Technical Reference Transport Protocol ISO15765-2 V@CtOf [

Transport Protocol ISO15765-2
Technical Reference

Single/Multiple Connection
Version 3.14.00

Authors Oliver Garnatz, Andreas Pick, Peter Herrmann,
Thomas Dedler

Status Released

©2013, Vector Informatik GmbH Version: 3.14.00 1/177

Technical Reference Transport Protocol ISO15765-2

Document Information

History

m

Rein
Baeuerle

Ebner

Garnatz

Garnatz
Garnatz

Garnatz

Garnatz

Garnatz

Pick / Garnatz

Garnatz
Garnatz

Garnatz
Pick

Pick

©2013, Vector Informatik GmbH

1999-06-22
1999-11-02

2000-07-17

2000-09-19

2001-02-09
2001-05-11

2001-09-14

2002-01.24

2002-06-18

2002-10-16

2002-11-29
2003-01-16

2004-01-13
2004-03-01

2004-05-14

1.42

1.51

2.03

2.07
2.10

2.17

2.27

2.33

2.36

2.37
2.39

2.44
2.52

2.60

Version: 3.14.00

based on template version 5.1.0

vactor”

F|Ie created

Description of connection
specific timing parameters
added

Single connection version
removed; documents only
contains multiple connection
extensions

Adaptation to new
MultiConnection TP

Added new functionality

Update new Generation Tool
versions

General improvement;
Update to version 2.17 of
tpmc.c module

SingleConnection version is
added; Protocol-Overview is
added

Added restrictions for data
consistency

Update: CAN Driver in polling
mode

Added: Fast transmission of
ConsecutiveFrames

Update: Usage of TransmitCF
parameter

General rework

Update:
TpTransmit/CopyToCan/Appl
TpCheckTA

Update: AppITpCopyToCAN

Update: Mixed 29-bit ID
addressing
TpRxGetCanBuffer
TpRxSetBufferOverrun
TpRxGetAddressExtension
TpTxSetAddressExtension

Multiple ECUs example
Restriction on
TpTxStateTask/TpRxStateTas
k

Tx/Rx message buffer

21177

Technical Reference Transport Protocol ISO15765-2

Pick

Pick

Pick

Herrmann

Herrmann

Garnatz

Herrmann

Herrmann
Herrmann

Herrmann
Herrmann

©2013, Vector Informatik GmbH

2004-12-01

2005-04-07

2005-07-14

2005-07-19

2005-08-11

2006-01-13

2006-02-08

2006-03-03
2006-03-23

2006-04-11
2006-07-03

2.68

2.72.00

2.73.00

2.73.00

2.73.00

2.80.00

2.82.00

2.86.00
2.86.00

2.87.00
2.89.00

Version: 3.14.00

vactor’

consistency clarification
Return value of
ApplTpPreCopyCheck
Mixed 11-bit ID addressing
TpTransmit() return values

Added TpCanChannellnit()
Added TpRxSetTransmitID()
Changed
TpRxSetBufferOverrun
Changed
ApplITpTxCopyToCAN
Changes in chapter ‘How to
serve Different

Connections (only
dynamic channels)'.

Added description for GENy
configuration tool
(ESCANO00008734).

Update of API description
(ESCANO00008314).

Feature list added
(ESCANO00008315).
Prototype parameter
corrected (ESCAN00009965)

Added description for multiple
addressing systems.
C++ access to TPMC.

Added description for GENy
configuration

Added new API functions:
TpRxSetWaitCorrectSN,
TpTxSetStrictFlowControlChe
ck

Added new API functions:
TpRxSetTimeoutConfirmation

TpTxSetTimeoutConfirmation,
TpRxSetTimeoutCF,
TpTxSetTimeoutCF

Added deviation to ISO
15765-2

ISO 15765-2 deviations
elaborated

Cleanup (ESCAN15514)

ISO 15765-2 deviations
elaborated

General rework after review
Added WaitFrame handling.

3/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

Herrmann 2007-02-01 2.90.00 Added OEM feature
TP_ENABLE_STRICT DL C
HECK

Herrmann 2007-02-23 2.91.00 Added feature
TP_DISABLE_MF_RECEPTI
ON

Herrmann 2007-03-14 2.92.00 Added ApplFuncTpPrecopy
callback description and
reduced TpRxResetChannel
API usage to indication point
in time or after.

Herrmann 2007-09-20 2.93.00 Completed Multiple ECU
description (see chapter
7.3.1). Added TpRxGet-
AddressingFormat /
AssignedDestination
description.

VERSION 3.xx

Herrmann 2007-10-15 3.00.00 Added description for new
TpClass
“Dispatched<AddressingType>"

Herrmann 2007-11-20 3.01.00 Cosmetics / Syntax

Herrmann 2008-01-14 3.02.00 New API:
TpTxGetTargetAddress

Herrmann 2008-02-12 3.03.00 Minor corrections within API
descriptions

(ApplTpTxErrorIndication,
TpRxGetCanBuffer)

Herrmann 2008-04-17, 3.04.00 Added description for
TP_ENBLE_DYN_CHANNEL_TIM
ING.

Added description for the usage
of extended identifiers for
normal addressing as well at
configuration time as also
dynamically at runtime
(TP_USE_EXT_IDS_FOR_NO
RMAL).

Herrmann 2008-12-10 3.05.00 Added description for
GenMsgDelay attribute in
chapter 3.4.1

Herrmann 2009-01-25 3.07.00 Adapted version number to
ALM package number (3.06.00
skipped)

Herrmann 2009-11-25 3.08.00 Added description for reception
and transmission without flow
control frames for dyn.
(TpRxWithoutFC,
TpTxWithoutFC) and static

2008-07-17

©2013, Vector Informatik GmbH Version: 3.14.00 41177

Technical Reference Transport Protocol ISO15765-2

Herrmann

Heil

Herrmann

Herrmann

Herrmann

Dedler

Dedler

Dedler

Reference Documents

No. Twe

/ISO/TF2/: 1SO FDIS 15765-2; Road vehicles — Diagnostics on CAN — Part 2: Network

[1]

[2]
[3]
[4]

©2013, Vector

layer services;
Date 2004-07-16

2010-01-12

2010-11-08

2011-01-19

2011-04-05

2011-07-11

2011-09-21

2012-04-10

2013-04-30

3.09.00

3.10.00

3.11.00

3.12

3.13

3.13.01

3.14.00

vactor”

(TpTxFlowControl,
TpRxFlowControl

) Tp classes.

Enhanced description for DLC
checks on the Rx side (see
2.4.2.5).

Added API functions for 29-Bit
ext. Id dynamic handling.
Added more flexibility for DLC
checks on the Rx side (see
2.4.2.5)

Moved
TP_MEMORY_MODEL_DATA
from user config file to GENy
ESCANO00051019: Added new
(customer specific) pre-compile
switches:
TP_ENABLE_IGNORE_FC_RE
S_STMIN,
TP_ENABLE_IGNORE_FC_OV
FL (see 3.2.3).
ESCANO00051019: Added
support for the dynamic setting
of 29-bit CAN-IDs (see
4.2.2.31,4.2.2.32, 4.2.3.29,
4.2.3.30).

Added new pre-compile switch:
TP_USE_UNEXPECTED_FC_
CANCELATION (see 3.2.3).
Description of
TpRxGetCanBuffer modified
according to ESCAN00057225
Description for non-standard
flow control handling updated
(3.2.3)

/OSEK-COM/: OSEK/VDX Communication Version 2.1, revision 1 17th June 1998
/CANDrv/: Manual for CAN Driver in used version

ISO15765-2: I1ISO TC 22/SC 3; ISO 15765-2:2003(E); Road vehicles — Diagnostics on
controller area network (CAN) — Part 2: Part 2: Network layer services

Informatik GmbH

Version: 3.14.00

based on template version 5.1.0

5/177

Technical Reference Transport Protocol ISO15765-2 vector [

Q Caution

! We have configured the programs in accordance with your specifications in the
guestionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector's release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

©2013, Vector Informatik GmbH Version: 3.14.00 6/177

Technical Reference Transport Protocol ISO15765-2 vector [

Contents
A | o To LU Yo 1 o] o [P PP PPPPPPPPP 15
1.1 Relation between general component and shipped version capability 15
O = 1o 41 0] 0 1YY 0T L 16
I T Y o] o Y/ = Ui LSRRI 17
1.4 Channel VS. CONNECHION ...uuuiii ettt e ettt a e s e e e e e e eaeateaa e e e eaeaeennnes 17
BT I o1 o] 18
151 SINGIETP ClaSSES......cco oo 18
1.5.2 Static MUIITP CIASSESccoeeeeeeeeeeeeeeeeeeeeeeeeeee e 18
1.5.3 Dynamic MUItITP CIaSSEScuuuuiiiii it e e e aaaees 18
1.5.4 Dispatched MURITP CIaSSESccooeeieeieeeeeeee e 18
1.6 SingleConnection vs. MultipleConNECLiON............cccooiiiiiiiiiiiiiiiee e e 19
L7 FRATUIES ...ttt ettt et e e e e e et a e et aeer e e eraans 19
1.7.1 FEAMUIE LiSt..cciiieeeiiiiiiii e e e et s s e e e e e e ettt e s e e eeeeennnes 19
A N o] T To UL @ AT QYT N 23
D R = (o V1T =T 4 =T o £ PP 23
2.1.1 PrOtOCOI-OVEIVIEW.....cevviiiiiiiiiiiiiiiieiteeeeeeeeeeee ettt ettt e et e e e e e e e e e e e e e e e e e eeeeeeeeees 23
2.1.1.1 Construction of unsegmented MESSAGES...........uuuurrrrrrmmmmmmmmrinnnnriennnnnnnnns 23
2.1.1.2 Construction of segmented MESSAJES.........uuvieeiiieeriieeiiiiiiieee e e eeeerriinn 23
2.1.2 AJAressing MOAEScouuuiiiiiieiiieeeice et e e e e e e e e e e 24
2.1.2.1 NOIMMAI AQUIESSING ...evvvvttetiiiniintiitiiteeieeeeaeseeeesaebseseeeeeesseeeeseeseeeeeeeeeseeennee 25
2.1.2.2 Mixed 11-bit ID ADAreSSINgcccvvuieiiieeeiiieiee e e 25
2.1.2.3 Normal FiXed AAAreSSINguuuuuuuumuummmmuunnnnnnnninnnnnnnennnnennnnennnnneeen. 25
2.1.2.4 Extended AAreSSiNg...........uuuuuuuuuummummuuneienninnnnnnnnnnennenennnnennnnnneers 25
2.1.25 Mixed 29-bit ID ADAreSSiNg.......ccuuuiiiiieeiiiiiiice e 26
2.1.2.6 Structure Of TPCI-BYLEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeseeeeeeeeeeeeenenes 26
P N -1 5510 1 £SS1 o o TR 28
P T = (=Tt = o) 1o o SRR 29
2.4 WOorking DENAVIOIS. ... 30
241 TIMINGS it e e e e e e e e e e e e et e e e e e e e e et a e e e e e e e e ar e aaas 30
P = 4 (o] go (= (=1 1o o PP 31
2.4.2.1 Reception of & SINGIEFIAMEuuuiiiiiiiiiiiiiiiiiiiiiiiiiie e 31
2.4.2.2 Reception of @ FIrStFrameo.ouuiiiiii e 31
2.4.2.3 Reception of a FIOWCONTIOluuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineeeeeeeeeneees 31
2.4.2.4 Reception of a CONSECULIVEFTamME..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenns 32
2.4.25 Observing CAN frame DLC (Data Length Code)cccceeevieiviiiiininnnnnn. 32
2.4.3 BUFTEI CONSISTENCYceiiiiiiiiiiiiiiiiiiiiiiiieeeeeee ettt 33
2.4.4 FUNCHON FE-ENITANCYuuuieiiiiiieeeeeiiiseeeeiis e e et e e s eets e e e e et s e e e eat e e e entnaeeeenanneas 33
A T (== 1 od 1 o o R 34

©2013, Vector Informatik GmbH Version: 3.14.00 71177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

2.5.1 Restrictions to ISO/TF2 SPeCIfiCatiON..........cccvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 34
2.5.2 Limitations of Transport Protocol Implementationccccooeeeeviiiiiiiiiieneeenne, 34
2.5.3 Deviations to ISO/TF2 SPeCIfiCatiON...........ccvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 37
2.5.3.1 Handling of unexpected FlowControl / ConsecutiveFrame frames.......... 37

3 Settings for the MultiTP & SingleTP (multi-based)ccccoooviiiiiiiiiiiii e, 38
3.1 General settings with CANgen / DBKOMgen / GENYccccooovviviiiiiiiieii e, 38
K 700 00 R 1 011 o T PSP 39
3.1.1.1 TranSmISSION tIMING.......uuuuuinuinniiiiiiiiiiie bbb eeneeennees 39
700 e 2 (= Tot =T o) 1o] IR (11211 o TSR 39
3.1.1.3 COMMON TIMING ..ttt 40

1 70t O 0111V @ |1 o] S 40
3.1.2.1 TrANSIMISSION ...ttt ssssnsnnsnnnes 40
3.1.2.2 RECEPUION ... 40
0 I N] o PP 41
3.2 General settings with Generation TOOl GENY............coviiiiiiiieeiiiiecceee e 43
3.2.1 Configuration of Addressing INformation................ceevvveviiiiiiiiiiiiiiiiiiiiiiiiieeee 44
3.2.2 Usage of Far RAM BUfers......cooiiiiici e 44
3.2.3 Non standard handling of Flow Control frames...........ccccccvvviiiiiiiiiiiiiiiiiiienen, 44
3.2.3.1 Reserved STmIiN HANAING.........uuummmiiiiiiiiiiiiiiiiiieeeees 44
3.2.3.2 Ignore Flow Control OVErflOWccoovviiiiiiiiiecccceieee e 45
3.2.3.3 Do not ignore unexpected Flow Control frames........ccccovveevvvvieiiiiiinneeennn, 45
3.2.3.4 USe STMIN Of FC...uuiiiiiiiiiiiiiiiiiii s sesesennennene 45
3.2.35 Analyze first FC ONIYcooiiiiee e 45

3.3 Additional settings via user-configuration file ... 45
3.3.1 DynamiC TiMING APl ..ot 45
3.4 TP classes: SingleTP (multi-based)............oooooiiiii 46
3.4.1 Database ANDULESuiiii e e 46
3.4.2 TP class SingleTP (multi-based): Normal Addressing........cccooeeevvvveviiiieeneennn. 47
3.4.3 TP class SingleTP (multi-based): Extended Addressingcccevvvvvvveeennene. 47
3.4.4 TP class SingleTP (multi-based):Normal Fixed Addressingccceeee... 47
3.4.4.1 Database AttrDULESuuuuiiiiiiiiiiiiiii e a7

3.5 TP classes Static MUIITPooviiiiii e e e e 47
3.5.1 Database AtNDULESceeiiiiiiiiiiiiiiiiieiieeeeeee ettt a7
3.5.2 TP class SPECIfiC SELINGScceiiiiiiiiiiie e 48
3.5.3 Connection specific timing Parameters............cuuvveiiiiiiiiiiiiiiiiieiieieeieeeeeeeeeeeee 48
R 0 S U o o) o L 49
3.6 TP classes DynamiC MUIITPoooooii oo 49
G 0 A o (0] 0 1= 1 1= J PP PP PPPPPPPPP 49
3.6.2 HOOK FUNCLIONS ...t e e e e e e 50
3.6.3 DYNAMIC ODJECIS ..ceviiiiiiiiiiiiiiiiiiiieeeee ettt 50

©2013, Vector Informatik GmbH Version: 3.14.00 81177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.6.4 TP class Dynamic MultiTP: Normal Addressing...........ccuuvviieineeenrieeeiiiiaaneeenn. 51
3.6.4.1 CANANVEN SEIINGS ©.uuiiieeeeieeeei e e e e e e e 51
3.6.5 TP class Dynamic MultiTP: Extended AdAreSSingcccevvveeeeeeeeieeeeeeeeeeeennn. 51
3.6.5.1 TP class SPeCIfiC SELNGS........uuiiiiiieeiiiecce e 51
3.6.5.2 Database AttIDULESuuuuuiiiiiiiiiiiiiiii e 52
3.6.5.3 Multiple Base AQAreSSESuuuuuummmmmmiiiiiiiiiiiiiiiiiiiiiiienn e 52
3.6.6 TP class Dynamic MultiTP: Normal Fixed Addressingcc.cceevveevvvieeneennn, 52
3.6.6.1 Database AtMHDULEScooviiieicie e 52
3.6.7 TP class Dynamic MultiTP: Mixed 29-bit Addressingccevvveveeieeeeeeeeennnn. 53
3.6.8 TP class Dynamic MultiTP: Multiple Addressingcccvveeeereeeerieeiiiiiieee e, 53
3.6.8.1 AdAreSSiNg MOUEuuuummmmmiiniiiiiiiieiii bbb eeneenennnnnnne 53
3.6.8.2 CAN DIIVEI SELHNGSuuuuuuuuiiiiiiiiiiiiiiiiiiieiii b neeeeeennnnnnne 53
3.7 TP class Dispatched MURITPciiii i 55
3.7.1 “Dynamic MultiTP” versus “Dispatched MultiTP” — a short analogy 56
3.7.1.1 Solution based on “Dynamic MUltiTP”:............ccooiiiiiiii e, 56
3.7.1.2 Solution based on “Dispatched MUltiTP”.............ccccoiiiiiiiiiiriee e, 57
3.7.2 Dispatched MUIITP AP.......ooiiiiiiiiiiiiiiiiieiieeeeeeeee e 60
3.7.21 RECEPLON SIUB....cuviiiii i 60
T I - 1 0 1= 0 01 £ T = (o [TR 61
AP e 63
4.1 Use of ISO15765-Transport ProtoCoL.............cccuvviviiiiiiiiiiiiiiiiiieeeee 63
4.2 Functions of the Transport ProtoCol..........ccoooieiiiiiiiiiiiiii e 63
4.2.1 AdMINISrative FUNCLIONSuiuiiiiiiiiiiiiiiiiiiiiiiieiiiieiieeeeeeneeeeeeeeeeeeeeneenneennnnnnes 64
4.2.1.1 TpInitPowerOn: INItIaliZationuuuiimiiiiiiiiiees 64
4.2.1.2 Tplnit: Re-iNitializationcoeiiiiiiiiccc e 65
4.2.1.3 TpTask: Observing timing CONditiONSuuuummmiiiiiiiiiiiiiiiiiiiiiiiiienns 65
4.2.1.4 TpCanChannellnit: CAN channel specifiic re-initialization....................... 66
4.2.1.5 TpRxTask: time base for reception timeouts............ccccceeeieeeeiiiiiiieeee e, 67
4.2.1.6 TpTxTask: time base for timeouts/transSMiSSIONeuvueeeeeeeenennnnns 68
4.2.1.7 TpRxStateTask: optional transMiSSION Fetry............cccccuuveevmmmeimmmmeieeninnnnns 69
4.2.1.8 TpRxAllStateTask: optional transmission retry........ccccceeeveeeeieieiiiieeeeeeennn, 69
4.2.1.9 TpTxStateTask: optional transSMISSION retryeeevevemmmimimmmeienenennnnns 70
4.2.1.10 TpTxAllStateTask: optional transmission retrycccceeeeeeeeeivieiiiceeeeeeenen, 71
N S (= Tot =Y 0 o 1o o 72
4.2.2.1 TpRxSetConnectionNumber: Assign a Connection-Number to a

(o3 0= T 1= SRR 72

4.2.2.2 TpRxGetConnectionNumber: Get the Corresponding Connection-
N0 4] = SR 72
4.2.2.3 TpRxGetAddressingFormat: Get the current addressing type................ 73

4.2.2.4 TpRxGetAssignedDestination: Get the currently assigned destination .. 74

©2013, Vector Informatik GmbH Version: 3.14.00 9/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

4225 TpRxResetChannel: Free Rx-TpChannel.........ccccccoiiiiiiiiiiiiiiiicieee e 75
4.2.2.6 TpRxGetStatus: Rx-Channel Statuscccooeeeviiiiiiiiiiiii e, 76
4.2.2.7 TpRxSetBS: Setting up BlockSize on Reception Sideccccvvvvnnnnnne 77
4.2.2.8 TpRxGetBS: Get BlockSize on Reception Sidecccoeeveevvivieiiiiiieneeennn, 78
4.2.2.9 TpRxSetSTMIN: Setting up STMin time on Reception Side.................... 78
4.2.2.10 TpRxGetSTMIN: Get STMin time on Reception Side..............cccccvvvvennnnne 79
4.2.2.11 TpRxGetChannellD: Get Received CAN-Idccoiiiiiiiieiiiiiiiieee e, 80
4.2.2.12 TpRxGetChannelExtID: Get Received Extended CAN-Id 81
4.2.2.13 TpRxGetCanChannel: Get physical CAN channel...............ccccccciiiinnnne 81
4.2.2.14 TpRxGetSourceAddress: Get received Source Address..........cccceeeennne... 82
4.2.2.15 TpRxGetReceivedTargetAddress: Get received Target Address............. 83
4.2.2.16 TpRxGetEcuNumber: Get ECU NUMDET............uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 84
4.2.2.17 TpRxGetParameterGroupldentification: Get Identification of PGN.......... 84
4.2.2.18 TpRxSetBufferOverrun: Enable partial acceptance..............cccccvvvvennnnne 85
4.2.2.19 TpRxSetTransmitlD: Set transmission CAN-Id..........ccccooeviiiiiiiiiennneenn. 86
4.2.2.20 TpRxSetTransmitExtID: Set transmission Extended CAN-Id................. 87
4.2.2.21 TpRxGetChannellDType: Get the type of the received CAN-Id............. 88
4.2.2.22 TpRxGetAddressExtension: Get address extension information............ 88
4.2.2.23 TpRxGetCanBuffer: Get CAN buffer pointerccccccoviviiiiiiiiiiennnne 89
4.2.2.24 TpRxSetWaitCorrectSN: Force to wait for a correct sequence
T o= 90
4.2.2.25 TpRxSetTimeoutConfirmation: Set CAN confirmation timeout............... 91
4.2.2.26 TpRxSetTimeoutCF: Set Consecutive Frame confirmation timeout 92
4.2.2.27 TpRxSetFCStatus: set up Flow Control on reception side 92
4.2.2.28 TpRxGetFCStatus: get the Flow Control setup on reception side........... 93
4.2.2.29 TpRxSetClearToSend: proceed with the transmission after FC wait
FrAMES e 94
4.2.2.30 TpRxWithoutFC: suppress FC frame usage at the Rx side.................... 95
4.2.2.31 TpRxSetPGN: Set Parameter Group NUMDbErccccuvviviiiiiiiiiiiiiiiinns 96
4.2.2.32 TpRxSetPriorityBits: Set Priority, Data Page and Reserved bits 97
4.2.3 TranSmMit FUNCHONS.......uuiii e e e e e e e 98
4.2.3.1 TpTxGetFreeChannel: Assign Channel to Connectioncc.......... 98
4.2.3.2 TpTxGetConnectionNumber: Get the assigned Connection-Number...... 99
4.2.3.3 TpTxGetConnectionStatus: Get the Connection Status................ccc...e... 99
4.2.3.4 TpTxGetTargetAddress: Get the target address used for transmission 100
4.2.3.5 TpTxGetDataBuffer: Get the assigned Data Buffer..............cccccvvvvennnnns 101
4.2.3.6 TpTxGetDatalndex: Get the assigned Data INndeXccccuvvvvvernnnnns 102
4.2.3.7 TpTxSetChannellD: Set the CAN Transmit Id...........cccooveeiiiiiiiiiinnneenn. 102
4.2.3.8 TpTxSetChannelExtID: Set the CAN Transmit Extended Id................. 103
4.2.3.9 TpTxSetCanChannel: Set physical CAN Channelcccccciienneeen. 104
4.2.3.10 TpTxSetTargetAddress: Set Target ADAressoeeeeeiiieeiiieeiiiiiieneeeenn. 105

©2013, Vector Informatik GmbH Version: 3.14.00 10/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

4.2.3.11 TpTxSetEcuNumber: Set ECU Number............cccccoiiiiiiiiiiiiiiiiiiiiiis 106
4.2.3.12 TpTxSetBaseAddress: Set Base AAAress.........coovvvvieeiieeeeiveviiiiieeee e, 106
4.2.3.13 TpTxSetParameterGroupldentification: Set Identification of PGN......... 107
4.2.3.14 TpTxSetPriority: Set Priority of the CAN-Frame..............cccvvvvvvieeennee, 108
4.2.3.15 TpTxSetResponse: Assemble a RESPONSE...........cevvveeiiieeriiiiiiiiiiieeeea, 109
4.2.3.16 TpTransmit: SENd 8 MESSAJE........uuuuummmumiiiiiiiiiiiiiiiiiiiiii e 110
4.2.3.17 TpTxLockChannel: Lock Channel............cccoooiiiiiiiiiiiiie e, 111
4.2.3.18 TpTxUnlockChannel: Unlock TX Channel.............cccccooiiiiiiiiiniiiiiininns 111
4.2.3.19 TpTxResetChannel: Free TX-Channel............ccccccooiiiiiiiiiiiiiiiiiiiiiiinens 112
4.2.3.20 TpTxSetAddressExtension: Set Address Extension information 113
4.2.3.21 TpTxGetSTminInFrame: Get STmin from FC frameccccccvnnnns 114
4.2.3.22 TpTxPrepareSendimmediate: Prepare CF transmission by
APPICALION .. 115
4.2.3.23 TpTxSendimmediate: Start CF transmission by application................ 115
4.2.3.24 TpTxSetAddressingFormat: Store the current addressing type............ 116
4.2.3.25 TpTxSetStrictFlowControl: Enable/Disable ISO conformant FC
NANAIING . 117
4.2.3.26 TpTxSetTimeoutConfirmation: Set the CAN confirmation timeout........ 118
4.2.3.27 TpTxSetTimeoutFC: Set the FC confirmation timeout.......................... 119
4.2.3.28 TpTxWithoutFC: suppress FC frame usage at the Tx side................... 120
4.2.3.29 TpTxSetPGN: Set Parameter Group NUMDbET.............uuvuviiiiiiiiiiiiiiiiinns 121
4.2.3.30 TpTxSetPriorityBits: Set Priority, Data Page and Reserved bits............ 122
4.3 Dispatched Multi TP ClasSS APccooiiiiiiiiiiiiii 123
4.3.1 TpGetConnectionGroup: Get the connection group identification................ 123
4.3.2 TpGetAddressingType: Get the addressing type identification.................... 124
4.3.3 TpGetCanChannel: Getthe CAN channel............ccccoiviiiiiiiiiiiiiiiiiiiiiiiiene 125
4.3.4 TpGetRxld: Getthe received CAN-IAeieiiiiiiiiiiiic e, 126
435 TpGetTxld: Getthe CAN-Id to be used for transmission............cccccceeeeennn.. 126
4.3.6 TpGetBaseAddress: Getthe Base ADAressS........ccvvvvvviiiiiiiieevceeiiiiene e, 127
4.3.7 TpGetAddressOffest: Get the Address Offset..........cocuvieiiiiiiiiiiiiiiiiieneee, 128
4.3.8 TpGetPriority: Get the priority info from a 29 bit CAN-Id.............ccvveeerrennn. 129
4.3.9 TpGetPGN: Getthe parameter group identification from a 29 bit CAN-Id... 129
4.3.10 TpGetEcuNumber: Getthe ECU NUMDErccooiiiiiiiiiiiiiiiei e, 130
4.3 11 TPTEANSITHE ...ttt 131
4.3.11.1 TpTransmit connection SPECIfic MACIOS..........cccevvviiiiiiiieeeeiieee e, 131
4.3.11.2 TpTransmitNormal: transmit function for normal addressing................ 131
4.3.11.3 TpTransmitExtended: transmit function for extended addressing......... 132
4.3.11.4 TpTransmitNormalFixed: transmit function for NormalFixed
= o [0 | (=117 Vo 133
4.3.11.5 TpTransmitMixed29: transmit function for Mixed-29 addressing 134
4.3.11.6 TpTransmitMixed29: transmit function for Mixed-29 addressing 135

©2013, Vector Informatik GmbH Version: 3.14.00 11/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

4.3.11.7 TpTransmitMixed1l: transmit function for Mixed-11 addressing........... 136
4.4 Application callback fUNCHONS...........ooouiiiiii e 137
441 RECEPUON SIAC ...uuiiiiiiiiiiiiiiiiiiiiieiiteeeie bbb eesnnbnsenennennnes 137
4.4.1.1 ApplTpPrecopyCheck: Reception of TP-Framecceevvvvvvieeneeennn. 137
4.4.1.2 ApplTpCheckTA: Check if Target Address is valid (version <=
2.72.00) e 139
4.4.1.3 ApplTpCheckTA: Check if Target Address is valid (since version
2.73.00) e 140
4.4.1.4 ApplTpRxSF: Reception of Single Frameccccccuviviiiiiiiiiiiiinnnnns 141
4415 ApplTpRxFF: Reception of First Frameccccccooiiiiiiiiiiiiiiiiiiiiiinnns 142
4.4.1.6 ApplTpRXCF: Reception of Consecutive Framecccccevvvvvneeeeennnn. 142
4.4.1.7 ApplTpRxCanMessageReceived: Reception of CAN-Frame 143
4.4.1.8 ApplTpRxGetBuffer: Assign a buffer to a channel............................... 144
4.4.1.9 ApplTpRxCopyFromCAN: Application Copy Function......................... 145
4.4.1.10 ApplTpRxIndication: Reception closed successful.............cccccuuvrrnnnnns 146
4.4.1.11 ApplTpRxErrorindication: Reception closed with error........................ 147
4.4.1.12 AppITpRxGetTxID: Get CAN Transmit Id...............uevummmimiiiiiiiiiiiiiiininnns 148
4.4.2 Reception side for functional MESSAgESuuuuuurriiiiimmiiiiiiiiiiiiiiiiiiiiiiiinnes 149
4.4.2.1 ApplFuncTpPrecopy: Check if Target Address is valid......................... 149
4.4.3 TranSMISSION SIAEuuuiiii i e e e e e e e e e aes 150
4.43.1 ApplTpTXFC: Reception of a Flow Control Frameccccccvvennnns 150
4.4.3.2 ApplTpTxCanMessageTransmitted: CAN-Message transmitted 151
4.43.3 ApplTpTxNotification: CAN-Frame transmittedcccccuvvvvnninnnnnns 151
4.43.4 ApplTpTxCopyToCAN: Application Copy Function (>16BIT
(070] 0111011 1=1 o) PRSPPI 152
4435 ApplTpTxCopyToCAN: Application Copy Function (8BIT Controller)... 153
4.43.6 ApplTpTxConfirmation: Transmission closed successful 155
4.4.3.7 ApplTpTxErrorindication: Transmission closed with error 156
4.4.4 Administrative FUNCHONSooviiiiiiii e e e 157
4.4.4.1 ApplTpFatalError: Fatal EITOrccoovvviiiiiie e 157
5 Transmission Attributes & Callback fUNCLIONS...........uuuiiiiiiiiiiiiiiieees 159
6 Integration of CANbedded Components into a Customer Project.............ccuvvvnnnn. 160
6.1 Requirements to the Customer System Environmentccccceveeeeieeeeneeeiiinnnnnn. 160
6.2 Component Integration to the Customer Project.........cccceevveeeiiiiiiiiiiee e, 160
6.2.1 Requirements to the Component Initialization in a Customer Project 160
6.2.2 Requirements to Component APl Usage in a Customer Project.................. 161
6.2.3 Requirements to the Customer Project Operating Systemcccccueenn.. 161
6.2.3.1 COMMON REQUINEMENTS.uuuutiiriiiiiiiiiiiniiiieiiineaeenaeesnnenennneeenenneseaeeeeenne 161
6.2.3.2 Round-Robin-Scheduler and Comparable OS Approaches 162
6.2.3.3 Usage Of OSEK/OS........cuuuuuiuiiiieiiuineiennnneneennnneneennnnnnnnnennneennnnnnnnnnnnnnnne 162

©2013, Vector Informatik GmbH Version: 3.14.00 12 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

6.2.3.4 Non-Preemptive Operating SYSEeMuuuurimmiimmimiiiiiiiiiiiiiiiiiniiiniienens 163

6.2.3.5 Preemptive Operating SYStEMccccieeiiiiiiiiiiiiii e 163

T AQVANCEU USBQGE. ... uuuuiiiiiiiiiiiiiiiiteitteet bbb sesn s nnnnnnes 164
7.1 Separation of TimerTask and TransmissionTask (StateTask)cccceeeeeeeeeenn. 164
7.2 Fast transmission of CONSECUtIVEFIaMES...........cooviiiiiiiiiiie e 164
0 A U LT Vo | PSP 165
7.2.2 Application eXampleoiiiiiiii e 165

7.3 Normal FiXxed AAreSSiNgccooieiiiieieeeeee e 166
7.3. 1 MURIPIE ECUS...cciiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeetee ettt 166
7.3.1.1 Using the CANgen configuration tO0l................uueruiieiiiiiimiiiiiiiiiiiiiiiienens 166

