

VStdLib

Technical Reference

Vector Standard Library

Version 1.6.2

Authors Patrick Markl, Timo Vanoni

Status Released

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

2 / 21

1 Document Information

1.1 History

Author Date Version Remarks

Patrick Markl 2008-02-06 1.0 Creation, merge from Application Note

Patrick Markl 2008-10-31 1.3 Fixed document version

Patrick Markl 2008-11-07 1.4 Added information about mixed VStdLib versions

Patrick Markl 2009-07-02 1.5 Updated assertion codes

Added chapter about QNX OS

Patrick Markl 2009-10-16 1.6 Described inclusion of OSEK OS header file

Timo Vanoni 2013-05-10 1.6.2 ESCAN00067020: The interrupt lock functions
do not work correctly for the user mode at
specific controller

Table 1-1 History of the Document

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

3 / 21

Contents

1 Document Information ... 2

1.1 History ... 2

2 Introduction... 5

3 Functional Description ... 6

4 Integration ... 8

4.1 CANbedded Particularities ... 8

4.2 MICROSAR Particularities ... 8

4.3 Mixing VStdLib Versions .. 8

5 Configuration .. 9

5.1 Usage with OSEK OS .. 11

5.2 Usage with QNX OS .. 11

6 API Description ... 13

6.1 Initialization .. 13

6.2 Interrupt Control ... 14

6.3 Memory Functions ... 15

6.4 Callback Functions ... 17

7 Assertions ... 18

8 Limitations .. 19

8.1 Interrupt control does not work correctly in user mode 19

9 Glossary and Abbreviations .. 20

9.1 Glossary .. 20

9.2 Abbreviations ... 20

10 Contact .. 21

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

4 / 21

Illustrations

Figure 5-1 VStdLib configuration dialog in GENy ... 9
Figure 5-2 VStdLib configuration dialog in CANGen .. 9
Figure 5-3 Locking configuration in case CAN events are handled in an interrupt

thread ... 11
Figure 5-4 Configuration of the VStdLib in case of handling CAN events on interrupt

level .. 12

Tables

Table 1-1 History of the Document ... 2

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

5 / 21

2 Introduction

The basic idea of the VStdLib is to provide standard functionality to different Vector
components. This includes memory copy and interrupt locking functions. The VStdLib is
also a means to provide special memory copy functions, which are not available by
compiler libraries to the communication components.

The VStdLib is designed to be used by Vector communication components only. So the
customer integrating the communication stack will probably not notice the VStdLib at all.

The VStdLib is highly hardware specific. This means some functions are only available on
certain platforms. This includes special copy functions for far, near or huge memory. A
hardware specific VStdLib does not necessarily implement all possible copy function for
the corresponding hardware platform, but only the functions required by the Vector
software components.

The VStdLib also provides interrupt lock functions. This feature depends on the
CANbedded CAN driver’s Reference Implementation (RI). The RI defines a certain feature
set to be supported by the CAN driver. CAN drivers which implement RI1.5 and higher do
not provide an interrupt locking mechanism as previously implementations did
(CanGlobalInterruptDisable/CanGlobalInterruptRestore). These driver require a VStdLib to
provide this functionality, although the API CanGlobalInterruptDisable and
CanGlobalInterruptRestore remains for compatibility. Please refer to the CANbedded CAN
driver technical reference for more information about your specific CAN driver.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

6 / 21

3 Functional Description

The VStdLib provides basically two main functionalities to Vector communication stack
components.

> Functions to copy memory

> Functions to lock/unlock interrupts

Interrupt locking functionality is required for CAN drivers with a reference implementation
1.5 or higher or MICROSAR stacks. Functions to copy memory are always provided. The
following table describes the API of the VStdLib which is used internally.

API Function Description

VStdMemSet Initializes default RAM memory to a certain
character.

VStdMemNearSet Initializes near RAM memory to a certain character.

VStdMemFarSet Initializes far RAM memory to a certain character.

VStdMemClr Clears default RAM to zero.

VStdMemNearClr Clears near RAM to zero.

VStdMemFarClr Clears far RAM to zero.

VStdMemCpyRamToRam Copies default RAM to default RAM.

VStdMemCpyRomToRam Copies default ROM to default RAM.

VStdMemCpyRamToNearRam Copies default RAM to near RAM.

VStdMemCpyRomToNearRam Copies default ROM to near RAM.

VStdMemCpyRamToFarRam Copies default RAM to far RAM.

VStdMemCpyRomToFarRam Copies default ROM to far RAM.

VStdMemCpy16RamToRam Copies default RAM to default RAM. The copying is
performed 16 bit wise.

VStdMemCpy16RamToFarRam Copies default RAM to far RAM. The copying is
performed 16 bit wise.

