

InmNmDiagOn()

Prototype
Single channel void InmNmDiagOn (void)

Multi channel void InmNmDiagOn (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function starts the network supervision for all available sub-components.
Starting the supervision is only possible if the NM is started.
Particularities and Limitations

 The NM has to be started before (=>InmNmStart() has to be called before)

InmNmDiagOff()
Prototype
Single channel void InmNmDiagOff (void)

Multi channel void InmNmDiagOff (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
--- ---
Functional Description
This function stops the network supervision for all available sub-components.
Stopping the supervision is only possible if the NM is started. If the NM gets stopped (InmNmStop()), the
supervision is also stopped automatically.
Particularities and Limitations

 The NM has to be started before (=>InmNmStart() has to be called before)

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

28 / 55

TechnicalReference Nm_IndOsek

InmNmGetStatus()
Prototype
Single channel inmNmStatusType InmNmGetStatus (void)

Multi channel inmNmStatusType InmNmGetStatus (inmNmChannelType
inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
inmNmStatusType Status of NM:

INM_NM_ON : NM is running
INM_NM_OFF: NM is not running

Functional Description
This function returns the current status of the NM.
Particularities and Limitations

 The NM has to be initialized before.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

29 / 55

TechnicalReference Nm_IndOsek

8.2.2 RX Supervision
InmNmRxDiagOn()

Prototype
Single channel void InmNmRxDiagOn (const inmNmIndexType index)

Multi channel void InmNmRxDiagOn (const inmNmIndexType index)

Parameter
index Handle of the supervised RX message.
Return code

Functional Description
This function starts the supervision of the RX message that is given by parameter <index>.

This message is under supervision until the supervision is stopped (InmNmRxDiagOff() or InmNmDiagOff()) or the
NM is stopped (InmNmStop()).
This function has only effect if the NM is running, i.e. InmNmStart() has been called. It is not possible to enable the
supervision when the NM is stopped.
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is started.

InmNmRxDiagOff()
Prototype
Single channel void InmNmRxDiagOff (const inmNmIndexType index)

Multi channel void InmNmRxDiagOff (const inmNmIndexType index)

Parameter
index Handle of the supervised RX message.
Return code

Functional Description
This function stops the supervision of the RX message that is given by parameter <index>.

The supervision is automatically stopped when all supervisions are stopped (InmNmDiagOff())) or when the NM is
stopped (InmNmStop()).
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is stopped.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

30 / 55

TechnicalReference Nm_IndOsek

InmNmRxOk()
Prototype
Single channel void InmNmRxOk (const inmNmIndexType index)

Multi channel void InmNmRxOk (const inmNmIndexType index)

Parameter
index Handle of the supervised RX message.
Return code

Functional Description
Successful RX notification
This function is normally called by the interaction layer. It informs the INM OSEK about an successfully reception of an
observed message. In this function the volatile and non volatile reception and Bus-Off counter are reduced depending
on the current state.
Particularities and Limitations

InmNmRxTimeOut()
Prototype
Single channel void InmNmRxTimeOut (const inmNmIndexType index)

Multi channel void InmNmRxTimeOut (const inmNmIndexType index)

Parameter
index Handle of the supervised RX message.
Return code

Functional Description
This function is normally called by the interaction layer. It informs the INM OSEK that an observed message can’t be
received during a certain time. In this function the volatile and non volatile reception counter are reduced depending on
the current state.

Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

31 / 55

TechnicalReference Nm_IndOsek

InmNmGetRxCondition()
Prototype
Single channel inmNmConditionType *InmNmRxTimeOut (const inmNmIndexType

index)

Multi channel inmNmConditionType *InmNmRxTimeOut (const inmNmIndexType
index)

Parameter
index Handle of the supervised RX message.
Return code
inmNmConditionType Reference to condition struct inmNmConditionType

Functional Description
This function returns the current condition of the supervised ECU. The values can be modified by the application.

Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

32 / 55

TechnicalReference Nm_IndOsek

8.2.3 TX Supervision
InmNmTxDiagOn()

Prototype
Single channel void InmNmTxDiagOn (void)

Multi channel void InmNmTxDiagOn (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function starts the supervision of the TX message.

This message is under supervision until the supervision is stopped (InmNmTxDiagOff()or InmNmDiagOff()) or the
NM is stopped (InmNmStop()).
This function has only effect if the NM is running, i.e. InmNmStart() has been called. It is not possible to enable the
supervision when the NM is stopped.
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is started.

InmNmTxDiagOff()
Prototype
Single channel void InmNmTxDiagOff (void)

Multi channel void InmNmTxDiagOff (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function stops the supervision of the TX message.

The supervision is automatically stopped when all supervisions are stopped (InmNmDiagOff())) or when the NM is
stopped (InmNmStop()).
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is stopped.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

33 / 55

TechnicalReference Nm_IndOsek

InmNmTxOk()
Prototype
Single channel void InmNmTxOk (void)

Multi channel void InmNmTxOk (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Transmit successful notification
This function will normally called by the interaction layer. It informs the INM OSEK about an successfully transmission of
the message which should be observed.
Particularities and Limitations

InmNmTxTimeOut()
Prototype
Single channel void InmNmTxTimeout (void)

Multi channel void InmNmTxTimeout (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Transmit time out notification
This function is normally called by the interaction layer. It informs the INM OSEK that the observed message couldn’t be
send at the moment.
The volatile counter is incremented to his maximum and state NM_FAILURE is set. If maximum is reached state
NM_CONFIRMED_FAILURE is entered and the non volatile counter is set to his maximum.
This function must be called cyclically if the message could not be sent. The cycle time of calling this function is the
cycle time of the observed message.
Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

34 / 55

TechnicalReference Nm_IndOsek

InmNmGetTxCondition()
Prototype
Single channel inmNmConditionType *InmNmGetTxCondition (void)

Multi channel inmNmConditionType *InmNmGetTxCondition (
inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
inmNmConditionType Reference to condition struct inmNmConditionType

Functional Description
Transmit time out notification
This function is normally called by the interaction layer. It informs the INM OSEK that the observed message couldn’t be
send at the moment.
The volatile counter is incremented to his maximum and state NM_FAILURE is set. If maximum is reached state
NM_CONFIRMED_FAILURE is entered and the non volatile counter is set to his maximum.
This function must be called cyclically if the message could not be sent. The cycle time of calling this function is the
cycle time of the observed message.
Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

35 / 55

TechnicalReference Nm_IndOsek

8.2.4 BusOff Supervision
InmNmBusOffDiagOn()

Prototype
Single channel void InmNmBusOffDiagOn (void)

Multi channel void InmNmBusOffDiagOn (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function starts the channel-specific supervision of the BusOff event.

This supervision runs until the supervision is stopped (InmNmBusOffDiagOff() or InmNmDiagOff()) or the NM is
stopped (InmNmStop()).
This function has only effect if the NM is running, i.e. InmNmStart() has been called. It is not possible to enable the
supervision when the NM is stopped.
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is started.

InmNmBusOffDiagOff()
Prototype
Single channel void InmNmBusOffDiagOff (void)

Multi channel void InmNmBusOffDiagOff (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function stops the channel-specific supervision of the BusOff event.

The supervision is automatically stopped when all supervisions are stopped (InmNmDiagOff())) or when the NM is
stopped (InmNmStop()).
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is stopped.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

36 / 55

TechnicalReference Nm_IndOsek

InmNmBusOff()
Prototype
Single channel void InmNmBusOff (void)

Multi channel void InmNmBusOff (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Bus Off notification form CAN driver
This function is called by the CAN-Driver if an Bus-Off happened. The application is informed about this by calling the
function ApplInmNmBusOffIndication(...). The volatile Bus-Off counter will be incremented until the maximal value is
reached. If the maximal value is reached the state NM_CONFIRMED_FAILURE will be entered and the non volatile
counter will be set to his maximum.
Particularities and Limitations