7.3.1.2 Using the GENy configuration t0O0l..................uuueiimimimiimiiiiiiiiiiiiiiiiiiienens 167

7.4 Extended- and Normal Fixed AAdreSSIiNgcccoeeeviiiiiiiiiiiiie e 168
7.4.1 Virtual ECU’s / ‘Multiple EcuNumber’ feature.............cccevvvviviiiini e, 168

7.5 Using different CAN-IAeNtifiersccooiiiiiiiiiiii e 169
7.5.1 Statically configured CAN-IAS.........couuiiiiii i 169
7.5.2 Dynamically configured CAN-IOScoovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 169
7.5.3 Additional API fUNCHONS........cciiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 169

7.6 Transmissions without FIow Control framesoeeviieiiiieeeireeciee e 170

8 EXAMPIE fOr the USEI .. e et e e e e e e eeaae s 171
S T R Ao 0] 1S = LAY U 7= o = U 171
8.2 Howto Transmit @ TP-Frame? ... 171
8.2.1 Static Normal AddreSSiNgcooiiiiiiiiiiiie e 171

8.2.2 DYNamMIC AQUIESSING ...eeeiiiiiiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt eeeees 171

8.3 Howto Receive a TP-Frame.......ccoooiiiiiiiiiici e 172
8.4 How to Send a Response on a Received Transport-Frame.............c..ooooovvviviinnnnn. 172
8.5 How to serve Different Connections (only dynamic channels)cccoeeeee. 173
8.5.1 How to serve the diagnostic CONNECLIONcccceeiiieiiiiiiiiiic e, 173

8.6 How to Lock a Tx-Channel and Why? (only dynamic channels) 175
8.7 How to transmit a ConsecutiveFrame as quick as possibleccooeee. 176

1S I 0] o} = o ST P TR TOPPPPTRP 177

©2013, Vector Informatik GmbH Version: 3.14.00 13/177

Technical Reference Transport Protocol ISO15765-2

llustrations

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11

Figure 3-12

Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

Figure 5-1

Tables

Table 1-1
Table 1-2
Table 1-3
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 3-1
Table 3-2

©2013, Vector Informatik GmbH

SingleConnection vs. MultipleConNeCtioNuuveeiiiiiiiiiiiiiiiiiiiiiiienes 19
Example of unsegmented MeSSage..........uuvviiiiiiieiiiiiiiiiiin et 23
Construction of segmented MESSAJE.........uuuuuurrummiriiiiiiiiiiiiiiiiiieinneieeeeeeaes 24
TransmisSioN ArCHItECIUIEii i e e eaeees 28
Reception ArChitECIUIE........ccoveiiie e 29
TransmIsSION tIMINGS.ouviiiiii e e e e e e eeaaenes 30
SiNGle Frame TPCI e 31
S A =T 0 L= I O 31
(01N =T T I O PR 31
Consecutive Frame TPCl. ... 32
Accumulation of events during CAN Driver polling.........ccccccvvvvvviviiininnnnnn. 35
General settings in Generation TOOISccoeviiiiiiiiiiiiiee e, 38
Timing settings in Generation TOOISccooiieeiiiiiiiiiiee e 39
Flow control settings in Generation TOOIS..............uuuuiiriiiiiiiiiiiiiiiiiiieiees 40
Misc. settings in Generation TOOIScviiiiii i, 41
Main window of component TPMC within configuration tool GENy............ 43
Main window of component TPMC within configuration tool GENYy............ 44
Database Attributes for Single/Static TP classes........ccccevvvieevivieiiiiiinneeennn, 46
Additional TP settings (Static MultiTP) in Generation Tool......................... 48
Connection specific timing Parametersuuuuuuiimmmmiimeeiiiiiiiiieee. 48
Hook-Functions (Static MUILITP)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeenennnes 49
Mandatory functions for the usage of the CANdesc diagnostic

(od0] 1 0] 0T = o | PP 50
Optional functions (example for the usage of the CANdesc diagnostic
(070141 0 o] a1=T 01§ USSP 50
Misc (Extended AAAreSSiNg)cuvueeeieeeeiiiiiiiee e 51
Database attributes for ‘Normal Fixed Addressing’..............euvvvvviiiiiniinnnnns 52
Addressing mode (Multiple ADdressing).........cccuvvvivviiiiiiiiiiiiiiiiiiiiieeeeeeeee 53
Dedicated call of Precopy functions in TPMC by the driver. 54
Dedicated call of application callback functions in TPMC by the internal
AISPALICNET. ... 55
Transmission attributes and callback functions..............cccoeeeeeeeeeeeeeeeee. 159
[N F=Tp T @] 0177 1[0 LS 16
ADDIEVIALIONS ... 17
LSS LU= I LS 22
AdAressiNg MOUEScooiiiiiee e e e e aanans 24
Frame size on normal addreSSing..............ueeueeeiiiiiimmiiiiiiiiiiiiiiiiieiinineie. 25
CAN ID normal fixed addreSSing............uuuuuuuummmmmmmiiniiiiiiiiiiiiiiiiieeianeninnnene 25
Frame size extended addreSSiNgccoeeeeviiiiiiiiiiiieeeeeeeee e 26
Frame size extended addreSSiNgcc.ooeeviiiiiiiiiiiii e 26
Structure of TPCI-DYLESuuiiiiiiiiiiiiiiiii e 27
FrAIMES <. ettt eeeans 27
TranSMISSION tIMINGSuiiieeeii e e e 30
CAN frameE DLC ..o e e e e e e e 32
Usage of TpTxIndex database attributeccccooevviiiiiiiiii i, 47
Data Base AMINDULES ... 52

Version: 3.14.00

vactor’

file://vistrfs1/user/Tmp/Dth/TpTechRef/TechnicalReference_TransportProtocolMultiConnection_mna.docm%23_Toc355083615
file://vistrfs1/user/Tmp/Dth/TpTechRef/TechnicalReference_TransportProtocolMultiConnection_mna.docm%23_Toc355083616

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

1 Introduction

1.1 Relation between general component and shipped version capability

We have configured the programs in accordance with your specifications in the
guestionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector's release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

This implementation and this user manual are based on the documents, listed above.

It is important to know the documents above-mentioned for a better understanding
and the use of this manual.

/OSEK-COM/ defines different kinds of transmissions. One of them is the USDT (Unack-
nowledged Unsegmented Data Transfer). It is standardized together with ISO/TC22/SC3
,Diagnostics on CAN". The result of this standardization is the ISO Spezification15765-2.

The presented Vector-Implementation is based on the harmonized specification between
OSEK-COM and ISO. The implementation is suitable for diagnostic purposes (KWP2000)
as well as for ,long“ messages in ,normal“ use.

Task of the transport layer is to transmit messages, which might be longer than a CAN-
message. If messages do not fit into a CAN-message, they will be segmented by the
transport protocol to be transmitted.

Today the ISO/TF2-transport protocol is mainly used for diagnosis applications in motor
vehicle. Most of all KWP2000 is used as a diagnosis protocol.

The introduction is followed by a brief overview of the architecture in the third chapter. On
one side the most important points of the specification can be seen there (see also
/ISO/TF2 and /OSEK-COMY/) and on the other side this explains the main ideas of this
implementation.

The fourth chapter presents how to set up the transport protocol in the “Generation Tool”.
The fifth chapter contains a description of user interfaces of implementation.
Transmission attributes and callback functions are presented in a table in chapter 5.
Rules to integrate CANbedded modules in customer projects are content of chapter 5, 6.
Chapter 7 is introducing a more advanced usage of the TP.

The last chapter contains an example for the user.

©2013, Vector Informatik GmbH Version: 3.14.00 15/177

Technical Reference Transport Protocol ISO15765-2 vecktor [

1.2 Name Conventions
The prefix of a function name determines the module to which it belongs.

Prefix Remark

ApplTp... |These functions must be defined within the customer’s application and were called
by the Transport Layer module. The modules, which use functions of the Transport
Layer, are always called application in this manual.

ApplTpRx | Hook-Functions which belong to the “reception part” of the TP.

ApplTpTx |Hook-Functions which belong to the “transmission part” of the TP.

Can... Functions belong to the CAN-Driver.
TpRx... Functions belong to the “reception part” of the Transport Layer.
TpTx.. Functions belong to the “transmission part” of the Transport Layer.

Table 1-1 Name Conventions

©2013, Vector Informatik GmbH Version: 3.14.00 16/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vecktor [

1.3 Abbreviations
List of abbreviations in use:

Address Extension

Address Information

Acknowledge

Acknowledge Request

Acknowledged Segmented Data Transfer
Block Size

Consecutive Frame

Clear To Send

Data Length

Flow Control

First Frame

Flow Status Control

Identifier

Single Frame

Sequence Number

Separation Time

Target Address

Transport Protocol

Transport Protocol Control Information
Unacknowledged Segmented Data Transfer
Unacknowledged Unsegmented Data Transfer
Wait

extended Data Length

Table 1-2 Abbreviations

1.4 Channel vs. Connection

A (transport) channel is the physical part of the communication link, containing the
reception-/transmission mechanism. It can be understood as an instance of TPMC in an
object oriented meaning. Each channel can handle one connection at one point in time.

A connection describes a logical communication link between two ECU'’s. In the
communication matrix it is a fixed assignment between these ECU’s to interchange data
(e.g. the diagnostic request and response message between the Tester and an ECU).

A connection includes all necessary communication parameters for the used addressing
mode (e.g. CAN-channel, CAN-IDs, Source-and Target Addresses, Base-Addresses, etc).

©2013, Vector Informatik GmbH Version: 3.14.00 17/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

1.5 TP classes

1.5.1 SingleTP classes

In a Single TP class only one connection is possible, which is using the only available
TpChannel.

1.5.2 Static MultiTP classes

While using Static TP classes every connection is fixed assigned to a TpChannel.

1.5.3 Dynamic MultiTP classes

The idea of dynamic TP classes is to use the circumstances that not all connections are
used at the same time. Therefore a connection is necessary allocating a TpChannel at run-
time.

1.5.4 Dispatched MultiTP classes

The “Dispatched” MultiTP class was introduced to disburden the application from the
dispatching job.
Using the “Dynamic MultiTP” classes, which support only one single set of callback

functions for all connections together, the dispatching of the actual destination has to be
performed by the application.

Using the “Dispatched MultiTP” classes all of the dispatching work is done within the
TPMC.

“Dispatched MultiTP” is located between static and dynamic TP classes.

Transmission

The new allocated TpChannel has included blank communication parameters only, except
for the connection-handle (tpChannel = TpTxGetFreeChannel (connection)). To
establish the connection it is necessary to assign the connection parameters to the
TpChannel. The TpChannel is always used to refer to the connection (like a handle). Every
callback- or API-function has the tpChannel as a parameter.

Reception

If a Single- or FirstFrames is received the Transport Protocol is searching internally for a
free TpChannel. If a free TpChannel is found a data buffer will be requested by calling
ApplTpRxGetBuffer () from the application. Within this function the application has also
to decide to which connection the received TP frame belongs.

©2013, Vector Informatik GmbH Version: 3.14.00 18 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

1.6 SingleConnection vs. MultipleConnection

The TPMC component has two different operation modes: a SingleConnection and a
MultipleConnection mode. The MultipleConnection mode has the capability to handle
different transmissions and receptions at the same time like ECU 1 in figure 1. If
SingleConnection mode is used only one transmission and one reception (one full-duplex
connection) can be performed at the same time (ECU 3 and ECU 4). A typical usage for
the SingleConnection mode is a diagnostic connection.

The SingleConnection mode needs lower resources (ROM and runtime), than the
MultipleConnection mode.

ECU 2 ECU 4

%/

o

Con 1 —
Con 1—>
Con 2wl

ECU1 Con 4 P ECU3

on 4

Figure 1-1 SingleConnection vs. MultipleConnection

1.7 Features

The main focus while the development of the Transport Layer is an easy to handle and
flexible application interface.

> Therefore the buffer handling should be done by the application itself. This is more
flexible than a static buffer handling internally by the Transport Layer.

> Each accepted order to the TP will be acknowledged only once — positive or
negative.

> Full-duplex capability - every reception is independent from every transmission and
the other way round.

> The static MultipleConnection TP supports connection-specific callback functions.
> SingleConnection mode with lower resource demands.

> Full ISO compliance

> Non-ISO extensions like ‘zero-padding’; ‘connections without FlowControls’

> Multiple addressing mode support (Normal- and Extended Addressing at the same
time in the same ECU)

1.7.1 Feature List
Not any version of TPMC offers any mentioned feature

©2013, Vector Informatik GmbH Version: 3.14.00 19/177

Technical Reference Transport Protocol ISO15765-2 vecktor [

Feature Short Description

~—~
=
(@]
~
c
©)
~—
=
>
@
Y—
Q
(@]

Availability

General Features

Normal Addressing Liz 11bit CAN ID Addressing, CAN ID identifies TP -
message

Extended Addressing Liz 11bit CAN ID Addressing, Source Address in CAN ID -
and Target Address in first data byte

Normal Fixed Liz 29bit CAN ID Addressing, Source and Target Address in |-

Addressing CAN ID

Mixed 11bit CAN ID Liz 11bit CAN ID Addressing, CAN ID identifies TP -

Addressing message, first data byte used for AddressExtension 2>
Gateway

Mixed 29bit CAN ID Liz 29bit CAN ID Addressing, Source and Target Address in |-

Addressing CAN ID, first data byte used for AddressExtension >
Gateway

Multiple Addressing Liz Combination of former mentioned addressing types -

Static channel Assignment between channel and connection is fixed at

assignment compile time.

Advantage in opposite to dynamic assignment is better
efficiency (code + runtime)

Dynamic channel Flexible pool of channels, which can be assigned to
assignment connections at runtime. If no channel is free the request
is rejected. Nr of channels can be <= connections.
(Time division multiplexing)

C++ access to TPMC C++ applications can access TPMC. Header declared
as extern C.
Additional OBD Additional receive path to handle OBD requests at any
reception capability time, independent to allocated channel resources.
Receiving Features
Extended APl STmin Enables functions to set and get the STmin value fora | Off
TpChannel.
Extended API Enables functions to set and get the BS value for a Off
BlockSize TpChannel.
Precopy check / Check Forwards CAN Driver Precopy callback from TPMC to | Off
TA function application. Used for special purposes.
Check Target Address | Mixed29, | Forwards CAN Driver Precopy callback from TPMC to Off
former called: Normal application. Parameter TargetAddress is evaluated by
Application Precopy Fixed application. Return value OxFF rejects reception.
Channel specific timing | Static Assigns individual timing values to each channel. Off
TPMC
©2013, Vector Informatik GmbH Version: 3.14.00 20/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2

Custom Rx Memcopy TP calls AppITpRxCopyFromCAN callback function to | Off
enable the application copying the CAN frame data
itself.

Rx Channel without FC | Multi No FC used in transport protocol communication. Off

TPMC
Fast Precopy Extended | Target Address is not evaluated when receiving a TP Off
, frame.
Mixed?29,
Normal
Fixed

Transmission of FC in The FC is sending in CAN RX IRQ forced from FF and | On

ISR last CF out of a block.

Fix Rx DLC Check Check compares actual DLC with expected frame Off
length (CAN: 8).

Variable Rx DLC Check Check compares actual DLC with minimum expected On
frame length. Check is TPMC frame type depending.

Functional FC Wait Non ISO feature: A functional FC with flow status wait is | Off
supported to reload with functional addressing the
timeout timer awaiting physical FC.

Strict length check If variable Rx Dlc is enabled then the minimum byte Off
count is checked. If more bytes than announced in the
PCI byte (SF and last CF) are received then the frame
is accepted nevertheless. When the strict length check
feature is enabled (#define
TP_ENABLE_STRICT_DL_CHECK) then all frames which do
not exactly match the PCI-DL value are ignored.

Suppress Multi - frame For some applications, which use only Single Frames | Off

reception on the Rx side, the reception of Multi Frames can be
disabled by setting the TP_DISABLE_MF_RECEPTION
switch via a user configuration file.

The benefit is the smaller resource consumption. The
remaining Single Frame reception is unaffected.

Transmission

Features

Use STmin of FC The STmin value is used from the FC. Off
See also TxTransmitCF.

Analyze first FC only Only first FC values are analyzed to set STmin and Off
BlockSize.

Custom TX Memcopy TP calls AppITpTxCopyToCAN callback function to Off
enable the application copying the TX data to the CAN
frame.

TX Channel without FC | Multi Transmission without waiting for a FC. In dynamic TP Off

TPMC classes this feature can be activated for each channel.

Fast TX Transmission Enables the application to send TP frames in cycle time | Off
faster than TpTxTask() cycle time.

Transmission of FC in Directly response with FC in IRQ context of received FF | On

ISR or CF.

Variable DLC Off

The DLC is adapted for SF, FC and last CF as indicated
by addressing type and data amount.

©2013, Vector Informatik GmbH

Version: 3.14.00

vactor”

Technical Reference Transport Protocol ISO15765-2

vactor’

Ignore FC content FC is required for proceeding but standard values are Off
used instead of received ones.
TX Handle Changeable The used CAN Driver handle can be changed while Off
runtime — has to be used with special care
No STmin after FC No STmin time is kept after receiving a FC before Off
sending next CF.
TX min timer If the database attribute ‘GenMsgDelayTime’ has a Off
value unequal to zero, the TP observes this minimum
time between two transmissions.
Special Features
Gateway API Extended API to support Gateway requirements (TP
message routing)
Multiple ECU NR Source- and TargetAddress can be modified while
runtime
Multiple ECU Optimized support for physical multiple ECU
configurations.
Multiple Base Address | Extended | More than one Base Address can be used
BufferOverrun If the request size exceeds the buffer size, this feature | Off
Indication can be used to receive the request anyway, without
copy the CF data.
Queue in ISR Dynamic | The next queued element (if available) will be on
TP- transmitted within TX-ISR.
classes
ISO Compliancy Distinguish between early ISO spec drafts and newer on
ones concerning STmin interpretation, DataLength =0
behavior and CF sequence error treatment.
Frame Padding SF and last CF frame are padded out with a pattern oem
given in the generation tool. , Off
Priority inversion Prevents TPMC to interrupt a multi frame on
protect transmission/reception when transmission and
reception events are in wrong order processed (RX
event with higher priority than Tx event).
See also “2.5.1".
Runtime checks Runtime condition checks off
Strict message flow lllegal FlowControl frames will suspend a running on
check transmission — with same addressing information
Diag Functional CANDes | Capability to handle functional diagnostic requests on
channel ¢ (basic) | within TPMC (only for Vector Diag components e.g.:

CANDesc)

©2013, Vector Informatik GmbH

Table 1-3 Feature List

Version: 3.14.00

221177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

2 Architecture Overview

This chapter describes the basic functionality of the Transport Protocol and its main ideas
applying to the Vector implementation of the Transport Protocol. Particular functions of the
Transport Protocol modules, as well as its configuration are described in later chapters.

The main idea of the Vector implementation is to provide an interface, which is easy in
operation and adequate for most applications. The implementation is quite efficient
regarding ROM and RAM as well as run-time requirements.

2.1 Requirements
This chapter shows basic requirements of the implementation of the Transport Protocol.

2.1.1 Protocol-Overview

The Task of the transport protocol is to transmit messages, which are generally longer than
a CAN message. If a message is very short, it is transmitted unsegmented within TP.

2.1.1.1 Construction of unsegmented messages

Sender Receiver

Datalength = 2, DL=$2; \Sm%\b
AMe(SF)[(pcy
DL=2xx..]

DatalLength = 2
DL=$2

Figure 2-1 Example of unsegmented message

Unsegmented messages are transmitted by a SingleFrame message. SingleFrame
messages can have a length of 7 data bytes at a maximum (normal addressing s.b.)
respectively 6 data bytes (extended addressing, s.b.). There is no Flow-Control (s.b.).

2.1.1.2 Construction of segmented messages

Messages, which do not fit into a SingleFrame are sent by a sequence of single CAN
frames. The receiver is informed of the length of the whole message in the FirstFrame by
the sender. ISO/TF2 defines here a maximum length of 4095 bytes for user data. The
receiver answers with a FlowControl. The receiver gives the BlockSize and the
SeparationTime STmi, to the sender in this FlowControl. The BlockSize controls the
number of ConsecutiveFrames, which might be sent by the sender before waiting for the
receivers’ FlowControl (status). The minimum value of the SeparationTime ST, describes
the minimum sending distance between two ConsecutiveFrames, which can be processed
by the receiver. The sender transmits the maximum BlockSize ConsecutiveFrames after
the reception of the FlowControl. The receiver does not answer it with a FlowControl, if all
data has been transmitted.

©2013, Vector Informatik GmbH Version: 3.14.00 231177

Technical Reference Transport Protocol ISO15765-2 vecktor [

Sender Receiver

Ei
ISt Frame PC’-XDL:$0 DL= Datalength = 36
=924, xx., XDL = $0, DL = $24
DL=$2

Flow Control frame
with impicite
Con j
Secutive Frame PCI.SN:l

- L XX.XX...]
conseattue Consecyi [])

cuive Utive Frame PC|. SN=2 XX,
=<5 XX, XX. ..

connection set-up

Flow Control frame
because
SN=BSmax

The last

: Cons i
consecutive €Cutive Fram
frame include E[PCI.SN=4, XX,Xx...

2 valid user c

data bytes Onsecutive Frq

Me[PCL.SN=5
— XX,XX...
\‘\l\> End of multiple

frame

Figure 2-2 Construction of segmented message

2.1.2 Addressing modes

To handle the communication the Transport Protocol is using a Point-to-Point connection.
To establish a Point-to-Point transfer on a broadcast protocol like CAN additional address
information is needed (a source address for the transmit node and a target address for the
receive node).

The ISO/TF2 transport protocol defines four modes of addressing:

»,Normal“ addressing The CAN ID contains the complete addressing information (to each
source- and target address combination a unique CAN ID is assigned)

H S Cn LR ST | The CAN ID contains only the source address and the first data byte
contains the target addressing information.

“Normal fixed” The extended CAN ID contains the complete addressing information
addressing according J1939

“Mixed” addressing Additionally to the extended CAN ID, according J1939, the first data
byte contains a second target address information.

Since 1SO15765-2: 2003 the additional addressing mode mixed
addressing on 11-bit CAN IDs is defined. The address extension is
stored in the first byte followed by the TPCI information.

Table 2-1 Addressing Modes

©2013, Vector Informatik GmbH Version: 3.14.00 241177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 V@CtOf [

The Vector TP implementation supports all addressing mode. The used addressing
method is normally determined at compile-time regarding ROM and RAM as well as run-
time requirements. For special purpose it is also possible to determine the used
addressing method at run-time (special version of the TPMC-module is needed).

2.1.2.1 Normal Addressing
The address information is coded in a unique CAN Identifier.

The Transport Protocol uses the 1st and sometimes 2nd data byte. The data length is
coded in 12bits. Therefore the maximum length of a message is limited to 4095 bytes. The
receivers’ control information (maximum block size and minimum SeparationTime) is
transmitted to the sender within a FlowControl.

Type Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SingleFrame TPCI
Type | Length
FirstFrame TPCI Datalength
Type | Length Length
Consecutive TPCI
Frame Type ‘ N
FlowControl TPCI BS, ., ST
Type ‘ FS

Table 2-2 Frame size on normal addressing

2.1.2.2 Mixed 11-bit ID Addressing

Mixed 11-bit addressing is a sub-format of normal addressing (refer above) where the
mapping of the address information is further defined (see ISO 15765-2:2004).

The target address extension information is placed in the first data byte of the CAN frame
(see 1ISO 15765-2:2004) followed by the TPCI information in byte two.

2.1.2.3 Normal Fixed Addressing

Normal fixed addressing is a sub-format of normal addressing (refer above) where the
mapping of the address information into the (extended) CAN-Identifier is further defined
(see ISO 15765-2).

J1939 name P R/DP PF PS SA Data field
Bits 3 2 8 8 8 64
ProtocolGroup | Target- | Source-

Content Priority | Reserved Identification | Address | Address TPCl/Data
CAN Id Bits | 26-28 24-25 16-23 8-15 0-7 CAN data bytes
CAN Field Identifier Data

Table 2-3 CAN ID normal fixed addressing
For information about the “data field” see 2.1.2.1.

2.1.2.4 Extended Addressing

The source address is coded into the CAN ID by adding the address to a base CAN ID
(e.g.: with a base CAN ID 0x600 and a source address of 0x10 the used CAN ID are
0x610)

©2013, Vector Informatik GmbH Version: 3.14.00 2517177

Technical Reference Transport Protocol ISO15765-2

The target address information is placed in the first data byte of the CAN frame (see ISO

15765-2).
Type Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SingleFrame ext Addr TPCI
Type ‘ Length
FirstFrame ext Addr TPCI DataLength
Type ‘ Length Length
Consecutive ext Addr TPCI
Frame Type ‘ SN
FlowControl ext Addr L BS, . SToin
Type ‘ FS
Table 2-4 Frame size extended addressing
2.1.2.5 Mixed 29-bit ID Addressing

Mixed 29-bit ID addressing is a sub-format of normal fixed addressing (refer above) where
the mapping of the address information into the (extended) CAN-Identifier is further

defined (see ISO 15765-2).

The target address extension information is placed in the first data byte of the CAN frame

(see 1SO 15765-2).

vactor’

Type Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
. Address TPCI
SingleFrame ;
Extension Type ‘ Length
FirstErame Addrgss TPCI DatalLength
Extension Type ‘ Length Length
Consecutive Address TPCI
Frame Extension Type ‘ SN
Address TPCI
FlowControl Extension e ‘ - BS, .« SToin
Table 2-5 Frame size extended addressing
2.1.2.6 Structure of TPCI-Byte

The coding of the TPCI of each frame type is shown in Table 2-6 Structure of TPCI-

bytes.

Encoding of Protocol Control Information (PCI)

©2013, Vector Informatik GmbH Version: 3.14.00 26/ 177

Technical Reference Transport Protocol ISO15765-2

vactor”

1 Network Protocol Control Information (N_PCI) bytes
2. Byte #1 Byte #2 Byte #3
N_PDU name Bits 7-4 Bits 3-0
SingleFrame N_PCltype =0 SF_DL N/A N/A
FirstFrame N_PCltype = 1 FF_DL N/A
ConsecutiveFrame N_PCltype = 2 SN N/A N/A
FlowControl N_PCltype =3 FS BS STmin
Table 2-6 Structure of TPCl-bytes
Hex value Description
0 SingleFrame
For unsegmented message, the network layer protocol provides an optimised implementation of the
network protocol with the message length embedded in the PCI byte only. SingleFrame (SF) shall be
used to support the transmission of messages that can fit in a single CAN frame.
1 FirstFrame
A first frame (FF) shall only be used to support the transmission of messages that cannot fit in a single
CAN frame, i.e. segmented message. The first frame of a segmented message is encoded as a
FirstFrame (FF). On receipt of a FirstFrame the receiving network layer entity shall start assembling the
segmented message.
2 ConsecutiveFrame
When sending segmented data, all consecutive frames following the first frame (FF) are encoded as
ConsecutiveFrames (CF). On receipt of a Consecutive Frame (CF) the receiving network layer entity
shall assemble the received data bytes until the whole message is received. The receiving entity shall
pass the assembled message to the adjacent upper protocol layer after the last frame of the message
has been received without error.
3 FlowControl
The purpose of Flow Control is to regulate the rate at which Consecutive Frame network protocol data
unit are sent to the receiver. Three distinct types of Flow Control protocol control information are
specified to support this function. The type is indicated by a field of the protocol control information called
Flow Status (FS) as defined hereafter.
4-F Reserved
This range of values is reserved by this document.

Contains the data length of the message (up to 7 bytes with normal
resp. up to 6 bytes with extended addressing).

Contains the data length of the message. The most significant 4 bit
of the data length in byte #1, the remaining 8 bits are transmitted in
byte #2.

The Sequence Number is used to discover a doubling or the loss of
a data frame. The SN starts with ‘1’ and is calculated modulo ‘16’ (4
bit calculation).

SF_DL on SingleFrame

FF_DL on FirstFrame

SN on ConsecutiveFrame

‘0’ means CTS (ClearToSend): sender can continue sending

1’ means WT (Wait): sender is not allowed to continue sending, it
has to wait until FC.CTS is received

‘2’ means OVF (Overflow): sender is not allowed to continue
sending, the transfer is stopped.

FS on FlowControlFrame

Table 2-7 Frames

©2013, Vector Informatik GmbH Version: 3.14.00 271177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2

2.2 Transmission

TpTxGetFreeChannel: Associate channel
to connection (only for dynamic classes)

The application has to allocate a free
transport channel.

TpTxSet...: Adjust transmit state
(only for dynamic classes)

The new allocated TpChannel has only
blank communication parameters included,
which await to be adjusted by the
application. Which parameters have to be
attuned depends on the used TpClass (see
chapter 4.2 Functions of the Transport
Protocol)

Only dynamic classes

TpTransmit: Start the transmission
ApplTpTxCopyToCan: Copy data to CAN

The Transport Layer supports two copy
mechanisms: an internal and an application specific
copy mechanism.

With the application specific copy mechanism the
Transport Layer will call a callback function to
request data each time data has to be transmitted.

ApplTpTxNotification / -CanMessageTransmitted

Each time a transport frame (every frame or only
with pay load) will be transmitted, the Transport
Layer notifies the application.

ApplTpTxConfirmation: Confirm the transmission

After a successful transmission the application will
be notified. This would be a good point in time to
release unused resources / buffers for example.

Legend

> Get internal event .mj
< Set internal event IlllD
C) Internal state

Get external event
(TP API call)

Set external event
(Application call)

Set external event
(Application call)
only used for special efforts

©2013, Vector Infggnatib Smbahsmission Architecture

IDLE

vactor”

only dynamic classes

hannel

Reserve and block
the channel to this
connection

/—¢ﬁ

Wait for adjusting the
transmit state

Wait for Transmission

Wait for Transmission

Adjustable transmit states

TpTxSetCanChannel

| TpTxSetChannellD

TpTxSetTargetAddress
TpTxSetEcuNumber

Event

Transmission Event

TpTxTask
for data segment

pITpTx-
yToCan

Transmit a CAN-
Frame

<« CanTransmit

T

Yes

l

No

:

*

ITpTx-
irmation

ApplTpTx-
Notification

v v

ApplTpTxCan-

ApplTpTxCan-

Message- Message-
Vi Transmitted Transmitted 281177

Technical Reference Transport Protocol ISO15765-2

2.3 Reception

ApplTpPrecopyCheck: Should receive or not?

The ApplTpPrecopy will be called immediately after the
reception of each TP-Frame. The return value of the function
determines whether or not the TP-Frame is received

ApplTpRxGetBuffer: Associate a buffer

The Transport Layer asks the application for a buffer. The
application has to return a valid buffer, in which the received
data will be stored. If the buffer is not valid, the reception will
be abort.

ApplTpRxCopyFromCan: Copy data from CAN

The Transport Layer supports two copy mechanisms: an
internal and an application specific copy mechanism.

The internal copy mechanism can only be used with a flat-
buffer-model.

With the application specific copy mechanism the Transport
Layer will invoke a callback function each time data were
received.

ApplTpRxGetTxId: Get FlowControl ID
(only with Dynamic Normal Addressing)

A corresponding transmit ID for a FlowControl is needed.
ApplTpRxIndication: Indicate a reception

A complete block of transport frames is received.

Important: The Transport Layer blocks the receive channel
to prevent a double occupancy of this channel. To free the
receive channel the application can call TpRxResetChannel

0-

©2013, Vector Informatik GmbH

IDLE

ApplTp-
PrecopyCheck

Return Value

le—False '0'

ConnectionSearch
DLC-checks
Frame checks

TpPrecopy <<CaﬂDnver

vactor”

Wait for next
CF

ApplTp-
PrecopyCheck

Return Value

True 1’

ConnectionSearch
DLC-checks
Frame checks

CF

(Single Frame) [FII’SI Frame] [Consecunve]
Frame

ApplTp! ApplTp
GetBuf GetBuf

&

NO

TpPrecopy éCanDnver

False '0"»f

Failedwf

ﬁNo v
< AppITPRXSF < AppITPRXFF Apng;)RX-
AppITpRx- ApplTpRX- ApplTpRx-
CopyFrom- CopyFrom- CopyFrom-
Can Can Can

ApplTpRx-
GetTxID

(depends on
configuration)

ApplTp
Indicati

Figure 2-4 Reception Architecture

Version: 3.14.00

29/ 177

Technical Reference Transport Protocol ISO15765-2 vector [

2.4 Working behaviors
2.4.1 Timings

——TpTransmit.FF

I —
N_As - FF
¢ App!TpTxCanMsgTransmitted—— e I ApplITpRxGetBuffer—p
T N_Br
N_Bs ¥
* . FC— N_Ar
4 ApplTpTxFC 1 4 Y AppITpRxCanMessageTransmitted
N_Cs
N_As - CF_
—AppITpTxCanMsgTransmitted - Y **************)%ADNTD RXCF———————
N_Cs
N_As - CF
<« ApplTpTxCanMsgTransmitted - A 4 r AppITPRXCF———————
| N_Br
N_Bs -
. FC— N_Ar
«4——ApplTpTx FC+4 Y -ApplTpRxCanMessageTransmitted
N_Br
N_Bs JEEEE S
| . FC— N_Ar
4 ApplTpTxFC & -ApplTpRxCanMessageTransmitted
N_Cs AAT
y N_Cr
<« ApplTpTxConfirmation—¥ B App!TpRxIndication—p>
Figure 2-5 Transmission timings.
N_As | CAN message confirmation N_Ar | CAN message confirmation timeout
timeout
N_Bs | Timeout FC N_Br | Always zero (0)
N_Cs | STmin (from FlowControl) N_Cr | Timeout CF
But not lower than Transmit CF

Table 2-8 Transmission timings

The TP needs the timings normalized to call cycles. Therefore all timings will be rounded
up to an integer multiple of call cycles.

