
 

 

 

 

 

 
 
 
 
 

  

  

  
  

User Manual 

Startup with PSA
A Step by Step Introduction

Version 1.0.0 
English 

 



 

 

 

 
Manual History 

Author Date Version Details 
Klaus Emmert 
Manuela Scheufele 

2009-07-24 0.1 Creation 

Klaus Emmert 
Manuela Scheufele 

2009-10-01 1.0.0 Released 

 

 

Reference Documents 

No. Source Title Version 
    
    
  

Impressum 
 
Vector Informatik GmbH 
Ingersheimer Straße 24 
D-70499 Stuttgart 
 
 
The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in 
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic 
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection. 
 © Copyright 2009, Vector Informatik GmbH  
All rights reserved. 



User Manual Startup with PSA  Manual Information 

© Vector Informatik GmbH Version 1.0.0 - 3 - 

Inhaltsverzeichnis 

1 Manual Information 5 
1.1 About this user manual 6 

1.1.1 Certification 7 
1.1.2 Warranty 7 
1.1.3 Registered trademarks 7 
1.1.4 Errata Sheet of manufacturers 7 

2 Getting Started 8 
2.1 How to use this Manual 9 
2.2 Start immediately or need Basic Information? 9 

3 A few STEPS to Basic ECU with PSA CANbedded 10 
3.1 STEP What do you need before start? 11 
3.2 STEP Installation 11 

3.2.1 BSW folder 12 
3.2.2 Installation GENy Framework 12 

3.3 STEP Configuration Tool and DBC File 13 
3.3.1 Start GENy with a Link or a Batch File 13 
3.3.2 Preparations in GENy 14 
3.3.3 Settings for the CANbedded Software Components 18 

3.4 STEP Generate Files 23 
3.5 STEP Add CANbedded  to Your Project 24 
3.6 STEP Adapt your Application Files 24 

3.6.1 Including, Initialization and Cyclic Calls 25 
3.6.2 Application Handling of User Requests and the Bus Communication 25 
3.6.3 CANbedded Software Component Callback Functions 26 

3.7 STEP Compile and Link your Project 27 
3.8 STEP Test it via CANoe 27 
3.9 STEP Test and Release Hints 28 

4 Basic Information 29 
4.1 Documentation Structure for CANbedded Components 30 

4.1.1 Configuration Tools and Files 32 
4.2 An Overall View 34 
4.3 An ECU – a More Detailed View 35 

4.3.1 Generic Usage of CANbedded Software Components 35 
4.3.2 Independent Software Components in an ECU 36 
4.3.3 Requesting and Releasing Bus Communication 36 
4.3.4 Multiple Channel ECU 36 
4.3.5 Availability and Usage of XCP within the CANbedded Stack 37 
4.3.6 Start-up Time of the CANbedded Stack 37 
4.3.7 Resources of the CANbedded Stack 37 

5 Further Offers 38 
5.1 Hotline 39 
5.2 Training Classes 39 



Manual Information User Manual Startup with PSA 

- 4 - Version 1.0.0 © Vector Informatik GmbH 

5.3 Integration Support 39 
5.4 Integration Review 39 

6 Additional Information 40 
6.1 Persistors 41 

6.1.1 Update Persistors – Install current Version 42 

7 FAQs 45 
7.1 Introduction 46 
7.2 Frequently Asked Questions 46 

8 Address table 47 

9 Glossary 49 

10 Index 50 
 



User Manual Startup with PSA  Manual Information 

© Vector Informatik GmbH Version 1.0.0 - 5 - 

1 Manual Information 

In this chapter you find the following information: 

1.1 About this user manual  page 6
 Certification 
 Warranty 
 Registered trademarks 
 Errata Sheet of manufacturers 
 



Manual Information User Manual Startup with PSA 

- 6 - Version 1.0.0 © Vector Informatik GmbH 

1.1 About this user manual 

The user manual provides the following access help: Finding information 
quickly  At the beginning of each chapter you will find a summary of the contents, 

 In the header you can see in which chapter and paragraph you are, 
 In the footer you can see to which version the user manual replies, 
 At the end of the user manual you will find an index, with whose help you will 

quickly find information, 
 Also at the end of the user manual you will find a glossary in which you can look 

up an explanation of used technical terms 
  

Conventions In the two following charts you will find the conventions used in the user manual 
regarding utilized spellings and symbols. 

  
 Style Utilization 
 bold Blocks, surface elements, window- and dialog names of the 

software. Accentuation of warnings and advices. 
[OK]  Push buttons in brackets 
File|Save Notation for menus and menu entries 

 MICROSAR Legally protected proper names and side notes. 
 Source Code File name and source code. 
 Hyperlink Hyperlinks and references. 
 <CTRL>+<S> Notation for shortcuts. 
  
 Symbol Utilization 
 

 

Here you can obtain supplemental information. 

 

 

This symbol calls your attention to warnings. 

 

 

Here you can find additional information. 

 

 

Here is an example that has been prepared for you. 

 

 

Step-by-step instructions provide assistance at these points. 

 

 

Instructions on editing files are found at these points. 
 

 

 

This symbol warns you not to edit the specified file. 

  



User Manual Startup with PSA  Manual Information 

© Vector Informatik GmbH Version 1.0.0 - 7 - 

1.1.1 Certification 

Certified Quality 
Management System 

Vector Informatik GmbH has ISO 9001:2000 certification. The ISO standard is a 
globally recognized standard. 

  

Spice Level 3 The Embedded Software Components business area at Vector Informatik GmbH 
achieved process maturity level 3 during a HIS-conformant assessment. 

  

1.1.2 Warranty 

Restriction of 
warranty 

 

We reserve the right to change the contents of the documentation and the software 
without notice. Vector Informatik GmbH assumes no liability for correct contents or 
damages which are resulted from the usage of the documentation. We are grateful for 
references to mistakes or for suggestions for improvement to be able to offer you 
even more efficient products in the future. 

  

1.1.3 Registered trademarks 

Registered 
trademarks 

 

All trademarks mentioned in this documentation and if necessary third party 
registered are absolutely subject to the conditions of each valid label right and the 
rights of particular registered proprietor. All trademarks, trade names or company 
names are or can be trademarks or registered trademarks of their particular 
proprietors. All rights which are not expressly allowed are reserved. If an explicit label 
of trademarks, which are used in this documentation, fails, should not mean that a 
name is free of third party rights. 

  Outlook, Windows, Windows XP, Windows 2000, Windows NT, Visual Studio are 
trademarks of the Microsoft Corporation. 

  

1.1.4 Errata Sheet of manufacturers 

 

Caution: Vector only delivers software!  

Your hardware manufacturer will provide you with the necessary errata sheets 
concerning your used hardware. In case of errata dealing with CAN please provide us 
the relevant erratas and we will figure out whether this hardware problem is already 
known to us or whether to get a possible workaround.  