InmNmTask()
Prototype
Single channel void InmNmTask (void)

Multi channel void InmNmTask (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Cyclic Task for timeout supervision of Bus Off
Particularities and Limitations

 Call context:
 Availability:

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

37 / 55

TechnicalReference Nm_IndOsek

InmNmGetBusOffStatus()
Prototype
Single channel inmNmStatusType *InmNmGetBusOffStatus (void)

Multi channel inmNmStatusType * InmNmGetBusOffStatus (inmNmChannelType
inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
inmNmStatusType Reference to condition struct inmNmStatusType

Functional Description
This function returns the current state of the Network status. The values can be modified by the application.
For bus off Supervision no counter is used. Therefore only the states OK, Failure and Confirmed Failure are handled.
Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

38 / 55

TechnicalReference Nm_IndOsek

8.2.5 User-specific Supervision
InmNmGenericDiagOn()

Prototype
Single channel void InmNmGenericDiagOn (void)

Multi channel void InmNmGenericDiagOn (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function starts the supervision of the user-specific event.

This event is under supervision until the supervision is stopped (InmNmGenericDiagOff() or InmNmDiagOff()) or the
NM is stopped (InmNmStop()).
This function has only effect if the NM is running, i.e. InmNmStart() has been called. It is not possible to enable the
supervision when the NM is stopped.
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is started.

InmNmGenericDiagOff()
Prototype
Single channel void InmNmGenericDiagOff (void)

Multi channel void InmNmGenericDiagOff (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This function stops the supervision of the user-specific event.

The supervision is automatically stopped when all supervisions are stopped (InmNmDiagOff())) or when the NM is
stopped (InmNmStop()).
Particularities and Limitations

 Dependent on the OEM, the supervision status gets re-initialized when supervision is stopped.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

39 / 55

TechnicalReference Nm_IndOsek

InmNmGenericOk()
Prototype
Single channel void InmNmGenericOk (void)

Multi channel void InmNmGenericOk (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Transmit successful notification
This function will normally called by the interaction layer. It informs the INM OSEK about an successfully transmission of
the message which should be observed.
Particularities and Limitations

InmNmGenericTimeOut()
Prototype
Single channel void InmNmGenericTimeout (void)

Multi channel void InmNmGenericTimeout (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
Transmit time out notification
This function is normally called by the interaction layer. It informs the INM OSEK that the observed message couldn’t be
send at the moment.
The volatile counter is incremented to his maximum and state NM_FAILURE is set. If maximum is reached state
NM_CONFIRMED_FAILURE is entered and the non volatile counter is set to his maximum.
This function must be called cyclically if the message could not be sent. The cycle time of calling this function is the
cycle time of the observed message.
Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

40 / 55

TechnicalReference Nm_IndOsek

InmNmGetGenericCondition()
Prototype
Single channel inmNmConditionType *InmNmGetGenericCondition (void)

Multi channel inmNmConditionType *InmNmGetGenericCondition (
inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code
inmNmConditionType Reference to condition struct inmNmConditionType

Functional Description
Transmit time out notification
This function is normally called by the interaction layer. It informs the INM OSEK that the observed message couldn’t be
send at the moment.
The volatile counter is incremented to his maximum and state NM_FAILURE is set. If maximum is reached state
NM_CONFIRMED_FAILURE is entered and the non volatile counter is set to his maximum.
This function must be called cyclically if the message could not be sent. The cycle time of calling this function is the
cycle time of the observed message.
Particularities and Limitations

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

41 / 55

TechnicalReference Nm_IndOsek

8.3 Callbacks
The Nm_IndOsek uses callback functions to inform the application about an event. It is up
to the application to react on this event.
The application has to implement the necessary callbacks. The prototypes of the callbacks
are listed in the NM *.h-file.
There are following types of callbacks (also see Table 8-2):

 Callbacks that are used to inform the application that a certain event supervision has
to be (re-)initialized. These callbacks require actions by the application: The
application has to set the initial values, i.e. the value of the supervision counter and
the supervision state. These callbacks are only available if the user-specific
configuration is enabled in the configuration.