VStdMemCpy16FarRamToRam Copies far RAM to default RAM. The copying is
performed 16 bit wise.

VStdMemCpy32RamToRam Copies default RAM to default RAM. The copying is
performed 32 bit wise.

VStdMemCpy32RamToFarRam Copies default RAM to far RAM. The copying is
performed 32 bit wise.

VStdMemCpy32FarRamToRam Copies far RAM to default RAM. The copying is
performed 32 bit wise.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

7 / 21

Info
The API functions described in the following table contain “near” and “far” as parts of
the API names. The meaning of near and far depends on the platform and the functions
are not necessarily implemented to work on near or far memory.

The wording “default RAM” or “default ROM” means RAM or ROM data which is not
explicitly declared to be near or far. These data inherit the current compiler memory
model settings.

Caution
One cannot be sure that a far to near copy routine (for instance) implements really a
copying from far to near. This depends on the platform and the supported memory
models of the communication stack!

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

8 / 21

4 Integration

The integration of the VStdLib is straightforward. As the other Vector components the
VStdLib is to be configured by means of the configuration tool. The configuration is
described in the next chapter. Chapter 6 describes some callback function which have to
be implemented by the application depending on the configuration.

In order to integrate the VStdLib simply add the file vstdlib.c as the other Vector software
components to the compile and link list.

4.1 CANbedded Particularities

If the VStdLib is integrated as part of a CANbedded stack the initialization of the VStdLib is
performed by the CAN or LIN driver automatically.

4.2 MICROSAR Particularities

If a MICROSAR stack is integrated the VStdLib is not initialized by any of the software
components. The application has to take care that the VStdLib’s initialization function is
called before any other MICROSAR API function is called. The following code example
shows how to initialize the VStdLib.

void InitRoutine(void)

{

 ...

 /* Initialize the VstLib */

 VStdInitPowerOn();

 /* Perform initialization of the other software components */

 ...

}

4.3 Mixing VStdLib Versions

If you receive different software component packages from Vector, it is possible that these
packages contain different VStdLib versions. A general rule is to use the VStdLib which
was received with the CAN driver package. In case you encounter any incompatibilities or
have questions, please contact the Vector support.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

9 / 21

5 Configuration

It depends on the used communication software if the VStdLib has configurable options.
The configuration tool provides options for the VStdLib if (as previously described) the
used CAN driver has RI1.5 or higher or a MICROSAR stack is used.

The VStdLib is configured by means of the configuration tool. CANGen provides an own
dialog named VStdLib to configure this component. In GENy these configuration options
are found in the hardware options dialog. The following two pictures show the
configuration dialogs in both tools. The first picture shows the dialog in GENy.

Figure 5-1 VStdLib configuration dialog in GENy

The next picture shows the configuration dialog of the VStdLib in the CANGen tool.

Figure 5-2 VStdLib configuration dialog in CANGen

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

10 / 21

The following table describes the different configuration items of the VStdLib dialogs.

Configuration Item Description

Lock Mechanism One can select the interrupt lock mechanism
used by the VStdLib. The VStdLib provides
four different types: Default, LockLevel, OSEK
and User.

The setting “OSEK” covers OSEK OS and
AUTOSAR OS.

Lock Level If LockLevel was selected as Lock Mechanism
one can select the interrupt lock level used for
CANbedded components. The VStdLib will
lock interrupts up to the specified level. Higher
level interrupts remain unlocked.

Nested Disable If “User” was selected as Lock Mechanism the
user can type in the name of the user defined
function which lock the interrupts.

Nested Restore If “User” was selected as Lock Mechanism the
user can type in the name of the user defined
function which restores the interrupts to their
previous state.

Assertions If this checkbox is enabled the VStdLib will call
an assertion function in case of a fatal error.

If one configures the option Lock Mechanism as “User” two function have to be provided.
The prototype of both functions is:

void UserFunction(void)

The first function entered under the option “Nested Disable” is expected to disable
interrupts and store the current context of the interrupt state (Current I-Flag, Current
Interrupt Lock Level, etc.) to a global variable.

The second function entered under “Nested Restore” is expected to restore the interrupts
to the previous state using the value which was saved in the context of “Nested Disable”.

Caution
The two functions must not implement a disable/enable mechanism but a
disable/restore mechanism! Otherwise it may happen that interrupts remain locked until
the next Power On reset.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

11 / 21

The configuration option “User” can be used instead of the previously known CAN driver
option “Interrupt Control by Application”.

5.1 Usage with OSEK OS

If OSEK OS is configured as lock mechanism the VStdLib needs to include the header of
the OSEK OS. Since the header of the OSEK OS may have different names depending on
the OS supplier the VStdLib includes always the same header file. This header file has to
be provided by the user. The file’s name must be os.h. If the OSEK OS already provides a
file named like this nothing needs to be done (as long it provides the required prototypes).
Otherwise the user has to create a header file named os.h and include the corresponding
OSEK OS file.