 

 

Info: Because of many NDAs with different hardware manufacturers or because we 
are not informed about, we are not able to provide you with information concerning 
hardware errata of the hardware manufacturers.  

 
 
  
 



Getting Started User Manual Startup with PSA 

- 8 - Version 1.0.0 © Vector Informatik GmbH 

2 Getting Started 

In this chapter you find the following information: 

2.1 How to use this Manual  page 9

2.2 Start immediately or need Basic Information?  page 9
  



User Manual Startup with PSA  Getting Started 

© Vector Informatik GmbH Version 1.0.0 - 9 - 

2.1 How to use this Manual 

Step by Step Just follow the description step by step. 
  

Basic Information To find basic information about CANbedded (see section Basic Information on page 
29). 

  

FAQ To find answers to special questions without reading the whole document use the 
FAQ list (see section FAQs on page 45). 

 
2.2 Start immediately or need Basic Information? 

You are Novice or 
Expert?  

This User Manual is designed to fit the needs and expectations of the developers of 
the ECUs. Of course there are differences in planning the software architecture. But 
the core is almost the same for all types of ECUs. 

Your aim is to implement the CANbedded software components as fast as possible. 
Perhaps you already know the basic concepts of CANbedded?  

Then let’s start with the step-by-step introduction in how to startup with PSA 
CANbedded software components regardless of the ECU type. You will find remarks 
if the handling differs for a specific ECU type. 

For more basic information about CANbedded refer to (see section Basic Information 
on page 29). 

 

 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 10 - Version 1.0.0 © Vector Informatik GmbH 

3 A few STEPS to Basic ECU with PSA CANbedded 

In this chapter you find the following information: 

3.1 STEP What do you need before start?  page 11

3.2 STEP Installation  page 11
 BSW folder 
 Installation GENy Framework 

3.3 STEP Configuration Tool and DBC File  page 13
 Start GENy with a Link or a Batch File 
 Preparations in GENy 
 Settings for the CANbedded Software Components 

3.4 STEP Generate Files  page 23

3.5 STEP Add CANbedded  to Your Project  page 24

3.6 STEP Adapt your Application Files  page 24
 Including, Initialization and Cyclic Calls 
 Application Handling of User Requests and the Bus Communication 
 CANbedded Software Component Callback Functions 

3.7 STEP Compile and Link your Project  page 27

3.8 STEP Test it via CANoe  page 27

3.9 STEP Test and Release Hints  page 28
  

 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 11 - 

3.1 STEP What do you need before start? 

CANbedded Did you get the CANbedded delivery? 
  

3.2 STEP Installation 

 

The following list shows the tools and software (C Code or Library) that are included 
in the CANbedded delivery and what has to be installed further on. 

  Vector CANbedded SIP CBDxxxxxxx Rxx <name>_Setup.exe 
BSW modules, exact content depends on your delivery, the details are outlined in 
the following illustration. 

 GENyFramework_<version>-PGP-sda.exe 
downloaded from the FTP server. The framework of the configuration tool GENy. 

  

Your Delivery from 
Vector 

Unpack the Delivery 

Start the Setup.exe and follow the installation dialogs. 
 
 

Situation after 
installation 

Use the Start|Programme|Vector CANbedded …| to find the installation. 

  

Try to keep a proper 
file structure to keep 
the overall view 
throughout the 
complete 
development process 

 

 

 

Example File 
Structure after 
Installation 

You will find the software components in the following file structure or in a similar one.

 

 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 12 - Version 1.0.0 © Vector Informatik GmbH 

 

Info: It is up to you to use a different file structure. This is merely a recommendation 
and the result of the installation process. 

3.2.1 BSW folder 

 You will find the following files in the BSW folder: 
  

CAN Driver CAN - CAN Driver 

can_drv.c – can_def.h – can_inc.h – cancel_in_hw_user_cfg.cfg 

(delete underscore for usage) 

 

 

Info: Dependent on the CAN Driver there could be additional files. 

  

Network 
Management 

NM – Network Management 

Generic_precopy.c – INM_Osek.c – INM_Osek.h – Stat_Mgr.c – Stat_Mgr.h 
  

Interaction Layer IL - Interaction Layer 

il.c – il_def.h – il_inc.h 
 

Transport Protocol TP – ISO Transport Protocol 

tpmc.c – tpmc.h 
 

Diagnostics Layer Diag - Diagnostics Layer CANdesc 

The files will be generated completely 
 

Communication 
Control Layer 
 

CCL - Communication Control Layer 

ccl.c – ccl.h – ccl_inc.h 
  

_Common v_def.h – v_ver.h – sip_vers.c – sip_vers.h – vstdlib.c – vstdlib.h 
  

 

Info: The SIP check ensures that all used CANbedded components fit together. If not, 
a pre-processor error will occur. Please make sure that the SIP check file is complied 
with your application. 

  

Universal 
Measurement and 
Calibration Protocol 

XCP - Universal Measurement and Calibration Protocol 

_xcp_appl.c - _xcp_appl.c - xcp_can.h - XcpProf.c - XcpProf.h 
 

3.2.2 Installation GENy Framework 

Install GENy 
Framework 

Open the link from the delivery description to open the FTP server and save 
GENyFramework_<version>-PGP-sda.exe on your computer. Start 
GENyFramework_<version>-PGP-sda.exe and enter the passphrase (password 
from e-mail) for GENy Framework.  



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 13 - 

The GENyFramework_<version>.exe will be unpacked. Start this setup file, follow the 
installation hints and enter the path to your delivery. GENy.exe will be installed at this 
path. 

  
 

3.3 STEP Configuration Tool and DBC File 

 Follow the explanations for the basic settings of the CANbedded software 
components in the GENy configuration tool. 

  

3.3.1 Start GENy with a Link or a Batch File 

Working with GENy There are different ways to start GENy and to load a configuration. By default you can 
start the configuration tool and load the configuration afterwards. The more 
comfortable way of using GENy is via a link or a batch file where you can start the 
tool directly within your project with your project as a parameter.  

Start GENy with a Link or a Batch File 

This is the recommended way if more than one CANbedded stack or configuration 
setup is to be used in parallel. Link and batch file must contain the following 
information: 

 Path to the GENy.exe  
 Path to component DLLs and license file 
 Optional: Path to an existing configuration file .GNY. 

 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 14 - Version 1.0.0 © Vector Informatik GmbH 

 

 

Example: Link 

Enter the following path information into the Target area of the MS Window control: 

yourPath\GENy\geny.exe /m ..\yourPath\_GENy\Components 
/c ..\yourPath\GENyProject.gny 

 
 

 

Example: Batch file 

Please write all commands below in ONE line into the batch file! 

..\yourPath\GENy\geny.exe /m ..\yourPath\_GENy\Components '/c 

..\yourPath\GENyProject.gny 
  

3.3.2 Preparations in GENy 

New Configuration 
Create a new configuration via File / New or the New Button . 