 Callbacks that are used to inform the application about status changes. These
callbacks are only meant for notification/information. The application might use these
callbacks to e.g. store the current status in non-volatile memory. The NM does
depend on the actions done by the application. These callbacks are always available.

 Callbacks that are meant to be used to control other CANbedded modules. These
callbacks are always available.

 Initialization Status information Others
NM
handler

 ApplInmNmStartCanIl()
 ApplInmNmStopCanIl()

RX
super-
vision

 ApplInmNmRxUserInit()
 ApplInmNmRxUserReInit()

 ApplInmNmStatusIndication
Rx()

TX
super-
vision

 ApplInmNmTxUserInit()
 ApplInmNmTxUserReInit()

 ApplInmNmStatusIndication
Tx()

BusOff
super-
vision

 ApplInmNmBusOffUserInit()
 ApplInmNmBusOffUserReIn

it()

 ApplInmNmStatusIndication
BusOff()

Generic
super-
vision

 ApplInmNmGenericUserInit
()

 ApplInmNmGenericUserReI
nit()

 ApplInmNmStatusIndication
Generic()

Table 8-2 Overview callbacks

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

42 / 55

TechnicalReference Nm_IndOsek

8.3.1 NM Handler
ApplInmNmStartCanIl()

Prototype
Single channel void ApplInmNmStartCanIl (void)

Multi channel void ApplInmNmStartCanIl (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This callback informs the application that the Nm_IndOsek has been started.
This callback can be used to start the CAN driver and the IL.
Particularities and Limitations

 Call context: task level

ApplInmNmStopCanIl()
Prototype
Single channel void ApplInmNmStopCanIl (void)

Multi channel void ApplInmNmStopCanIl (inmNmChannelType inm_channel)

Parameter
inm_channel Handle of the NM-internal channel. Range: 0…max(NM channels)
Return code

Functional Description
This callback informs the application that the Nm_IndOsek has been stopped.
 This callback can be used to stop the CAN driver and the IL.
Particularities and Limitations

 Call context: task level

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

43 / 55

TechnicalReference Nm_IndOsek

8.3.2 RX Supervision
ApplInmNmStatusIndicationRx()

Prototype
Single channel void ApplInmNmStatusIndicationRx (inmNmIndexType index,

inmNmStatusType status)

Multi channel void ApplInmNmStatusIndicationRx (inmNmIndexType index,
inmNmStatusType status)

Parameter
index
status

handle of related RX message
status of the RX supervision

 INM_OK
 INM_FAILURE
 INM_CONFIRMED_FAILURE
 INM_SPV_ACTIVE

Return code

Functional Description
This callback is executed when the status of the supervision for the RX message with handle <index>
changes, i.e. when the call of InmNmRxOk() or InmNmRxTimeOut() leads to a change of the supervision
state.
This callback is also executed during system initialization and re-initialization.
The new status is contained in the parameter <status>.
Particularities and Limitations

 Call context: maybe in IR context, depending on call context of InmNmRxOk() and InmNmRxTimeOut().

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

44 / 55

TechnicalReference Nm_IndOsek

ApplInmNmRxUserInit()
Prototype
Single channel void ApplInmNmRxUserInit (inmNmIndexType index,

inmNmConditionType *condition)

Multi channel void ApplInmNmRxUserInit (inmNmIndexType index,
inmNmConditionType *condition)

Parameter
index
*condition

handle of related RX message
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmInit() and requests the user to initially configure the status data given
by the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during system initialization; task level; while interrupts are locked
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

ApplInmNmRxUserReInit()
Prototype
Single channel void ApplInmNmRxUserReInit (inmNmIndexType index,

inmNmConditionType *condition)

Multi channel void ApplInmNmRxUserReInit (inmNmIndexType index,
inmNmConditionType *condition)