If the VStdLib is configured to lock/unlock interrupts by means of OSEK OS the following
OSEK functions are called to implement the lock:

> SuspendAllInterrupts

> ResumeAllInterrupts

5.2 Usage with QNX OS

In case the VStdLib is used in a QNX OS environment two options for interrupt locking are
available. Depending on the way CAN interrupts are handled (ISR, Interrupt Thread)
different locking mechanisms are needed.

In case the CAN interrupts are handled by an interrupt thread the locking is done by
means of mutexes. These are not implemented by the VStdLib but the QWrap component.
Please refer to Figure 5-3 which shows the locking configuration in this case.

Figure 5-3 Locking configuration in case CAN events are handled in an interrupt thread

User defined locking is also required if the VStdLib is configured to run in the context of the
QNX startup code (minidriver). The MdWrap component provides the same callbacks as
shown in Figure 5-3 also in that case. QWrap and MdWrap implement the same callback
names in case the same tool configuration is used to generate for the minidriver and the
fulldriver.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

12 / 21

In case CAN interrupts are handled by a CAN interrupt routine the VStdLib locking
functions disable/restore the global interrupt flag. Mutexes are not used. In this case the
configuration of the VStdLib must be set to Default as shown in Figure 5-4.

Figure 5-4 Configuration of the VStdLib in case of handling CAN events on interrupt level

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

13 / 21

6 API Description

This chapter describes the API of the VStdLib.

6.1 Initialization

VStdInitPowerOn

Prototype

void VStdInitPowerOn(void)

Parameter

None -

Return code

None -

Functional Description

Initializes the VStdLib component.

Particularities and Limitations

> This function must be called once after PowerOn reset. This function must not be re-called
later.

> The application must not call any other Vector communication stack function before this
function. This includes also the other VStdLib functions. In other words: The function
VStdInitPowerOn must be the very first Vector function being called after startup. Depending
on the architecture the caller must take care about interruptions of the init function which may
violate this requirement (OS task which calls another Vector function).

> If the CANbedded stack is used this function is automatically called by the CAN or LIN driver.

> In a MICROSAR communication stack is integrated this function has to be called by the
application before any other MICROSAR API function is called.

Call context

> Task context

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

14 / 21

6.2 Interrupt Control

VStdSuspendAllInterrupts

Prototype

void VStdSuspendAllInterrupts(void)

Parameter

None -

Return code

None -

Functional Description

Disables all interrupts or locks interrupts to a certain lock level. This depends on the hardware platform.
The way interrupts are locked is to be configured in the configuration tool.

Particularities and Limitations

> This function is designed to be called in a nested way (except User Interrupt Control is
configured).

> Every call to VStdSuspendAllInterrupts must have a corresponding call to
VStdResumeAllInterrupts.

> If User Interrupt Control is configured this function is redirected to the functions specified by
the user in the configuration tool. No nesting counter is implemented. The user may have to
take special care to handle this behavior.

> Depending on the used OS this function may use either a global lock or a mutex.

> Default implementation only works if corresponding flags can be modified (e.g. in privileged
mode).

Call context

> No limitation

VStdResumeAllInterrupts

Prototype

void VStdResumeAllInterrupts(void)

Parameter

None -

Return code

None -

Functional Description

Resumes the interrupts which were locked using the API function VStdSuspendAllInterrupts.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

15 / 21

Particularities and Limitations

> This function must not be called without a corresponding call to VStdSuspendAllInterrupts.

> If User Interrupt Control is configured this function is redirected to the functions specified by
the user in the configuration tool. No nesting counter is implemented. The user may have to
take special care to handle this behavior.

> Depending on the used OS this function may use either a global lock or a mutex.

> Default implementation only works if corresponding flags can be modified (e.g. in privileged
mode).

Call context

> No limitation

6.3 Memory Functions

This chapter describes not all functions, as they do all the same except for the memory
qualifiers of the source and destination locations.

VStdMemSet

Prototype

void VStdMemSet (void *pDest, vuint8 nPattern, vuint16 nCnt)

Parameter

pDest The start address in memory which is to be initialized using the given
character.

nPattern The character to be used to fill nCnt Bytes starting at address pDest.

nCnt The number of Bytes to be filled using the given character.

Return code

None -

Functional Description

This function fills nCnt Bytes starting at address pDest in memory using the character nPattern.