 

 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 15 - 

Setup Dialog Select your Preconfiguration, Microcontroller, Derivative and your Compiler in the 
setup dialog. 

  

Data base file and 
Component 
Selection 

Click on  to add a channel and select CAN as channel type. In the Channel 
Setup window make all entries concerning a certain channel. Name the channel (if 
you dislike Channel x), browse for your database (DBC) and select one (or more for a 
multiple Channel ECU) database nodes. For Gateways you have to add additional 
Channels. 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 16 - Version 1.0.0 © Vector Informatik GmbH 

 
 

 Use the Software Component Selection view to switch the necessary components 
on. 

Now we could go on and adjust the path where GENy generates the files in. 

Open the Generation Directories window via Configuration / Generation Paths…or 
use 

 
Now save the configuration. This file will look like: *.gny. 

  

 

 

Define paths for the 
generated files 

 

 

  Enter the Root path for relative directories. Confirm with tab. 
 To get the files for the different components generated in specific folders, add a 

relative path on the appropriate Path field for the component and for the Filetype. 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 17 - 

You also could enter an absolute path in the Path field. 
 Always check your settings for all components under Resolved Path before 

confirming via [OK]. 

 

 

Info: The (C) behind Filetypes indicates that these are files in C language. 

  

 Now save the configuration (.gny file) again. 
  



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 18 - Version 1.0.0 © Vector Informatik GmbH 

3.3.3 Settings for the CANbedded Software Components 

Navigation View in 
GENy 

The settings for the components are done via the Navigation and the Configuration 
view. Any component you have selected in the Software Component Selection view is 
listed in the navigation tree below Components 

 
Let us go through all selected components and do the necessary settings. 

  

 

Info: Remember that the channel is the major criteria where to find a configuration 
element of the component. E.g. the setting of the baud rate is in the component 
DrvCan_xxx and it is a channel specific setting. 

  

The different 
components are 

HW_XXXCPU 

Some settings like the used derivative and compiler are very hardware dependent. 
They are selected in the HW_xxxCPU tree. Make sure that the derivative, the 
compiler and the register addresses are set correctly.  

  

 DrvCan_xxx 

Here you configure the CAN Driver. Use the default settings for the first start up. 
  

 DrvCan_xxx / Channel / Channel X 

The two most important settings here are the baud rate and the acceptance filters. 
Click on the buttons […] to open the corresponding windows and do the necessary 
settings (refer to GENy Online Help how to work with these two windows). 

  

Filters and Bus 
timing 

  

 All further channel specific settings for the CPU are also hardware dependent. 
  

 NameDecorator 

With the NameDecorator you can adjust the names of macros, functions and flags 
that are generated. Use the default settings for the first start up 

  



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 19 - 

 Tp_Iso15765 

Here you configure the ISO Transport Protocol. Use the default settings for the first 
start up. 

  

 Il_Vector 

Here you configure the Vector Interaction Layer. Use the default settings for the first 
start up. 

  

 Inirect NM 

Here you configure the Network Management. Use the default settings for the first 
start up 

  

 Diag_CanDesc_UDS 

Here you configure the diagnostic component CANdesc. Use the default settings for 
the first start up. 

  

 Ccl_core – Communcation Control Layer 

First open the Configuration View for the Ccl__Core. There will be no Communication 
Request available. You have to add this.  

Click on the Add […] button of the CCL Communication Request and a new entry in 
the Navigation view will be shown. 

  

 

 
  

Name the 
Communictaion 
Request 

One Communication Request appears without name, so you can only see the letter 
icon. Click on this empty icon and get the configuration view like in the following 
figure. 

  

  



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 20 - Version 1.0.0 © Vector Informatik GmbH 

 
  

 Enter the name for this Communication Request. In this case 
MyCommunicationRequest (CCL_MyCommunicationRequest: the configuration tool 
adds the CCL as prefix to the name.) is now the parameter for the functions to control 
the ECU states. We will use this parameter in the following software example, too. 

  

 

Info: Make sure that the names for the requests are unique in the whole system. The 
names have to be ANSI C compliant. 

  

 Using CCL many things become easier for the application. So the complete 
initialization and the cyclic calls could be done by these components. Just check the 
box [CANbedded Handling] in the Ccl__core configuration view (see Figure 6 8). 

Now we could switch to the CCL configuration view by choosing Ccl_core in the 
navigation view. 

  

 

 
  

 We switched the CANbedded Handling on, so we have to choose between the 
Schedule Task and the Task Container from the pull down menu. What does this 
mean?  

We let the CCL handle the initialization and control of the components. Control means 
in this case the cyclic calling of all necessary CANbedded task functions and this 
could be done in two ways. 

  



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 21 - 

The easy way via 
Schedule Task 

Schedule Task 

The option Schedule Task is the easiest way for the application programmer. The 
function CclScheduleTask() will be generated and handles all cyclic CANbedded 
calls internally. 

Your application has to call this single function and all component tasks will be called 
in the correct cycle time. The cycle time for this schedule task must be a common 
divisor of all selected CANbedded call cycle values. 

See 
  

 

Cross reference: [1] (see section Reference Documents on page 2). 

  

 for more details on Schedule Task concept. 
  

Container Task Container 

The Task Container provides one function for all tasks with the same call cycle. The 
application has to call these tasks with the correct call cycle and need not to know 
which components are affected. 

E.g. for all 10ms Tasks the task container function Ccl_10_0msTaskContainer is 
generated. See 

  

 

Cross reference: [1] (see section Reference Documents on page 2) 

  

 for more details on the Task Container concept. 
  

 Transceiver Settings 

What is left now is to provide the CCL with the information concerning the transceiver 
you use. Open the channel specific configuration view of the CCL component as you 
see in the following figure. Use the pull down menu to select your Transceiver Type. 

  

 

Info: GENy supports the most of the common transceivers. If your transceiver is not 
in this list, choose < Unknown >. For this case the application has to provide the 
transceiver handling via three callback functions. 

  
 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 22 - Version 1.0.0 © Vector Informatik GmbH 

Select your 
Transceiver 

  

Transceiver 
Configuration File 

After you have selected your Transceiver, you have to add your Transceiver Config 
File. This file includes information for additional transceiver coding.  

Use the […] button to load your Transceiver Config File. 

 
 

Ports Dependent on the transceiver you select there will be displayed a corresponding 
amount of ports, in this case the Enable Port, the Standby Port, the Error Port and the 
Wake Up Port. 

  

 

Info: To do the following settings you need a deep insight in the hardware of your 
project. 

  

 Now you have to tell the CCL component how to control the ports of the transceiver. 
Please refer to  

  

 

Cross reference: [1] (see section Reference Documents on page 2) 

  

 for more details how to set up the transceiver handling. 
  

 Transceiver Unknown 

In this case you cannot do any further transceiver setting in the GENy as you see in 
the illustration below. 