Parameter
index
*condition

handle of related RX message
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmReInit() and requests the user to configure the status data given by
the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during re-initialization; typically on task level
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

45 / 55

TechnicalReference Nm_IndOsek

8.3.3 TX Supervision
ApplInmNmStatusIndicationTx()

Prototype
Single channel void ApplInmNmStatusIndicationTx (inmNmStatusType status

)

Multi channel void ApplInmNmStatusIndicationTx (inmNmChannelType
inm_channel, inmNmStatusType status)

Parameter
inm_channel
status

Handle of the NM-internal channel. Range: 0…max(NM channels)
status of the TX supervision

 INM_OK
 INM_FAILURE
 INM_CONFIRMED_FAILURE
 INM_SPV_ACTIVE

Return code

Functional Description
This callback is executed when the status of the supervision for the channel-specific TX message changes,
i.e. when a call of InmNmTxOk() or InmNmTxTimeOut() leads to a change of the supervision state.
This callback is also executed during system initialization and re-initialization.
The new status is contained in the parameter <status>.
Particularities and Limitations

 Call context: maybe in IR context, depending on call context of InmNmTxOk() and InmNmTxTimeOut().

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

46 / 55

TechnicalReference Nm_IndOsek

ApplInmNmTxUserInit()
Prototype
Single channel void ApplInmNmTxUserInit (inmNmConditionType *condition

)

Multi channel void ApplInmNmTxUserInit (inmNmChannelType inm_channel,
inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmInit() and requests the user to initially configure the status data given
by the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during system initialization; task level; while interrupts are locked
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

ApplInmNmTxUserReInit()
Prototype
Single channel void ApplInmNmTxUserReInit (inmNmConditionType

*condition)

Multi channel void ApplInmNmTxUserReInit (inmNmChannelType
inm_channel, inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmReInit() and requests the user to configure the status data given by
the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during re-initialization; typically on task level
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

47 / 55

TechnicalReference Nm_IndOsek

8.3.4 BusOff Supervision

ApplInmNmStatusIndicationBusOff()
Prototype
Single channel void ApplInmNmStatusIndicationBusOff (inmNmStatusType

status)

Multi channel void ApplInmNmStatusIndicationBusOff (inmNmChannelType
inm_channel, inmNmStatusType status)

Parameter
inm_channel
status

Handle of the NM-internal channel. Range: 0…max(NM channels)
status of the TX supervision

 INM_OK
 INM_FAILURE
 INM_CONFIRMED_FAILURE
 INM_SPV_ACTIVE

Return code

Functional Description
This callback is executed when the status of the channel-specific BusOff supervision changes, i.e. when a
call of InmNmBusOff() or a notification of a TX/RX event leads to a change of the supervision state.
This callback is also executed during system initialization and re-initialization.
The new status is contained in the parameter <status>.
Particularities and Limitations

 Call context: maybe in IR context, depending on the way CAN TX/RX/error interrupts are used in the
system.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

48 / 55

TechnicalReference Nm_IndOsek

ApplInmNmBusOffUserInit()
Prototype
Single channel void ApplInmNmBusOffUserInit (inmNmConditionType

*condition)

Multi channel void ApplInmNmBusOffUserInit (inmNmChannelType
inm_channel, inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmInit() and requests the user to initially configure the status data given
by the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during system initialization; task level; while interrupts are locked
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

ApplInmNmBusOffUserReInit()
Prototype
Single channel void ApplInmNmBusOffUserReInit (inmNmConditionType

*condition)

Multi channel void ApplInmNmBusOffUserReInit (inmNmChannelType
inm_channel, inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmReInit() and requests the user to configure the status data given by
the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during re-initialization; typically on task level
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

49 / 55

TechnicalReference Nm_IndOsek

8.3.5 Generic Supervision
ApplInmNmStatusIndicationGeneric()

Prototype
Single channel void ApplInmNmStatusIndicationGeneric (inmNmStatusType

status)