The timings have an inaccuracy while runtime (based on the technical concept where
timers are set on interrupt level and decremented on task level). The jitter is either plus a
call cycle or minus a call cycle.

In general the ‘Timings’ are calculated with a jitter plus a call cycle — that means the value
of the timing is the first possible time after i.e. a timeout can occur.

©2013, Vector Informatik GmbH Version: 3.14.00 30/177

Technical Reference Transport Protocol ISO15765-2

The TP uses the following algorithm for calculation:

> Timings: (STmin-Value + (TpCallCycle-1)) / TpCallCycle + 1

2.4.2 Error detection
2.4.2.1 Reception of a SingleFrame
7 6 5 4 3 2 1
0 0 0 0 DL
N
Y Y
Single Frame Data Lenth

Figure 2-6 Single Frame TPCI

vactor’

A SingleFrame will be ignored if the DataLength exceeds the maximum length of a

SingleFrame (6 / 7 bytes).

2.4.2.2 Reception of a FirstFrame
7 6 5 4 3 2 1
0 0 0 1 XDL
N
Y Y
First Frame High Nibble of Data Length

A FirstFrame will be ignored (until version 2.28) if the TPCllength is lower than the

maximum length of a SingleFrame (6 / 7 bytes).

2423

Reception of a FlowControl
A FlowControl will be ignored if no suitable transmission is running (suitable means: the

Figure 2-7 First Frame TPCI

Source- and TargetAddresses must fit). It will be also ignored if the TPClbyte misfit the

valid values.
7 6 5 4 3 2 1
0] 0] 1 1 FS
\§
Y Y
Flow Control Flow State
0 Continue To Send
1 Wait
2 Overflow (15765:2003)

Figure 2-8 FlowFrameTPCI

If a suitable transmission is found the state machine is checked for waiting for a

FlowControl (except CAN Driver polling mode is used).

©2013, Vector Informatik GmbH

Version: 3.14.00

31/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

2.4.2.4 Reception of a ConsecutiveFrame

A ConsecutiveFrame will be ignored if no suitable reception is running (suitable means: the
Source- and TargetAddresses must fit).

7 6 5 4 2 1 0
0 0 1 0 SN
N J
Y Y
ConsecutiveFrame Sequence Number

Figure 2-9 Consecutive Frame TPCI

If a suitable reception is found the state machine is checked for waiting of a
ConsecutiveFrame (except CAN Driver polling mode is used). If the estimated Sequence
Number does not fit the current reception will be stopped.

2.4.25 Observing CAN frame DLC (Data Length Code)

The CAN frame DLC should be set by the sender to a value greater than or equal to the
values indicated in the table below.

Frame Type Normal (fixed) Addressing |Extended/Mixed Addressing
SingleFrame SF_DL+1 SF DL+2
FirstFrame 8 8

FlowControl 3 4
ConsecutiveFrame

(except the last 8 8
ConsecutiveFrame)

el 1+ ((FF_DL-6) mod[7]) 2+ ((FF_DL-5) mod[6])
ConsecutiveFrame - -

Table 2-9 CAN frame DLC

The CAN frame DLC check can be configured for the following different ways:
none:
CAN frames are accepted if they are 8 bytes or less.
The frames are NOT checked against a minimum length.
only DLC 8:
CAN frames are ONLY accepted if they are exactly 8 bytes long.
variable DLC:
CAN frames are accepted if they are 8 bytes or less.

©2013, Vector Informatik GmbH Version: 3.14.00 321177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

The frames are also checked against the required minimum length.
depend on driver:

CAN frames are accepted if they pass the DLC check configured on driver level. Refer
to [3] on how to set up the DLC check.

2.4.3 Buffer consistency

The application programmer has to guarantee consistency of transmission and reception
buffers.

Transmission

Between the call of TpTransmit() and ApplTpTxConfirmation() Of
ApplTpTxErrorIndication () writing access to the transmission data buffer must be
blocked (except the Appl TpCopyToCan () function is used to copy the data).

Reception

Between the call of ApplTpRxGetBuffer () and ApplTpRxIndication() oOfr
ApplTpRxErrorIndication () writing access to the reception data buffer must be
blocked (except the Appl TpCopyFromCan () function is used to copy the data).

2.4.4 Function re-entrancy

The TP re-entrancy is based on the different tpChannels. So for static TP classes, with
separate resources for each single connection, there is no re-entrancy problem. For
dynamic TP classes the re-entrancy is guaranteed too from the viewpoint of TP, as long as
the application handles the connection specific API properly.

©2013, Vector Informatik GmbH Version: 3.14.00 33/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

25 Restriction

2.5.1 Restrictions to ISO/TF2 specification

In this chapter you will find the restrictions of the current implementation relative to the
ISO/TF2-specification:

Timing parameter:
> Timing Parameter N_Br is always zero (0)

> Timing Parameter N_As and N_Ar can only be defined by a common constant

WaitFrame support:
For versions until version 2.73.00:

> The reception of WaitFrames is supported. The transmission of WaitFrames is not
supported, N_WFTmax is always zero (0).

For versions until version 2.88.00:

> Commencing with version 2.73.00 the transmission of WaitFrames is supported but
N_WFTmax is not considered. The periodical transmission must be stopped by the
application and does not stop by itself.

From version 2.89.00:

> Commencing with version 2.89.00 the maximal number of WaitFrames to be
transmitted (N_WFTmax) is supported and the transmission of WaitFrames stops
automatically when this limit is exceeded.

From version 3.01.00:

> Commencing with version 3.01.00 the maximal number of WaitFrames to be received
(N_TxWFTmax) is supported and the reception of WaitFrames stops automatically
when this limit is exceeded.

2.5.2 Limitations of Transport Protocol Implementation

The Transport Protocol is a complex state machine, which is triggered by external events
like requests by the application, receive indications and transmit confirmations by the CAN
driver.

The state machine expects those events in the order they appear in the “real world” to
decide the next step to be performed. The state machine performs one event after the
other and each decision is based on the current state.

Under some very specific conditions, events may be given to the Transport Protocol state
machine in the incorrect order what can cause wrong decisions.

One requirement to the TP is that unexpected frames are to be ignored. Therefore it is
important to discard e.g. received FlowControl frames before the FirstFrame or

©2013, Vector Informatik GmbH Version: 3.14.00 341177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

ConsecutiveFrame has been sent. It may now happen that the transmit confirmation and
the receive indication event occur “at the same time”. In such a situation the concrete
behaviour depends on the sequence the underlying CAN driver handles such events.
Unfortunately this sequence depends on the hardware implementation of the CAN
controller and the interrupt concept of the pC. Usually RX handling is done first to prevent
loss of incoming data whereas TX handling has a lower priority. Most CAN controllers do
not support means to handle such events in the “real world order” later, if an immediate
handling is not possible due to e.g. an long lasting ISR lock or the CAN driver polling is
executed too slow.

Example:

The TP transmits its FirstFrame successfully to the bus and the tester answers very fast
with the FlowControl and the notification of the FirstFrame transmit event is delayed due to
(a) an ISR lock or (b) a too slow polling sequence, both events are valid at the same time.
Now it is up to the CAN driver how the notification sequence is performed.

If TX is handled first, TP is in a state to accept the FlowControl and everything went well. If
RX is handled first, TP is not aware that the FirstFrame has been already sent and will
ignore the incoming FlowControl. In that case, the TP runs in a timeout due to the partner
has sent its frame correctly but it was assigned to the wrong event sequence and was
therefore ignored.

X RX

<4—CAN driver polling=—=

.\

First Frame
TX event: acknowledge €—— Acknowledge
Flow Control
RX event: FC received ¢ Ack
CAN RX task: —CAN driver polling=——=
FC received. N P 9
Error: Awaited FF .
ackowledge. Consecutive Frame
Reject FC. | Ack
CAN TX task: Consecutive Frame
Acknowledge on FF Ack
Regulare proceeding |
(set timer, change Consecutive Frame
state) Ack
[J
[]
TP task: Flow Control
Timeout on FC. Ack
Free TP channel. J Y L

Figure 2-10 Accumulation of events during CAN Driver polling

Implemented solution 1:
The TP can be configured to handle the event sequence always in the way it is notified by
the underlying driver. In that case it is fully compliant to the requirement that (timely)

©2013, Vector Informatik GmbH Version: 3.14.00 35/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

incorrect frames are rejected. Unfortunately, the rejection can happen in a short time
period also for correct transmitted frames. The time period where this can happen is equal
to the runtime of the e.g. FlowControl frame on the bus (e.g. for DLC=8 and 500kBd this is
approx. 200us for an interrupt driven CAN driver or the CAN driver polling rate). Timely
incorrect received frames outside of this time window are correctly handled/rejected.

As a result, the correctly transmitted TP sequence might be aborted by a timeout on the
sender side and the tester has to repeat its request.

The configuration switch TP_HIGH_RX LOW_TX_ PRIORITY has to be kTpOff to select
the implementation 1.

Implemented solution 2:

The TP can be configured to accept FlowControl frames also in the time window after the
successful ECU internal FirstFrame transmit request till the frame is really on the bus. In
that case it is not fully compliant to the requirement that (timely) incorrect frames are
rejected. The length of the time period depends on the baudrate (message runtimes), the
busload and if the CAN driver is used in ISR or polling mode. The shortest time range is
some few 10ps up to a multiple of the CAN driver polling rate. Timely incorrect received
frames outside of this time window are correctly handled/rejected.

As a result of this behaviour, a too early (timely incorrect) received FlowControl frame will
be accepted by the TP and the transport layer continues to transmit its data.

Because this scenario does usually not or only rarely happen in the field but the
performance of the whole diagnostic process is higher, the selection of that configuration is
highly recommended.

The configuration switch TP_HIGH_RX LOW_TX PRIORITY has to be kTpOn to select
the implementation 2.

Info

Please note that the content of the received frame is always analyzed and illegal frames
are discarded as required. All above discussed issues are only valid if the frame is timely
incorrect but all other facts are correct concerning the current TP status.

Caution

(' '}: Implementation solution 2 is automatically activated since version 2.36 of TPMC
component while the CAN Driver is used in polling mode. It is activated as default for
interrupt driven systems since version 2.63..

©2013, Vector Informatik GmbH Version: 3.14.00 36/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

2.5.3 Deviations to ISO/TF2 specification

In this chapter you will find the deviations of the current implementation compared to the
ISO/TF2-specification.

2.5.3.1 Handling of unexpected FlowControl / ConsecutiveFrame frames

Q Caution
! This deviation is only in effect if the TP_HIGH_RX_LOW_TX_PRIORITY feature is
KTpOn.
The normal operation assumes that a transmit is followed first by its confirmation
interrupt and after that the next receive interrupt appears.

With a tester reacting very fast and simultaneously a controller that has a higher priority

for Rx interrupts than for Tx interrupts the Rx interrupt may be detected before the Tx
confirmation interrupt:

¢ Without the HighRx-LowTx feature the transmission stops at this point.

e With the activation of the HighRx-LowTx feature the TP implementation tries to
clear this unexpected sequence and to proceed with the transmission.
Nevertheless there are still some special situations left (see the description
above) that can not be cleared by the TP and so the transmission might be
stopped anyway.

Conclusion:

The HighRx-LowTx feature is activated by default to get a minimum of transmissions
being stopped.

You can deactivate the feature e.q. if your configuration does not require the feature or if
you prefer that the tester explicitly repeats requests after stopped transmissions.

Please see the description below to get an idea in which special situations some
malfunction is still possible.

See also chapter 2.5.2 ‘Limitations of Transport Protocol ’ for further details.

©2013, Vector Informatik GmbH Version: 3.14.00 371177

Technical Reference Transport Protocol ISO15765-2 vector [

3 Settings for the MultiTP & SingleTP (multi-based)

To use the MultiConnection or the SingleConnection (multi-based) TP with the GENy
CANGen or the DBKOMGen tool the “Manufacture” attribute in the database has to be set.

Additionally a License File for GENy and CANGen tool is needed, which includes a
clearing for the MultiConnection Tp.

3.1 General settings with CANgen / DBKOMgen / GENy

In the following descriptions examples from the CANGen / DBKOMGen generation tool
GUI are used.

MCHet options I CIL options I BRS options I Init registers I
Overview I CAM driver I CAN driver [Advanced) I Send messages I Feceive messages OSEK-TF options | CAMdesc options CLCF options I Mames
- — Addressing mode
V Use TP Pathname of user config file: I Browse...l ¥ Homal addiessing
| Estended addtessing Set Defaults
r Timning F|°_‘|’_\‘ cantral ™| Mormal fired addressing
Txcalleycle: |10 ms Fxcallepcle: |10 ms ’7 _ ‘ — Mizc
v Use STMin from f trol f
TxTimeoutFC: % mz RxTimeoutCF: % ms o 1 1rom flow eential ame ™ Ext AP [var. blocksize) [T assert user
T=TransmitCF: IT ms R) [Ext AP [var. STHIN] [T assert intemal
STHin: |20 (S V' Use fast FiaM [™ assert generated
CAMN meszage confirmation timeout: 100 ms Blocksize: IB [Use Gateway AP [T runtime checks

Tp class: IStaticNormaMddressing Multi TP j TP(Diagnostics] Tx ID_HS_Tpchode 'l

— TP class specific _optio..

General propertie: r— Connection
" Connection specific timing parameters Con_Tpmcode_TpConnectiond, 1
Con_TpmcMode_TpConnectionB_1
Con_TpmcMode_TpConnection_1 LI
TpPreCopyCheck: I Remove |
— Connection propertie: ;
Narme: IDiag r— Function
: TpTxConfirmation: [DescConfimation
TwlD: ID_HS_Tpchode j TpT#Enarndisation: |DescTsEmodndication
TpRxlndication: |DescPhysRegind
RadD: ID_F!E!_Tpmc:Node j TpRxEnorindication: |DescRsEmorlndication
B TpF!xGn.e.tBuf.fer: DeschetBuffer _
Blocksize:lﬁ_ TDTHNDtIfICa.tIDn. DescTxFrameConfirmation
TpT«Transmitted:
SThin: |4D ms TpT«CopyTaCan: |DescCopyToCaN
L —y lm_ me TDHRCUD}'F?mTC‘?éi DescCopyFromCaN
pT=FC:
TimeoutFC: IBD ms TRRHSF:
Tt Im ms TpR=FF: |DescOemOnRxFirstFranme
TpR=CF: |DescOemOnRxFirstFrame

Generate | QK I Abbrechenl Ubernehmen Hilfe

Figure 3-1 General settings in Generation Tools

©2013, Vector Informatik GmbH Version: 3.14.00 38/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.1.1 Timing
— Timing
Tucall epcle: |10 mz Fxcall cecle: (10 ms
TaTimeoutFC: (150 me R=TimeoutCF: 150 ms
TxTransmitCF: |20 ms
CAM meszage confirmation timeot; 100 me

Figure 3-2 Timing settings in Generation Tools

3.1.1.1 Transmission timing

Tx call cycle

Together with this period, the function TpTxTask() has to be called periodically by the
application

TxTimeoutFC

In the Timeout FC edit field, the FlowControl timeout value is specified. Within this time,
the expected FC frame has to be received by the transmitting ECU.

TxTransmitCF

The Transmit CF time is the interval for the transmission of ConsecutiveFrames. This
value is used as a constant in ECUs that don’t use the STmin value from FlowControl
frame.

If this time should be defined as a constant at compile time the configuration switch “Use
STwmin from flow control frame” should be set to Off.

If the time STwi, from the FlowControl message should be calculated, the configuration
switch “Use STwin, from flow control frame” has to be selected. Due to the problem to
handle a non-linear buffer (e.g. ring-buffer mechanism) in the application (usage of
ApplTpCopyToCAN or Vector Diagnostic Layer) the Transmit CF parameter set the fastest
possible transmission.

Transmit CF set the lowest possible separation time.

Example: The Diagnostic Tester set the STmin value to zero. Which will mean to the ECU
to transmit as fast as possible. If the application uses in this case a ring-buffer mechanism
it has to fill the ring-buffer in the same fast way as the TP transmits the data. To prevent in
such a case a buffer under-run it is possible to limit the TP, by setting the lowest possible
separation time value, so that the calculated STmin cannot be smaller than the Transmit
CF value.

3.1.1.2 Reception timing

Rx call cycle

Together with this period, the function TpRxTask() has to be called periodically by the
application

©2013, Vector Informatik GmbH Version: 3.14.00 39/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

RxTimeoutCF

After the Timeout CF time expires, a time-out occurs with the transport layer between the
receptions of two ConsecutiveFrames.

3.1.1.3 Common timing

CAN message confirmation timeout

Maximum time between a transmission request and the confirmation interrupt, indicating
that the frame is sent successfully (it is at least accepted by one net node).

3.1.2 Flow Control

— Flaw contral
— T

¥ Use STHin from flow control frame

—FRx
SThir: |20 ms

Blockzize: IB

Figure 3-3 Flow control settings in Generation Tools

3.1.2.1 Transmission

Use STwi, from flow control frame

If the “Flow control” time STwi, was defined as constant at compile time for the whole
system, it won’'t be necessary to calculate it at runtime. Setting the configuration switch
,Use STMin from FlowControl frame® to Off can parameterize this.

If the time STwin from the FlowControl message should be calculated, the configuration
switch “Use STyin from FlowControl frame” has to be selected.

3.1.2.2 Reception

STMin

The STmin edit field contains the minimum separation time between two consecutive
frames. The separation time will be at least as long as configured or longer. The value in
this edit field will be transmitted to the sender ECU in the FlowControl frame from the
current ECU. The STmin value can either be defined at compile time or changed at
runtime (see also 3.1.3 Extended APl STmin).

BlockSize requested

The BlockSize specifies the number of ConsecutiveFrames until a FlowControl is needed.
The receiver defines the BlockSize. The sender always uses the BlockSize of the receiver.
The BlockSize value can either be defined at compile time or changed at runtime (see also
3.1.3 Extended API BlockSize).

©2013, Vector Informatik GmbH Version: 3.14.00 40/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.1.3 Misc
bz
[T Ext &P [var. blocksize] [assert user
[~ Ext. AP [war. STHIM] [T azsert internal
W Use fast Rih [T assert generated
[Use Gateway &P [runtime checks

Figure 3-4 Misc. settings in Generation Tools

Extended API (variable BlockSize)
API extension, which can adjust the BlockSize value.

If the feature is enabled the BlockSize can be set at run-time by using the functions
TpRxSetBS() and TpRxGetBS().

Default value after initializations: “BlockSize requested” (Section ‘Flow Control’)

Extended APIl(variable STmin)

API extension, which can adjust the STmin value.

If the feature is enabled the STmin value can be set at run-time by using the functions
TpRxSetSTMIN() and TpRxGetSTMIN().

Default value after initializations: “STmin” (Section ‘Flow Control’)

Use fast RAM

The RAM demand and run-time can be reduced on some implementations, if some
frequently used variables of the Transport Protocol are put into the ,near” memory.

If the feature is enabled (default) the less used variables are also set into the ,near*-
memory. The code is smaller and faster.

Otherwise less used variables are not set into the ,near‘-memory. The code is a little bit
bigger and slower.
Use Gateway API

API extension, which was implemented for Gateway purpose, but it is also possible to use
it in other fields of applications.

If the feature is enabled the APl of ‘ApplTpRxGetBuffer’ and ‘ApplTpRxCheckTA’ is
extended with the CanRxInfoStructPtr from the CAN Driver Precopy functions API (see
/CANDrv/ manual).

Within this CanRxInfoSturctPtr parameter the CAN ID, pointer to the CAN data, etc. is
included.
Assertions

To detect some incorrect internal conditions of the Transport Protocol during development,
integration and software test, there are different categories of so called assertions
configurable:

1. User interface (for example input parameters, reentrance if not allowed)

©2013, Vector Informatik GmbH Version: 3.14.00 411177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

2. Generated data
3. Internal software errors (for example inconsistent internal states)
Each type of assertion can be configured independently.

These assertions will help in different development phases to deal with unexpected
problems, which cannot be handled by the Transport-Protocol internally. In such case the
following callback function will be called by the Transport-Protocol:

void ApplTpFatalError (vuint8 errorNumber);

This callback function has to be provided by the Application. The function parameter
errorNumber gives more detailed information about the kind of error, which is occurred
(see also 4.4.4.1 ApplTpFatalError: Fatal Error for the different error-codes).

Generally, the error number has to be checked to solve the underlying problem. The
recovery strategy is application dependent, but mostly there is a complete reset necessary
to set up the software correctly again.

Q Caution
! This callback function must not return to the Transport-Protocol afterwards.

assert user
User assertion will be activated.
Should be used while development of Application software

assert internal

Internal assertions will be activated.
Should be used for tests of software changes in the Transport-Protocol
(Vector internal)

assert generated

Internal assertions will be activated.
Should be used if a new version of the Generation Tool is used

runtime checks
Runtime checks will be activated.

In contrast to the assertions the ‘runtime checks’ can also be used after the development
phase and should guarantee a more reliable run. Checks for parameter plausibility,
overwriting of memory like beyond access of tables, etc..

©2013, Vector Informatik GmbH Version: 3.14.00 421177

Technical Reference Transport Protocol ISO15765-2

3.2 General settings with Generation Tool GENy

vactor”

General settings can be done under the TPMC tree element. Most important is the
selection of TpClass in the upper right window. Some online help is provided for the most
settings in the OnScreenHelp window. Section “Advanced Configuration” is providing
special features like Gateway APIs or padding of TP frames. Some features might be
greyed which means that this features are preconfigured based on OEM or other
constraints. It is necessary to configure for each Tp class at least one “TP Connection
Group” object. Some static configured TP classes like “Static Normal Multi TP” require one
Connection Group object for each TP connection whereas dynamic TP classes have
always only one object. A Connection Group object represents a set of call back functions

for the application to notify successful transmission or reception.

1 GENy - [Integration_30-11-2004.gny : TpMC] -0l x|
\{‘;,y File Edit View Configuration “Window Help = E‘Iﬂ
DEE + BB ET? d-= Q- -Y-|Fug
£} MyECU Configurable Optiohs TphC
B n’ Comparents = ThMc
- B2 Corfiguration D tat
g Tﬁgo'?;m?mﬁmen sten TelsoStandard 150 1578522003 [20031111)"
- NameDecorator ThClass Dynamic Multiple Addressing Multi TP =
B2 Dbkom AddCannectionGraup
Elﬁj39 CAM Driver [TriCare MuliCAN = Miscelaneaus
"H Homil T Poling User Config File D:AusrhdistibtDEAD C-TRUCKADCASLPAACANDedded T ricore 7964T asking\MuliCharnelE CLIY TsiSIandald\CANdb\UserEunligT_I
[FullCAM R Polling . -
[#-5=] BasicCAN Fix Paling Assert User r
- Channels Assert Internal r
= Channel0 Azsert Genersted [nl
o Chamnelt Runiime Checks e
+-[gy TwMessages
@ Fix Messages |: TP Class Specific Options
--E2 BRS huttiple ECLI-numbers r
[]-g HI-0SEK [NmUserD ata] ToPreCopyCheck B
-6 TphC
H ThCheckTA
[=-=] TP Connection Groups pLhec ToDispatchCheckTA
-] TrDispatcher v ECL number x4
- -;’- Chaninels | Timing
- 'Lr' game‘ a CAN Message Caonfirmation Timeaut [ms] 100¢
+ TuMessages —
e —TxTi
5% Rx Messages B
£ Channel1 T Call Cycie [ms] 10
* -5 Tx Messages Tx Timaut FC [ms] 150¢
@ i3 MESS‘?QES Tx Transmit CF [ms] 200
8 %N: :?\:S::IC hn?inimum zending delay [ms] 20
[#-[=] Sessions | Rx Titning
- @ Ti Messages Fex Call Cycle [ms] 10¢
(5 P Messages Rex Timeaut F [m] 150-
[y T Signals
— Flowy Control
[Nl A Signals |- Flew Contrdl
| = Tz Flowy Contral
Use STMin from flow control frame |p *
|- Rx Flow Contral
STMin [imz] 20
Blocksize g
|+ Advanced Configuration
4 | ¢
2| 28 Genersted Configuration Flles (A dd H -
A 23 Souce Fi\esg % K .. Firished Code Generation =
= Starting Cade Generation, A
1 ’
: 4| | 3
‘CumpunemSelet‘llUn @Generaled Files I{|1| }IN'\ Hessages # Generation AFind in Files/
Far Help, press F1 ’7 ML \Number of Obiects Displayed: 1 4

Figure 3-5 Main window of component TPMC within configuration tool GENy.

©2013, Vector Informatik GmbH Version: 3.14.00 431177

Technical Reference Transport Protocol ISO15765-2 vector [

3.2.1 Configuration of Addressing Information

The addressing information is configured for each channel. The provided addressing
elements like TpTxMessage (for NormalAddressing) depend on the selected TP class. It is
required to assign a TpConnectionGroupObj for each Addressing information. In Dynamic
Multiple Addressing Tp Classes any Addressing Information is assigned to only one TP
Connection Group Object.

{:} My ECU Configurable Options Channel 0
E|~' é;mpments Type of bussystem CAM =
= GenTool_GenyPluginConfigh =
H = Manufact -
[EF MameDecoratar enuTaEtrer D (5]
b E% Huw_CanosemuCpu |— TP Address Information
@3 DirvCan_CanoeemuCanosHI |— Mormal Addressing Information Add
B[Tp_lsal5765 |— Addressing Information Delete |
[=1-{=] TP Connection Groups - - - -
T TpiC ctionG Ch
L[SpstemDiagCannecti pLannECtontsroupth] SystemDiagConnection I
E-g® Channels TpTxMessage D_RS_DM_FL =
= Channel 0 TpRxMessage D_RE_DM_FL =

@ Tx Messages
[Fix Messages

Figure 3-6 Main window of component TPMC within configuration tool GENy.

3.2.2 Usage of Far RAM buffers

Due to reasons of RAM resource availability it may be necessary to locate the receive and
transmit buffers handed to the TP in a far memory location. All message buffer related
types and callbacks will then use far pointers.

To enable this option the “Use far RAM buffers” option within the “Advanced Configuration”
tab must be enabled.

If that option does not suffice for your integration the “Memory Model Override” option can
be used alternatively supporting the usage of a special qualification string that can be
entered as plain text (e.g.: @page @far).

3.2.3 Non standard handling of Flow Control frames

3.2.3.1 Reserved STmin Handling
According to ISO 15765-2 the STmin values 0x80-0xF0 and OxFA-OxFF are reserved.

If a received FC.CTS frame nevertheless uses one of these reserved values, it shall be
interpreted from the TP as the maximum STmin time (0x7F) which is defined.

The TP supports two additional possibilities to handle reserved STmin values:

> If the switch ‘TP_ENABLE_IGNORE_FC_RES_STMIN’ is defined, then a FC frame
with a reserved STmin value is silently ignored.

> |f the switch ‘TP_ENABLE_CANCEL_FC_RES_STMIN is defined, then a FC frame
with a reserved STmin value will lead to the cancellation of the Tx connection.

Note that each switch has only an effect if the STmin is evaluated at all. For cases where
STmin might not be evaluated, please refer to 3.2.3.4 and 3.2.3.5.

©2013, Vector Informatik GmbH Version: 3.14.00 441177

mailto:e.g.@global

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.2.3.2 Ignore Flow Control Overflow

According to I1SO 15765-2 a received FC.OVFLW (0x32) will abort the ongoing
transmission due to the lack of reception buffer at the receiver side.

If the switch “TP_ENABLE_IGNORE_FC_OVFL’ is defined then a FC.OVFLW frame is
silently ignored instead.

3.2.3.3 Do notignore unexpected Flow Control frames
According to ISO 15765-2 any unexpected FC frame shall be ignored.

If the switch TP_USE_UNEXPECTED_FC_CANCELATION is set to kTp_On, this behavior
is changed. Then every unexpected FC frame will cancel the current transmission.

3.2.34 Use STmin of FC

According to 1ISO 15765-2, the STmin from an FC.CTS shall be used as separation time
between two consecutive frames.

If the switch TP_USE_STMIN_OF_FC is set to kTp_Off, the STmin of the FC is ignored.
Instead, the configured N_Cs timeout (TxTransmitCF parameter, see 3.1.1.1) is used as
STmin.

3.2.3.5 Analyze first FC only

According to ISO 15765-2, the contents of each expected and received FC.CTS shall be
evaluated by a transmitter in order to adjust its BS and STmin values.

If the switch TP_USE_ONLY_FIRST_FC is set to kTp_On, only the BS and the STmin of
the first received FC.CTS are evaluated. These values are then used for the complete
transmission. Further received FC.CTS are only used for synchronization and not to adjust
BS and STmin.

3.3 Additional settings via user-configuration file

3.3.1 Dynamic Timing API

Using this feature the application can dynamically change connection specific timing
values for:

> CAN confirmation timeout (N_Ar, N_ASs)
> Consecutive Frame timeout (N_Cr)
> Flow Control timeout (N_BSs).

The dynamic channel timing feature can be enabled via a user configuration file. If the
pre-processor switch “TP_ENABLE_DYN_CHANNEL_TIMING” is included in this way then
the TP takes the timing values from the following application provided variables:

tTpEngineTimer tpRxConfirmationTimeout [kTpRxChannelCount];
tTpEngineTimer tpTxConfirmationTimeout [KTpTxChannelCount];

©2013, Vector Informatik GmbH Version: 3.14.00 45/ 177

Technical Reference Transport Protocol ISO15765-2 vector [

tTpEngineTimer tpRxTimeoutCF [kTpRxChannelCount];
tTpEngineTimer tpTxTimeoutFC [KTpTxChannelCount];

tTpEngineTimer is usually of type canuintl6, for 8-bit CPUs it might also be defined as
canuint8.

These variables are initialized internally from the TP with the constant values that are
configured in the generation tool. So all connection specific timing are equal after TP
initialization.

| Please note that the TP expects these variables, containing the connection

- specific timing values, to be supplied by the application.

For the further dynamic adaptation and differentiation of these connection specific values
the following API functions are available in addition:

> TpRxSetTimeoutConfirmation (see 4.2.2.25)
> TpTxSetTimeoutConfirmation (see 4.2.3.26)
> TpRxSetTimeoutCFEF (see 4.2.2.26)

> TpTxSetTimeoutFC (see 4.2.3.27)

With these functions the belonging timeout values of the TP can be changed dynamically
during runtime.

3.4 TP classes: SingleTP (multi-based)

These TP classes are based on the MultiTP core but running only with one connection and
are optimized to consume a minimum of resources.

3.4.1 Database Attributes
Following Database attributes are needed:

Attribute Definition 'DiagRequest* ﬁ Attribute Definition ‘DiagResponse’ ﬂ Attribute Definition ‘TpTxIndex ﬂ

Defiten | Commert Defiition | Comment Defriin | Conmer |

Name: DiagRequest Hame: DiagResponse Name: [TpTxindex

Dbiect Toper— fif:co0e 2 Object Type: [jfeseane vI Obiect Type: [}esiane v

Value Type: Enumeration I Value Type: Erumeration 'I Value Type: Integer -

Default nein - Default: nein - Default 0

Value Range: [nein . VaueRanger i N Minimurn: 0

13 i@
j j Marimum: 95

0K | AbblEChEnl UI_JemehmenI Hilfe | Ok I Abhlechenl UI_Jemehmenl Hiltz | oK I Abbrechen | Ubemehmen Hilfe

Figure 3-7 Database Attributes for Single/Static TP classes

©2013, Vector Informatik GmbH Version: 3.14.00 461177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

DiagRequest / DiagResponse: Used for diagnostic request messages to make special
pre-settings for the Vector diagnosis’s layers.
(Only available for some car-manufactures)

TpTxIndex: Used for application TP messages.

TP connections with FlowControl: bi-directional transmissions according to ISO 15765
standard

TP-connections without FlowControl: unidirectional transmissions nonconformance to the
ISO 15765 standard

bidirectional with FC (standard) The TX-Node and the RX-Node includes each a TX-TP-message
with the same TpTxIndex value {Broadcast not possible}.

bidirectional without FC not supported

unidirectional with FC not supported

unidirectional without FC The RX-Node do not include a TX-TP-message with a same
(not supported in SingleTP TpTxIndex as the TX-TP-msg. of the TX-Node {Broadcast is
classes) possible - TX-msg. can have more than one receiver}.