  

 

  

Unknown For an unknown transceiver the CCL does not know how to handle the transceiver. 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 23 - 

Transceiver This has to be done by the application. For this reason the application is provided with 
3 callback functions to handle this unknown transceiver: 

ApplCclInitTrcv for transceiver initialization 

ApplCclWakeUpTrcv for transceiver wake-up handling and 

ApplCclSleepTrcv for transceiver sleep handling.  

The code for these callback functions is very hardware dependent. Refer to the 
hardware manual of you transceiver for more information 

  

3.4 STEP Generate Files 

 Let GENy generate the files to the appropriate, previously defined folders. 
  

 Now all configuration settings for the CANbedded software components are done and 
we could go on with the generation process. Click the icon Generate System. 

  

Make sure the shown 
target paths are 
correct 

 
  

 In the Output View / Generations you see all generated files with the corresponding 
paths. The Generated Files from the System Configuration view show the generated 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 24 - Version 1.0.0 © Vector Informatik GmbH 

files in a sorted manner. 
  

 

Info: Use this information to check if the files are generated in the desired paths. 

The files for the CANdesc component are also generated, but via a different 
generator. So they are not displayed in one of these windows. 

There are also generated XML files. These files are for internal use of GENy only and 
you must not change them. 

Please check the output window also for (orange) warning and (red) error messages. 
If there are some, clarify the reason. For the final software setup, no warnings or 
errors shall be reported! 

3.5 STEP Add CANbedded  to Your Project  

 Add the CANbedded C and H files to your project or makefile. 

 

Your Build 
environment 

What to do in this step depends on your development environment. Perhaps you work 
with a makefile? 

You have to add the files of CANbedded to your project. These are the files of chapter 
STEP Configuration Tool and DBC File on page 13 and the generated ones to the 
previous step. 

 

 

Info: Always make sure that the path you generate the files in and the path your 
compiler is working on are the same! 

  

 At this point in time you are not able to compile and link the project. The files should 
be complete but there are several adaptations for you to do in your application.  

 

Go on with the next step. 
  

3.6 STEP Adapt your Application Files 

 Now your application files must be modified to use the CANbedded software 
components (includes, cyclic calls, initialization, callback functions). 

 

Include, initialize and 
call the components 
cyclically.  

 Then connect 
CANdesc with your 
application. 

Now all files for CANbedded and CANdesc are included in your project and we can 
go on to do the necessary adaptations in your application files. 

These adaptations can be split in two categories:  
 Include, initialize and do the cyclic calls for the CANbedded software components 

(use the component specific documentation for details). 
 Connect the CANbedded software components to your application 

As you use CCL this is very easy to do. 

 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 25 - 

3.6.1 Including, Initialization and Cyclic Calls 

Pre-compile Including 

If the Checkbox CANbedded Handling is checked then you only have to include two 
headers, the v_inc.h (that is generated) and the ccl_inc.h in this order. This header 
includes all necessary header files for the selected Software Components. 

  

 

Info: If you do not use CCL CANbedded Handling you have to do the “includes” for all 
Software Components on your own. 

  

Pre-compile Initialization 

With the CCL CANbedded Handling the Initialization becomes very simple.  

CclInitPowerOn(); is the only function for the initialization of all selected 
CANbedded Software Components. 

  

 

Info: Without CCL CANbedded Handling all component tasks must be called in the 
correct order. 

  

Call cyclic tasks Cyclic Calls 

The handling of the cyclic component task calls depends on the settings on the CCL 
configuration view (Schedule Task or Task Container see Figure 6 8). As mentioned 
above you only have to call one function if you select Schedule Task: 

CclScheduleTask();  make sure that the call cycle is a common divisor of 
all tasks call cycles 

In case of the Task Container you have to call all existing task container functions. 
These functions look like this: 
Ccl_10_0msTaskContainer();  

Make sure that you call all these tasks, each with the correct call cycle and offset. 
  

 

Info: The functions to control the cyclic task calls are generated in the file ccl_par.c. 
Especially when using the task container functionality, refer to this file to get all 
generated functions. 

  

 

Info: If CCL CANbedded Handling is not checked, your application must do all the 
task calls for the CANbedded software components on its own and in the correct 
cycle time. 

  

3.6.2 Application Handling of User Requests and the Bus Communication 

 As mentioned in the chapter Requesting and Releasing Bus Communication on page 
36 the users can request or release the bus communication. Remember to control the 
modes via your application and the functions: 
CclRequestCommunication( CCL_MyCommunicationRequest ) 
CclReleaseCommunication( CCL_MyCommunicationRequest ) 
 

The parameter is the handle (you configured in the configuration tool) with CCL_ as 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 26 - Version 1.0.0 © Vector Informatik GmbH 

prefix. 
  

3.6.3 CANbedded Software Component Callback Functions 

Callbacks are still 
missing 

At this point in time you would be able to compile but not to link. The callback 
functions of the components CANdesc and CCL are still missing. The detailed 
description of these callback functions is given in the TechnicalReference of each 
component. In the following we only show the callback functions and introduce the 
templates to be able to compile, link and run the system basically. 

  

Diagnostic callbacks Callback Functions for Diagnostics 

Any diagnostics service needs at least one (maximum three) callback function 
(Handlers, see the documentation for CANdesc). Dependent on the amount of 
diagnostic services and their settings there are different callback functions. You find 
the generated prototypes for the diagnostic callback functions in appdesc.h.  

The diagnostic callback functions are provided in the generated template file called 
ApplDesc.c. Add this template to your project. 

  

 

Info: Remember to fill the callback functions later. This is only to be able to get a 
basically working system that is the base for further development. 

Read the comments in the template carefully. This will help you better understanding 
how to use the template. 

  

CCL callbacks Callback Functions For Communication Control Layer (CCL) 

There are several callback functions to get the CCL running. The detailed description 
of how to handle these functions correctly is in the 

  

 

Cross reference: TechRef CCL 

  

 This is the list of all necessary callback functions: 

 
vuint8 ApplCclCanStandby( vuint8 sleepResult ) 
{ 
  return kCclNoRepeatCanSleep; /*is defined to 0*/ 

} 
  
 

 

Info: This callback function is already part of the CCL template. 

  

 void ApplCclTrcvGoToSleepWaitTime( void ){} 
  

 

Info: This function is only necessary for some transceiver derivatives 

  

 void ApplCclWakeUpTrcv( void ){} 



User Manual Startup with PSA  A few STEPS to Basic ECU with PSA CANbedded 

© Vector Informatik GmbH Version 1.0.0 - 27 - 

void ApplCclSleepTrcv( void ){} 
void ApplCclInitTrcv( void ){} 

  

 

Info: These functions are only necessary in case of you have selected UNKNOWN as 
Tranceiver Type on the CCL configuration view. 

  

 void ApplCclBusOffStart ( void ){} 
void ApplCclBusOffEnd( void ){} 

  

 

Info: The application will be informed in case of a bus off. 