Multi channel void ApplInmNmStatusIndicationGeneric (inmNmChannelType
inm_channel, inmNmStatusType status)

Parameter
inm_channel
status

Handle of the NM-internal channel. Range: 0…max(NM channels)
status of the TX supervision

 INM_OK
 INM_FAILURE
 INM_CONFIRMED_FAILURE
 INM_SPV_ACTIVE

Return code

Functional Description
This callback is executed when the status of the channel-specific Generic supervision changes, i.e. when a
call of InmNmGenericOk() or InmNmGenericTimeOut() leads to a change of the supervision state.
This callback is also executed during system initialization and re-initialization.
The new status is contained in the parameter <status>.
Particularities and Limitations

 Call context: maybe in IR context, depending on the call context of InmNmGenericOk() and
InmNmGenericTimeOut()

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

50 / 55

TechnicalReference Nm_IndOsek

ApplInmNmGenericUserInit()
Prototype
Single channel void ApplInmNmGenericUserInit (inmNmConditionType

*condition)

Multi channel void ApplInmNmGenericUserInit (inmNmChannelType
inm_channel, inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmInit() and requests the user to initially configure the status data given
by the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during system initialization; task level; while interrupts are locked
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

ApplInmNmGenericUserReInit()
Prototype
Single channel void ApplInmNmGenericUserReInit (inmNmConditionType

*condition)

Multi channel void ApplInmNmGenericUserReInit (inmNmChannelType
inm_channel, inmNmConditionType *condition)

Parameter
inm_channel
*condition

Handle of the NM-internal channel. Range: 0…max(NM channels)
pointer to the status data

Return code

Functional Description
This callback is executed within InmNmReInit() and requests the user to configure the status data given by
the pointer. It is up to the application to set the supervision counter and the supervision status.
This callback is meant to configure the supervision state with values that are e.g. stored in non-volatile
memory.
Particularities and Limitations

 Call context: during re-initialization; typically on task level
 This callback is only necessary if the user-specific initialization is enabled (see chapter “5

Configuration”).

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

51 / 55

TechnicalReference Nm_IndOsek

8.4 Other Interfaces

8.4.1 Version Information
The version of the source code of the component Nm_IndOsek is stored in three BCD-
coded constants within the NM source file:
V_MEMROM0 V_MEMROM1 vuint8 V_MEMROM2 kNmMainVersion =
 (vuint8)(NM_INDOSEK_VERSION >> 8);
V_MEMROM0 V_MEMROM1 vuint8 V_MEMROM2 kNmSubVersion =
 (vuint8)(NM_INDOSEK_VERSION & 0xFF);
V_MEMROM0 V_MEMROM1 vuint8 V_MEMROM2 kNmReleaseVersion =
 (vuint8)(NM_INDOSEK_RELEASE_VERSION);

Example - Version 1.24.03 is registered as:
kNmMainVersion = 0x01;
kNmSubVersion = 0x24;
kNmReleaseVersion = 0x03;

This information can be accessed by the application at any time.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

52 / 55

TechnicalReference Nm_IndOsek

9 Working with the Code

9.1 Version Information
The version information and the version changes of the NM component are listed in the
history section at the beginning of the header and source code files.

9.2 Application Interface
The application uses the API of the NM. The necessary interfaces can be looked up in the
NM header file. This file contains

 pre-processor definitions

 type definitions

 prototypes for API functions

 prototypes for necessary callback function

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

53 / 55

TechnicalReference Nm_IndOsek

10 CANdb Attributes

The configuration tool needs additional information to handle the configuration options for
the NM. These information are stored in attributes within the CAN database (DBC-file).
Please refer to the online help system of the CANdb editor to learn how to define and set
these attributes.
An attribute can belong to the database, to a node, to a message or to a signal.
There are different types of attributes: String, Hex, Integer-Values or Enumeration. When
enumerations are used, please take care of the order (e.g. “No”, “Yes”).
The DBC attributes are normally provided by the OEM. The user does not have to change
them.