Particularities and Limitations

> This function exists in three variants (default, near and far memory). Depending on the
platform these function may be implemented differently

Call context

> No restriction

VStdMemSet

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

16 / 21

Prototype

void VStdMemClr (void *pDest, vuint16 nCnt)

Parameter

pDest The start address in memory which is to be initialized to zero.

nCnt The number of Bytes to be set to zero.

Return code

None -

Functional Description

This function initializes nCnt Bytes starting at address pDest in memory to zero.

Particularities and Limitations

> This function exists in three variants (default, near and far memory). Depending on the
platform these function may be implemented differently

Call context

> No restriction

VStdMemSet

Prototype

void VStdMemCpy (void *pDest, void *pSrc, vuint16 nCnt)

Parameter

pDest The destination address to which the data is copied.

pSrc The source address from where the data is copied.

nCnt The number of Bytes to be copied from start address pSrc to destination
address pDest.

Return code

None -

Functional Description

This function copies a block of nCnt Bytes starting at memory location pSrc to another memory location
starting at address pDest.

Particularities and Limitations

> This function exists in many variants. These variants implement different memory source and
destination locations.

> The implementation of these functions is highly platform dependent

> The memory blocks starting at pSrc and pDest must no overlap.

Call context

> No restriction

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

17 / 21

6.4 Callback Functions

ApplVStdFatalError

Prototype

void ApplVStdFatalError (vuint8 nErrorNumber)

Parameter

nErrorNumber This parameter describes the reason which caused the assertion.

Return code

None -

Functional Description

This function is called by the VStdLib in case an assertion fails.

Particularities and Limitations

> This function is to be implemented by the application.

> If this function returns to the caller, it is not ensured that the calling functions finished
successfully. It has to be considered as a severe error if this function is called.

Call context

> No restriction

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

18 / 21

7 Assertions

If the user enables the option “Assertions” the VStdLib component performs additional
checks. If a checked condition fails the assertion function ApplVStdFatalError is called.
The implementation of this function is to be provided by the application. This function has
an errorcode parameter which describes the reason which caused the assertion. The
following table describes these reasons.

Errorcode Description

kVStdErrorIntDisableTooOften The called VStdLib interrupt locking function
exceeded a nesting call depth of 127.

kVStdErrorIntRestoreTooOften The number of calls of the VStdLib interrupt
unlocking function was higher than the number of
nested interrupt lock calls.

kVStdErrorMemClrInvalidParameter A memclr function of the VStdLib was called with an
invalid pointer parameter

kVStdErrorMemCpyInvalidParameter A memcpy function of the VStdLib was called with an
invalid pointer parameter

kVStdErrorMemSetInvalidParameter A memset function of the VStdLib was called with an
invalid pointer parameter

kVStdErrorUnexpectedLockState A interrupt restore function of the VStdLib is called
but the interrupts are already unlocked. This state is
not expected and must never occur.

Caution
Note that some of the assertions exist solely in case the VStdLib is configured to use
no library functions. In that case the missing library functionality is implemented directly
in the VStdLib source file.

Note
Not every assertion code is implemented on each hardware.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

19 / 21

8 Limitations

8.1 Interrupt control does not work correctly in user mode

For proper functionality it is required that the interrupt lock functions can modify the
relevant bits (e.g. Interrupt Level, Interrupt Enable) in the corresponding registers (e.g.
processor status word).

If the specific controller supports any non-privileged mode (e.g. user mode) that does not
allow access to the relevant registers and the interrupt lock APIs are called within this
context the interrupt lock may not work as expected.

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

20 / 21

9 Glossary and Abbreviations

9.1 Glossary

Term Description

User configuration file A text file which is appended by the configuration tool to the generated
source files. If a user configuration file is required the technical reference
describes it and the contents.

9.2 Abbreviations

Abbreviation Description

RI Reference implementation of the CANbedded CAN driver. The reference
implementation defines the features a CAN driver must provide. From
Reference Implementation 1.5 (RI1.5) the interrupt locking functionality of
each CAN driver is moved to the VStdLib for the specific platform.

VStdLib Vector Standard Library

Technical Reference VStdLib

2013, Vector Informatik GmbH Version: 1.6.2

based on template version 3.7

21 / 21

10 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

	1 Document Information
	1.1 History

	2 Introduction
	3 Functional Description
	4 Integration
	4.1 CANbedded Particularities
	4.2 MICROSAR Particularities
	4.3 Mixing VStdLib Versions

	5 Configuration
	5.1 Usage with OSEK OS
	5.2 Usage with QNX OS

	6 API Description
	6.1 Initialization
	6.2 Interrupt Control
	6.3 Memory Functions
	6.4 Callback Functions

	7 Assertions
	8 Limitations
	8.1 Interrupt control does not work correctly in user mode

	9 Glossary and Abbreviations
	9.1 Glossary
	9.2 Abbreviations

	10 Contact