  

 void ApplCclInit( void ){} 
  

 

Info: Remember to fill the callback functions later. This is only to be able to get a 
basically working system that is the base for further development. 

  

3.7 STEP Compile and Link your Project 

 Compile and link the complete project and download it to your test hardware or 
development environment. 

  

It is almost done! Now we have all includes, all initializations, the components do have the cyclic calls 
of their task functions and all callback functions are provided (but not programmed 
yet). 

Start the compiler or makefile and get the project compiled and linked.  

Is it ok? No errors?  

 

Congratulations, that’s it! 

 

Go on to the next step and do the testing. 
  

3.8 STEP Test it via CANoe 

 Via an appropriate Tester (e.g. CANoe) check the results. 
  

WELL DONE! The last step is to test what we have done until now. This is no detailed test. It is just 
to make sure that we have bus communication.  

The ideal tester would be CANoe from Vector Informatik. Connect your hardware to 
your CANcard, start CANoe, set the correct baud rate and have a look at the trace 
window.  

You see any bus communication? No error frames?  

 



A few STEPS to Basic ECU with PSA CANbedded User Manual Startup with PSA 

- 28 - Version 1.0.0 © Vector Informatik GmbH 

Congratulations!  

 

The basic step is done, the CANbedded software components are basically working 
together with your application.  

That is the base you can start from to optimize your system. Remember the callback 
functions we left empty and refer to 

  

 

Cross reference: [1] (see section Reference Documents on page 2) 

  

 for more detailed information. 

 

3.9 STEP Test and Release Hints 

 

Special Caution: Before the SOP it is your duty to recalculate the automatically 
generated values for the baud rate and the acceptance filters. Make sure you have 
the current version of the necessary hardware description available to validate the 
used (CAN) controller settings. 

  



User Manual Startup with PSA  Basic Information 

© Vector Informatik GmbH Version 1.0.0 - 29 - 

4 Basic Information 

In this chapter you find the following information: 

4.1 Documentation Structure for CANbedded Components  page 30
 Configuration Tools and Files 

4.2 An Overall View  page 34

4.3 An ECU – a More Detailed View  page 35
 Generic Usage of CANbedded Software Components 
 Independent Software Components in an ECU 
 Requesting and Releasing Bus Communication 
 Multiple Channel ECU 
 Availability and Usage of XCP within the CANbedded Stack 
 Start-up Time of the CANbedded Stack 
 Resources of the CANbedded Stack 
  

 



Basic Information User Manual Startup with PSA 

- 30 - Version 1.0.0 © Vector Informatik GmbH 

4.1 Documentation Structure for CANbedded Components 

Your delivery To be able to get along with the delivery fast and easy this chapter will give you an 
overview of the delivery and its documents. 

  

 
  

Always read the User 
Manual first 

The first document you should read is this one, the startup user manual. It gives you 
an overview of all components and of how to put this stuff together and get it to work 
basically. 

  

Components The delivery contains different components like Interaction Layer, CAN Driver, etc. A 
component is normally documented in the following way. 

  
 

 

Caution: If you use the CCL component, read its manuals and references first after 
this user manual. CCL makes the handling of the other components very simple. 

  

Different kinds of 
documents 

UserManual_<ComponentName> 

Very easy entry in the software component. It contains a step-by-step introduction of 
how to use this component. This is not available for all components.   

  

 TechnicalReference_<ComponentName> 

Very detailed description of the component and its functionality. It gives you a very 



User Manual Startup with PSA  Basic Information 

© Vector Informatik GmbH Version 1.0.0 - 31 - 

technical sight on the component. 
  

 TechnicalReference_<ComponentName>_OEM/HW 

Some features of the component are very hardware-dependent or differ from one 
OEM to the other? Then this kind of document is there to explain these special 
technical aspects. 

  

 Application Note 

Very special topics of the component, especially in connection with other components 
are described in application notes. Not all components do have application notes.  

  

 GENy – Configure your components 

The configuration tool GENy provides two major ways of documentation. The 
OnScreen Help view and the Online Help.  

  

 Online Help 

The GENy Online Help gives you information about the generic handling of GENy. It 
explains the different GENy windows, shows how to work with the GUI and offers 
How-To-Descriptions for the frequently asked questions like how to set up a 
configuration, how to update the database file, etc.  

  

 OnScreen Help  

This is an area in the GENy GUI where specific information about the presently 
activated configuration element is displayed. This provides you with the information 
you need to have to decide whether to use a GENy option or not. The more detailed 
description and technical background can be found in the technical references of the 
configured component (see above). 

  
 

 To guarantee quality it is obvious to use standard software components for the 
communication part of your ECU. The software components of Vector Informatik are 
called CANbedded and are shown in the figure below via grey boxes with red 
inscription. The application is on top level and uses the functionality of the 
CANbedded software components for Communication and Diagnostics. 

  

CANbedded Layers 

 
  



Basic Information User Manual Startup with PSA 

- 32 - Version 1.0.0 © Vector Informatik GmbH 

Hardware Interface CAN Driver 

The CAN Driver handles the hardware specific CAN chip characters and provides a 
standardized application interface. The CAN Driver for the PSA can transmit and 
receive standard (11 bit) CAN Ids.  

  

Transmission modes 
and more… 

Interaction Layer  

The Interaction Layer (IL for short) is responsible for the transmission of messages 
according to specified rules, monitoring receive messages, timeout monitoring, etc. It 
provides a signal oriented application interface for the application. 

  

Break the limitation 
of 8 data bytes 

Transport Protocol 

The CAN protocol is restricted to 8 data bytes per message. But in some cases (e.g. 
diagnostics) you need to exchange much more than 8 data bytes. The segmentation 
of the data, the monitoring of the messages and the timeout handling is done by the 
Transport Protocol (TP for short). 

  

UDS Diagnostics 

The diagnostics layer (DIAG for short) works according to ISO14229 (UDS) and PSA 
specifications. 

  

Control transition to 
bus sleep state 

Network Management 

The Network Management (NM for short) is the component to control the bus, to 
synchronize the transition to bus sleep, error recovery after bus-off, etc.  

  

Measurement and 
Calibration 

Universal Measurement and Calibration Protocol (XCP) 

This is the Software Component for measurement and calibration on several bus 
systems. To mention some feature: read and write access to various memory 
locations or flash programming. XCP is not part of the official CANbedded delivery 
process to PSA. See chapter Availability and Usage of XCP within the CANbedded 
Stack on page 37 within the CANbedded stack for more details. 

  

The powerful 
component 

Communication Control Layer (CCL)  

This component provide the following features: communication bus access, 
encapsulation of network management handling, handling of the CANbedded stack, 
control of the transceiver and the handling of the start-up delay time.  

  

4.1.1 Configuration Tools and Files 

Configuration tools 
and files 

The delivery contains the MS Windows based configuration tool GENy. It is used to 
adapt the delivered source code via project specific generated data and configuration 
defines to your project needs. 