Table 3-1 Usage of TpTxIndex database attribute

GenMsgDelayTime:

If the database attribute ‘GenMsgDelayTime’ has a value unequal to zero, then the TP
observes this time between two transmissions as a minimum time distance.

3.4.2 TP class SingleTP (multi-based): Normal Addressing
No special settings needed

3.4.3 TP class SingleTP (multi-based): Extended Addressing
No special settings needed

3.4.4 TP class SingleTP (multi-based):Normal Fixed Addressing

3.4.4.1 Database Attributes
Refer to chapter 3.6.6.1 Database Attributes

3.5 TP classes Static MultiTP
For each TP-communication between two ECUs static defined connections are available.

3.5.1 Database Attributes
Refer to chapter 3.4.1 Database Attributes

©2013, Vector Informatik GmbH Version: 3.14.00 471177

Technical Reference Transport Protocol ISO15765-2 vector [

3.5.2 TP class specific settings

— General 'prcupertiés

[~ Connection zpecific timing parameters

TpPreCopyCheck: I

Figure 3-8 Additional TP settings (Static MultiTP) in Generation Tool

Connection specific timing parameters

If ‘Connection specific timing parameters’ are activated the timing parameters of each
connection can override the global timing values for this connection.

TpPreCopyCheck

Just enter a function name to use this hook function.

3.5.3 Connection specific timing parameters

— Timing parameters

Blncksize:IB—
STMin: |4EI_ ms
TransmitCF: |4EI— ms
TimneoutFC: ISEI— s
TirmeoutCF: I?EI— ms

Figure 3-9 Connection specific timing parameters

The following parameters can be configured individually for each connection:
Timings

> TxTimeoutFC

> TxTimeoutCF

> RxTransmitCF

FlowControl
> STMin
> Requested BlockSize

For detailed descriptions refer chapter 3.1.1 Timing and the following

©2013, Vector Informatik GmbH Version: 3.14.00 48 1177

Technical Reference Transport Protocol ISO15765-2 vector [

3.5.4 Functions

— Functionz
TpT=Confimation: |DescConfimation
TpTsEnarlndication: |DescT«Emorlndication
TpR#lndication: |DescPhysReqind
TpR=Ermorndication: |0 escR+Emorlndication
TpRuGetButfer: |DescGetBuffer
TpT=Motification: |DescT =FrameConfimation
TpTuTranzmitted:
TpT«CopyTaCan: |DescCopyTolCaM
TpR=CopyFromCAN: | DezcCopyFromCaN
TpT«FC:

TpR=SF:
TpR=FF: |DescOemOnR=FistFrame
TpR«CF: |DescOemOnR=FistFrame

Figure 3-10 Hook-Functions (Static MultiTP)
Just enter a suitable function name to use the hook function in your application.
For a detailed description of each function refer chapter 4.4.

3.6 TP classes Dynamic MultiTP

In opposite to the static MultiTP there are no fix connections available. All connections are
built-on during runtime and released after the transmission is complete. So the resources
used per connection can be reused by other applications.

3.6.1 Properties

Tx channel count

Maximum possible number of parallel used TpChannel(s) for transmissions.

Rx channel count

Maximum possible number of parallel used TpChannel(s) for receptions.

Use Tx channels without FC

Enable the feature to use the non-ISO implementation ‘without FC’ for transmission.

Use Rx channels without FC

Enable the feature to use the non-ISO implementation ‘without FC’ for reception.

©2013, Vector Informatik GmbH Version: 3.14.00 49 /177

Technical Reference Transport Protocol ISO15765-2 vector [

3.6.2 Hook Functions

In opposite to the static MultiTP, where all hook functions are available once for each
statically configured connection, here this set of hook functions is available only once for
all connections. This means that all messages have to be dispatched to the belonging
destination by the application for each connection.

These hook functions we recommend to use.

— b andatory functions

TpT sConfirmation; |DescConfimnation

TpT=Emrarlndization: |DeszcT =Errarlndication

TpRxIndication: |DescPhysReqglnd

TpR=Ermrorindication: |0 escR=Errorlndication
TpRxGetBuffer: |DescGetBuffer

Figure 3-11 Mandatory functions for the usage of the CANdesc diagnostic component
Just enter a suitable function name to use the hook function in your application.
For a detailed description of each function refer to chapter 4.4.

These hook functions are optional.

— Optional functions

TpT=Matification: |DescT =FrameConfimation

TpT=T ranzmitted:
TpT«CopuTaCar: |DescCoppTalCAM
TpTxFLC:

TpR=SF:

TpR=FF:

TpR=CF:
TpR=CopyFromCaH:
TpR=GetT=ID:
TpCheckTa:
TpPreCopyCheck:

Figure 3-12 Optional functions (example for the usage of the CANdesc diagnostic component)

Be careful

while using a Vector Diagnostic Layer it is necessary to hand over only the function calls
to the Diagnostic Layer, which belong to the diagnostic connection(s). An application
example is present, see chapter 8.5.1.

3.6.3 Dynamic Objects

The MultiConnection Tp uses the “dynamic TxID” functionality (oynamic Txio > on) of the CAN-
Driver. However, you can specify additional dynamic objects for your application.

©2013, Vector Informatik GmbH Version: 3.14.00 50/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

| Important

. If you want to add dynamic objects for your application you have just to enter your count
of dynamic objects. The Generation Tool adds the usage of dynamic objects for the
MultiConnection Tp automatically.

3.6.4 TP class Dynamic MultiTP: Normal Addressing
3.6.4.1 CANdriver settings

| Important

. Actually the Generation Tool will not setup the reception messages automatically. The
user itself has to insert for each message, which should be processed by the TP (or for
a range of messages) a ‘TpPrecopy’-function. Please refer the CAN-driver manual
/CANdrv/ how to insert a Precopy-function.

3.6.5 TP class Dynamic MultiTP: Extended Addressing
3.6.5.1 TP class specific settings

— Mizc.

D ECU rumber; II:I:-:I:I
Lawwest funchonal address:l
Highest functional address:l

Figure 3-13 Misc (Extended Addressing)

Own ECU number

It will be read out from the database attribute ‘TpOwnSystemEcuNumber’.

Lowest functional address

The value should define the lowest value of an additional range of receivable
TargetAddresses.

Not supported — use instead the hook function Appl TpCheckTA ()

Highest functional address

The value should define the highest value of an additional range of receivable
TargetAddresses.

Not supported — use instead the hook function Appl1 TpCheckTA ()

©2013, Vector Informatik GmbH Version: 3.14.00 51/177

Technical Reference Transport Protocol ISO15765-2 vector [

3.6.5.2 Database Attributes

Default No TP used Normal Extended
(example)
TpNodeBaseAddress FFFF Default Default 0x600
TpOwnSystemEcuNumber FF Default Default 0x01
TpNodeMesageCount FF Default Default Oxff

Table 3-2 Data Base Attributes

TpNodeBaseAddress
The not valid value FFFF indicates, that there is no base address necessary.

TpOwnSystemEcuNumber
This value provides the own ECU Number, necessary for setting up the transmit identifier.

TpNodeMessageCount

This value determines how many messages are assigned to the ‘range’ together with the
base address. This is necessary for the TP to calculate to which base the received CAN ID
is assigned.

The values for extended addressing are just an example:

The CAN ID for this node is 0x600 + 0x01 = Ox601.

3.6.5.3 Multiple Base Addresses

For each connection a dedicated base address including an address offset and a message
count can be specified.

3.6.6 TP class Dynamic MultiTP: Normal Fixed Addressing
3.6.6.1 Database Attributes

x x
Drefinition | Egmmen[l D efinition | Eommen[l
M ame: ITpD wnSystemE cubumber Hame: IITpN odeB azetddress
Obiject Type: INode ﬂ Object Type: INode j
Walue Type: IHEH ﬂ Walue Type: IHBH j
Cefault: IDHD Drefault: IDH1 a0
Fimirnum: IDHD Hinimun: IDHD
I aimun: IDHFF [GERT IDHFFFF
,TI Abbrechen | [bemehmen Hilfe | ,TI Abbrechen [bemebmen Hilfe

Figure 3-14 Database attributes for ‘Normal Fixed Addressing’
TpOwnSystemEcuNumber

Each ECU is represented in the network by an address / EcuNumber. If the EcuNumber
Oxff is used the TP activates the ‘Multiple EcuNumber’ feature (refer 7.4.1 Virtual ECU’s).

©2013, Vector Informatik GmbH Version: 3.14.00 52 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

TpNodeBaseAddress

This attribute includes the upper 13 bits (like priority, PGN) of the CAN-ID.
3.6.7 TP class Dynamic MultiTP: Mixed 29-bit Addressing

Currently open — support is only for generation tool GENy requested
3.6.8 TP class Dynamic MultiTP: Multiple Addressing

In this TP class it is possible to change the addressing mode in run-time.
3.6.8.1 Addressing mode

Addressing mode
¥ Momal addressing

[T Extended addressing
[T Momal fixed addressing

Figure 3-15 Addressing mode (Multiple Addressing)
Only the checked addressing modes will be supported.

3.6.8.2 CAN Diriver settings

To distinguish the addressing mode while the reception different Precopy-functions will
exist for each mode. It is possible to insert the Precopy-function for a message or for a
range of messages (CAN-Driver Ranges).

> NormalAddressing: TpPrecopyNormal<DESTINATION>

> NormalFixedAddressing: TpPrecopyNormalFixed<DESTINATION>
> ExtendedAddressing: TpPrecopyExtended<DESTINATION>
> Mixed29Addressing: TpPrecopyMixed29<DESTINATION>

> Mixed11Addressing: TpPrecopyMixed11<DESTINATION>

Caution
(' '}: Actually the Generation Tool will not setup the reception messages automatically.

<DESTINATION> is replaced by on of the following strings:
> Appl
> DiagFunc

> DiagPhys

These destinations identify the purpose of a given connection. DiagFunc will identify a
functional Diagnostic message (1:n). DiagPhys is representing the standard physical
diagnostic message (1:1) and Appl a standard TPMC connection used for application
purpose (1:1).

E.g.: NormalFixedAddressing range 18DA0500 with mask OxFF which is specified by the
ISO standard as physical range would be configured in the CAN Driver as:

©2013, Vector Informatik GmbH Version: 3.14.00 53/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

TpPrecopyNormalFixedDiagPhys

Using a dispatcher in combination with two macro functions it is possible to distinguish
inside the TPMC callback function set between a diagnostic or applicational request
message and direct it to the correct component like CANdesc.

TpRxGetAddressingFormat (tpChannel) can be used to check against

#define kTpNormalAddressing
#define kTpExtendedAddressing
#define kTpNormalFixedAddressing
#define kTpMixed29Addressing
#define kTpMixedllAddressing

TpRxGetAssignedDestination (tpChannel) can be used to check against

#define kTpRequestAppl
#define kTpRequestDiagFunctional
#define kTpRequestDiagPhysical

DI G Application

Funn::.: Dhys. ¢ ¢

TPIC Dispatcher

CAN DRV

CAMNZ CAMN1

Figure 3-16 Dedicated call of Precopy functions in TPMC by the driver.

©2013, Vector Informatik GmbH Version: 3.14.00 541177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.7 TP class Dispatched MultiTP

With the release version 3.00.00 of TPMC the “Dispatched” MultiTP class was introduced
to disburden the application from the dispatching job.

Using the “Dynamic MultiTP” classes, which support only one single set of callback
functions for all connections together, the dispatching of the actual destination has to be
performed by the application.

Using the “Dispatched MultiTP” classes all of the dispatching work is done within the
TPMC.

“‘Dispatched MultiTP” is located between static and dynamic TP classes. As well as Static
TP it supports connection specific sets of callback functions and dispatches all
connections, regarding the Address Information (Al), to these callback functions. Just as
Dynamic TP resources are shared among the connections.

Diag Appl_1 Appl_n
A A A
v v v All connection specific attributes like timeouts,
H : : max. tpChannels, callback function set, etc. are
: Dispatched : TPMC kept internally in the TPMC.
—F F F The configured address information (Al) is
linked (via a TPMC internal Precopy function)
ALO Al 1 A2 directly to the destination application.
\ 4 \ 4 A\ 4
Can Driver
CAN 2 CAN 1

Figure 3-17 Dedicated call of application callback functions in TPMC by the internal dispatcher.

p Info
Please note that all existing applications are unaffected unless the new class is actually
selected in the generation tool.

©2013, Vector Informatik GmbH Version: 3.14.00 5517177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

3.7.1 “Dynamic MultiTP” versus “Dispatched MultiTP” — a short analogy

3.7.1.1 Solution based on “Dynamic MultiTP”:

Here all dynamic TpChannels are provided as a global resource and shared by all
connections. So, if no Rx channel is currently available then the incoming message is
simply discarded by the TPMC, no reception will occur and the application will not be
notified. Otherwise the primal callback function to map an incoming request to a
connection, the ‘ApplTpRxGetBuffer’ function, is called. The addressing data statically
configured in GENy is not present for the dispatching application. There is no consistency
provided by the TPMC.

To perform this mapping the addressing information statically configured has to be
compared to the currently received CAN message. The scope of the addressing
information to be compared can be different and depends on the used addressing type.

If a valid connection is found within the ‘ApplTpRxGetBuffer’ function then a valid pointer to
the application buffer is handed to the TPMC, the FC status can be set and the FC
addressing information must be set for usage by the TPMC. The identified reception is
marked while using the ‘TpRxSetConnectionNumber’ API function with a unique number
defined by the application. To distinguish the connections in later callbacks (e.g.
ApplTpRxIndication(tpChannel)), the APl TpRxGetConnectionNumber(tpChannel) must be
used to get an application relevant handle. The tpChannel handle can and will be different
for each reception.

Receive Example: (see also chapter 8.5)

/* get CAN-Id */
requestId = TpRxGetChannelID (channel) ;
if (requestId == MY RECEIVE ID) {
/* store connection number */
TpRxSetConnectionNumber (channel, kMyConnectionNo) ;
/* set CAN-Id for response */
TpRxSetTransmitID (channel, MY TRANSMIT ID);
pBuf = myTpGetRxBuffer (channel, datalength);
/* handle FC status properly */
if (pBuf == V_NULL) {
TpRxSetFCStatus (channel, kTpFCStatusOverflow);
}
else {
TpRxSetFCStatus (channel, kTpFCClearToSend);
}
}

For the transmission a Tx channel has to be allocated, a connection number has to be
assigned and the connection parameters have to be set according to the addressing type
before the transmission can be started.

Transmit Example: (see also chapter 8.5)

/* acquire a tx channel */
vuint8 channel = TpTxGetFreeChannel (kMyConnectionO) ;
if (channel != kTpNoChannel) {

/* set CAN channel */

©2013, Vector Informatik GmbH Version: 3.14.00 56/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

TpTxSetCanChannel (channel, kMyCanNo) ;

/* set CAN identifiers */

TpTxSetChannellID (channel, myTxCANId, myRxCANId); /* precalculated CAN Ids */
TpTxSetTargetAddress (channel, target address); /* extended addressing */
/* trigger the transmission */

TpTransmit (channel, data, length);

For all this topics several API functions must be used in a correct manner what may result
in a pretty complex dispatcher to be handled by the application.

3.7.1.2 Solution based on “Dispatched MultiTP”

Each connection group has a configurable number of TpChannels reserved for its own.
This offers an improved availability for concurrent receptions with no interference to other
TpChannel resources availability.

All Tp callbacks are dispatched internally in the TPMC. In addition to the passing of a raw
tpChannel a connection handle ‘addrinfoHandle’ is handed to the application. Behind this
‘addrinfoHandle’ all address information is available based on the static configuration
information. Only dynamic runtime address information (e.g. target address in case of
Extended- or NormalFixed- addressing) has to be handled extra.

Info

Please note that all application callback functions do not change their API.
Additional API functions are provided to get the ‘addressinfoHandle’ from the
corresponding tpChannel :

[] TpRxGetAddressInfoHandle (tpChannel) : within reception callbacks

[l TpTxGetAddressInfoHandle (tpChannel): within transmission callbacks

A connection specific precopy function is introduced which is called when the dispatching
is already completed and resulted in exactly the call of this connection specific function. To
identify the connection later on just the ‘addressinfoHandle’ has to be stored by the
application.

The handles are provided in the form “kTp<Addressing Info Name>" in the generated
code. So the application can easily differentiate within the callback functions which
connection is present just by checking the ‘addressinfoHandle’ using the API
‘TpRxGetAddressinfoHandle()'. Please note that the differentiation in the callback
functions is only necessary if more than one Al is configured for one connection or if the
same callback functions are configured for more than one connection. Otherwise the
corresponding callback function is dedicated unambiguously to one connection.

Of course also here free TpChannels must be available (per connection group) or the
reception (transmission) will fail.

©2013, Vector Informatik GmbH Version: 3.14.00 571177

Technical Reference Transport Protocol ISO15765-2

Example:
The following example shows a “Dispatched Multiple Addressing Multi TP” configuration

containing 3 connections (TpConnection000/001/002).

[T 5™ MancL se au

L hmin ol et L, [RNRT N .| L

vactor”

L 0 Huy_CanoeemuCpu

|: Transport Pratocol - Mulli Connections (TP-MC)

-3 DrvCan_CanoeemuCanoeH |l

TR 150 Standard

150 15765-2:2004

8- %—';‘;1 5?55 oG TP Class Dispatched Multiple Addressing Muli TP |
- 53 Topngsr?nlzgtinrrwcll;l‘]?]s Add Connection Grougp

[TpCornectiondl1 |- TP Clags Specific Options

] TpCannectiond0z Multiple ECU Mumbers |r

One Al is configured per connection and each connection uses a different addressing type
(Normal-, Extended-, NormalFixed- addressing).

|y O g B ey B e |

El..
El..
El..
El..

E® DrvCan_CanoeemuCanoeHl
=B Tp lsal5765

=-F=] TP Cornection Groups
L= TplCornectiond0n

-5 Charnels

2=t Channel 0
#-g TxMessages
-3 Ry Messages

[y TxMeszages

- R Messages

g TxMessages
i FxMessages
i, Tx Signals
i, Fx Signalz

©2013, Vector Informatik GmbH

|: TP Addrezzs Information

----- E® zBrz_EmbeddedPunTimeSpstenn

|: Marmal Addressing Information Al
|: Addrezzing Informsation Delete
Marme Connd_al
Connection Group TpConnection0oo j
T Messane Fg Boardl_Ext j
Fx Mezsage Rq TestMode_Ext j
Minirnum Sending Delay [ms] 20
|: Extended Addrezsing Information A
tﬁddressing Infarmation Delete I
Marme Connd_Al2
Connection Group TpConnection00 j
Base Address]
Address Offset =f0
hWessane Courter 010
|: Marmal Fized Addressing Information Al
|: Addrezzing Informsation Delete
Marme Connz_al3
Connection Group TpConnection02 j
Priority G
Parameter Group ldentification O=da®
ECU Mumkber 0wl

Version: 3.14.00

58/ 177

Technical Reference Transport Protocol ISO15765-2 vector [

Configurable Optiors ITpEDnnectiDnDDD Each connection has an appropriate
|— TP Coninection Group connection specific set of callback
Marme TpConnection00 functions beneath some other
Mumber of Fx Channels 3 connection specific attributes.

Mumber of Tx Channels 3

Blocksize [Frames] a

Separation Time [ms] 20%

Flowy Contral Timeout [ms=] 1807

CF Timeout [ms] 1680

Transmit CF Time Interval [ms] 20

R Get Buffer testRuGetBufferd
Fx Indication testRxlndicationd
R Errar Indication testR=E rrorl ndicationd
R Single Frame Indication #

R First Frame Indication *

Fx Consecutive Frame Indication =
Fx Copy from CARN *

R Flowy Cortrol Frame Transmitted | =

Te Confirmation testT “Caonfirmationd
T Error Indicstion testT «E rroflndicationd
T Motification *

Tx CAM Message transmitted #

Tx Flowy Cortral Frame received *

Tx Copy to CARN =

Tx Delay finished *

In the generated code the following constants are available for usage by the application.
The connections groups:

#define kTpGroupTpConnection000 0
#define kTpGroupTpConnection001 1
#define kTpGroupTpConnection002 2

The connection handles:

#define kTpConnO ATl 0
#define kTpConnl AI2 1
#define kTpConn2 AI3 2

The connection specific transmit macros:

#define TpTransmit ConnO AIl(data ,length) \
TpTransmitNormal (kTpConnO AIl, data, length)
#define TpTransmit Connl AI2(TA ,data ,length) \
TpTransmitExtended (kTpConnl AIZ2, TA, data, length)
#define TpTransmit Conn2 AI3(TA ,data ,length) \
TpTransmitNormalFixed (kTpConn2 AI3, TA, data, length)

©2013, Vector Informatik GmbH Version: 3.14.00 59 /177

Technical Reference Transport Protocol ISO15765-2 vector [

Now the application can easily differentiate within the connection specific callback
functions and decide how to proceed:

if (TpRxGetAddressInfoHandle (tpChan) == kTpConnl AI2) {

TpTransmit Connl AI2(TA ,data ,length);

3.7.2 Dispatched MultiTP API

Caution
(' :‘I: To avoid collisions it is prohibited to use API-functions from the application site that are
used internally by the TPMC dispatcher.

This means that all API functions marked as “done internally by TP” in the tables below
are neither necessary nor available anymore!

3.7.2.1 Reception side

Dynamic MultiTP class Dispatched MultiTP class
Since version 3.00.00
TpRxSetConnectionNumber done internally by TP
TpRxGetConnectionNumber done internally by TP
TpRxGetAddressingFormat done internally by TP

TpRxGetAssignedDestination

TpRxResetChannel available for application usage
TpRxSetTransmitID
TpRxGetStatus

TpRxSetBS

TpRxGetBS

TpRxSetSTMIN

TpRxGet STMIN
TpRxGetChannelID
TpRxGetCanChannel
TpRxGetSourceAddress
TpRxGetReceivedTargetAddress
TpRxGetEcuNumber
TpRxSetBufferOverrun
TpRxGetAddressExtension
TpRxGetCanbuffer
TpRxSetWaitCorrectSN
TpRxSetTimeoutConfirmation
TpRxSetTimeoutCF
TpRxSetFCStatus
TpRxGetFCStatus
TpRxSetClearToSend

e New API functions for Dispatched classes:

©2013, Vector Informatik GmbH Version: 3.14.00 60/ 177

Technical Reference Transport Protocol ISO15765-2

Please find a more detailed description in chapter 4.

vactor”

TpGetConnectionGroup(AI_handle)

Get the connection group
(kTpGroup<ConnectionName>)

TpGetAddressingType (AI handle)

Get the addressing type info (only for multiple
addressing class):
kTpNormalAddressing,
kTpExtendedAddressing,
kTpNormalFixedAddressing,
kTpMixedllAddressing,
kTpMixed29Addressing

TpGetCanChannel (AI handle)

Get the pertaining CAN channel (only for multiple
CAN channels)

TpGetRxId (AI handle) Get the Rx CAN-Identifier (only for normal
addressing)

TpGetTxId (AI handle) Get the Tx CAN-Identifier (only for normal
addressing)

TpGetBaseAddress (AI handle) Get the base address (only for extended

addressing)

TpGetAddressOffset (ATl handle)

Get the address offset pertaining to a base
address (only for extended addressing)

TpGetPriority(AT handle) Get the priority info from a 29-bit CAN
identifier (only for NormalFixed or Mixed29
addressing)

TpGetPGN (AI handle) Get the parameter group identification from a
29-bit CAN identifier (only for NormalFixed or
Mixed29 addressing)

TpGetEcuNumber (AT handle) Get the ECU address (only for NormalFixed or
Mixed29 addressing)

3.7.2.2 Transmission side

- Info

Please note that the TpTransmit function is the only API that has to be adapted in the

application code.

Dynamic MultiTP class

Dispatched MultiTP class
Since version 3.00.00

TpTxSetChannelID done internally by TP
TpTxSetCanChannel done internally by TP
TpTxSetTargetAddress done internally by TP
TpTxSetEcuNumber done internally by TP
TpTxSetBaseAddress done internally by TP
TpTxGetFreeChannel done internally by TP

TpTxSetAddressingFormat

done internally by TP

TpTxGetConnectionNumber

done internally by TP

TpTxGetConnectionStatus

done internally by TP

TpTxSetAddressExtension

done internally by TP

TpTxSetResponse done internally by TP

TpTxLockChannel done internally by TP

TpTxUnlockChannel (see note ') below)

TpTransmit Either you can use the generated connection

specific macros:
TpTransmit <ConnectionName>(data,len),

©2013, Vector Informatik GmbH

Version: 3.14.00

61/177

Technical Reference Transport Protocol ISO15765-2

TpTransmit <ConnectionName> (TA,data, len),
TpTransmit <ConnectionName> (AE,data, len),
TpTransmit <ConnectionName> (TA,AE,data,len),

or directly the referenced functions:

TpTransmitNormal (AI, data, len),
TpTransmitExtended (AI, TA, data, len),
TpTransmitNormalFixed (AI, TA, data, len),
TpTransmitMixedll (AI, AE, data, len),
TpTransmitMixed29 (AI, TA, AE, data, len).

Please refer to the API description in

TpTxGetSTminInFrame
TpTxPrepareSendImmediate
TpTxSendImmediate
TpRxSetStrictFlowControl

chapter 4.
TpTxGetDataBuffer available for application usage
TpTxGetDatalIndex
TpTxResetChannel

L) Note: The Locking and Unlocking of tpChannels is no longer necessary. Due to the possibility to configure
a connection with a dedicated exclusive tpChannel the tpChannel resource is ‘locked’ implicitly.

o New API functions for Dispatched classes:

Please find a more detailed description in chapter 4.

TpTransmitNormal (AI handle,data,len) [Instead of using the addressing type
TpTransmitExtended (AI handle,data,len) [SPecific transmit functions we recommend
TpTransmitNormalFixed (AI handle,data, len) to.use the connection specific macros

. ; = which are generated.
TpTransmitMixedll (AT handle,data,len
TpTransmitMixed29 (AI handle,data,len

©2013, Vector Informatik GmbH

Version: 3.14.00

vactor”

62 /177

Technical Reference Transport Protocol ISO15765-2 vector [

4 API

4.1 Use of ISO15765-Transport Protocol

Please use the services of the ISO15765 Transport Protocol in your application according
to the instructions in this manual.

Please include the tpmc.h definition file in all modules requiring Transport Protocol
Services. All available services, the types for the interface, and symbolic constants are
defined in this file.

After a power on reset and before any other call of the Transport Protocol the function void
TpInitPowerOn (void) has to be called. The main program of the Transport Protocol
TpTxTask () and TpRxTask () has to be called periodically by the application.

All other services of the Transport Protocol are called on those points in your application
where services are required.

4.2 Functions of the Transport Protocol
Field description of the following tables

Name of the function

Prototype
SingleConnectionTp

Function prototype for SingleConnectionTP

MultipeConnectionTP

Function prototype for MultipleConnectionTP

Parameter
Name of the parameter | Description of the parameter

Return code

Meaning of the return code

Availability
The APl is included in all versions, except a restriction is given here
Description

Explanation of the functionality

Pre-condition(s)

Required preconditions before the function can be used.
Post-condition(s)

If a state change was done, it will be described here

Call context

The restrictions from where the function can be used are described here.

©2013, Vector Informatik GmbH Version: 3.14.00 63 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Please note

Some additional notes

Examples
A short code example is given

4.2.1 Administrative Functions
4.2.1.1 TplnitPowerOn: Initialization
TplnitPowerOn

SingleConnectionTp

void TpInitPowerOn (void)

MultipeConnectionTP

void TpInitPowerOn (void)

Parameter

Return code

Availability

No restrictions

Description

Power On Initialization of the TP. This function has to be called before all other functions of the Transport
Protocol once after Power On.

Pre-condition(s)

Global interrupts are disabled and CAN-driver with function CanInitPowerOn () and are initialized
correctly.

Post-condition(s)

The Transport Layer is ready for reception after calling TpInitPowerOn ().

Call context

Background-loop level with global disabled interrupts

Please note

Call the TpInitPowerOn () before the application wants to reserve own dynamic transmission objects.

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 64 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.1.2 Tplnit: Re-initialization
Tplnit

SingleConnectionTp

void TpInit (void)

MultipeConnectionTP

void TpInit (void)

Parameter

Return code

Availability

No restrictions

Description

The Transport Layer is re-initialized after calling TpInit ().

Pre-condition(s)

TpInitPowerOn () was called before. No TP functionality is used at this time.

Post-condition(s)

The Transport Layer is re-initialized after calling TpInit () .
Call context
Background-loop level with global disabled interrupts

Please note

SEINTES

4.2.1.3 TpTask: Observing timing conditions
TpTask

Prototype
SingleConnectionTp

void TP _API CALL TYPE TpTask (void)

MultipeConnectionTP

void TP _API CALL TYPE TpTask (void)

Parameter

©2013, Vector Informatik GmbH Version: 3.14.00 65/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code
Availability
No restrictions
Description

Function calls both TpRxTask and TpTxTask in correct order.

Pre-condition(s)

TpInitPowerOn () was called before.

Post-condition(s)
Call context
Cyclic task base.

Please note

Examples

4.2.1.4 TpCanChannellnit: CAN channel specifiic re-initialization
TpCanChannellnit

SingleConnectionTp

void TP _API CALL TYPE TpCanChannellInit (canuint$
canChannel)

MultipeConnectionTP
void TP_API CALL TYPE TpCanChannellInit (canuint$
canChannel)

Parameter

canChannel -

Return code
Availability

Since TPMC version 2.41
Description

Any reception / transmission on this CAN channel will be stopped. If a connection was running the
application will be informed by calling the function ApplTpXxErrorIndication () .

Pre-condition(s)

TpInitPowerOn() was called before. No TP functionality is used at this time.

©2013, Vector Informatik GmbH Version: 3.14.00 66 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

All running TP channels on this CAN channel are re-initialized.
Call context
Background-loop level with global disabled interrupts

Please note

Examples

4.2.1.5 TpRxTask: time base for reception timeouts
TpRxTask

SingleConnectionTp

void TpRxTask (void)

MultipeConnectionTP

void TpRxTask (void)

Parameter

Return code
Availability
No restrictions
Description

The function ToRxTask () has to be called periodically (cycle time Trprxcaicyce) DY the application. This
function performs all Rx-Tasks of the Transport Layer and monitors the timings.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Background-loop level or OSEK-osTask with low priority.
Important note: This function must not be called in interrupt context!

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 67 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.1.6 TpTxTask: time base for timeouts/transmission
TpTxTask

SingleConnectionTp

void TpTxTask (void)

MultipeConnectionTP

void TpTxTask (void)

Parameter

Return code
Availability
No restrictions

Description

The function TpTxTask () has to be called periodically (cycle time Trprycaicyce) Dy the application. This
function performs all Tx-Tasks of the Transport Layer and monitors the timings.

Pre-condition(s)
The TP is initialized with TpInitPowerOn ().

Post-condition(s)

Call context

Background-loop level or OSEK-OSTask with low priority.
Important note: This function must not be called in interrupt context!

Please note

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 68 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.1.7 TpRxStateTask: optional transmission retry
TpRxStateTask

SingleConnectionTp

void TpRxStateTask (void)
MultipeConnectionTP

void TpRxStateTask (vuint8 tpChannel)
Parameter
tpChannel -

Return code

Availability
Since TPMC version 2.35
Description

The function TpRxStateTask () can be called optionally by the application. This function performs the link
from the Transport Layer to the CAN-Driver.

Pre-condition(s)

The TP is initialized with TpInitPowerOn ().

Post-condition(s)

Call context

Please note

Examples

4.2.1.8 TpRxAllStateTask: optional transmission retry
TpRxAllStateTask

Prototype
SingleConnectionTp

void TpRxAllStateTask (void)

MultipeConnectionTP

void TpRxAllStateTask (void)

Parameter

©2013, Vector Informatik GmbH Version: 3.14.00 69 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code

Availability
Since TPMC version 2.35

Description

The function TpRxAllStateTask () can be called optionally by the application. This function performs the
link from the Transport Layer to the CAN-Driver for all running Rx-connections.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Please note

Examples

4.2.1.9 TpTxStateTask: optional transmission retry
TpTxStateTask

Prototype
SingleConnectionTp

void TpTxStateTask (void)

MultipeConnectionTP

void TpTxStateTask (vuint8 tpChannel)

Parameter

tpChannel -

Return code

Availability
Since TPMC version 2.35
Description

The function TpTxStateTask () can be called optionally by the application. This function performs the link
from the Transport Layer to the CAN-Driver.

Pre-condition(s)

The TP is initialized with TpInitPowerOn ().

©2013, Vector Informatik GmbH Version: 3.14.00 70/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

Call context

Please note
It is prohibited to call TpTxStateTask () nested.
Examples

4.2.1.10 TpTxAllStateTask: optional transmission retry
TpTxAllStateTask

Prototype

SingleConnectionTp

void TpTxAllStateTask (void)
MultipeConnectionTP

void TpTxAllStateTask (void)
Parameter
tpChannel -

Return code

Availability
Since TPMC version 2.35
Description

The function TpTxAl1lStateTask () can be called optionally by the application. This function performs the
link from the Transport Layer to the CAN-Driver for all running Tx-connections.