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

54 / 55

TechnicalReference Nm_IndOsek

Attribute Name Valid for Type Value Description
Manufacturer Database String PSA,

Renault
This attribute defines the OEM.

NmType Database String PSA-
Indirect-
OSEK.
Renault-
Indirect-
OSEK

This attribute defines the OEM-specific type of the
NM.

NmNode

Node

Enumer
ation

“No”,”Yes
”

This attribute defines if the corresponding node uses
the NM (“Yes"”) or not (“No”).

NmStationAddress Node Hex range:
0x00…0x
FF

This attribute defines the station address of the
ECU. The station address has to be unique within
the system.

NmMessage

Message

Enumer
ation

“No”,”Yes
”

This attribute defines the TX message that will be
used for TX supervision.
Note: There may be only one TX message of each
node which has this attribute set to “Yes”.

NmMessage_<nod
e>

Message Enumer
ation

“No”,”Yes
”

This attribute defines the RX message(s) that will be
used for RX supervision by node <node>.
<node> represents the node name of the node of
interest.
This attribute may only be set to “Yes” for messages
that are received by the own node.

GenMsgCycleTime Message Integer 1…2000 This attribute defines the cycle time for the
supervised RX and TX messages.
This value is used for the present detection of the
supervised RX nodes, as well as for the
absent/present detection of the supervised TX
message.
Note: The value range may not be exceeded for
messages that are used for RX or TX supervision.

GenMsgTimeoutTi
me_<node>

Message Integer 1..667 This attribute defines the timeout for the supervised
RX messages.
This value is used for the absent detection of the
supervised RX nodes.

Table 10-1 CANdb attributes

©2008, Vector Informatik GmbH Version: 1.12

based on template version 1.9

55 / 55

	1 Document Information
	1.1 History
	1.2 Reference Documents
	1.3 Abbreviations & Acronyms
	1.4 Naming Convention

	2 Overview
	2.1 Delivery Package
	2.2 Concept

	3 Features
	3.1 General
	3.1.1 Overview
	3.1.2 Control
	3.1.3 Event Notification
	3.1.4 Event Processing
	3.1.5 Status Information

	3.2 RX Supervision
	3.2.1 Overview
	3.2.2 Control
	3.2.3 Event Notification
	3.2.4 Status Information

	3.3 TX Supervision
	3.3.1 Overview
	3.3.2 Control
	3.3.3 Event Notification
	3.3.4 Status Information

	3.4 BusOff Supervision
	3.4.1 Overview
	3.4.2 Control
	3.4.3 Event Notification
	3.4.4 Status Information
	3.4.5 Others

	3.5 Generic Supervision
	3.5.1 Overview
	3.5.2 Control
	3.5.3 Event Notification
	3.5.4 Status Information
	3.5.5 Others

	4 Integration
	4.1 Involved Files
	4.2 Include Structure
	4.3 Necessary Steps to Integrate the NM in Your Project
	4.4 Necessary Steps to Run the NM

	5 Configuration
	6 Integration Hints
	6.1 CANbedded stack
	6.1.1 Vector Station Manager

	6.2 Special use-cases
	6.2.1 Multiple ECUs

	7 Related Files
	7.1 Static Files
	7.2 Dynamic Files

	8 API Description
	8.1 General
	8.1.1 Multi channel usage

	8.2 API
	8.2.1 NM Handler
	8.2.2 RX Supervision
	8.2.3 TX Supervision
	8.2.4 BusOff Supervision
	8.2.5 User-specific Supervision

	8.3 Callbacks
	8.3.1 NM Handler
	8.3.2 RX Supervision
	8.3.3 TX Supervision
	8.3.4 BusOff Supervision
	8.3.5 Generic Supervision

	8.4 Other Interfaces
	8.4.1 Version Information

	9 Working with the Code
	9.1 Version Information
	9.2 Application Interface

	10 CANdb Attributes