There is always the same concept behind the usage of Vector´s CANbedded software 
components (red labled boxes). 

  



User Manual Startup with PSA  Basic Information 

© Vector Informatik GmbH Version 1.0.0 - 33 - 

The standard 
generation process 
for Vectors Software 
Components. 

 

 

 

 

 

 

CANdesc is a 
completely 
generated Software 
Component. 

 

 GENy combines the information of the network database (DBC file) and your 
application specific configuration for the CANbedded components. As a result it 
generates files (header: configuration files and signal interface, source: parameters) 
containing the upper information. You have to compile/link these files together with 
the source code of the CANbedded software components and your application files. 

Derived from this concept there are three sorts of files:  
 Generated files (Configuration, Signal Interface, Parameters) you must not 

change manually because the next generation process will delete your changes 
(e.g. can_cfg.h). Changes can only be done via the configuration tool.  

 Files that form a component (CANbedded software components) and must not be 
changed at all (e.g. can_drv.c). 

 Files for your application. 
  

 

Info: The network database (DBC file) is provided by Vector Informatik if it is ordered 
or must be created as active work of TIER1. Each CAN bus has its own DBC file 
describing the communication for that system. 

The DBC file can be viewed and also edited by the tool CANdb++. CANdb++ is part 
of each CANoe/CANstress/CANscope package but can also be purchased separately 
as a CANdb++/Admin version. 

The diagnostic description for CANdescBasic is part of the CANbedded delivery 



Basic Information User Manual Startup with PSA 

- 34 - Version 1.0.0 © Vector Informatik GmbH 

  

4.2 An Overall View 

ECU in the focus What we are now talking about is an ECU, a module to be built-in a vehicle like 
shown in the figure below. Almost every ECU participates in a certain bus system like 
e.g. CAN, FlexRay or LIN. 

  

 

Vehicle with different bus systems
CAN Highspeed
CAN Lowspeed
LIN
FlexRay
MOST

  

 So any ECU within one bus system has to provide an identical interface to this bus 
system because all ECUs have to share information via this bus system as you see in 
the figure below. 

 

CAN Lowspeed as 
an example bus 
system 

 
  

 For that reason all ECUs are built-up in the same way. There is a software part to 
realize the main job (application) of this ECU e.g. to control the engine or a door. The 
other part is the software part to be able to communicate with the other ECUs via the 
bus system that is the communication software. 

  



User Manual Startup with PSA  Basic Information 

© Vector Informatik GmbH Version 1.0.0 - 35 - 

 Application Software

Software for Network 
Communication and Diagnostics

 
 
 
 

4.3 An ECU – a More Detailed View 

4.3.1 Generic Usage of CANbedded Software Components 

Initialization, cyclic 
calls and callback 
functions. 

To get almost all components to work your application has to initialize the 
components and call certain component task functions cyclically. This is to derive the 
time base each component needs. You can adjust the cycle times on the 
component’s configuration views of configuration tool GENy. 

No rule without exception:  

For some components there is more than one task to be called within a predefined 
cycle (e.g. Interaction Layer: Rx and Tx task).   

The CAN Driver has no task to be called (unless used in polling mode) because it is 
an event driven component and uses interrupts. 

While the components are running there are different callback functions for the 
application to control the components’ behavior. 

The PSA CANbedded stack contains usually the CCL (Communication Control 
Layer), which will ease up the integration task. Please refer to  

  

 

Cross reference: [1] (see section Reference Documents on page 2) 

  

 for more details. 
  



Basic Information User Manual Startup with PSA 

- 36 - Version 1.0.0 © Vector Informatik GmbH 

4.3.2 Independent Software Components in an ECU 

N:1 relationship 

  

 A typical ECU application is divided up into multiple functional blocks. Each functional 
block has its own tasks and might be implemented by another programmer. To ease 
up independent and decoupled development of application code, the CANbedded 
stack provides independent network control and signal access API’s for each 
functional block. 

 

4.3.3 Requesting and Releasing Bus Communication 

 Bus communication (network control) is requested and released using CCL APIs. If a 
functional block needs bus communication, a communication request is set via 
CclRequestCommunication. If no bus communication is needed in the functional 
block, it releases the communication request via CclReleaseCommunication. 

Please note that the request and release is asynchronous. I.e. there is a delay 
between requests and availability of network communication. The network has to be 
handled after a release request until it is really stopped (state BusSleep). 

   

4.3.4 Multiple Channel ECU 

More than one 
physical channel 

Multiple channels ECU means to control more than one physical CAN channel. For 
each channel you need a database. To generate for a multiple channel ECU, add as 
much database as channel to your configuration tool setup. 

Make sure that you do the necessary settings in the tool for each channel. Below any 
component there is a channel tree that contains the settings for the different 
channels. 

  



User Manual Startup with PSA  Basic Information 

© Vector Informatik GmbH Version 1.0.0 - 37 - 

4.3.5 Availability and Usage of XCP within the CANbedded Stack 

Part of the 
CANbedded delivery 
for PSA 

XCP is part of the official CANbedded delivery process to PSA. 

4.3.6 Start-up Time of the CANbedded Stack 

 The CANbedded software components usually need very little time for initialization 
due to mainly data structures in the RAM are initialized.  

The hardware specific drivers like the CAN or LIN driver access also hardware 
registers of the microcontroller. The runtime for this depends strongly on the number 
of registers, the speed of the internal µC data bus and, depending on the µC, the 
necessary algorithm to access and control these registers (e.g. requesting the access 
and waiting till the internal µC bus grants the access). 

All in all the runtime of the CANbedded stack initialization highly dependents on the 
configuration (e.g. how many messages have to be initialized, what does the 
application do within the used callback functions, etc.). 

  

 

Info: Please refer to the resource documentation Excel sheet stored in the _doc 
directory of the delivery for details about your specific delivery package. 

  

Power Supply 

PLL 

EEPROM 

RAM 

SPI 

Some typical, time-consuming actions during start-up outside of the CANbedded 
stack are : 

 Switching on the power supply and wait till it is stable: a few [ms]. 
 Switching on the PLL and wait till it is stable: [µs] up to few [ms]. 
 Access to serial EEPROM (internal and external): can be very time consuming 
 RAM check: can be very time consuming 

Initialization of external hardware via SPI: can be very time consuming 
  

4.3.7 Resources of the CANbedded Stack 

 The CANbedded stack is optimized for minimum RAM and ROM usage and can 
therefore be widely configured to the very special needs of your project.  

Any supported but in the concrete project unused feature can be disabled via 
compiler switches during compile time so that this functionality does not consume 
RAM, ROM and runtime. It is therefore difficult to give an exact amount of resource 
needs for the concrete project upfront. 