Pre-condition(s)
The TP is initialized with TpInitPowerOn ().

Post-condition(s)
Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 711177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.2 Receive Functions
4.2.2.1 TpRxSetConnectionNumber: Assign a Connection-Number to a channel

TpRxSetConnectionNumber

Prototype
SingleConnectionTp

MultipeConnectionTP

void TpRxSetConnectionNumber (vuint8 tpChannel,
volid connection)

tpChannel Underlying tpChannel used for this connection.
connection Connection number that shall be assigned to this tpChannel.

Return code
void -

Availability

Only for dynamic TP classes

Description

This function assigns an application specific connection-number to this tpChannel.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context
Use this function only inside the callback function ApplTpRxGetBuffer () !

Please note

SEINTES

4.2.2.2 TpRxGetConnectionNumber: Get the Corresponding Connection-Number

TpRxGetConnectionNumber

Prototype
SingleConnectionTp

MultipeConnectionTP

vuint8 TpRxGetConnectionNumber (vuint8 tpChannel)

©2013, Vector Informatik GmbH Version: 3.14.00 721177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Return code

N

Availability

Only for dynamic TP classes

Description

This function returns the connection-number, which is assigned to this tpChannel.

Pre-condition(s)

The TP is initialized with TpInitPowerOn ().

This tpChannel is not reset and a connection-number was previously assigned to it by the application.
(See TpRxSetConnectionNumber())

Post-condition(s)

Call context

Please note

A correct value will only be returned, if a connection number was set previously in the callback function
ApplTpRxGetBuffer () with ToRxSetConnectionNumber ().

Examples

4.2.2.3 TpRxGetAddressingFormat: Get the current addressing type
TpRxGetAddressingFormat

Prototype
SingleConnectionTp

MultipeConnectionTP

canbittype TpRxGetAddressingFormat (canuint8
tpChannel)

Parameter

tpChannel Underlying TP channel

Return code

One of the following constants (canbittype:3):

#define kTpNormalAddressing
#define kTpExtendedAddressing
#define kTpNormalFixedAddressing
#define kTpMixed29Addressing
#define kTpMixedllAddressing

©2013, Vector Informatik GmbH Version: 3.14.00 731177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Availability

Only for Multiple Addressing TP
Description

This macro is used to retrieve the required addressing information in a multiple addressing environment.
Using a dispatcher in combination with the macro function it is possible to distinguish inside the TPMC
callback function set between the different addressing types and handle additional pertaining information.

Pre-condition(s)

A TP Channel is successful allocated.
Post-condition(s)

Call context

Please note

SEINTES

4.2.2.4 TpRxGetAssignedDestination: Get the currently assigned destination
TpRxGetAssignedDestination

Prototype
SingleConnectionTp

MultipeConnectionTP

canbittype TpRxGetAssignedDestination (canuint$8
tpChannel)

Parameter

tpChannel Underlying tp channel

Return code

One of the following constants (canbittype:3):

#define kTpRequestAppl // BApplication
#define kTpRequestDiagFunctional // Functional Diag.
#define kTpRequestDiagPhysical // Physical Diag.

is delivered to differentiate between application, functional or physical diagnostic
requests.

Availability
Only for Multiple Addressing TP

©2013, Vector Informatik GmbH Version: 3.14.00 741177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Description

This macro is used to retrieve the required destination information in a multiple addressing environment.
Using a dispatcher in combination with the macro function it is possible to distinguish inside the TPMC
callback function set between the different destinations and handle the correct dispatching of the message
to the pertaining destination.

Pre-condition(s)

AtpChannel is successful allocated.

Post-condition(s)

Call context

Please note

SEINTES

4225 TpRxResetChannel: Free Rx-TpChannel
TpRxResetChannel

Prototype

SingleConnectionTp
void TP _API CALL TYPE TpRxResetChannel (void)
MultipeConnectionTP
void TP_API CALL TYPE TpRxResetChannel (canuint$
tpChannel)
tpChannel -

Return code

Availability

No restriction

Description

Each time a transport-frame was received the used channel is blocked. To receive another transport-frame
on this channel the application has to free this channel.

This is, in case of an erroneous reception, not required for the TpRxErrorindication() callback.
The function is called within or after the Rx-Indication - callback.

If the application calls the reset-function then the application itself is also responsible to handle the reset
values inside the application in further processing steps.

©2013, Vector Informatik GmbH Version: 3.14.00 751177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context
Background-loop level or OSEK-OSTask with lower or same priority as TpTasks.

Please note

Examples

4.2.2.6 TpRxGetStatus: Rx-Channel Status
TpRxGetStatus

Prototype
SingleConnectionTp

vuint8 TpRxGetStatus (void)

MultipeConnectionTP

vuint8 TpRxGetStatus (vuint8 channel)

Parameter

channel -

Return code

vuint8 kTpChannelinUse = 0x01
kTpChannelNotinUse =0x00

Availability

No restriction

Description

This function returns the actual status of the Rx-Channel.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

The returned status can have more than two values!
The InUse-Flag is always coded in the lowest bit (0x01)

©2013, Vector Informatik GmbH Version: 3.14.00 76 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Examples

Because it is a status-field there are two possibilities for checking if the channel is InUse:

if (TpRxGetStatus (user_channel) != kTpChannelNotInUse)

if (TpRxGetStatus (user_channel) & kTpChannellInUse)

4.2.2.7 TpRxSetBS: Setting up BlockSize on Reception Side

TpRxSetBS
Prototype
SingleConnectionTp

void TpRxSetBS (vuint8 newBlockSize)

MultipeConnectionTP
void TpRxSetBS (vuint8 channel, wvuint$
newBlockSize)

newBlockSize -

channel

Return code
-/ |
Availability

Extended API-BS must be activated

Description

The BlockSize-Value within the FlowControl can be adjusted by this function.

Pre-condition(s)

The TP is initialized with TplnitPowerOn().

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 771177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.2.8 TpRxGetBS: Get BlockSize on Reception Side
TpRxGetBS

SingleConnectionTp

vuint8 TpRxGetBS (void)
MultipeConnectionTP

vuint8 TpRxGetBS (vuint8 channel)
Parameter
channel -

Return code

Availability

Extended API-BS must be activated

Description

The BlockSize-Value within the FlowControl can be read by this function.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

4.2.2.9 TpRxSetSTMIN: Setting up STMin time on Reception Side
TpRxSetSTMIN

Prototype
SingleConnectionTp

void TpRxSetSTMIN (vuint8 newSTMinSize)
MultipeConnectionTP
void TpRxSetSTMIN (vuint8 channel, wvuint8
newSTMinSize)
Parameter
Channel -
©2013, Vector Informatik GmbH Version: 3.14.00 781177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

newSTMinSize

Return code

Availability
Extended API-STMIN must be activated

Description

The STmin-Value within the FlowControl can be adjusted by this function.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

4.2.2.10 TpRxGetSTMIN: Get STMin time on Reception Side
TpRxGetSTMIN

SingleConnectionTp

vuint8 TpRxGetSTMIN (void)
MultipeConnectionTP

vuint8 TpRxGetSTMIN (vuint8 channel)
Parameter
Channel -

Return code

Availability
Extended API-STMIN must be activated

Description

The STmin-Value within the FlowControl can be read by this function.
Pre-condition(s)
The TP is initialized with TplInitPowerOn().

©2013, Vector Informatik GmbH Version: 3.14.00 791177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

Call context

Please note

Examples

4.2.2.11 TpRxGetChannellD: Get Received CAN-Id
TpRxGetChannellD

Prototype

SingleConnectionTp

MultipeConnectionTP

vuintl6 TpRxGetChannellID (vuint8 channel)

Parameter

Channel -

Return code

Availability

Only for dynamic TP class: Normal Addressing.

Description

This function returns the CAN-Identifier, of the last transport-frame
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 80/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.2.12 TpRxGetChannelExtID: Get Received Extended CAN-Id
TpRxGetChannelExtID

SingleConnectionTp

MultipeConnectionTP

vuint32 TpRxGetChannelExtID (vuint8 channel)

Parameter

Channel -

Return code

Availability

For

- Dynamic TP class Normal Addressing and
- Dispatched Normal Multi TP

Description

This function returns the extended CAN-Identifier, of the last transport-frame

Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.2.13 TpRxGetCanChannel: Get physical CAN channel
TpRxGetCanChannel

SingleConnectionTp
MultipeConnectionTP
vuint8 TpRxGetCanChannel (vuint8 channel)
Parameter
Channel -
©2013, Vector Informatik GmbH Version: 3.14.00 81/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code

Availability

Only multiple CAN-channel systems

Description

This function returns the (physical) CAN-channel, through which the last transport-frame has been received.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.2.14 TpRxGetSourceAddress: Get received Source Address
TpRxGetSourceAddress

Prototype

SingleConnectionTp

vuint8 TpRxGetSourceAddress (void)
MultipeConnectionTP

vuint8 TpRxGetSourceAddress (vuint8 channel)
Parameter
Channel -

Return code

Availability

Only for dynamic TP classes: Extended- and Normal Fixed Addressing

Description

This function returns the destination address, which has been received in the last transport-frame.
Pre-condition(s)

The TP is initialized with TplInitPowerOn()

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 82 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context

Please note

Examples

4.2.2.15 TpRxGetReceivedTargetAddress: Get received Target Address
TpRxGetReceivedTargetAddress

SingleConnectionTp
vuint8 TpRxGetReceivedTargetAddress (void)

MultipeConnectionTP
vuint8 TpRxGetReceivedTargetAddress (vuint8
channel)

Channel

Return code

Availability

Only for TP classes: Extended-, Normal Fixed-, and Mixed addressing with the extended gateway API
enabled.

This function returns the destination address, which has been received in the last transport-frame. Normally
it is only used for gateway applications.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 83/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.2.16 TpRxGetEcuNumber: Get ECU Number
TpRxGetEcuNumber

SingleConnectionTp

vuint8 TpRxGetEcuNumber (void)
MultipeConnectionTP

vuint8 TpRxGetEcuNumber (vuint8 channel)
Parameter
Channel -

Return code

Availability

Multiple EcuNumber feature must be activated

Description

This function returns the ECU Number, which has been received in the last transport-frame.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

4.2.2.17 TpRxGetParameterGroupldentification: Get Identification of PGN

TpRxGetParameterGroupldentification
Prototype

SingleConnectionTp
; O ToRXGetD : 5 Tdentifs 3 T
MultipeConnectionTP
Vaintsd
ToRxCetD I 5 Tdentifi £ . g
ehanrretr
©2013, Vector Informatik GmbH Version: 3.14.00 84 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Channel

Return code

Availability

Caution
Currently not available.

Only for dynamic TP class: Normal Fixed Addressing with extended API

This function returns the Identification of the Parameter Group, which has been received in the last
transport-frame.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Please note

Examples

4.2.2.18 TpRxSetBufferOverrun: Enable partial acceptance
TpRxSetBufferOverrun

SingleConnectionTp

void TP _API CALL TYPE TpRxSetBufferOverrun (void)
MultipeConnectionTP

void TP _API CALL TYPE

TpRxSetBufferOverrun (canuint8 tpChannel)
Parameter
Channel -

Return code

Availability

Since TPMC version 2.41.00. The buffer overrun feature must be enabled

©2013, Vector Informatik GmbH Version: 3.14.00 85/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Description

Areception can be received without copying the received data. This could be useful if the reception buffer is
too small, but the request must be received to reject it by a special response. The data of a Single- or
FirstFrame are copied, but no data are copied for ConsecutiveFrames. Due to this a buffer must be provided
with at least the maximum length of Single- or FirstFrame.

Pre-condition(s)
Only useful if a FF has been received

Post-condition(s)

Call context
Within function Appl1 TpRxGetBuffer ()

Please note

Examples

4.2.2.19 TpRxSetTransmitlD: Set transmission CAN-Id
TpRxSetTransmitlD

Prototype

SingleConnectionTp
MultipeConnectionTP
void TP _API CALL TYPE TpRxSetTransmitID
(canuint8 tpChannel, canuintl6 transmitID)
Parameter
tpChannel -
transmitID CAN-ID

Return code

Availability

Only TP-class ‘Dynamic NormalAddressing MultiTP’
Description

While receiving a multiple frame request the TP needs the CAN-ID for the transmission of the FlowControl
message. Additionally the Diagnostic/TP will need it to calculate the response transmission
(TpTxSetResponse ()), Why it is necessary to set it each time Appl1 TpRxGetBuffer () gets called.

Pre-condition(s)

Post-condition(s)

Response can be calculated automatically by the Function TpTxSetResponse () .

©2013, Vector Informatik GmbH Version: 3.14.00 86 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context
Within function 2App1 TpRxGetBuffer ()

Please note

Examples

4.2.2.20 TpRxSetTransmitExtID: Set transmission Extended CAN-Id
TpRxSetTransmitExtID

SingleConnectionTp
MultipeConnectionTP
void TP _API CALL TYPE TpRxSetTransmitExtID
(canuint8 tpChannel, canuint32 transmitID)
Parameter
tpChannel -
transmitID Extended CAN-ID (29 bits)

Return code

Availability

Only TP-class ‘Dynamic NormalAddressing MultiTP’ and
TP-class ‘Dispatched NormalAddressing MultiTP’

Description

While receiving a multiple frame request the TP needs the CAN-ID for the transmission of the FlowControl
message. Additionally the Diagnostic/TP will need it to calculate the response transmission
(TpTxSetResponse ()), why it is necessary to set it each time Appl TpRxGetBuffer () gets called.

Pre-condition(s)

Post-condition(s)

Response can be calculated automatically by the Function TpTxSetResponse () .
Call context

Within function 2pp1 TpRxGetBuffer ()

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 87 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.2.21 TpRxGetChannellDType: Get the type of the received CAN-Id
TpRxGetChannellDType

Prototype
SingleConnectionTp

MultipeConnectionTP

canuint8 TP API CALL TYPE TpRxGetChannelIDType
(canuint8 tpChannel)

Parameter
tpChannel -

Return code

canuint8 Either KTpCanldTypeStd (11-Bit) or kTpCanldTypeExt (29-Bit).

Availability
Only TP-class ‘Dynamic NormalAddressing MultiTP’.
Description

If mixed CAN-IDs, as well 11-Bit identifiers as also 29-Bit identifiers are used during runtime then this API
can be used to get the type of the identifier.

Pre-condition(s)

Post-condition(s)

Response can be calculated automatically by the Function ToTxSetResponse () .
Call context

Within function 2ppl1TpRxGetBuffer ()

Please note

Examples

4.2.2.22 TpRxGetAddressExtension: Get address extension information
TpRxGetAddressExtension

Prototype
SingleConnectionTp

canuint8 TP API CALL TYPE
TpRxGetAddressExtension (void)

MultipeConnectionTP
canuint8 TP API CALL TYPE
TpRxGetAddressExtension (canuint8 tpChannel)
©2013, Vector Informatik GmbH Version: 3.14.00 88 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Return code

Availability

For mixed 29-bit ID and 11-bit ID addressing

Description

This function returns the address extension information from the first byte.

Pre-condition(s)

Running reception. Valid after callback function ApplTpRxGetBuffer().

Post-condition(s)

Call context

Please note

Examples

4.2.2.23 TpRxGetCanBuffer: Get CAN buffer pointer
TpRxGetCanBuffer

Prototype

SingleConnectionTp

CanChipDataPtrTP API CALL TYPE
TpRxGetCanBuffer (void) ;
MultipeConnectionTP
CanChipDataPtr TP _API CALL TYPE
TpRxGetCanbuffer (canuint8 tpChannel);
Parameter
tpChannel -

Return code

Availability
Since TPMC version 2.41.00

Description

Returns a pointer to the first payload byte of the last received CAN frame in the hardware data buffer

©2013, Vector Informatik GmbH Version: 3.14.00 89 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Pre-condition(s)

Reception must be in progress

Post-condition(s)

Call context

Please note

Examples

4.2.2.24 TpRxSetWaitCorrectSN: Force to wait for a correct sequence number
TpRxSetWaitCorrectSN

Prototype

SingleConnectionTp
void TP _API CALL TYPE TpRxSetWaitCorrectSN
(tpBool wait);

MultipeConnectionTP
void TP _API CALL TYPE TpRxSetWaitCorrectSN
(canuint8 tpChannel, tpBool wait);

Parameter

tpChannel -

wait kTpTrue, kTpFalse

Return code

Availability

Since TPMC version 2.73.00.

Only for Dynamic TP.

The following constant must be defined via a user-config file :
#define TP ENABLE DYN AWAIT CORRECT SN

The behaviour of the TPMC component in case of a wrong or missing sequence number can be changed:
By default (wait = kTpFalse) the TPMC behaviour is like described in ISO 15765-2.

By setting the ‘wait’ parameter to ‘kTpTrue’ the behaviour can be changed in the way that TPMC does not
re-init the connection, but ignores the current frame and continues waiting for the correct sequence number.

Pre-condition(s)

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 90/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context

Within function App1 TpRxGetBuffer () .

Please note

Examples

4.2.2.25 TpRxSetTimeoutConfirmation: Set CAN confirmation timeout
TpRxSetTimeoutConfirmation

SingleConnectionTp

MultipeConnectionTP
void TP_API CALL TYPE
TpRxSetTimeoutConfirmation(canuint8 tpChannel,
tTpEngineTimer time);

Parameter

tpChannel -

time In timer ticks. The TpTask cycle time is equivalent to one timer tick.

Return code
-/ |
Availability
Since TPMC version 2.73.00.
Only for Dynamic Multi TP.
The following constant must be defined via a user-config file :
#define TP ENABLE DYN CHANNEL TIMING.

Description

The CAN message confirmation timeout value (N_Ar) can be changed dynamical.
Pre-condition(s)

AtpChannel is successful allocated.

Post-condition(s)

Call context
Within function Appl1 TpRxGetBuffer () .

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 91/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.2.26 TpRxSetTimeoutCF: Set Consecutive Frame confirmation timeout
TpRxSetTimeoutCF

Prototype
SingleConnectionTp

MultipeConnectionTP

void TP _API CALL TYPE TpRxSetTimeoutCF(canuint$
tpChannel, tTpEngineTimer time);

tpChannel -
time In timer ticks. The TpTask cycle time is equivalent to one timer tick.

Return code

Availability

Since TPMC version 2.73.00.
Only for Dynamic Multi TP.

The following constant must be defined via a user-config file :
#define TP ENABLE DYN CHANNEL TIMING.

Description

The CF timeout value (N_Cr) can be changed dynamical.
Pre-condition(s)

AtpChannel is successful allocated.

Post-condition(s)

Call context
Within function Appl1 TpRxGetBuffer () .

Please note

Examples

4.2.2.27 TpRxSetFCStatus: set up Flow Control on reception side
TpRxSetFCStatus

Prototype
SingleConnectionTp

void TpRxSetFCStatus (canuint8 FCStatus)

MultipeConnectionTP

©2013, Vector Informatik GmbH Version: 3.14.00 92 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

void TpRxSetFCStatus (canuint8 tpChannel,
canuint8 FCStatus)

Parameter

FCStatus KTpFCClearToSend
kTpFCStatusWait
KTpFCSupressFrame
kTpFCStatusOverflow
tpChannel

Return code

I

Availability

Only available with at least one of the following switches defined:
#define TP ENABLE FC WAIT

#define TP ENABLE FC_SUPRESS

#define TP _ENABLE FC OVERFLOW

Each of these defines corresponds to the belonging status.

The Flow Control content and also the further behaviour can be adjusted by this function.
By default the FC status is set to ‘kTpFCClearToSend’.

In case of ‘kTpFCStatusWait’ WaitFrames are sent until an explicit clear to send is initiated with the
corresponding API function ‘TpRxSetClearToSend () /.

Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

May only be used within the application callback ‘ApplTpRxGetBuffer ()’ .

Please note

4.2.2.28 TpRxGetFCStatus: get the Flow Control setup on reception side
TpRxGetFCStatus

Prototype
SingleConnectionTp

canuint8 TpRxGetFCStatus (void)

MultipeConnectionTP

canuint8 TpRxGetFCStatus (canuint8 tpChannel)

Parameter
tpChannel
©2013, Vector Informatik GmbH Version: 3.14.00 93/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code

canuint8 One of the possible status constants:
o KkTpFCClearToSend,
o KkTpFCStatusWait,
o KkTpFCSupressFrame,
o KkTpFCStatusOverflow

Availability

Only available with at least one of the following switches defined:
#define TP ENABLE FC WAIT

#define TP ENABLE FC SUPRESS

#define TP ENABLE FC_OVERFLOW

Each of these defines corresponds to the belonging status.

Description

The Flow Control content and also the further behaviour of the TP component depends on the FC status.
With this function the effective FC status can be questioned.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context
May be used in application context.

Please note

Examples

4.2.2.29 TpRxSetClearToSend: proceed with the transmission after FC wait frames
TpRxSetClearToSend

Prototype
SingleConnectionTp

void TpRxSetClearToSend(canuint8 *pBuffer)

MultipeConnectionTP

void TpRxSetClearToSend(canuint8 tpChannel,
canuint8 *pBuffer)

Parameter

©2013, Vector Informatik GmbH Version: 3.14.00 94 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Availability

Only available with the following switch defined:
#define TP _ENABLE FC WAIT

When a request that was delayed previously by sending WaitFrames is now ready for reception, then the
reception can be started with this function.

The already received data is handed to the application buffer passed as parameter and the transmission of
a FC(CTS) is initiated.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

An activation of the WaitFames with a previous call of ‘TpRxSetFCStatus(kTpFCStatusWait) must have be
done and must still be active (the effective FC status delivered by TpRxGetFCStatus() is
‘kTpFCStatusWait'.), otherwise this function has no effect.

Post-condition(s)

Call context

May be used in application context.

Please note

Examples

4.2.2.30 TpRxWithoutFC: suppress FC frame usage at the Rx side
TpRxWithoutFC

SingleConnectionTp

MultipeConnectionTP

void TP_API CALL TYPE TpRxWithoutFC (canuint8 tpChannel)

Parameter
tpChannel

Return code

Availability

Only available for dynamic Tp classes and with the following switch set to kTpOn:
#define TP USE RX CHANNEL WITHOUT FC kTpOn

©2013, Vector Informatik GmbH Version: 3.14.00 95/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Description

If the usage of Flow Control frames on the Rx side shall be avoided then the enabling of this feature can be
used to suppress all further FC frames within a distinct reception.

In this case the suppression of FC frames must be disabled for each new reception by calling this API
function for the belonging tpChannel within the ApplTpRxGetBuffer() callback function.

For the reception of Single Frames this aspect is irrelevant.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)
R
Call context

Use this function only inside the callback function ApplTpRxGetBuffer () !

Please note

Examples

4.2.2.31 TpRxSetPGN: Set Parameter Group Number

TpRxSetPGN

SingleConnectionTp

void TpRxSetPGN (vuint8 pgn)
MultipeConnectionTP

void TpRxSetPGN (vuint8 tpChannel, wvuint8 pgn)
Parameter
tpChannel -
pgn Parameter Group Number to be used

Return code

Availability

Only for dynamic TP class Normal Fixed or Mixed-29 addressing.

Description

This function sets the Parameter Group Number (bit no. 16 - 23) within an extended 29 bit CAN-Identifer to
be used for the re-transmission of Flow Control frames for the current reception channel in case of a multi
frame reception.

Pre-condition(s)
The TP is initialized with TplnitPowerOn().

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 96 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Call context

Please note

Examples

4.2.2.32 TpRxSetPriorityBits: Set Priority, Data Page and Reserved bits
TpRxSetPriorityBits

SingleConnectionTp

void TpRxSetPriorityBits (vuint8 prio,
vuint8 res,
vuint8 dataPage)

MultipeConnectionTP

void TpRxSetPriorityBits (vuint8 tpChannel,
vuint8 prio,
vuint8 res,
vuint8 dataPage)

Parameter

tpChannel -

prio Priority bits to be used (3 bits from bit position 26-28)
res Reserved bit to be used (1 bit on bit position 25)
dataPage Data Page bit to be used (1 bit on bit position 24)

Return code

Availability

Only for dynamic TP class Normal Fixed or Mixed-29 addressing.
Description

This function sets beside the Priority Bits (bit no. 26,27,28) also the bits for the ‘Reserved’ bit position (no.
25) and the ‘Data Page’ bit position (no. 24) within an extended 29 bit CAN-Identifer to be used for the
retransmission of Flow Control frames for the current reception channel in case of a multi frame reception.

Pre-condition(s)
The TP is initialized with TplnitPowerOn().

Post-condition(s)

Call context

©2013, Vector Informatik GmbH Version: 3.14.00 97 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Please note

Examples

4.2.3 Transmit Functions
4.2.3.1 TpTxGetFreeChannel: Assign Channel to Connection
TpTxGetFreeChannel

Prototype
SingleConnectionTp

MultipeConnectionTP

vuint8 TpTxGetFreeChannel (vuint8 connection)

Parameter

connection -

Return code
s
Availability

Only for dynamic TP classes.

Description

This function returns a free channel handle, if possible. If no channel was free the return value will be
kTpNoChannel. The Transport Layer assigns the connection-number to the channel.

The application has got the possibility to get the connection-number by using the function
TpTxGetConnectionNumber (channel).

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context
Within function ApplTpRxGetBuffer () .
Please note

The connection-numbers starting at 0x£0 are reserved for internal usage.

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 98 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.3.2 TpTxGetConnectionNumber: Get the assigned Connection-Number
TpTxGetConnectionNumber

Prototype
SingleConnectionTp

MultipeConnectionTP

vuint8 TpTxGetConnectionNumber (vuint8 channel)

Parameter

channel -

Return code
e
Availability

Only for dynamic TP classes.

Description

This function returns the connection-number which is assigned to this channel.

The application has got the possibility to assign the connection-number by using the function
TpTxGetFreeChannel (connectionNumber).

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Please note

Examples

4.2.3.3 TpTxGetConnectionStatus: Get the Connection Status
TpTxGetConnectionStatus

Prototype
SingleConnectionTp

MultipeConnectionTP

vuint8 TpTxGetConnectionStatus (vuints8
connection)

©2013, Vector Informatik GmbH Version: 3.14.00 99 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Return code

T
Availability

Only for dynamic TP classes.

Description

This function returns the corresponding channel-number if it exits. If no channel is assigned to this
connection the return value is kTpNoChannel.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Please note

Examples

4.2.3.4 TpTxGetTargetAddress: Get the target address used for transmission
TpTxGetTargetAddress
Prototype

_ TpTxGetTargetAddress (canuint8 tpChannel)

Parameter

Return code

Availability

Only available for “Dispatched Multi TP” classes and NormalFixed-, Extended- or Mixed- Addressing type.
One of the following switches must be defined:

#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

#define TP TYPE MULTI DISPATCHED EXTENDED ADDRESSING

#define TP _TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

This API function enables the application to appoint confirmations to previously issued transmissions.
Without this API the appointment of confirmations with parallel transmissions and Normal Fixed, Mixed or
Extended addressing is not possible with “Dispatched Multi TP”.

©2013, Vector Informatik GmbH Version: 3.14.00 100/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.2.35 TpTxGetDataBuffer: Get the assigned Data Buffer
TpTxGetDataBuffer

Prototype
SingleConnectionTp

vuint8 TpTxGetDataBuffer (void)

MultipeConnectionTP

vuint8 TpTxGetDataBuffer (vuint8 channel)

Parameter

channel -

Return code
I
Availability

Only for dynamic TP classes.

Description

This function returns the pointer to the buffer which is assigned to this channel.

Pre-condition(s)

The TP is initialized with TplnitPowerOn().

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 101/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.3.6 TpTxGetDatalndex: Get the assigned Data Index
TpTxGetDatalndex

Prototype
SingleConnectionTp

vuint8 TpTxGetDataIndex (void)

MultipeConnectionTP

vuint8 TpTxGetDataIndex (vuint8 channel)

Parameter

channel -

Return code
N
Availability

No restrictions

Description

This function returns the current offset into the buffer which is assigned to this channel.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

4.2.3.7 TpTxSetChannellD: Set the CAN Transmit Id
TpTxSetChannellD

Prototype

SingleConnectionTp
MultipeConnectionTP
void TpTxSetChannellID (vuint8 channel,
vuintl6é transmitID,
vuintl6 receivelD)
©2013, Vector Informatik GmbH Version: 3.14.00 102/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Channel -

transmitID

receivedID

Return code

Availability
Only for dynamic TP class: Normal Addressing
Description

This function sets the transmit CAN-Identifier for the next call of TpTransmit (). Also the receive CAN-
Identifier (must be unique) to the corresponding FlowControl is set.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

Please note

Examples

4.2.3.8 TpTxSetChannelExtID: Set the CAN Transmit Extended Id
TpTxSetChannelExtID

Prototype
SingleConnectionTp

MultipeConnectionTP

void TpTxSetChannelExtID (vuint8 channel,
vuint32 transmitID,
vulint32 receivelD)

Parameter

Channel -

transmitID

receivedID

Return code

©2013, Vector Informatik GmbH Version: 3.14.00 103/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Availability

For
- Dynamic TP class Normal Addressing and
- Dispatched Normal Multi TP

This function sets the transmit extended CAN-Identifier (29 bits) for the next call of TpTransmit (). Also
the receive extended CAN-Identifier (must be unique) to the corresponding FlowControl is set.

Pre-condition(s)
The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.3.9 TpTxSetCanChannel: Set physical CAN Channel

TpTxSetCanChannel

Prototype
SingleConnectionTp

void TpTxSetCanChannel (vuint8 canChannel)
MultipeConnectionTP

void TpTxSetCanChannel (vuint8 channel,

vuint8 canChannel)

Parameter
Channel -
canChannel

Return code

Availability

Only for multiple CAN-channel systems and dynamic TP class.

Description

This function sets the (physical) CAN-channel for the next call of TpTransmit ().
Pre-condition(s)
The TP is initialized with TpInitPowerOn().

©2013, Vector Informatik GmbH Version: 3.14.00 104/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

Call context

Please note

Examples

4.2.3.10 TpTxSetTargetAddress: Set Target Address
TpTxSetTargetAddress

SingleConnectionTp

void TpTxSetTargetAddress (vuint8 targetaddress)

MultipeConnectionTP

void TpTxSetTargetAddress (vuint8 channel,
vuint8 targetaddress)

Parameter

Channel -

targetaddress

Return code

Availability

Only for dynamic TP classes: Extended- and Normal Fixed Addressing
Description

This function sets the destination address for the next call of TpTransmit ().
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 105/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.3.11 TpTxSetEcuNumber: Set ECU Number
TpTxSetEcuNumber

Prototype
SingleConnectionTp

void TpTxSetEcuNumber (vuint8 eculNr)

MultipeConnectionTP

void TpTxSetEcuNumber (vuint8 channel,
vuint8 eculNr)

Parameter

Channel -

eculNr

Return code

Availability

Only for dynamic TP classes: Extended- and Normal Fixed Addressing
‘Multiple EcuNumber’ feature must be activated

Description

This function sets the ECU Number for the next call of TpTransmit () .
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

4.2.3.12 TpTxSetBaseAddress: Set Base Address
TpTxSetEcuNumber

Prototype
SingleConnectionTp

MultipeConnectionTP
void TpTxSetBaseAddress (vuint8 channel,
vuint8 baseAddress)
©2013, Vector Informatik GmbH Version: 3.14.00 106 / 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

Channel -

baseAddress

Return code

Availability
Only for dynamic TP classes: Extended Addressing
‘Multiple EcuNumber’ feature must be activated.

Description

This function sets the base address for the next call of TpTransmit () .
Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.3.13 TpTxSetParameterGroupldentification: Set Identification of PGN
TpTxSetParameterGroupldentification

SingleConnectionTp
MultipeConnectionTP
O ToTxSotE - Ia vy - . :
chanrnrets
RS
R P o P A
J.\A\,LIL_,J.J_J.VLAL_,J.VLI’
Parameter
Channel -
identification

©2013, Vector Informatik GmbH Version: 3.14.00 107/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Availability

Caution
Currently not available.

Only for dynamic TP class: Normal Fixed Addressing with extended API

Description

This function sets the Identification of the ParameterGroup for the next call of TpTransmit () .
Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.3.14 TpTxSetPriority: Set Priority of the CAN-Frame
TpTxSetPriority

Prototype

SingleConnectionTp

MultipeConnectionTP

o ToTxSetPriorit o o .

7111 N+ Qo a1 4+sz)
v A LIITTCTU LJJ_J.UJ_J_L [

Parameter

Channel -

priority

Return code
Availability

Caution
Currently not available.

Only for dynamic TP class: Normal Fixed Addressing with extended API

Description

This function sets the Priority of the CAN-Frame for the next call of TpTransmit () .
Pre-condition(s)
The TP is initialized with TpInitPowerOn().

©2013, Vector Informatik GmbH Version: 3.14.00 108/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

Call context

Please note

Examples

4.2.3.15 TpTxSetResponse: Assemble a Response
TpTxSetResponse

SingleConnectionTp

MultipeConnectionTP

void TpTxSetResponse (vuint8 rxChannel,
vulint8 txChannel)

Parameter

rxChannel -

txChanel

Return code

Availability
Only for dynamic TP classes.
Description

This function assembles a Response based on a received transport-frame for the next call of
TpTransmit () .

Pre-condition(s)
The TP is initialized with TplnitPowerOn().
Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 109/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.3.16 TpTransmit: Send a Message

TpTransmit

Prototype
SingleConnectionTp

vuint8 TpTransmit (vuint8* data,
vuintl6 count)

MultipeConnectionTP

vuint8 TpTransmit (vuint8 tpChannel,
vuint8* data,
vuintl6 count)

tpChannel
Data Pointer to the data buffer that shall be transmitted.
count Number of bytes to be transmitted.

Return code
vuint8 kTpSuccess: No transmission in progress (ready to send)

kTpBusy: Transmission in progress

kTpFailed: If the data length is zero or the tpChannel is not allocated.

Availability
No restrictions

Description

Send a message.

The Transport Layer decides which transmission protocol (SingleFrame with up to 6/7 data bytes depending
on the addressing type) is used by checking the given count.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

After a transmission the channel is released, except the channel is explicitly locked.

Since version 2.35 the transmission request will be only queued within the context of TpTransmit. The
transmission to the bus starts within the TpTxStateTask (TpTxTask) calls.

kTpFailed: In previous versions (2.34.xx and earlier) it is possible that TpTransmit returns ‘kTpFailed’,
because the CANdriver (CanTransmit returns failed) is busy. Starting with version 2.35.00 only dynamic TP-
classes return this value in case of wrong attributes/parameters.

kTpBusy: A transmission is already running or GenMsgDelayTime is not kept.
kTpSuccess: Successful queued message that will be transmitted with the next task cycle.

©2013, Vector Informatik GmbH Version: 3.14.00 110/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.2.3.17 TpTxLockChannel: Lock Channel
TpTxLockChannel

SingleConnectionTp

MultipeConnectionTP

void TpTxLockChannel (vuint8 channel)

Parameter

channel -

Return code
-/ |
Availability

Only for dynamic TP classes.

Description

If a channel is locked, it will not be released after a transmission.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.3.18 TpTxUnlockChannel: Unlock TX Channel
TpTxUnlockChannel

Prototype
SingleConnectionTp

MultipeConnectionTP

void TpTxUnlockChannel (vuint8 channel)

Parameter
channel -
©2013, Vector Informatik GmbH Version: 3.14.00 1117177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code

Availability

Only for dynamic TP classes.

Description

Unlock the lock of the channel. The channel will be released with the next call of TpTxResetChannel () or
TpTransmit () .

Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

Examples

4.2.3.19 TpTxResetChannel: Free TX-Channel
TpTxResetChannel

Prototype

SingleConnectionTp
void TP _API CALL TYPE TpTxResetChannel (void)
MultipeConnectionTP
void TP_API CALL TYPE TpTxResetChannel (canuint$
tpChannel)
Parameter
tpChannel -

Return code

Availability

No rectrictions

Description

The channel will be released by the Transport Layer. At the next call of TpTxGetFreeChannel () it can be
assigned to another connection.

Pre-condition(s)

The TP is initialized with TpInitPowerOn () .

©2013, Vector Informatik GmbH Version: 3.14.00 112 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Post-condition(s)

Call context

Background-loop level or OSEK-OSTask with lower priority as TpTasks.

Please note

The tpChannel will be released in any case and immediately.

If a transmission is in progress the application will be informed by calling the function
ApplTpTxErrorIndication () .

Examples

4.2.3.20 TpTxSetAddressExtension: Set Address Extension information
TpTxSetAddressExtension

Prototype

SingleConnectionTp

void TP_API CALL TYPE
TpTxSetAddressExtension (canuint8
addressExtension) ;

MultipeConnectionTP
void TP _API CALL TYPE
TpTxSetAddressExtension (canuint8 tpChannel,
canuint8 addressExtension);

Parameter

adressExtension -

tpChannel

Return code

Availability
For mixed 29-bit ID and mixed 11-bit ID addressing
Description

This function is used to set the address extension information.

Pre-condition(s)

This function must be called in advance of calling TpTransmit().

Post-condition(s)

Call context

©2013, Vector Informatik GmbH Version: 3.14.00 1137177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Please note

Examples

4.2.3.21 TpTxGetSTmininFrame: Get STmin from FC frame
TpTxGetSTmininFrame

SingleConnectionTp

canuint8 TP _API CALL TYPE
TpTxGetSTminInFrame (void)
MultipeConnectionTP
canuint8 TP API CALL TYPE
TpTxGetSTminInFrame (canuint8 tpChannel)
Parameter
tpChannel -

Return code

STmin value

Availability

The STmin value must be taken out of the received FC frames (TP _USE_STMIN OF FC == kTpOn) and
the fast transmission feature (TP_USE_FAST TX TRANSMISSION == kTpOn) must be activated.

Description

Function is returning the STmin value of the last FC frame.
Pre-condition(s)

This function must be called in advance of calling TpTransmit().

Post-condition(s)
Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 114 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.3.22 TpTxPrepareSendimmediate: Prepare CF transmission by application

TpTxPrepareSendimmediate

SingleConnectionTp

TP EXTERNAL INLINE canuint8 TP _API CALL TYPE
TpTxPrepareSendImmediate (void)
MultipeConnectionTP
TP EXTERNAL INLINE canuint8 TP _API CALL TYPE
TpTxPrepareSendImmediate (canuint8 tpChannel)
Parameter
tpChannel -

Return code

canuint8 kTpSuccess, kTpFailed

Availability

The fast transmission feature (TP_USE_FAST TX TRANSMISSION) must be setto kTpOn.

If the TP is not in the state for preparing a new CF-Frame (i.e. it is waiting for a FC) the function will return a
‘kTpFailed’. Otherwise if the preparation is successful it will return a ‘kTpSuccess’.

Note: In the case of ‘kTpSuccess’ the application is responsible for the transmission of the next
ConsecutiveFrame. If the application does not call TpTxSendimmediate() the TP stays blocked.

Pre-condition(s)

Post-condition(s)

Call context

The call of this function is only allowed in the context of the TpTxCanMessageTransmitted() / ApplTpTxFC()
Hook-function.

Please note

Examples

4.2.3.23 TpTxSendimmediate: Start CF transmission by application
TpTxSendimmediate

SingleConnectionTp

TP _EXTERNAL INLINE void TP API CALL TYPE
TpTxSendImmediate (void)

MultipeConnectionTP

©2013, Vector Informatik GmbH Version: 3.14.00 115/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

TP _EXTERNAL INLINE void TP API CALL TYPE
TpTxSendImmediate (canuint8 tpChannel)

Parameter

Return code

Availability

The fast transmission feature (TP_USE FAST TX TRANSMISSION) must be setto kTpOn.

Description

Prepares the ConsecutiveFrame and calls the TpTxStateTask() to transmit the frame.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

4.2.3.24 TpTxSetAddressingFormat: Store the current addressing type
TpTxSetAddressingFormat

MultipeConnectionTP
void TP API CALL TYPE
TpTxSetAddressingFormat (canuint8 tpChannel,
SupportInfoStruct supportInfo)

Parameter

tpChannel -

supportInfo

Return code

Availability
Multiple Addressing TP

©2013, Vector Informatik GmbH Version: 3.14.00 116 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Description

This function is used to prepare the required addressing information in a multiple addressing environment
and internally to assign a given connection to the right component.

#define kTpNormalAddressing
#define kTpExtendedAddressing
#define kTpNormalFixedAddressing
#define kTpMixed29Addressing
#define kTpMixedllAddressing

#define kTpRequestAppl // Application connection
#define kTpRequestDiagFunctional // Functional Diag connect.
#define kTpRequestDiagPhysical // Physical Diag connection
SupportInfoStruct supportInfo;

supportInfo.addressingFormat = kTpNormalAddressing;
supportInfo.assignedDestination = kTpRequestDiagPhysical;

TpTxSetAddressingFormat (DiagPhysChannel, supportInfo);

Pre-condition(s)

A tpChannel is successful allocated.

Post-condition(s)

Call context

Please note

SEINTES

4.2.3.25 TpTxSetStrictFlowControl: Enable/Disable ISO conformant FC handling
TpTxSetStrictFlowControl

Prototype
SingleConnectionTp

void TP _API CALL TYPE TpTxSetStrictFlowControl
(tpBool strict)

MultipeConnectionTP

void TP _API CALL TYPE TpRxSetStrictFlowControl
(canuint8 tpChannel, tpBool strict)

tpChannel -
strict kTpTrue, kTpFalse

Return code

©2013, Vector Informatik GmbH Version: 3.14.00 177177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Since TPMC version 2.73.00.
Only for Dynamic TP.
The following constant must be defined via a user-config file :

#define TP ENABLE FC _MSG_FLOW DYN CHECK.

The behaviour of the TPMC component in case of a missing FC frame can be changed:
By default (strict = kTpTrue) the TPMC behaviour is like described in ISO 15765-2.

By setting the ‘strict’ parameter to ‘kTpFalse’ the behaviour can be changed in the way that TPMC does
not re-init the connection, but ignores the current frame in case of a missing FC.

Pre-condition(s)

A tpChannel is successful allocated.

Post-condition(s)

Call context
Call before TpTransmit ()

Please note

Examples

4.2.3.26 TpTxSetTimeoutConfirmation: Set the CAN confirmation timeout
TpTxSetTimeoutConfirmation

Prototype
SingleConnectionTp

MultipeConnectionTP

void TP API CALL TYPE
TpTxSetTimeoutConfirmation(canuint8 tpChannel,
tTpEngineTimer time)

tpChannel -
Time In timer ticks. The TpTask cycle time is equivalent to one timer tick.

Return code

©2013, Vector Informatik GmbH Version: 3.14.00 118/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Availability

Since TPMC version 2.73.00.

Only for Dynamic Multi TP.

The following constant must be defined via a user-config file :
#define TP ENABLE DYN CHANNEL TIMING.

Description

The CAN message confirmation timeout (N_As) value can be changed dynamical.
Pre-condition(s)

A tpChannel is successful allocated.

Post-condition(s)

Call context
Call before TpTransmit().
Please note

Examples

4.2.3.27 TpTxSetTimeoutFC: Set the FC confirmation timeout
TpTxSetTimeoutFC

SingleConnectionTp

MultipeConnectionTP
void TP_API CALL TYPE TpTxSetTimeoutFC(canuint$
tpChannel, tTpEngineTimer time)

Parameter

tpChannel -

Time In timer ticks. The TpTask cycle time is equivalent to one timer tick.

Return code

Availability

Since TPMC version 2.73.00.

Only for Dynamic Multi TP.

The following constant must be defined via a user-config file :
#define TP _ENABLE DYN CHANNEL TIMING.

Description

The FC timeout value (N_Bs) can be changed dynamical per channel.

©2013, Vector Informatik GmbH Version: 3.14.00 119/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Pre-condition(s)

A tpChannel is successful allocated.

Post-condition(s)

Call context
Call before TpTransmit().
Please note

Examples

4.2.3.28 TpTxWithoutFC: suppress FC frame usage at the Tx side
TpTxWithoutFC

Prototype

SingleConnectionTp

MultipeConnectionTP

void TP_API CALL TYPE TpTxWithoutFC (canuint8 tpChannel)

Parameter
tpChannel

Return code

Availability

Only available for dynamic Tp classes and with the following switch set to kTpOn:
#define TP USE TX CHANNEL WITHOUT FC kTpOn

If the usage of Flow Control frames on the Tx side shall be avoided then the enabling of this feature can be
used to suppress all further FC frames within a distinct transmission.

In this case the suppression of FC frames must be disabled for each new transmission by calling this API
function for the belonging tpChannel before calling TpTransmit.

For the transmission of Single Frames this aspect is irrelevant.
Pre-condition(s)
The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

Call from task context before calling TpTransmit.

©2013, Vector Informatik GmbH Version: 3.14.00 120/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Please note

Examples

4.2.3.29 TpTxSetPGN: Set Parameter Group Number
TpTxSetPGN

SingleConnectionTp
void TpTxSetPGN (vuint8 pgn)
MultipeConnectionTP
void TpTxSetPGN (vuint8 tpChannel, wvuint8 pgn)
Parameter
tpChannel -
pgn Parameter Group Number to be used

Return code

Availability
Only for dynamic TP class Normal Fixed or Mixed-29 addressing.
Description

This function sets the parameter group number (bit no. 16 - 23) within an extended 29 bit CAN-Identifer for
the next call of TpTransmit () .

Pre-condition(s)
The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

Please note

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 121/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.2.3.30 TpTxSetPriorityBits: Set Priority, Data Page and Reserved bits
TpTxSetPriorityBits

SingleConnectionTp

void TpTxSetPriorityBits (vuint8 prio,
vuint8 res,
vuint8 dataPage)

MultipeConnectionTP

void TpTxSetPriorityBits (vuint8 tpChannel,
vuint8 prio,
vuint8 res,
vuint8 dataPage)

Parameter

tpChannel -

prio Priority bits to be used (3 bits from bit position 26-28)
res Reserved bit to be used (1 bit on bit position 25)
dataPage Data Page bit to be used (1 bit on bit position 24)

Return code

Availability
Only for dynamic TP class Normal Fixed or Mixed-29 addressing.
Description

This function sets beside the Priority Bits (bit no. 26,27,28) also the bits for the ‘Reserved’ bit position (no.
25) and the ‘Data Page’ bit position (no. 24) within an extended 29 bit CAN-Identifer for the next call of
TpTransmit() .

Pre-condition(s)
The TP is initialized with TplnitPowerOn().
Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 122 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.3 Dispatched Multi TP class API

4.3.1 TpGetConnectionGroup: Get the connection group identification

TpGetConnectionGroup

Prototype

_ TpGetConnectionGroup (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

KTpGroup<ConnectionName> constant

Availability

Only available for “Dispatched Multi TP” classes.

One of the following switches must be defined:

#define TP TYPE MULTI DISPATCHED NORMAL ADDRESSING
#define TP TYPE MULTI DISPATCHED EXTENDED ADDRESSING
#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING
#define TP TYPE MULTI DISPATCHED MIXED 29 ADDRESSING
#define TP TYPE MULTI DISPATCHED MULTIPLE ADDRESSING

Description
Deliver the appropriate connection group identification as a constant.

Pre-condition(s)

Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note
The TP is initialized with TplnitPowerOn().

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 123 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.3.2 TpGetAddressingType: Get the addressing type identification

TpGetAddressingType

TpGetAddressingType (canuint8 addressInfoHandle)

Prototype

Parameter

addressInfoHandle

Return code

canuint8 One of the possible status constants:
kTpNormalAddressing,
kTpExtendedAddressing,

kTpNormalFixedAddressing,
kTpMixed29Addressing

Availability

Only available for “Dispatched Multi TP” classes and “Multiple Addressing” type.
The following switch must be defined:
#define TP TYPE MULTI DISPATCHED MULTIPLE ADDRESSING

Description

Deliver the appropriate addressing type as a constant.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 124 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.3.3 TpGetCanChannel: Get the CAN channel
TpGetCanChannel

Prototype

_ TpGetCanChannel (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and multiple CAN channels configured.
One of the following switches must be defined:

#define TP TYPE MULTI DISPATCHED NORMAL ADDRESSING

#define TP TYPE MULTI DISPATCHED EXTENDED ADDRESSING

#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

#define TP TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

#define TP _TYPE MULTI DISPATCHED MULTIPLE ADDRESSING

Description

Deliver the appropriate CAN channel.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 125/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.3.4 TpGetRxld: Get the received CAN-Id
TpGetRxId
Prototype

_ TpGetRxId (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and “Normal Addressing” type.
The following switches must be defined:
#define TP TYPE MULTI DISPATCHED NORMAL ADDRESSING

Description

Deliver the appropriate Rx CAN identifier.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

435 TpGetTxld: Get the CAN-Id to be used for transmission
TpGetTxId

Prototype

_ TpGetTxId (canuint8 addressInfoHandle)

Parameter

Return code
canuint8 CAN identifier.

©2013, Vector Informatik GmbH Version: 3.14.00 126 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Availability

Only available for “Dispatched Multi TP” classes and “Normal Addressing” type.
The following switches must be defined:
#define TP TYPE MULTI DISPATCHED NORMAL ADDRESSING

Description
Deliver the appropriate Tx CAN identifier.

Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.3.6 TpGetBaseAddress: Get the Base Address
TpGetBaseAddress
Prototype

_ TpGetBaseAddress (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and “Extended Addressing” type.
The following switches must be defined:
#define TP TYPE MULTI DISPATCHED EXTENDED ADDRESSING

Description

Deliver the appropriate base address.

Pre-condition(s)
The TP is initialized with TpInitPowerOn().

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 127 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.3.7 TpGetAddressOffest: Get the Address Offset
TpGetAddressOffset
Prototype

_ TpGetAddressOffset (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and “Extended Addressing” type.
The following switches must be defined:
#define TP TYPE MULTI DISPATCHED EXTENDED ADDRESSING

Description

Deliver the appropriate address offset.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

The address 0x06FO0 is separated in 2 parts:
- base address 0x0600 and
- address offset 0xO0FO0

©2013, Vector Informatik GmbH Version: 3.14.00 128 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.3.8 TpGetPriority: Get the priority info from a 29 bit CAN-Id
TpGetPriority
Prototype

_ TpGetPriority (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and “NormalFixed Addressing” or “Mixed29” addressing
type.

The following switches must be defined:

#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

#define TP _TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

Description

Deliver the appropriate address offset.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.3.9 TpGetPGN: Get the parameter group identification from a 29 bit CAN-Id
TpGetPGN
Prototype

_ TpGetPGN (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code
canuints$ PGN value.

©2013, Vector Informatik GmbH Version: 3.14.00 129 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Availability

Only available for “Dispatched Multi TP” classes and “NormalFixed Addressing” or “Mixed29” addressing
type.

The following switches must be defined:

#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

#define TP _TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

Description

Deliver the appropriate address offset.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.3.10 TpGetEcuNumber: Get the ECU number
TpGetEcuNumber
Prototype

_ TpGetEcuNumber (canuint8 addressInfoHandle)

Parameter

addressInfoHandle

Return code

Availability

Only available for “Dispatched Multi TP” classes and “NormalFixed Addressing” or “Mixed29” addressing
type.

The following switches must be defined:

#define TP _TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

#define TP TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

Description

Deliver the appropriate ECU number.

Pre-condition(s)
The TP is initialized with TplnitPowerOn().

©2013, Vector Informatik GmbH Version: 3.14.00 130/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Post-condition(s)

Call context

May be used in application context.
Typically used in the application callback functions.

Please note

Examples

4.3.11 TpTransmit

There are two alternatives available to transmit data. Either you use the generated
connection specific TpTransmit macros or you use the addressing type specific functions
behind the macros.

4.3.11.1 TpTransmit connection specific macros

The data pointer (type canuint8) and the data length (type canuintl6) are always
necessary. Depending on the addressing type additional information like the Target
Address (TA) for Extended / NormalFixed addressing or the Address Extension (AE) for
Mixed addressing is necessary.

Normal TpTransmit <ConnectionName>(canuint8 data,
canuintl6 len)
Extended TpTransmit <ConnectionName>(canuint8 TA,
NormalFixed canuint8 data,
canuintl6 len)
Mixed29 TpTransmit <ConnectionName>(canuint8 TA,

canuint8 AE,
canuint8 data,
canuint8 len)

4.3.11.2 TpTransmitNormal: transmit function for normal addressing

TpTransmitNormal

Prototype

TpTransmitNormal (canuint8 addressInfoHandle,
canuint8 data,

canuintl6 length)

©2013, Vector Informatik GmbH Version: 3.14.00 131/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Parameter

addressInfoHandle

data Pointer to the transmit data.

length Length of the transmit data (in bytes).

canuint8 kTpSuccess: No transmission in progress (ready to send)
kTpBusy: Transmission in progress

kTpFailed: Data length is zero
kTpNoChannel: No TP channel available

Availability

Only available for “Dispatched Multi TP” classes.
The following switch must be defined:
#define TP TYPE MULTI DISPATCHED NORMAL ADDRESSING

Description

Send the data with the given length to the CAN bus.

Pre-condition(s)

The TP is initialized with TpInitPowerOn().

Post-condition(s)

Call context

May be used in application context.

Please note

Examples

4.3.11.3 TpTransmitExtended: transmit function for extended addressing
TpTransmitExtended

Prototype
TpTransmitExtended (canuint8 addressInfoHandle,

canuint8 TA,
canuint8 data,

canuintl6 length)

Parameter

addressInfoHandle

TA Target Address.

data Pointer to the transmit data.

©2013, Vector Informatik GmbH Version: 3.14.00 132 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Length of the transmit data (in bytes).

Return code
canuint8

kTpSuccess: No transmission in progress (ready to send),
kTpBusy: Transmission in progress,

kTpFailed: Data length is zero,
kTpNoChannel: No TP channel available.

Availability

Only available for “Dispatched Multi TP” classes.
The following switch must be defined:
#define TP _TYPE MULTI DISPATCHED EXTENDED ADDRESSING

Description

Send the data with the given length to the CAN bus.
Pre-condition(s)

The TP is initialized with TpInitPowerOn().
Post-condition(s)

Call context
May be used in application context.

Please note

Examples

4.3.11.4 TpTransmitNormalFixed: transmit function for NormalFixed addressing

TpTransmitNormalFixed

Prototype
TpTransmitNormalFixed (canuint8 addressInfoHandle,
canuint8 TA,
canuint8 data,
canuintl6 length)
Parameter

addressInfoHandle

TA Target Address.

data Pointer to the transmit data.

length Length of the transmit data (in bytes).

©2013, Vector Informatik GmbH Version: 3.14.00 133/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code
canuint8

kTpSuccess: No transmission in progress (ready to send)
kTpBusy: Transmission in progress
kTpFailed: Data length is zero

kTpNoChannel: No tpChannel available

Availability
Only available for “Dispatched Multi TP” classes.

The following switch must be defined:
#define TP TYPE MULTI DISPATCHED NORMAL FIXED ADDRESSING

Description
Send the data with the given length to the CAN bus.

Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context
May be used in application context.

Please note

Examples

4.3.11.5 TpTransmitMixed29: transmit function for Mixed-29 addressing
TpTransmitMixed29

Prototype

TpTransmitMixed29 (canuint8 addressInfoHandle,
canuint8 TA,
canuint8 AE,
canuint8 data,
canuintl6 length)

Parameter

addressInfoHandle

TA Target Address.

AE Address Extension.

data Pointer to the transmit data.

length Length of the transmit data (in bytes).

©2013, Vector Informatik GmbH Version: 3.14.00 134 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code
canuint8

kTpSuccess: No transmission in progress (ready to send),
kTpBusy: Transmission in progress,

kTpFailed: Data length is zero,
kTpNoChannel: No TP channel available.

Availability
Only available for “Dispatched Multi TP” classes.

The following switch must be defined:
#define TP TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

Description

Send the data with the given length to the CAN bus.
Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context
May be used in application context.

Please note

Examples

4.3.11.6 TpTransmitMixed29: transmit function for Mixed-29 addressing
TpTransmitMixed29

TpTransmitMixed?29 (canuint8 addressInfoHandle,
canuint8 TA,
canuint8 AE,
canuint8 data,

canuintl6 length)

Parameter

addressInfoHandle

TA Target Address.

AE Address Extension.

data Pointer to the transmit data.

length Length of the transmit data (in bytes).

©2013, Vector Informatik GmbH Version: 3.14.00 135/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code
canuint8

kTpSuccess: No transmission in progress (ready to send),
kTpBusy: Transmission in progress,

kTpFailed: Data length is zero,
kTpNoChannel: No TP channel available.

Availability
Only available for “Dispatched Multi TP” classes.

The following switch must be defined:
#define TP TYPE MULTI DISPATCHED MIXED 29 ADDRESSING

Description
Send the data with the given length to the CAN bus.

Pre-condition(s)

The TP is initialized with TplInitPowerOn().
Post-condition(s)

Call context
May be used in application context.

Please note

Examples

4.3.11.7 TpTransmitMixed1l: transmit function for Mixed-11 addressing

TpTransmitMixed29
Prototype
TpTransmitMixedll (canuint8 addressInfoHandle,
canuint8 AE,
canuint8 data,
canuintl6 length)
Parameter

addressInfoHandle

AE Address Extension.

data Pointer to the transmit data.

length Length of the transmit data (in bytes).

©2013, Vector Informatik GmbH Version: 3.14.00 136/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Return code
canuint8

kTpSuccess: No transmission in progress (ready to send)
kTpBusy: Transmission in progress

kTpFailed: Data length is zero
kTpNoChannel: No TP channel available

Availability

Only available for “Dispatched Multi TP” classes and at least one Al with mixed-11 as addressing type
The following switch must be defined:
#define TP TYPE MULTI DISPATCHED MULTIPLE ADDRESSING

Description

Send the data with the given length to the CAN bus.

Pre-condition(s)

The TP is initialized with TplInitPowerOn().

Post-condition(s)

Call context

May be used in application context.

Please note

Examples

4.4 Application callback functions

In the Generation Tool the user can define which callback functions he would like to use
from the Transport Protocol. The names can be adjusted by the user. E.g. the prefix User
can be used instead of Appl. These functions will only be provided, if they were configured
in the Generation Tool what can be done by entering a function name.

4.4.1 Reception side
4.4.1.1 ApplTpPrecopyCheck: Reception of TP-Frame

ApplTpPrecopyCheck

Single Channel
Single Receive Channel canuint8 ApplTpPrecopyCheck (CanRxInfoStructPtr rxStruct)
Single Receive Buffer canuint8 ApplTpPrecopyCheck (CanReceiveHandle rxObject)
Multiple Receive Buffer canuint8 ApplTpPrecopyCheck (CanChipDataPtr rxRegPtr)
Multi Channel
Indexed (MRC) canuint8 ApplTpPrecopyCheck (CanRxInfoStructPtr rxStruct

)
©2013, Vector Informatik GmbH Version: 3.14.00 137171177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Code replicated (SRB) canuint8 ApplTpPrecopyCheck (CanReceiveHandle rxObject)
Code replicated (MRB) canuint8 ApplTpPrecopyCheck (CanChipDataPtr rxRegPtr
rxObject Handle of received object

rxRegPtr Pointer to the received data in the CAN Controller receive register

rxStruct Pointer to the receive structure

kCanCopyData Received data will be copied using the CAN Driver 's internal copy mechanism
kCanNoCopyData CAN Driver doesn’t copy data and doesn’t perform indication

Availability

since versions: TPMC: 2.35.00 | CANgen: 3.88.02 | DBKOMgen: 2.37.01

Description

Special functions for the application, which is immediately called after the reception of a TP-CAN-message.
If e.g. several CAN-Ids are defined in an ECU for the TP (gateway or multiple ECU) it has to be decided,
before the TP is able to make use of the CAN-message, whether the current CAN-message should be
processed or not depending on the CAN-ID. This user- check function can be used for it, which is called by
the TP on each data reception.

If this function returns ,1% the CAN-message is processed by the TP.
If this function returns ,0% the CAN- message is dismissed by the TP and the process is finished.
The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 138/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.1.2 ApplTpCheckTA: Check if Target Address is valid (version <= 2.72.00)
ApplTpCheckTA

Prototype
SingleConnectionTp

vuint8 ApplTpCheckTA (vuint8 tpCurrentTargetAddress)

MultipeConnectionTP

vuint8 ApplTpCheckTA (vuint8 tpCurrentTargetAddress)

SingleConnectionTp GATEWAY API

vuint8 aApplTpCheckTA (vuint8 tpCurrentTargetAddress,
CanRxInfoStructPtr infoStruct)

MultipeConnectionTP GATEWAY API

vuint8 ApplTpCheckTA (vuint8 tpCurrentTargetAddress,
CanRxInfoStructPtr infoStruct)

Parameter

tpCurrentTargetAddress |-

infoStruct

Return code
vuint$8

Availability

Only for TP versions less than or equal to 2.72.00. See also chapter 4.4.1.3 for the changed API description
available since version 2.73.00.

Only for dynamic TP classes: Extended- and Normal Fixed Addressing

Description

This function will be called for every reception of a TP-CAN-message. Within this function the application has
to decide, if the TargetAddress in the received CAN-frame is valid. If the TargetAddress is not valid and
should not be received the return value must be ‘kTpNoChannel'. If it should be received the TargetAddress
should be returned. See also chapter 7.4.1 Virtual ECU’s / ‘Multiple EcuNumber’ feature.

The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Until versions: TPMC: 2.35.00 | CANgen: 3.88.02 | DBKOMgen: 2.37.01the function name was called
ApplTpPrecopy ()

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 139/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.1.3 ApplTpCheckTA: Check if Target Address is valid (since version 2.73.00)
ApplTpCheckTA

Prototype
SingleConnectionTp

t ta type ApplTpCheckTA (vuint8 tpCurrentTargetAddress)

MultipeConnectionTP

t ta type ApplTpCheckTA (vuint8 tpCurrentTargetAddress)

SingleConnectionTp GATEWAY API

t ta type ApplTpCheckTA (vuint8 tpCurrentTargetAddress,
CanRxInfoStructPtr infoStruct)

MultipeConnectionTP GATEWAY API

t ta type ApplTpCheckTA (vuint8 tpCurrentTargetAddress,
CanRxInfoStructPtr infoStruct)

Parameter
tpCurrentTargetAddress |-

infoStruct

Return code
t_ta type typedef enum
{
kTpNone = O,
kTpPhysical =
kTpFunctional
} €t ta type;

1,

2

Availability

Only for TP versions greater than or equal to 2.73.00. See also the former API description in chapter 4.4.1.2
Only for dynamic TP classes: Extended- and Normal Fixed Addressing

Description

This function will be called for every reception of a TP-CAN-message. Within this function the application has
to decide, if the TargetAddress in the received CAN-frame is valid and if it is a physical or functional identifer..

If the TargetAddress is not valid and should not be received the return value must be ‘kTpNone’.
If the TargetAddress is identified as a physical identifier then ‘kTpPhysical’ should be returned.

If the TargetAddress is identified as a functional identifier then ‘*kTpFunctional’ should be returned.
See also chapter 7.4.1 Virtual ECU’s / ‘Multiple EcuNumber’ feature.

The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

©2013, Vector Informatik GmbH Version: 3.14.00 140/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Please note

Until versions: TPMC: 2.35.00 | CANgen: 3.88.02 | DBKOMgen: 2.37.01the function name was called
ApplTpPrecopy ()

Examples

44.1.4 ApplTpRxSF: Reception of Single Frame
ApplTpRXSF

SingleConnectionTp

void ApplTpRxSF (void)
MultipeConnectionTP
void ApplTpRxSF (vuint8 channel)
Parameter
channel -

Return code
Availability
No restriction
Description

This function is called after the reception of a single-frame. AppITpRxGetBuffer() will be called before.
The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 141/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

44.15 ApplTpRxFF: Reception of First Frame
AppITpRXFF

SingleConnectionTp

void ApplTpRxFF (void)
MultipeConnectionTP
void ApplTpRxFF (vuint8 channel)
Parameter
channel -

Return code

Availability
Description

This function is called after the reception of a first-frame. ApplTpRxGetBuffer() will be called before.
The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

SEINTES

4.4.1.6 ApplTpRxCF: Reception of Consecutive Frame
AppITpRxCF

Prototype

SingleConnectionTp

void ApplTpRxCF (void)

MultipeConnectionTP

void ApplTpRxCF (vuint8 channel)

Parameter

channel -

©2013, Vector Informatik GmbH Version: 3.14.00 142 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Return code

Availability

Description

This function is called after the reception of a consecutive-frame.
The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

44.1.7 ApplTpRxCanMessageReceived: Reception of CAN-Frame
ApplTpRxCanMessageReceived

SingleConnectionTp

void ApplTpRxCanMessageReceived (void)
MultipeConnectionTP
void ApplTpRxCanMessageReceived (vuint8 channel)
Parameter
channel -

Return code

Availability

until versions: TPMC: 2.35.00 CANgen: 3.88.02 DBKOMgen: 2.37.01
Will be not supported in the future.

This function is called after the reception of a CAN-frame and is normally used only in gateways.
The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 143/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Post-condition(s)

Call context

Please note

Examples

4.4.1.8 ApplTpRxGetBuffer: Assign a buffer to a channel
TpTxSetStrictFlowControl

Prototype

SingleConnectionTp

unsigned char* ApplTpRxGetBuffer (vuintl6 datalength)

MultipeConnectionTP

unsigned char* ApplTpRxGetBuffer (vuint8 channel,
vuintl6 datalength)

SingleConnectionTp GATEWAY API
unsigned char* ApplTpRxGetBuffer (vuintl6 datalength
CanRxInfoStructPtr rxStruct)

MultipeConnectionTP GATEWAY API

unsigned char* ApplTpRxGetBuffer (vuint8 channel,
vuintl6e datalength

CanRxInfoStructPtr rxStruct)

Parameter
datalength -

channel

rxStruct

Return code

usigned char |-

Availability

No restriction

Description

This function is called after reception of the first data to get a buffer with a minimum length of dataLength
from the application. The application has to return a pointer to this buffer. If the returned pointer is NULL, the
transport-message will not be received anymore.