 



Further Offers User Manual Startup with PSA 

- 38 - Version 1.0.0 © Vector Informatik GmbH 

5 Further Offers 

In this chapter you find the following information: 

5.1 Hotline  page 39

5.2 Training Classes  page 39

5.3 Integration Support  page 39

5.4 Integration Review  page 39
  



User Manual Startup with PSA  Further Offers 

© Vector Informatik GmbH Version 1.0.0 - 39 - 

5.1 Hotline 

Hotline The hotline is available by email or by phone from 13:00 to 16:00 (German time). 

Please contact: Vector Informatik GmbH, 70499 Stuttgart 

email: Embedded@vector-informatik.de 

phone: +49 711 80670-400 
  

5.2 Training Classes 

Training Vector provides training classes for CAN, CAN tools, CANbedded, PSA specific 
topics and also other bus systems like LIN and FlexRay. Please contact your 
technical contact person at Vector for more information to this topic. 

  

5.3 Integration Support 

Support Vector provides on-site integration support for the PSA CANbedded stack into your 
application. Please contact your technical contact person at Vector for more 
information on this topic. The integration support is an optional service for PSA 
projects and shall be performed during project start. 

  

5.4 Integration Review 

Reviews Vector provides on-site integration review for the PSA CANbedded stack into your 
application. Please contact your technical contact person at Vector for more 
information on this topic. The integration review is according to PSA documents a 
recommended service for PSA projects and should be performed before the project is 
finalized. 

  

 

mailto:PorscheEmbedded@vector-informatik.de�


Additional Information User Manual Startup with PSA 

- 40 - Version 1.0.0 © Vector Informatik GmbH 

6 Additional Information 

In this chapter you find the following information: 

6.1 Persistors  page 41
 Update Persistors – Install current Version 
  



User Manual Startup with PSA  Additional Information 

© Vector Informatik GmbH Version 1.0.0 - 41 - 

6.1 Persistors 

What is the Persistor 
for? 

The CANdela data base file (CDD) is created by CANdela Studio and used by GENy 
for configuring CANdesc or DCM/DEM in AUTOSAR environment. 

If you use a newer version of the CANdela Studio, the format of the CDD file could be 
also newer than your GENy is able to deal with. 

The Persistors are responsible to convert the newer CDD file into a CDD file which is 
able to read by GENy.  

  

Update Persistors – 
Download current 
Version 

The latest Persistors can be downloaded from Vector homepage 

www.vector-worldwide.com. 

Select Downloads and then the three settings for Products, Categories and 
Standards.  

 Products: CANdela Studio 
 Categories: Add-Ons/Freeware 
 Standards: All Standards 

  

 

Cross reference: See the following illustration. 

  

Available for 
NT/2000/XP or 
Windows 9.x 

The name for the Persistors download is:  
 Converters for CANdela diagnostic descriptions for xxx. 

  
 

www.vector-worldwide.com�


Additional Information User Manual Startup with PSA 

- 42 - Version 1.0.0 © Vector Informatik GmbH 

 
 

Download Select on or more items from the list ( ) and click on [>> Select one or more items, 
then continue] to download the files after entering some administrative information.  

  

6.1.1 Update Persistors – Install current Version 

Follow description 
step by step 

Start the downloaded file SetupPersistorsXP.exe. 

    



User Manual Startup with PSA  Additional Information 

© Vector Informatik GmbH Version 1.0.0 - 43 - 

 

 
Click [Next]. 

 

 
Select Custom and enter the path to the …\Generators\Components folder as 
Destination Folder for Custom Setup and click [OK]. 



Additional Information User Manual Startup with PSA 

- 44 - Version 1.0.0 © Vector Informatik GmbH 

 
Click [Install] and the installation process will be started and then on [Finish] when 
ready. 

  

Ready Now the current Persistors are installed and your GENy is able to read the latest CDD 
file.  

  

 



User Manual Startup with PSA  FAQs 

© Vector Informatik GmbH Version 1.0.0 - 45 - 

7 FAQs 

In this chapter you find the following information: 

7.1 Introduction  page 46

7.2 Frequently Asked Questions  page 46
  



FAQs User Manual Startup with PSA 

- 46 - Version 1.0.0 © Vector Informatik GmbH 

7.1 Introduction 

Find not search You have a certain question? You just want to know how to do e.g. a certain setting 
without reading the whole document again? 

Then go on reading the following list and use the links to get at the place in the 
document where your question will be answered. 

This chapter will be extended continuously. 
  

7.2 Frequently Asked Questions 

 

FAQ: You need a DBC file for your project, wherefrom do you get it? 

You have two possibilities to get a DBC file for your project. You can order the DBC 
file from Vector (Vector create a new DBC file based on your specification) or you can 
create a DBC file with the CANdb++ Editor by yourself. 

 

For more information about the CANdb++ Editor have a look at www.vector.com. 
(see Products / Distributed Systems / DBC Database / Overview) 

 
  

 

FAQ: How to start GENy in a comfortable way with already loaded 
configuration? 

There are different ways to start GENy and to load a configuration. The comfortable 
ways of using GENy is via a link or a batch file (see section Start GENy with a Link or 
a Batch File on page 13). 

  

 

FAQ: The transceiver type is unknown, so what transceiver settings you have 
to set in GENy? 

You only have to set transceiver type as unknown (see section Transceiver 
Unknown on page 22). 

  

http://www.vector.com/�


User Manual Startup with PSA  Address table 

© Vector Informatik GmbH Version 1.0.0 - 47 - 

8 Address table 

Vector Informatik 
GmbH 

Vector Informatik GmbH  
Ingersheimer Str. 24  
D-70499 Stuttgart  
Phone: +49 (711) 80670-0  
Fax: +49 (711) 80670-111  
mailto:info@de.vector.com  
http://www.vector-informatik.com/ 

  

Vector CANtech, Inc. Vector CANtech, Inc.  
Suite 550  
39500 Orchard Hill Place  
USA-Novi, Mi 48375  
Phone: +1 (248) 449 9290  
Fax: +1 (248) 449 9704  
mailto:info@us.vector.com  
http://www.vector-cantech.com/ 

  

Vector France SAS Vector France SAS  
168, Boulevard Camélinat  
F-92240 Malakoff  
Phone: +33 (1) 4231 4000  
Fax: +33 (1) 4231 4009  
mailto:info@fr.vector.com  
http://www.vector-france.com/ 

  

Vector GB Ltd. Vector GB Ltd. 

Rhodium Central Boulevard Blythe Valley Park 

Solihull, Birmingham 

West Midlands B90 8AS 

Phone: +44 121 50681-50 
mailto:info@uk.vector.com  

http://www.vector-gb.co.uk 
  

mailto:info@de.vector.com�
http://www.vector-informatik.com/�
mailto:info@us.vector.com�
http://www.vector-cantech.com/�
mailto:info@fr.vector.com�
http://www.vector-france.com/�
mailto:info@uk.vector.com�
http://www.vector-gb.co.uk/�


Address table User Manual Startup with PSA 

- 48 - Version 1.0.0 © Vector Informatik GmbH 

Vector Japan Co., 
Ltd.  

Vector Japan Co., Ltd.  
Seafort Square Center Bld. 18F  
2-3-12, Higashi-shinagawa, Shinagawa-ku  
J-140-0002 Tokyo  
Phone: +81 3 (5769) 7800  
Fax: +81 3 (5769) 6975  
mailto:info@jp.vector.com  
http://www.vector-japan.co.jp/ 

  

Vector Korea IT Inc. Vector Korea IT Inc. 

Daerung Post Tower III, 508 

Guro-dong, Guro-gu, 182-4 

Seoul, 152-790 

Republic of Korea 

Phone: +82(0)2 2028 0600 

Fax: +82(0)2 2028 0604 

mailto:info@kr.vector.com  

http://www.vector-korea.com/ 
  

VecScan AB  VecScan AB  
Theres Svenssons Gata 9 
SE-417 55 Göteborg  
Phone: +46 (31) 76476-00  
Fax: +46 (31) 76476-19  
mailto:info@se.vector.com  
http://www.vecscan.com/ 

  

 

 

mailto:info@jp.vector.com�
http://www.vector-japan.co.jp/�
mailto:info@kr.vector.com�
http://www.vector-korea.com/�
mailto:info@se.vector.com�
http://www.vecscan.com/�


User Manual Startup with PSA  Glossary 

© Vector Informatik GmbH Version 1.0.0 - 49 - 

9 Glossary 

Network 
Management. 

The Network Management manages the availability of different networks on a 
channel. It is responsible for the synchronized transition between the communication 
states ‘sleep’, ‘prepare sleep’ and ‘active’ for all modules. Network Management 
serves to ensure the safety and availability of the communications network of 
autonomous control units. The OSEK NM distinguishes between node-related (local) 
activities, e.g. initialization of the node and network-related (global) activities, e.g. 
coordination of global NM operating modes. 

Transport Protocol Some information that must be transferred over the bus does not fit into individual 
message frames because the data length exceeds the maximum of 8 bytes. In this 
case, the sender must divide up the data into a number of messages. Additional 
information is necessary for the receiver to put the data together again. 

Multiple Channel 
ECU 

A multiple channel ECU is connected to several busses. So it is possible to transmit 
signals to and receive signals from all modules on these busses. 

OSEK Open systems and the corresponding interfaces for automotive electronics 
  

 



User Manual Startup with PSA  Index 

© Vector Informatik GmbH Version 1.0.0 - 50 - 

10 Index 

 

A 
Application Files..................................................24 

B 
Batch file .............................................................14 

Bus Communication............................................25 

C 
Callback Functions...........................................26 

CAN Driver....................................................12, 32 

CANbedded .. 9, 10, 12, 13, 18, 20, 21, 23, 24, 25, 
26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 39 

CANoe ..........................................................27, 33 

CCL.. 19, 20, 21, 22, 24, 25, 26, 27, 30, 32, 35, 36 

Communication Control Layer ............................12 

Configuration Tools.......................................29, 32 

Configuration View..............................................19 

Cyclic Calls .........................................................25 

cyclic tasks..........................................................25 

D 
DBC ..............................................................15, 33 

Delivery...............................................................11 

Diagnostic ...........................................................26 

Diagnostics .........................................................32 

Diagnostics Layer ...............................................12 

Documentation Structure..............................29, 30 

E 
ECU ..............................................................29, 35 

F 
File Structure ......................................................11 

H 
Hints....................................................................28 

Hotline.................................................................39 

I 
Including....................................................... 10, 25 

Initialization .................................................. 10, 25 

Integration Review ............................................. 39 

Integration Support ............................................ 39 

Interaction Layer .......................................... 12, 32 

M 
makefile.............................................................. 24 

Multiple Channel ECU ....................................... 36 

N 
Network Management.................................. 12, 32 

New Configuration ............................................. 14 

P 
Ports................................................................... 22 

R 
Resources.................................................... 29, 37 

Root path ........................................................... 16 

S 
Schedule Task ................................................... 20 

Start-up Time ............................................... 29, 37 

T 
Task Container................................................... 20 

Training Classes ................................................ 39 

Transceiver ............................................ 21, 22, 46 

Transport Protocol ....................................... 12, 32 

U 
Universal Measurement and Calibration Protocol

........................................................................ 12 

User Requests ............................................. 10, 25 



User Manual Startup with PSA  Index 

© Vector Informatik GmbH Version 1.0.0 - 51 - 

Y Your Project...................................................... 24 

 



 

 

 

Get more Information! 

Visit our Website for: 

> News 

> Products 

> Demo Software 

> Support 

> Training Classes 

> Addresses 

 

 

 

 

 

 

 

 
www.vector-worldwide.com 

http://www.vector-worldwide.com/�

	1 Manual Information
	1.1 About this user manual
	1.1.1 Certification
	1.1.2 Warranty
	1.1.3 Registered trademarks
	Errata Sheet of manufacturers


	2 Getting Started
	2.1 How to use this Manual
	2.2 Start immediately or need Basic Information?

	3 A few STEPS to Basic ECU with PSA CANbedded
	3.1 STEP What do you need before start?
	3.2 STEP Installation
	3.2.1 BSW folder

	3.3 STEP Configuration Tool and DBC File
	3.3.1 Start GENy with a Link or a Batch File
	3.3.2 Preparations in GENy
	3.3.3 Settings for the CANbedded Software Components

	3.4 STEP Generate Files
	3.5 STEP Add CANbedded  to Your Project 
	3.6 STEP Adapt your Application Files
	3.6.1 Including, Initialization and Cyclic Calls
	3.6.2 Application Handling of User Requests and the Bus Communication
	3.6.3 CANbedded Software Component Callback Functions

	3.7 STEP Compile and Link your Project
	3.8 STEP Test it via CANoe
	3.9 STEP Test and Release Hints

	4 Basic Information
	4.1 Documentation Structure for CANbedded Components
	4.1.1 Configuration Tools and Files

	An Overall View
	4.3 An ECU – a More Detailed View
	4.3.1 Generic Usage of CANbedded Software Components
	4.3.2 Independent Software Components in an ECU
	4.3.3 Requesting and Releasing Bus Communication
	4.3.4 Multiple Channel ECU
	4.3.5 Availability and Usage of XCP within the CANbedded Stack
	4.3.6 Start-up Time of the CANbedded Stack
	4.3.7 Resources of the CANbedded Stack


	5 Further Offers
	5.1 Hotline
	5.2 Training Classes
	5.3 Integration Support
	5.4 Integration Review

	6 Additional Information
	Persistors
	6.1.1 Update Persistors – Install current Version


	7 FAQs
	7.1 Introduction
	7.2 Frequently Asked Questions

	Address table
	9 Glossary
	10 Index