The name of this callback function can be adjusted as desired in the Generation Tool.

©2013, Vector Informatik GmbH Version: 3.14.00 144 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

4.4.1.9 ApplTpRxCopyFromCAN: Application Copy Function
AppITpRxCopyFromCAN

Prototype

SingleConnectionTp

void ApplTpRxCopyFromCan (vuint8 * source,
vuintl6 count)

MultipeConnectionTP

void ApplTpRxCopyFromCan (vuint8 channel,
vuint8 * source,
vuintl6 count)

Parameter

Source

Count

channel

Return code

Availability
No restriction
Description

The buffer management is done by the application. This function is always called by the Transport Protocol
while receiving a TP-CAN-message.

The argument source points to the receive buffer of the CAN-controller; the argument count determines
number of data, which has to be copied by the application function.

The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 145/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context

Please note

Examples
void ApplTpRxCopyFromCan (vuint8 channel, wvuint8 * source, vuintlé count)

{

(void)memcpy (& (TpRxGetDataBuffer (channel) [TpRxGetDatalIndex (channel)]),
source, count);

4.4.1.10 ApplTpRxIndication: Reception closed successful
ApplTpRxIndication

Prototype

SingleConnectionTp

void ApplTpRxIndication (vuintl6 datalength)

MultipeConnectionTP

void ApplTpRxIndication (vuint8 channel,
vuintl6é datalength)

Parameter

datalLength

channel

Return code

Availability
No restriction
Description

This function is called after the completely reception of a single frame message or a multiple frame
message. dataLength is the number of received bytes in the reception buffer.

The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)
Post-condition(s)
Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 146 / 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.1.11 ApplTpRxErrorindication: Reception closed with error
ApplITpRxErrorindication

Prototype
SingleConnectionTp

void ApplTpRxErrorIndication (vuint8 errorCode)

MultipeConnectionTP

void ApplTpRxErrorIndication (vuint8 channel,
vuint8 errorCode)

Parameter

errorCode > KTpRXErrFF_SfreceivedAgain: While a reception is in progress a
new

> Single- or FirstFrame is received, because the running reception will
be canceled and set up new.

> KTpRxErrWrongSNreceived: A ConsecutiveFrame with a wrong
SequenceNumber is received, because of the current reception will

be canceled.

> KTpRXxErrCFTimeout: An awaited ConsecutiveFrame is not
received in the right time and a timeout occurs.

> KTpRxErrConfIntTimeout: The FlowControl could not
transmitted within the necessary time and a (confirmation) timeout
occurs.

channel

Return code

Availability
No restriction
Description

This function will be called if an error occurs on the channel. The channel will be reinitialized afterwards.
The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)
Post-condition(s)
Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 147/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

4.4.1.12 ApplTpRxGetTxID: Get CAN Transmit Id
ApplTpRxGetTxID

Prototype
SingleConnectionTp

MultipeConnectionTP

vuintl6e ApplTpRxGetTxID (vuintl6é receiveld)

Parameter

receiveld

Return code

Availability

Only for dynamic TP classes: Normal Addressing
Insert:

#define TP USE TX ID APPL CHECK kTpOn
in a user-config file to use this feature.

11l Attention: Only until TPMC version 2.60.00

This function is called after reception of a First-Frame, to get the Transmit-ID for the FlowControl.
The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

SEINTES

©2013, Vector Informatik GmbH Version: 3.14.00 148/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.2 Reception side for functional messages
Only available if a functional connection group exists.

4.4.2.1 ApplFuncTpPrecopy: Check if Target Address is valid

ApplFuncTpPrecopy
Normal Fixed addressing, Extended addressing:
vuint8 ApplFuncTpPrecopy (vuint8 tpCurrentTargetAddress)
Normal Fixed addressing, Extended addressing with GATEWAY - API:

vuint8 ApplFuncTpPrecopy (vuint8 tpCurrentTargetAddress,
CanRxInfoStructPtr infoStruct)

Mixed addressing:

vuint8 ApplFuncTpPrecopy (vuint8 tpCurrentTargetAddress,
vuint8 tpCurrentAddressExtension)

Mixed addressing with GATEWAY - API:

vuint8 ApplFuncTpPrecopy (vuint8 tpCurrentTargetAddress,
vuint8 tpCurrentAddressExtension,
CanRxInfoStructPtr infoStruct)

Parameter

tpCurrentTargetAddress Contains the N_TA byte of the received message.

tpCurrentAddressExtension | Contains the N_AE byte of the received message.

infoStruct Pointer to a data structure containing more information concerning the
received message (e.g. Raw Id, DLC).

Return code

vaints

Availability

For TP classes: Extended-, Normal Fixed- and Mixed- Addressing.

If a functional connection groups exists and a callback name is configured. The default callback name used
is “TpFuncCheckTA”.

This function will be called for every reception of a functional TP-CAN-message. Within this function the
application has to decide, if the TargetAddress / AddressExtension in the received CAN-frame is valid.

If the TargetAddress/AddressExtension is not valid and should not be received the return value must be
‘kTpNoChannel’. If it should be received the TargetAddress should be returned.

If the Multiple EcuNumber feature is used, then the concerning EcuNumber must be returned.
The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

©2013, Vector Informatik GmbH Version: 3.14.00 149/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

Call context

Please note

Examples

4.4.3 Transmission side
443.1 ApplTpTxFC: Reception of a Flow Control Frame
AppITpTxFC

Prototype

SingleConnectionTp

void ApplTpTxFC (void)
MultipeConnectionTP
void ApplTpTxFC (vuint8 channel)
Parameter
receiveld

Return code

Availability

since versions: TPMC: 2.35.00 CANgen: 3.88.02 DBKOMgen: 2.37.01
Description

This function is called after the reception of a FlowControl-frame.
The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 150/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.3.2 ApplTpTxCanMessageTransmitted: CAN-Message transmitted
ApplTpTxCanMessageTransmitted

SingleConnectionTp

void ApplTpTxCanMessageTransmitted (void)

MultipeConnectionTP

void ApplTpTxCanMessageTransmitted (vuint8 channel)

Parameter

channel

Return code

Availability
No description
Description

This function is called each time after a successful transmission of an CAN-message / frame (only for TX
connections - .this will mean for SF; FF; CF and not for FC messages)

The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)
Post-condition(s)
Call context

Please note

Examples

4.4.3.3 ApplTpTxNotification: CAN-Frame transmitted
ApplITpTxNotification

Prototype
SingleConnectionTp

void ApplTpTxNotification (vuint8 count)

MultipeConnectionTP

void ApplTpTxNotification (vuint8 channel,
vuint8 count)

Parameter

channel

©2013, Vector Informatik GmbH Version: 3.14.00 151 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtO([

count

Return code
Availability
No restriction
Description

This function is called each time after sending Tp-Frames except “Single-Frames” and the “last
Consecutive-Frame”. Count is the number of transmitted data.

The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

4.4.3.4 ApplTpTxCopyToCAN: Application Copy Function (=16BIT Controller)
ApplTpTxCopyToCAN

Prototype
SingleConnectionTp

vuint8 ApplTpTxCopyToCAN (TpCopyToCanInfoStructPtr infoStruct)

MultipeConnectionTP

vuint8 ApplTpTxCopyToCAN (TpCopyToCanInfoStructPtr infoStruct)

Parameter

infoStruct

Return code

If everything is fine return ‘kTpSucces’ otherwise ‘kTpFailed’.

Availability

No restriction

©2013, Vector Informatik GmbH Version: 3.14.00 152 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

The buffer management is done by the application. This function is always called by the Transport Protocol
before sending a TP-CAN-message.

The parameter is a pointer to the following structure:
struct tTpCopyToCanlnfoStruct_s
{
canuint8 Channel; /* TP Channel*/
canuint8* pDestination; /* Pointer to destination buffer */
canuint8* pSource; /*Pointer to linear source buffer*/
canuintl6 Length; /* The maximum length to copy */
b
The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Since version 2.35 the TPMC component tries to call ApplTpCopyToCAN () again and again until
kTpSuccess is returned or ‘CAN message confirmation timeout’ occurs.
Examples

vuint8 ApplTpCopyToCan (TpCopyToCanInfoStructPtr infoStruct)
{

(void)memcpy (infoStruct->pDestination, infoStruct->pSource,
infoStruct->Length) ;

return kTpSuccess;

4435 ApplTpTxCopyToCAN: Application Copy Function (8BIT Controller)
ApplTpTxCopyToCAN

Prototype

SingleConnectionTp

vuint8 ApplTpTxCopyToCAN (vuint8 offset,
vuint8 count)

MultipeConnectionTP

vuint8 ApplTpTxCopyToCAN (vuint8 channel,
vuint8 offset,
vuint8 count)

Parameter
Offset

©2013, Vector Informatik GmbH Version: 3.14.00 153/177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

Count

channel

Return code

If everything is fine return kTpSuccess otherwise kTpFailed.

Availability

Caution
Only until TPMC version 2.49.00.

Since TPMC version 2.50.00 the API described in 4.4.3.4 “AppITpTxCopyToCAN: Application Copy
Function (=16BIT Controller)” is used instead.

The buffer management is done by the application. This function is always called by the Transport Protocol
before sending a TP-CAN-message.

The argument of fset determines the offset into the sending buffer of CAN Driver (Offset=0..7); the
argument “count” determines number of data, which has to be copied by the application function.

The name of this callback function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Since version 2.35 the TPMC component tries to call App1TpCopyToCAN () again and again until
kTpSuccess is returned or ‘CAN message confirmation timeout’ occurs.

TpTxData (channel) can be used to access the transmit buffer of the CAN-driver.

Caution
! Do not access the transmit buffer of the CAN-driver elsewhere

vuint8 ApplTpCopyToCan (vuint8 channel,
vuint8 offset,
vuint8 length)

(void)memcpy (&TpTxData (channel) [offset],
&§TpTxGetDataBuffer (channel) [TpTxGetDatalndex (channel)],
length) ;

return kTpSuccess;

}

©2013, Vector Informatik GmbH Version: 3.14.00 154 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.3.6 ApplTpTxConfirmation: Transmission closed successful
ApplTpTxConfirmation

Prototype
SingleConnectionTp

void ApplTpTxConfirmation (vuint8 state)

MultipeConnectionTP

void ApplTpTxConfirmation (vuint8 channel,
vuint8 state)

Parameter

State

cannel

Return code

Availability

No description
Description

This function is called after a single- or a multiple-frame message is transmitted completely.

The state condition is given as a parameter and can be analyzed by the application. Please note that this
is intended for further usage, currently the delivered state is always kTpSuccess.

The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

Please note

Currently the ‘state’ parameter is not used. So the default of this parameter is ‘kTpSuccess’.

Examples

vuint8 ApplTpCopyToCan (TpCopyToCanInfoStructPtr infoStruct)
{

(void)memcpy (infoStruct->pDestination, infoStruct->pSource,
infoStruct->Length) ;

return kTpSuccess;

©2013, Vector Informatik GmbH Version: 3.14.00 155/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

4.4.3.7 ApplTpTxErrorindication: Transmission closed with error
ApplITpTxErrorindication

Prototype
SingleConnectionTp

vuint8 ApplTpTxErrorIndication (vuint8 errorCode)

MultipeConnectionTP

vuint8 ApplTpTxErrorIndication (vuint8 channel,
vuint8 errorCode)

Parameter

errorCode > KTpTxErrFCTimeout: An awaited FlowControl timed out

> KTpTxErrConfIntTimeout: A TP-CAN-massage could not transmitted
within the necessary time and a (confirmation) timeout occurs.

> KTpTxErrFCWrongFlowStatus: An invalid FlowControl-frame is
received. Only with activated strict message flow
checking (TP_USE_STRICT_MSG_FLOW_CHECKING must be set
to KTpOn in a user-config file to activate this feature).

> KTpTxXErrWFTmaxOverrun: WFTmax wait frames are received now
(only for MCAN, if TP_ENABLE_MCAN is defined)

> KTpTxErrFCOverrun: the receiver reported an Overrun, channel is
terminated

Old error codes Old error codes since TPMC version 2.35

> KkTpTxErrBufferUnderrun: Within the AppITpCopyToCAN function a
buffer-underrun occurs.

cannel

Return code

Hold the channel: kTpHoldChannel
Reinitializing / free the channel: kTpFreeChannel

Availability
No description
Description

This function will be called if an error occurs on the channel. The application has now to decide if the
channel should be reinitialized or hold for reusing it (only for dynamic TP classes necessary).

The name of this callback-function can be adjusted as desired in the Generation Tool.

Pre-condition(s)

Post-condition(s)

Call context

©2013, Vector Informatik GmbH Version: 3.14.00 156/ 177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vecktor [

Please note

Currently the ‘state’ parameter is not used. So the default of this parameter is ‘kTpSuccess’.

Examples

vuint8 ApplTpCopyToCan (TpCopyToCanInfoStructPtr infoStruct)
{

(void)memcpy (infoStruct->pDestination, infoStruct->pSource,
infoStruct->Length) ;

return kTpSuccess;

4.4.4 Administrative Functions
4.4.4.1 ApplTpFatalError: Fatal Error

ApplTpFatalError

Prototype
SingleConnectionTp

void ApplTpFatalError (vuint8 errorCode)

MultipeConnectionTP

void ApplTpFatalError (vuint8 errorCode)

Parameter

errorCode User assertions:

> KTpErrNoDynObjAtTplnit: Within TpInitPowerOn() it is not possible
to allocate the necessary transmit-objects from CAN-driver — please
check initialization order

> KTpErrChannelNrTooHigh: Possible access of a invalid tpChannel —
please check your application calls of the TP-API.

> KTpRxErrFcCanldisMissing: The CAN-ID of the FlowControl was
not set within the ApplITpRxGetBuffer() function for dynamic
NormalAddressing — please check your application.

> KtpTxErrDatalengthTooHigh: The application tried to transmit more
than 4095 bytes of data — please check your application.

> KTpTxErrWrongFrameAtPretransmitSpecified: Internal state-
machine check — please get in contact with us.

> KTpTxErrNoStateSpecified: Internal state-machine check — please
get in contact with us.

> KkTpRxErrNoStateSpecified: Internal state-machine check — please
get in contact with us.

> KTpErrChannelNotinPreTransmitState: The application tried to
configure a not assigned tpChannel in a dynamic TP class — please
check your application.

©2013, Vector Informatik GmbH Version: 3.14.00 157 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 vector [

> KTpErrWrongAddressingFormat: The application tried to configure a
tpChannel for a wrong AddressingMode (e.g.
TpTxSetTargetAddress for NormalAddressing configured
tpChannel) in a dynamic TP class — please check your application -
please check your application.

> KTpRxErrSetResponseWithoutFc: The function TpTxSetResponse()
is called for without-FC configured tpChannel - please check your
application.

> KTpTxErrSetResponseWithoutFc: The function TpTxSetResponse()
is called for without-FC configured tpChannel - please check your
application.

> KTpErrChannelNotinUse: The application tried to get information
about an unused tpChannel — please check your application.
Internal assertions:

> KTpErrChannelNrTooHigh: Possible access of a invalid tpChannel —
please check the stack-usage.

> KTpRXxErrNotinWaitCFState: Internal state-machine check — please
get in contact with us.

> KTpErrChannelNotinUse: Internal state-machine check — please get
in contact with us.

> KTpErrNoCanChannelFound: The CAN-driver confirmation function
is called with a wrong Handle, because it is not possible to calculate
the corresponding CAN-channel — please get in contact with us.

Return code

Availability

Until versions CANgen: 3.88.02 DBKOMgen: 2.37.01 TP-assertions are activated if the “Debug level” in
CAN-Driver includes “User”/”Internal”

This function will be called if a fatal error occurs.
The name of this callback function is not changeable

Pre-condition(s)

Post-condition(s)

Call context

Please note

Examples

©2013, Vector Informatik GmbH Version: 3.14.00 158 /177

based on template version 5.1.0

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

5 Transmission Attributes & Callback functions

“w
= g
. 5B
E < F
2 5 _ = H
E T o £ TL.F g
2 oy £ EE 8 &
+% sziilog 2528 E
i m-;z@mg-;aﬁ“‘ﬁsﬂg z
e 2 § 82§53 =855 £
= 2 o = = < E Z £ =
e} .sgagiqﬁsgé_gz_mg H
22§ g IIiEisgggcoc o
FiE : 2 FEEEIIE 223833 ;
(¥ f3csiiidiggiiiiie
I3 PP rsEsEziEiiiiiis
SEL 2 I 2525222 288E282384
Administrativ SingleCon. MultiConnection
TplnitPowerOn Initialization ISRlock X X X X |x - x|xXx %
Tplnit Re-Initialization ISRlock X X X X X - X |X X
TpRxTask time base for reception timeouts background X X X X X X X X
TpTxTask time base for timeouts/transmission hackground X X X X X - X |X X
Reception
TpRxResetChannel Free Rx-Channel hackground/TP-hook x % X X X - % x ¥
TpRxGetStatus Ry-Channel Status - X/ X - R X R
TpRxSetConnectionNumber Azsign a Connection-Number to a channel - X - ®x % R
TpRxGetConnectionNumber Get the Corresponding Connection-Number - X - %X x
TpRxGetBS Get the BlockSize - X X X X |[x|-|x|[x|x X
TpRxSetBS Setting up BlockSize on Reception Side - X X X X |[x|-|x|[x|x X
TpRxSetSTMIN Setting up SThin time on Reception Side - X X X X |[x|-|x[x|x[x
TpRxGetSTMIN Get the STMin time - X X X x|[x|-|x[x|x[x
TpRxWithoutFC Set withoutFC support - x| - /x| | ® %
TpRWithFC Reset withoutF C support - X|-|x|x | ® %
TpRxGetReceivedTargetAddress Received Target Address - X - x| x| x x
TpRxGetChannellD returns received CAN-ID - x| -
TpRxGetEcuNumber returns ECU Nurnber - X -lx x| x X
TpRxGetBaseAddress returns used BaseAddress - - x X
TpRxGetCanChannel Physical CAN Channel - x| -|x|x|=x» X
TpRxGetAddressingFormat returns Addressingformat - - ®
T'vn Hald(C: i et rwlpi B :nh Ia} - - - - - - - - - — L
TpRxConti i Continus the Bacaption - _ _ o T --T- M
TpRxGatP Groupldentificati Gatldantification of B Group R - - - e *
ApplTpRxGetBuffer Assign a Buffer to a Channel ISR X X X X X - X |X X
ApplTpRxIndication Reception Closed ISR X X X X X - X |X X
ApplTpRxErrorindication Reception Error ISR/pTask X X X X X - X |X X
ApplTpRxSF Reception of Single Frame ISR x X X X |x - x|¥X X
ApplTpRxFF Reception of First Frame ISR % % ® X X - X % X
ApplTpR=zCF Reception of Consecutive Frame ISR H % ® X X - %X % X
ApplTpRxCanMessageReceived Reception of CAN-Frame ISR % % X X X - x X X
ApplTpRxCopyFromCAN Copy Function of Application ISR X X X X |x - x|xXx %
ApplTpRxGetTxID Get Transmit 1d for the FlowControl ISR X -
ApplTpPrecopy ISR X - X X X
Transmission
TpTransmit Sending a Message - x X X X |x - x|¥X X
TpTzResetChannel Free Rx-Channel hackground/TP-hook % % ® X X - X % X
TpTzGetFreeChannel Azsign Channel to Connection - X - % ®
TpTxGetDataBuffer Get the Corresponding Data Buffer - % % X X X - x X X
TpTxGetDatalndex Get the Corresponding Data Index - X X X X |x - x|xXx %
TpTxSetResponse Asserble a Response - X - %X x R
TpTxLockChannel Do not Release the Locked Channel after Transmission - X - %X x R
TpTxUnlockChannel Unlock Tx-Channel - X - %X x R
TpTxGetConnectionNumber Get the Corresponding Connection-Mumber - X - X x %
TpTzGetConnectionStatus Returns an assigned tpChannel to connection - X - X X R
TpTxWithoutFC Set withoutFC support - X|-|x|x | ® %
TpTxWithFC Reset withoutF C support - x| -|x|x | ® %
TpTxSetCanChannel Physical CAN Channel - x| -|x|x |z X
TpTxSetEcuNumber Set ECU Murnber - -lx x| x X
TpTxSetTargetAddress Set Target Address - - X X X
TpTxSetBaseAddress Set BaseAddress - - x
TpTxSetChannellD Set Transmit- and Receive-ID - X -
TpTzSethddressingFormat Set Addressingformat - - ®
- - N I e - %
ApplTpTxConfirmation Sending Closed ISR X X X X |x - x|xXx %
ApplTpTxErrorindication Transmit Errar ISR/tpTask X X X X X - X |X X
ApplTpTxCanMessageTransmitted CAN-Message Transmitted ISR X X X X X - X |X X
ApplTpTxNotification of CAN-Frame ISR X X X X X - X |X X
ApplTpTxCopyToCAN Copy Function of the Application ISR/ApTask X X X X | x - x| X X

Figure 5-1 Transmission attributes and callback functions

©2013, Vector Informatik GmbH Version: 3.14.00 159 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

6 Integration of CANbedded Components into a Customer Project

6.1 Requirements to the Customer System Environment

A customer system environment from the CANbedded component point of view is the
environment (system architecture) where the component together with other CANbedded
components, an operation system, startup code, system control software and the
application is running.

To full fill the different requirements to the component architecture like small ROM and
RAM footprint, short API runtime and short interrupt lock times (global and only
CAN/LIN/others bus interrupts) during the APl execution, some requirements to the
customer’s system environment and the component usage in that system has to be given
to and kept by the user.

The requirements and needs to use CANbedded components in a customer specific
project are listed in this chapter. It is necessary to check the requirements, preconditions
and needs carefully to guaranteed the correct and consistent usage of the software in the
resulting system and to prevent malfunction and data consistency problems during the
system execution (in the vehicle in the field).

6.2 Component Integration to the Customer Project

6.2.1 Requirements to the Component Initialization in a Customer Project

The correct sequence for all CANbedded component initialization calls (e.g. CAN Driver,
network management, interaction layer ...) depends on the needs for the whole, vehicle
manufacturer specific integration package. Therefore the correct call location in the context
to the other (CANbedded) power up initialization calls for this component is just a example.

The following rules are valid for each use case of a CANbedded component in a customer
project and must be guaranteed to prevent faulty situations:

1) The component must be initialized after the primary CAN Driver initialization via
CanlnitPowerOn().

2) The component must be initialized during the global interrupt is locked, to prevent
any interrupt occurrences during the initialization sequence of this and ALL other
CANbedded modules. Therefore the requirement is to make sure the global
interrupt is disabled during the whole initialization sequence of all CANbedded
components (driver, IL, NM, TP, diagnostics ...).

3) Please note, that the usage of CanDisablelnterrupt and CanRestorelnterrupt is
incorrect to lock the global interrupt during the CANbedded initialization sequence.
A customer project specific global interrupt lock and unlock is necessary.

4) The customer system architecture must guarantee that all CANbedded modules are
initialized before the first usage of any API or variable access in the customer’s
application software is performed.

5) The call to the component initialization function TpInitPowerOn() will reset the
component state to the initial state. Therefore it is NOT recommended to call the
component initialization function during the system runtime to e.g. terminate

©2013, Vector Informatik GmbH Version: 3.14.00 160/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

something. Please check carefully, if the call to this API is valid (and helpful) in the
planned application context.

6) Please note, that the call to the component initialization function may be runtime
consuming, especially if there are additional callbacks to the application are
performed and that the global interrupts are locked during that time, too.

7) If an OSEK/OS is used, the basic initialization sequence has to be performed in the
startup-hook or, alternatively in an task used to initialized the whole system. Please
check, that the global interrupt is locked during the startup hook execution to ensure
the required data consistency. This is true for all osCAN OSEK but not for each
OSEK/OS on the market. If the initialization is performed in a task, the interrupt
must be locked by the user for each OSEK/OS implementation.

6.2.2 Requirements to Component APl Usage in a Customer Project

1) The CANbedded component needs a first initialization of all internal variables and
states via the call of the initialization API function TplnitPowerOn(). It is not allowed
to use any API or data structure of the component before the primary initialization
has been performed. See chapter 6.2.1 Requirements to the Component
Initialization in a Customer Project for details to the component needs according to
the initialization sequence.

2) The cyclic function(s) (e.g. TpRxTask()/TpTxTask()) of a component must not be
called on interrupt level (e.g. the timer interrupt). It is strictly forbidden, that the
cyclic called component API interrupts the component’s API functions running in the
(CAN/LIN) interrupt context or an other component APIl's. See chapter 6.2.3.1
Common Requirements for detalils.

3) Itis not allowed to call any CANbedded API function in the context of an interrupt, if
this is not explicitly allowed or required in this documentation.

4) Please refer to chapter 6.2.3 Requirements to the Customer Project Operating
System for the component requirements to the operating system.

6.2.3 Requirements to the Customer Project Operating System

The operating system used in the customer project has to fulfill the rules listed in chapter
6.2.3.1 Common Requirements to guarantee data consistency of the internal and external
component states and values.

6.2.3.1 Common Requirements

The component offers different APl functions and global variable/state access to the
application program. Some of these API functions are necessary to fulfill the basic
functionality of the component. This is e.g. the initialization and the cyclic called function to
realize the internal time base and the state handling.

The cyclic called API function TpRxTask()/TpTxTask() is also called TASK in the context of
this chapter. Due to the need for fast (1 - 10ms) cyclic calls, this tasks are often called
erroneously by calling this API function in an timer interrupt context. This is STRICTLY
forbidden.

©2013, Vector Informatik GmbH Version: 3.14.00 161/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

The list below describes the common rules for all component API calls. The documentation
of the API functions and the component callback functions describes the deviations from
this rules if, e.g. the API is allowed to be called during the TASK is running.

Please check carefully, if this restrictions are valid in your system:
> API functions must not interrupt the (CAN/LIN) RX/TX interrupt service functions

> API functions must not interrupt the TASK functions
> API functions must not interrupt other API functions of the same component
> TASK functions must not interrupt API functions of the same component

> |If there are multiple TASK functions for a component: TASK function must not interrupt
other TASK functions of the same component

> TASK functions must not interrupt the (CAN/LIN) RX/TX interrupt service functions

Info

> APl and TASK functions are protected against interruption by the (CAN/LIN) RX/TX
interrupt service functions

> There are no limitations for interruptions of the component API’s with other,
independent interrupt service functions (e.g. A/D converter, SIO lines, ...)

6.2.3.2 Round-Robin-Scheduler and Comparable OS Approaches

If the used operating system works like a round-robin scheduler or comparable and there
is only one common call level for application and CANbedded APIs with additional, small
interrupt handlers, the preconditions as described in chapter 6.2.3.4 should be valid.

6.2.3.3 Usage of OSEK/OS

The component can be used together with an OSEK operating system. The component
itself is operating system independent and can therefore be used together with an
OSEK/QOS, if the rules listed in chapter 6.2.3.1 are fulfilled.

OSEK/OS can be configured to 4 different setups (BCC1 to ECC2). Depending on the
selected setup, OSEK/OS is non-preemptive or (full-)preemptive. The preemptive setups
are able to run non-preemptive and preemptive tasks. Please refer to the chapters 6.2.3.4
and 6.2.3.5 for further details.

If an OSEK/OS is used, the basic initialization sequence has to be performed in the
startup-hook or, alternatively in an task used to initialized the whole system. Please check,
that the global interrupt is locked during the startup hook execution to ensure the required
data consistency. This is true for all o0sSCAN OSEK but not for each OSEK/OS on the
market. If the initialization is performed in a task, the interrupt must be locked by the user
for each OSEK/OS implementation.

©2013, Vector Informatik GmbH Version: 3.14.00 162 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

6.2.3.4 Non-Preemptive Operating System

If an non-preemptive OS is used, there are no limitations to the usage of CANbedded
component API's on task/main level due to an task change is started by an OS-API call or
by exiting a function called directly by the OS scheduler. Due to this there is no situation
with possible dangerous interruptions of component API executions in this environment.

Non-preemptive approaches are using also interrupt handlers for e.g. CAN, LIN, A/D and
D/A conversion and other things. Until the requirements listed in chapter 6.2.3.1 are
fulfilled, no critical situation according to data consistency and the CANbedded component
usage occurs. The CANbedded component itself is able to cope with the interruption via
the internal connection to the CAN/LIN driver.

6.2.3.5 Preemptive Operating System

If the CANbedded component has to be used in a full-preemptive environment, some
additional restrictions have to be kept in mind. If this is not explicitly allowed, please check
carefully, that the restrictions listed in chapter 6.2.3.1 are fulfilled by the system setup.

Possible solutions for a save usage of the CANbedded component may be calling the
cyclic functions and API's in non-preemptive tasks or to lock task changes during the
execution of the cyclic function calls and the component APIs.

It is not recommended to solve the restrictions via a special task priority setup due to
possible maintenance issues when changing and extending the software system in the
future.

©2013, Vector Informatik GmbH Version: 3.14.00 163 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

7 Advanced usage

7.1 Separation of TimerTask and TransmissionTask (StateTask)

Until TPMC version 2.35 there is a combination of a timer observation and the handling of
transmission requests in one task function. By the demand of faster TP transmission the
most popular possibility is to separate the transmission mechanism from the timer task.
Since TPMC version 2.35 TimerTask and TransmissionTask are separated.

The ‘TimerTask’ includes the time observation. The ‘StateTask’ includes the transmission
handling of the CAN-frames. Especially the retry of the transmission while CanTransmit()
cannot accept the message, because the (all) TX registers are currently in use.

Like the former ‘Task’ function (TpXxTask()) the current ‘Task’ function (TpXxTask())
includes the call of both tasks to have a full compatibility. So it must be called further on
periodically. The ‘StateTask’ can be called out of a fixed time periods in addition.

| Caution
. It is not necessary to call the ‘StateTask’, if the CAN Driver queue is enabled.

void TpTxTask(void)
> static void TpTxTimerTask(void) (not visible for the application)

> void TpTxStateTaskAllChannels(void)

void TpRxTask(void)
> void TpRxTimerTask(void) (not visible for the application)

> void TpRxStateTaskAllChannels(void)

The ‘StateTaskAllIChannels’ iterates over all tpChannels. To speed up only one connection.
a ‘StateTask’ is provided, which is handles the transmission of this connection.

void TpTxStateTask(vuint8 tpChannel)

void TpRxStateTask(vuint8 tpChannel)

7.2 Fast transmission of ConsecutiveFrames
Available since TPMC version 2.35.

The TP-layer calculates the STmin time based on the CallCycle of the TpTimerTask().To
guarantee that a under run of the STmin is not possible, one CallCycle is added. This
conservative way of calculation do not fit the demand of a fast transmission.

The added feature includes a possibility to transmit a TP-frame as quick as possible.
Typically this feature can be used for a fast re-programming of ECU’s through Gateways or
Testers.

©2013, Vector Informatik GmbH Version: 3.14.00 164 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

The feature can’t be enabled through the GenTools. A user-config file has to be used,
including following define:

#define TP_USE_FAST_TX_TRANSMISSION kTpOn

7.2.1 Usage

The TP provides a special API function which assembles and transmits the next CF-frame
by skipping the internal timer for the minimum sending distance (STmin). This means the
application has the possibility to transmit the next CF frame faster than the calculated
minimum sending distance of the TP module allows.

Normally the timer will be reloaded with the value of the minimum sending distance and is
observed in the TpTxTimerTask(). By calling the function TpTxPrepareSendimmediate()
the timer of the TP is stopped. If the preparation returns a ‘kTpSuccess’ the application
gets the responsibility of transmitting the next ConsecutiveFrame. The application can
reload an (application) alarm-timer with the STmin value of the FlowControl-frame by
calling the function TpTxGetSTminIinFrame(). If the alarm occurs (timer is decremented to
zero) the application can transmit the ConsecutiveFrame by calling the function
TpTxSendimmediate(), which prepares the CF-frame and calls the TpTxStateTask() to
transmit the frame immediately.

7.2.2 Application example
For non-zero STmins:

void ApplTpTxFC (canuint8 channel)
{
if (kTpSuccess == TpTxPrepareSendImmediate (channel))
{
TpTxSendImmediate (channel);
}
}
void ApplTpTxCanMessageTransmitted (canuint8 channel)
{

canuint8 stminTime;

if (kTpSuccess == TpTxPrepareSendImmediate (channel))
{

stminTime = TpTxGetSTminInFrame (channel);

/* load an OSEK-0S alarm (in ms) */
SetRelAlarm(TpSepAlarm, MSEC (stminTime),0);

/* after alarm time expires: TpTxSendImmediate (channel); */
}
}

For zero STmins (fast as possible):

Attention: Due to the current priority rules it could be possible that no real parallel
transmission is possible. All other channels are not handled anymore while
another transmission is running.

void ApplTpTxFC (canuint8 channel)
{
if (kTpSuccess == TpTxPrepareSendImmediate (channel))
{
TpTxSendImmediate (channel) ;
}
}
void ApplTpTxCanMessageTransmitted (canuint8 channel)
{
if (kTpSuccess == TpTxPrepareSendImmediate (channel))

{

©2013, Vector Informatik GmbH Version: 3.14.00 165/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

TpTxSendImmediate (channel) ;
}
}

7.3 Normal Fixed Addressing

7.3.1 Multiple ECU’s

Multiple ECU’ s are control units which are assembled several times within the CAN
network with the same software (example: seat in the front on the left hand side and on the
right hand side). In this case, the application has to decide at run-time, which ECU is
actually installed and has to set-up these parameters dynamically.

7.3.1.1 Using the CANgen configuration tool

The configuration tool does not apply the ECU information but it provides all possible
values for the application as constants in the generated code.

E.g.: In the generated tp_cfg.h file you will find constants for all existing ECU numbers:
#define KTpEcuNumber0 0x10

#define KTpEcuNumberl O0x11
#define KTpEcuNumber2 0x12
#define KTpEcuNumber3 0x13

©2013, Vector Informatik GmbH Version: 3.14.00 166 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

In case of using the CANgen configuration tool the application must accomplish two things
now at Power On time:

a) The actual ECU number must be set using the ComSetCurrentECU() API.
b) The actual ECU number must be provided to the TPMC.

Code example:
extern canuint8 tpEcuNumber;
canuint8 tpEcuNumber;
void main (void)
{ CanInitPowerOn() ;
ComSetCurrentECU (currentECU) ;
ié.(FirstECUis selected) {

tpEcuNumber = kTpEcuNumberO;

}

else if (SecondECU is selcted) {
tpEcuNumber = kTpEcuNumberl;

}

TpInitPowerOn(); /* For some configuration it could be also
DiagInitPowerOn() with implicit TPMC initialization */

<EnableCAN ISR>
}

7.3.1.2 Using the GENy configuration tool

The configuration tool does not apply the ECU information completely but it provides all
possible values for the application as constants in the generated code.

E.g.: In the generated tp_par.c file a kTpEcuNumber _field[] is provided for all existing ECU
numbers:

vuint8 kTpEcuNumber _field [4] ={
0x10,
Ox11,
0x12,
0x13

©2013, Vector Informatik GmbH Version: 3.14.00 167 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

In case of using the GENy configuration tool there is left one thing now the application
must accomplish at Power On time:

a) The actual ECU number must be set using the ComSetCurrentECU() API.

Code example:

void main (void)

{
CanInitPowerOn () ;
ComSetCurrentECU (currentECU) ;

TpInitPowerOn(); /* For some configuration it could be also
DiagInitPowerOn () with implicit TPMC initialization */

<EnableCAN_ ISR>
}

7.4 Extended- and Normal Fixed Addressing

7.4.1 Virtual ECU’s / ‘Multiple EcuNumber’ feature

‘Virtual ECU’s’ are control units which include the logic of more than one ECU. In the
network they have to react for more than one ECU number. The application has to decide
which ECU number should be received and which not.

For versions < 2.73.00:

All TargetAddresses (except the functional TargetAddress OxFF) will be received through
the Transport Layer. Following the reception of a TP-frame the application callback
ApplTpPrecopy() is called by the Transport Layer. In this function the application has to
decide which TargetAddress should be received and which not. In this function the
application gets the received TargetAddress and has to return the TargetAddress itself to
receive TransportFrames. To not receive the following TransportFrames the return value
has to be ‘kTpNoChannel’ (0xff).

If the received TargetAddress e.g. is a part of a functional range, the application can
modify the received TargetAddress by returning another TargetAddress in the
ApplTpPrecopy function. If the returned value is unequal to the received the Transport
Layer will receive the TransportFrames with this TargetAddress and not with the received
(the responded FlowControl is also modified).

canuint8 ApplTpCheckTA (vuint8 targetAddress)
{
vuint8 result;
switch (targetAddress)
{
case TargetAddress 0:
case TargetAddress 1:

case TargetAddress n:
result = targetAddress;
break;

default:
result = kTpNoChannel;

}

return result;

©2013, Vector Informatik GmbH Version: 3.14.00 168 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

For versions >= 2.73.00:

All TargetAddresses are received through the Transport Layer. Following the reception of a
TP-frame the application callback ApplTpPrecopy() is called by the Transport Layer. In this
function the application has to decide which TargetAddress should be received and which
not. The application gets the received TargetAddress and has to return either
‘kTpPhysical’ or ‘kTpFunctional’. To not receive any subsequent TP Frames the
application returns ‘kTpNone’.

t ta type ApplTpCheckTA (vuint8 targetAddress)
{
t ta type result;
if (targetAddress == MY ECU_ NUMBER)
{
result = kTpPhysical;
}
else if((targetAddress >= TP _LOWEST FUNCTIONAL ADDRESS) &&
(targetAddress <= TP HIGHEST FUNCTIONAL ADDRESS))
result = kTpFunctional;

}

else

{
result = kTpNone;

}

return result;

7.5 Using different CAN-Identifiers

For some purposes different CAN-Ids, as well 11-Bit standard as also 29-Bit extended
identifiers shall be used for the Normal Addressing type. If so, the TPMC provides two
configuration opportunities to handle this requirement either statically at configuration time
or dynamically at runtime.

7.5.1 Statically configured CAN-Ids

By default 11-Bit standard Ids are used with Normal Addressing. If 29-Bit extended Ids are
requested by the user and thus also entered as Addressing Information in the GENy
generation tool, then the preprocessor switch TP_USE_EXT_IDS_FOR_NORMAL is generated
with the value kTpOn. The code is now applicable to be used with 29-Bit CAN-Ids.

7.5.2 Dynamically configured CAN-Ids

If the user has the necessity to handle both kinds of CAN-Ids during runtime, then in the
GENy generation tool different CAN-lds can be entered for different Addressing
Informations. Now the preprocessor switch TP_USE_MIXED_IDS_FOR_NORMAL is generated
with the value kTpOn in addition and the code is now applicable to be used simultaneously
with 11- and 29- Bit CAN-Ids.

7.5.3 Additional API functions

If both kinds of CAN-Ids are used then the additional API function
canuint8 TpRxGetChannelIDType (canuint8 tpChannel)iS prOijed.

This function either returns kTpCanldTypeStd for 11-Bit or kTpCanldTypeExt for 29-Bit
identifiers.

©2013, Vector Informatik GmbH Version: 3.14.00 169 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

7.6 Transmissions without Flow Control frames

For some purposes the usage of FC frames might be omitted. Please note that this feature
is not supported for single connection TP.

If using a dynamic Tp Class then the provided API functions TpRxWithoutFC resp.
TpTxWithoutFC can be used (see 0, 4.2.3.28) to control the FC usage.

If using a static Tp Class then a channel specific FC control information must be provided
at compile time for the TP containing the information if FC frames shall be used or not for a
specific channel either on the Rx- and/or on the Tx- side.

The definition and usage of the FC control array must be as described below:

vuint8 TpRxFlowControl [kTpRxChannelCount];
vuint8 TpTxFlowControl [kTpTxChannelCount];

In the default case, if the usage of FC frames is required, then the FC control array
contains a value of “1” for the belonging Rx- or Tx- channel. If FC frames shall be
suppressed, then the FC control array contains a value of “0” for the belonging Rx- or Tx-
channel.

Example:
vuint8 TpRxFlowControl[3] =
{1, // use FC frames
1, // use FC frames
0 // use no FC frames
y:o /7
vuint8 TpTxFlowControl[3] =
{1, // use FC frames
1, // use FC frames
0 // use no FC frames

}i

©2013, Vector Informatik GmbH Version: 3.14.00 170/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

8 Example for the user

8.1 Administrative usage

The Transport Protocol has to be initialized before all other functions were called. This
initialization has to be done after initializing the CAN-driver (CanInitPowerOn()), possibly
if the interrupts are still locked. The Transport Layer is ready for reception after calling
TpInitPowerOn().

To perform the state machine the functions TpRxTask() and TpTxTask() have to be called
periodically.

If the application wants to have access to the API of the TPMC-component it has to include
the “tpmc.h” file after including of the “can_inc.h” file.

8.2 How to Transmit a Tp-Frame?

8.2.1 Static Normal Addressing

First you need an own buffer with your data which should be transmitted. To start the
transmission simply call TpTransmit().

if (TpTransmit (tpChannel, appl-buffer, appl-data-length) != kTpSuccess)
{

/* Error case - transmission was not successful */

}

A confirmation function is called after the complete transmission. It can be used to release
buffers...

void ApplTpTxConfirmation (vuint8 tpChannel, wvuint8 state)
{

If you want an own copy mechanism to move the data from your buffer into CAN buffer you
have to use the function ApplTpTxCopyToCan() (This can be configured in the
Generation Tool).

8.2.2 Dynamic Addressing
(Normal- / Normal Fixed- / Extended- / Multiple-Addressing)

Before the application can call TpTransmit() (refer 8.2 How to Transmit a Tp-Frame?) a
transport channel has to be requested. The function TpTxGetFreeChannel() returns a
free transport channel or — if no channel is available at the moment — kTpNoChannel.
After a channel is assigned, the channel has to parameterized by the application. In the
example below, the application will set the Transmit ID and Receive ID (Dynamic Normal
Addressing) before sending the data.

Important: replace the cursive words by your own

tpChannel = TpTxGetFreeChannel (connection-number) ;
if (tpChannel != kTpNoChannel)
{

/* normal addressing */
TpTxSetChannellID (tpChannel, TransmitID, ReceivelD);

if (TpTransmit (tpChannel, appl-buffer, appl-data-length) != kTpSuccess)
{

/* Error case - transmission was not successful */

©2013, Vector Informatik GmbH Version: 3.14.00 171/177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

}

The callback functions provide only the tpChannel as a parameter. To get the unique
connection-number out of this tpChannel the function
TpTxGetConnectionNumber(tpChannel) is provided

void ApplTpTxConfirmation (vuint8 tpChannel, wvuint8 state)
{
switch (TpTxGetConnectionNumber (tpChannel))

8.3 How to Receive a Tp-Frame

It is only possible to get an Indication by a function callback. The reception progress is
completed by the Transport Layer.

Important: The Transport Layer blocks the receive tpChannel as long as the application
desires. To free the receive channel call TpRxResetChannel().

void ApplTpRxIndication (wvuint8 tpChannel, wvuintlé datalength)
{

TpRxResetChannel (tpChannel) ;

}
The Transport Layer supports only buffer-management by the application. If data will be
received, it is important to the Transport Layer to get a buffer into which the data can be
moved.

vuint8 * ApplTpRxGetBuffer (vuint8 tpChannel, vuintl6 length)
{

if (Is_ReceiveDataBuffer free)

{

Set ReceiveDataBuffer Used;

if (length <= MaxLength)
{
/* return a valid data buffer */
return ReceiveDataBuffer;
} else {
/* length is too big for the ReceiveDataBuffer - do not receive the data */
return NULL;
} else {
/* ReceiveDataBuffer is not free - do not receive the data */
return NULL;

8.4 How to Send a Response on a Received Transport-Frame

Normally the application has to set transmission attributes like TargetAddress,
Targetldentifier or physical CanChannel (depending on the addressing mode and
configuration). So if the application want to send a response to the sender of a received
transport-frame it has to set these transmission attributes. For this case it can do it easily
by using the function TpTxSetResponse(). The Preconditions are only the Rx-Channel -
which is still blocked - from the sender and a free Tx-Channel for the transmission.

if ((txTpChannel = TpTxGetFreeChannel (user connection)) != kTpNoChannel)
{

TpTxSetResponse (rxTpChannel, txTpChannel);

TpRxResetChannel (rxTpChannel) ;

TpTransmit (txTpChannel, ...);

©2013, Vector Informatik GmbH Version: 3.14.00 172 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

8.5 How to serve Different Connections (only dynamic channels)

The dynamic TP classes does not support connection specific callback functions.
Therefore the application needs an easy handling between the different connections with
less resource requirements. Especially the diagnostic-layer must be handled

8.5.1 How to serve the diaghostic connection

This is also an example to serve different connections in your own application! l.e. you can
derive from the diagnosis example to your own.

Reception part:

Within the ‘ApplITpRxGetBuffer()’ the application is responsible to distinguish between the
different connections. If the right connection is found a connection-number can be set to
have in the later callbacks a faster decision.

(Dynamic Normal Addressing) The received CAN-ID (for the diagnosis) is unique (get it
with: TpRxGetChannellD(tpChannel))

Transmission part:

At the transmission the connection-number is unique. The diagnosis uses the connection-
numbers “kDiagConnection” and “kDiagAddConnection”.

©2013, Vector Informatik GmbH Version: 3.14.00 173 /177

Technical Reference Transport Protocol ISO15765-2

unsigned char* ApplTpRxGetBuffer (vuint8 tpChannel, vuintl6 tpRxDatalength)

{
switch (TpRxGetChannelID (tpChannel))
{
case DIAG_RECEIVE ID:
TpRxSetConnectionNumber (tpChannel, kDiagConnection) ;
return DiagTpGetRxBuffer (tpChannel, tpRxDatalength) ;
case APPL_RECEIVE ID:
TpRxSetConnectionNumber (tpChannel, CONNECTION O0);
/* Check for an valid application buffer */
return APPLICATION BUFFER;
default:
return NULL;
break;

}

void ApplTpRxIndication(vuint8 tpChannel, vuintl6 tpRxDatalLength)

{

switch (TpRxGetConnectionNumber (tpChannel))

{

case kDiagConnection:
DiagPhysReception (tpChannel, tpRxDatalength);
break;

case CONNECTION O:
UserTpRxIndication (tpRxDataLength) ;
break;

default:
break;

}

void ApplTpRxErrorIndication(vuint8 tpChannel, wvuint8 status)
{
switch (TpRxGetConnectionNumber (tpChannel))
{
case kDiagConnection:
DiagRxErrorIndication (tpChannel, status);
case CONNECTION O:
UserTpRxErrorIndication (status);
default:
break;

}

void ApplTpRxFF (vuint8 tpChannel)
{
if (TpRxGetConnectionNumber (tpChannel) == kDiagConnection)
{
DiagRestartSlTimerInternal (tpChannel);
}
}

void ApplTpRxCF (vuint8 tpChannel)
{
if (TpRxGetConnectionNumber (tpChannel) == kDiagConnection)
{
DiagRestartSlTimerInternal (tpChannel);
}

void ApplTpTxConfirmation (vuint8 tpChannel, wvuint8 state)
{
switch (TpTxGetConnectionNumber (tpChannel))
{
case kDiagConnection:
DiagConfirmation(tpChannel, state);
case CONNECTION O:
UserTpConfirmation (status) ;
default:
break;

©2013, Vector Informatik GmbH Version: 3.14.00

vactor”

174 /177

Technical Reference Transport Protocol ISO15765-2 vector [

vuint8 ApplTxErrorIndication(vuint8 tpChannel, vuint8 status)
{
switch (TpTxGetConnectionNumber (tpChannel))
{
case kDiagConnection:
return DiagTxErrorIndication (tpChannel, status);
case CONNECTION O:
UserTpTxErrorIndication (status);
default:
return kTpFreeChannel;
}
}

vuint8 ApplCopyToCAN (TpCopyToCanInfoStructPtr infoStruct)
{
switch (TpTxGetConnectionNumber (infoStruct->Channel))
{
case kDiagConnection:
return DiagCopyToCAN (infoStruct->Channel, kSFDataPos, tpTxDatalength);
default:
(void)memcpy (infoStruct->pDestination, infoStruct->pSource, infoStruct->Length);
break;
}

return 0;

}

void ApplTpTxNotification (vuint8 tpChannel, vuint8 DatalLength)
{
switch (TpTxGetConnectionNumber (tpChannel))
{
case kDiagConnection:
DiagTpMsgTxReady (tpChannel, Datalength) ;
break;
default:
break;
}
}

8.6 How to Lock a Tx-Channel and Why? (only dynamic channels)

Normally the application get a resource — use the resource — and release the resource. In
the current version the resource Transmit-tpChannel will be released by the Transport
Layer automatically after a transmission (for code optimization). If an application will use
the same channel more than one time (i.e. a periodically transmission) it has to lock the
channel.

TpTxLockChannel (channel) ;
TpTransmit (...)

TpTransmit (...)

TpTransmit (...)

The application has two possibilities to release the channel:

> unlock the channel using ‘TpTxUnlockChannel ()’: i.e. only one transmission without
a release should be done...

TpTxLockChannel (user channel);
TpTransmit (user channel, ...)

>wait until confirmation occured<
TpTxUnlockChannel (user channel);

TpTransmit (user channel, ...)

/* After this transmission the channel will be released */

©2013, Vector Informatik GmbH Version: 3.14.00 175/ 177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

> release the channel using ‘TpTxResetChannel()’: Lock the resource for many
transfers as long as used

TpTxLockChannel (channel) ;
TpTransmit (...)

TpTransmit (...)

TpTxResetChannel (channel) ;

8.7 How to transmit a ConsecutiveFrame as quick as possible

Typically this requirement is used for a fast re-programming of ECU’s through Gateways or
Testers.
How to do that, please refer to chapter 7.2 Fast transmission of ConsecutiveFrames.

©2013, Vector Informatik GmbH Version: 3.14.00 176 /177

Technical Reference Transport Protocol ISO15765-2 VeCtOf [

9 Contact

Visit our website for more information on

> News

Products

\

\Y

Demo software

\Y

Support

\Y

Training data

Addresses

\

www.vector.com

©2013, Vector Informatik GmbH Version: 3.14.00 1771177

	1 Introduction
	1.1 Relation between general component and shipped version capability
	1.2 Name Conventions
	1.3 Abbreviations
	1.4 Channel vs. Connection
	1.5 TP classes
	1.5.1 SingleTP classes
	1.5.2 Static MultiTP classes
	1.5.3 Dynamic MultiTP classes
	1.5.4 Dispatched MultiTP classes

	1.6 SingleConnection vs. MultipleConnection
	1.7 Features
	1.7.1 Feature List

	2 Architecture Overview
	2.1 Requirements
	2.1.1 Protocol-Overview
	2.1.1.1 Construction of unsegmented messages
	2.1.1.2 Construction of segmented messages

	2.1.2 Addressing modes
	2.1.2.1 Normal Addressing
	2.1.2.2 Mixed 11-bit ID Addressing
	2.1.2.3 Normal Fixed Addressing
	2.1.2.4 Extended Addressing
	2.1.2.5 Mixed 29-bit ID Addressing
	2.1.2.6 Structure of TPCI-Byte

	2.2 Transmission
	2.3 Reception
	2.4 Working behaviors
	2.4.1 Timings
	2.4.2 Error detection
	2.4.2.1 Reception of a SingleFrame
	2.4.2.2 Reception of a FirstFrame
	2.4.2.3 Reception of a FlowControl
	2.4.2.4 Reception of a ConsecutiveFrame
	2.4.2.5 Observing CAN frame DLC (Data Length Code)

	2.4.3 Buffer consistency
	2.4.4 Function re-entrancy

	2.5 Restriction
	2.5.1 Restrictions to ISO/TF2 specification
	2.5.2 Limitations of Transport Protocol Implementation
	2.5.3 Deviations to ISO/TF2 specification
	2.5.3.1 Handling of unexpected FlowControl / ConsecutiveFrame frames

	3 Settings for the MultiTP & SingleTP (multi-based)
	3.1 General settings with CANgen / DBKOMgen / GENy
	3.1.1 Timing
	3.1.1.1 Transmission timing
	3.1.1.2 Reception timing
	3.1.1.3 Common timing

	3.1.2 Flow Control
	3.1.2.1 Transmission
	3.1.2.2 Reception

	3.1.3 Misc

	3.2 General settings with Generation Tool GENy
	3.2.1 Configuration of Addressing Information
	3.2.2 Usage of Far RAM buffers
	3.2.3 Non standard handling of Flow Control frames
	3.2.3.1 Reserved STmin Handling
	3.2.3.2 Ignore Flow Control Overflow
	3.2.3.3 Do not ignore unexpected Flow Control frames
	3.2.3.4 Use STmin of FC
	3.2.3.5 Analyze first FC only

	3.3 Additional settings via user-configuration file
	3.3.1 Dynamic Timing API

	3.4 TP classes: SingleTP (multi-based)
	3.4.1 Database Attributes
	3.4.2 TP class SingleTP (multi-based): Normal Addressing
	3.4.3 TP class SingleTP (multi-based): Extended Addressing
	3.4.4 TP class SingleTP (multi-based):Normal Fixed Addressing
	3.4.4.1 Database Attributes

	3.5 TP classes Static MultiTP
	3.5.1 Database Attributes
	3.5.2 TP class specific settings
	3.5.3 Connection specific timing parameters
	3.5.4 Functions

	3.6 TP classes Dynamic MultiTP
	3.6.1 Properties
	3.6.2 Hook Functions
	3.6.3 Dynamic Objects
	3.6.4 TP class Dynamic MultiTP: Normal Addressing
	3.6.4.1 CANdriver settings

	3.6.5 TP class Dynamic MultiTP: Extended Addressing
	3.6.5.1 TP class specific settings
	3.6.5.2 Database Attributes
	3.6.5.3 Multiple Base Addresses

	3.6.6 TP class Dynamic MultiTP: Normal Fixed Addressing
	3.6.6.1 Database Attributes

	3.6.7 TP class Dynamic MultiTP: Mixed 29-bit Addressing
	3.6.8 TP class Dynamic MultiTP: Multiple Addressing
	3.6.8.1 Addressing mode
	3.6.8.2 CAN Driver settings

	3.7 TP class Dispatched MultiTP
	3.7.1 “Dynamic MultiTP” versus “Dispatched MultiTP” – a short analogy
	3.7.1.1 Solution based on “Dynamic MultiTP”:
	3.7.1.2 Solution based on “Dispatched MultiTP”

	3.7.2 Dispatched MultiTP API
	3.7.2.1 Reception side
	3.7.2.2 Transmission side

	4 API
	4.1 Use of ISO15765-Transport Protocol
	4.2 Functions of the Transport Protocol
	4.2.1 Administrative Functions
	4.2.1.1 TpInitPowerOn: Initialization
	4.2.1.2 TpInit: Re-initialization
	4.2.1.3 TpTask: Observing timing conditions
	4.2.1.4 TpCanChannelInit: CAN channel specifiic re-initialization
	4.2.1.5 TpRxTask: time base for reception timeouts
	4.2.1.6 TpTxTask: time base for timeouts/transmission
	4.2.1.7 TpRxStateTask: optional transmission retry
	4.2.1.8 TpRxAllStateTask: optional transmission retry
	4.2.1.9 TpTxStateTask: optional transmission retry
	4.2.1.10 TpTxAllStateTask: optional transmission retry

	4.2.2 Receive Functions
	4.2.2.1 TpRxSetConnectionNumber: Assign a Connection-Number to a channel
	4.2.2.2 TpRxGetConnectionNumber: Get the Corresponding Connection-Number
	4.2.2.3 TpRxGetAddressingFormat: Get the current addressing type
	4.2.2.4 TpRxGetAssignedDestination: Get the currently assigned destination
	4.2.2.5 TpRxResetChannel: Free Rx-TpChannel
	4.2.2.6 TpRxGetStatus: Rx-Channel Status
	4.2.2.7 TpRxSetBS: Setting up BlockSize on Reception Side
	4.2.2.8 TpRxGetBS: Get BlockSize on Reception Side
	4.2.2.9 TpRxSetSTMIN: Setting up STMin time on Reception Side
	4.2.2.10 TpRxGetSTMIN: Get STMin time on Reception Side
	4.2.2.11 TpRxGetChannelID: Get Received CAN-Id
	4.2.2.12 TpRxGetChannelExtID: Get Received Extended CAN-Id
	4.2.2.13 TpRxGetCanChannel: Get physical CAN channel
	4.2.2.14 TpRxGetSourceAddress: Get received Source Address
	4.2.2.15 TpRxGetReceivedTargetAddress: Get received Target Address
	4.2.2.16 TpRxGetEcuNumber: Get ECU Number
	4.2.2.17 TpRxGetParameterGroupIdentification: Get Identification of PGN
	4.2.2.18 TpRxSetBufferOverrun: Enable partial acceptance
	4.2.2.19 TpRxSetTransmitID: Set transmission CAN-Id
	4.2.2.20 TpRxSetTransmitExtID: Set transmission Extended CAN-Id
	4.2.2.21 TpRxGetChannelIDType: Get the type of the received CAN-Id
	4.2.2.22 TpRxGetAddressExtension: Get address extension information
	4.2.2.23 TpRxGetCanBuffer: Get CAN buffer pointer
	4.2.2.24 TpRxSetWaitCorrectSN: Force to wait for a correct sequence number
	4.2.2.25 TpRxSetTimeoutConfirmation: Set CAN confirmation timeout
	4.2.2.26 TpRxSetTimeoutCF: Set Consecutive Frame confirmation timeout
	4.2.2.27 TpRxSetFCStatus: set up Flow Control on reception side
	4.2.2.28 TpRxGetFCStatus: get the Flow Control setup on reception side
	4.2.2.29 TpRxSetClearToSend: proceed with the transmission after FC wait frames
	4.2.2.30 TpRxWithoutFC: suppress FC frame usage at the Rx side
	4.2.2.31 TpRxSetPGN: Set Parameter Group Number
	4.2.2.32 TpRxSetPriorityBits: Set Priority, Data Page and Reserved bits

	4.2.3 Transmit Functions
	4.2.3.1 TpTxGetFreeChannel: Assign Channel to Connection
	4.2.3.2 TpTxGetConnectionNumber: Get the assigned Connection-Number
	4.2.3.3 TpTxGetConnectionStatus: Get the Connection Status
	4.2.3.4 TpTxGetTargetAddress: Get the target address used for transmission
	4.2.3.5 TpTxGetDataBuffer: Get the assigned Data Buffer
	4.2.3.6 TpTxGetDataIndex: Get the assigned Data Index
	4.2.3.7 TpTxSetChannelID: Set the CAN Transmit Id
	4.2.3.8 TpTxSetChannelExtID: Set the CAN Transmit Extended Id
	4.2.3.9 TpTxSetCanChannel: Set physical CAN Channel
	4.2.3.10 TpTxSetTargetAddress: Set Target Address
	4.2.3.11 TpTxSetEcuNumber: Set ECU Number
	4.2.3.12 TpTxSetBaseAddress: Set Base Address
	4.2.3.13 TpTxSetParameterGroupIdentification: Set Identification of PGN
	4.2.3.14 TpTxSetPriority: Set Priority of the CAN-Frame
	4.2.3.15 TpTxSetResponse: Assemble a Response
	4.2.3.16 TpTransmit: Send a Message
	4.2.3.17 TpTxLockChannel: Lock Channel
	4.2.3.18 TpTxUnlockChannel: Unlock TX Channel
	4.2.3.19 TpTxResetChannel: Free TX-Channel
	4.2.3.20 TpTxSetAddressExtension: Set Address Extension information
	4.2.3.21 TpTxGetSTminInFrame: Get STmin from FC frame
	4.2.3.22 TpTxPrepareSendImmediate: Prepare CF transmission by application
	4.2.3.23 TpTxSendImmediate: Start CF transmission by application
	4.2.3.24 TpTxSetAddressingFormat: Store the current addressing type
	4.2.3.25 TpTxSetStrictFlowControl: Enable/Disable ISO conformant FC handling
	4.2.3.26 TpTxSetTimeoutConfirmation: Set the CAN confirmation timeout
	4.2.3.27 TpTxSetTimeoutFC: Set the FC confirmation timeout
	4.2.3.28 TpTxWithoutFC: suppress FC frame usage at the Tx side
	4.2.3.29 TpTxSetPGN: Set Parameter Group Number
	4.2.3.30 TpTxSetPriorityBits: Set Priority, Data Page and Reserved bits

	4.3 Dispatched Multi TP class API
	4.3.1 TpGetConnectionGroup: Get the connection group identification
	4.3.2 TpGetAddressingType: Get the addressing type identification
	4.3.3 TpGetCanChannel: Get the CAN channel
	4.3.4 TpGetRxId: Get the received CAN-Id
	4.3.5 TpGetTxId: Get the CAN-Id to be used for transmission
	4.3.6 TpGetBaseAddress: Get the Base Address
	4.3.7 TpGetAddressOffest: Get the Address Offset
	4.3.8 TpGetPriority: Get the priority info from a 29 bit CAN-Id
	4.3.9 TpGetPGN: Get the parameter group identification from a 29 bit CAN-Id
	4.3.10 TpGetEcuNumber: Get the ECU number
	4.3.11 TpTransmit
	4.3.11.1 TpTransmit connection specific macros
	4.3.11.2 TpTransmitNormal: transmit function for normal addressing
	4.3.11.3 TpTransmitExtended: transmit function for extended addressing
	4.3.11.4 TpTransmitNormalFixed: transmit function for NormalFixed addressing
	4.3.11.5 TpTransmitMixed29: transmit function for Mixed-29 addressing
	4.3.11.6 TpTransmitMixed29: transmit function for Mixed-29 addressing
	4.3.11.7 TpTransmitMixed11: transmit function for Mixed-11 addressing

	4.4 Application callback functions
	4.4.1 Reception side
	4.4.1.1 ApplTpPrecopyCheck: Reception of TP-Frame
	4.4.1.2 ApplTpCheckTA: Check if Target Address is valid (version <= 2.72.00)
	4.4.1.3 ApplTpCheckTA: Check if Target Address is valid (since version 2.73.00)
	4.4.1.4 ApplTpRxSF: Reception of Single Frame
	4.4.1.5 ApplTpRxFF: Reception of First Frame
	4.4.1.6 ApplTpRxCF: Reception of Consecutive Frame
	4.4.1.7 ApplTpRxCanMessageReceived: Reception of CAN-Frame
	4.4.1.8 ApplTpRxGetBuffer: Assign a buffer to a channel
	4.4.1.9 ApplTpRxCopyFromCAN: Application Copy Function
	4.4.1.10 ApplTpRxIndication: Reception closed successful
	4.4.1.11 ApplTpRxErrorIndication: Reception closed with error
	4.4.1.12 ApplTpRxGetTxID: Get CAN Transmit Id

	4.4.2 Reception side for functional messages
	4.4.2.1 ApplFuncTpPrecopy: Check if Target Address is valid

	4.4.3 Transmission side
	4.4.3.1 ApplTpTxFC: Reception of a Flow Control Frame
	4.4.3.2 ApplTpTxCanMessageTransmitted: CAN-Message transmitted
	4.4.3.3 ApplTpTxNotification: CAN-Frame transmitted
	4.4.3.4 ApplTpTxCopyToCAN: Application Copy Function ((16BIT Controller)
	4.4.3.5 ApplTpTxCopyToCAN: Application Copy Function (8BIT Controller)
	4.4.3.6 ApplTpTxConfirmation: Transmission closed successful
	4.4.3.7 ApplTpTxErrorIndication: Transmission closed with error

	4.4.4 Administrative Functions
	4.4.4.1 ApplTpFatalError: Fatal Error

	5 Transmission Attributes & Callback functions
	6 Integration of CANbedded Components into a Customer Project
	6.1 Requirements to the Customer System Environment
	6.2 Component Integration to the Customer Project
	6.2.1 Requirements to the Component Initialization in a Customer Project
	6.2.2 Requirements to Component API Usage in a Customer Project
	6.2.3 Requirements to the Customer Project Operating System
	6.2.3.1 Common Requirements
	6.2.3.2 Round-Robin-Scheduler and Comparable OS Approaches
	6.2.3.3 Usage of OSEK/OS
	6.2.3.4 Non-Preemptive Operating System
	6.2.3.5 Preemptive Operating System

	7 Advanced usage
	7.1 Separation of TimerTask and TransmissionTask (StateTask)
	7.2 Fast transmission of ConsecutiveFrames
	7.2.1 Usage
	7.2.2 Application example

	7.3 Normal Fixed Addressing
	7.3.1 Multiple ECU’s
	7.3.1.1 Using the CANgen configuration tool
	7.3.1.2 Using the GENy configuration tool

	7.4 Extended- and Normal Fixed Addressing
	7.4.1 Virtual ECU’s / ‘Multiple EcuNumber’ feature

	7.5 Using different CAN-Identifiers
	7.5.1 Statically configured CAN-Ids
	7.5.2 Dynamically configured CAN-Ids
	7.5.3 Additional API functions

	7.6 Transmissions without Flow Control frames

	8 Example for the user
	8.1 Administrative usage
	8.2 How to Transmit a Tp-Frame?
	8.2.1 Static Normal Addressing
	8.2.2 Dynamic Addressing

	8.3 How to Receive a Tp-Frame
	8.4 How to Send a Response on a Received Transport-Frame
	8.5 How to serve Different Connections (only dynamic channels)
	8.5.1 How to serve the diagnostic connection

	8.6 How to Lock a Tx-Channel and Why? (only dynamic channels)
	8.7 How to transmit a ConsecutiveFrame as quick as possible

	9 Contact

