

User Manual

CANdesc
A Step by Step Introduction

Version 1.7
English

Impressum

Vector Informatik GmbH
Ingersheimer Straße 24
D-70499 Stuttgart

The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection.
 © Copyright 2009, Vector Informatik GmbH
All rights reserved.

User Manual CANdesc Manual Information

Manual History

Author Date Version Details
Klaus Emmert 2004-05-10 1.1 Vector symbols included, template

version 1.8 used (this history
included), AppDesc… changed to
ApplDesc due to software
modifications, description of GENy
as generation tool added, testing of
diagnostics layer described with
CANoe demo configuration, further
Information about diagnostic buffer
(linear and ring buffer mechanism)
and the repeated service call
feature

Klaus Emmert 2004-10-15 1.2 Modifications after Review.
Klaus Emmert 2005-08-12 1.3 Two new functions:

DescTimerTask(),
DescStateTask().
These two functions can be used
instead of DescTask to handle the
timers and the application
separately.

Klaus Emmert 2006-03-24 1.4 Issues in example code fixed
Document overview added

Oliver Garnatz 2007-01-12 1.5 Added description of
CANdesc_ConnectorCAN GENy
component

Klaus Emmert 2008-01-28 1.6 References fixed
Manuela Scheufele 2009-07-27 1.7 (see section Version 1.7 on page

66)

Reference Documents

No. Source Title
[1] Vector Informatik Technical Reference CANdesc
[2] Vector Informatik Technical Reference CANdescBasic

© Vector Informatik GmbH Version 1.7 - 3 -

Manual Information User Manual CANdesc

Inhaltsverzeichnis

1 Manual Information 6
1.1 About this user manual 7

1.1.1 Certification 8
1.1.2 Warranty 8
1.1.3 Registered trademarks 8
1.1.4 Errata Sheet of manufacturers 8

2 Getting Started 9
2.1 How to use this Manual 10

3 Basic Information 11
3.1 An Overall View 12
3.2 What is Diagnostic 13
3.3 What happens during Diagnostics? 13
3.4 What is CANdesc? 14
3.5 Tools and Files 14

3.5.1 CANdela Studio, CDDT, CDD 14
3.5.2 Generation Tool, CDD, DBC 14
3.5.3 Generation Process with CANbedded Software Components 15

3.6 What CANdesc does 15
3.7 Diagnostics – a more detailed View 17

3.7.1 Basic Nomenclature from the Bottom Up 18
3.7.2 The same Nomenclature from the Top Down 19
3.7.3 Where to find this Nomenclature in CANdela Studio 19
3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component 21
3.7.5 User, None, OEM, Generated – what does this mean? 23

4 A Few STEPS to CANdesc 24
4.1 STEP What do you need before start? 25
4.2 Startup Code 25
4.3 Overview 25
4.4 STEP Installation 26
4.5 STEP Configuration with the Generation Tool 26

4.5.1 Using the Generation Tool CANgen 26
4.5.2 Using the Generation Tool GENy 27

4.6 STEP Generating Files 29
4.6.1 Using Generation Tool CANgen 29
4.6.2 Using the Generation Tool GENy 32

4.7 STEP Add CANbedded to your Project 32
4.8 STEP Adapt Your Application Files 33

4.8.1 Including, Initializing and Cyclic Calling 33
4.9 STEP Functional Connection between your Application and CANdesc/CANdela Studio 35

4.9.1 How to handle User-Defined Handlers 35
4.9.2 How to Handle Predefined Handlers (for MainHandler only) 38
4.9.3 Handling OEM-Specific Settings 40

- 4 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Manual Information

4.10 STEP Compile and link your Project 41
4.11 STEP Test it via CANoe 41

4.11.1 Start CANoe.CAN OSEK TP enlarged 41
4.11.2 Test of CANdesc 42

5 Further Information 44
5.1 Diagnostic State Handling using CANdela Studio 45
5.2 Typical Examples of State Groups and States in an Automotive Environment 45
5.3 Creating and editing State Groups, States and Transitions 45
5.4 Connection between the states and your application 47
5.5 Diagnostic Buffer 48

5.5.1 Linear Diagnostic Buffer 48
5.5.2 Ring Buffer Mechanism 49

5.5.2.1 Activation of the Ring Buffer 51
5.5.2.2 Main Control Functions for the Ring Buffer Mechanism 51
5.5.2.3 Examples for Ring Buffer Mechanism 52

5.6 Repeated Service Call Feature 55
5.6.1 Activation of the Repeated Service Call 55
5.6.2 Repeated Service Call and Ring Buffer 1 – “Write and Check” 56
5.6.3 Repeated Service Call and Ring Buffer 2 – “Check and Write” 57

6 Additional Information 58
6.1 Persistors 59

6.1.1 Update Persistors – Install current Version 60

7 FAQs 63
7.1 Introduction 64
7.2 Frequently Asked Questions 64

8 What’s new, what’s changed 65
8.1 Version 1.7 66

8.1.1 What’s new 66
8.1.2 What’s changed 66

9 Address table 67

10 Glossar 69

11 Index 70

© Vector Informatik GmbH Version 1.7 - 5 -

Manual Information User Manual CANdesc

1 Manual Information

In this chapter you find the following information:

1.1 About this user manual page 7
 Certification
 Warranty
 Registered trademarks
 Errata Sheet of manufacturers

- 6 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Manual Information

1.1 About this user manual

The user manual provides the following access help: Finding information
quickly At the beginning of each chapter you will find a summary of the contents,

 In the header you can see in which chapter and paragraph you are,
 In the footer you can see to which version the user manual replies,
 At the end of the user manual you will find an index, with whose help you will

quickly find information,
 Also at the end of the user manual you will find a glossary in which you can look

up an explanation of used technical terms

Conventions In the two following charts you will find the conventions used in the user manual
regarding utilized spellings and symbols.

 Style Utilization
 bold Blocks, surface elements, window- and dialog names of the

software. Accentuation of warnings and advices.
[OK] Push buttons in brackets
File|Save Notation for menus and menu entries

 MICROSAR Legally protected proper names and side notes.
 Source Code File name and source code.
 Hyperlink Hyperlinks and references.
 <CTRL>+<S> Notation for shortcuts.

 Symbol Utilization

Here you can obtain supplemental information.

This symbol calls your attention to warnings.

Here you can find additional information.

Here is an example that has been prepared for you.

Step-by-step instructions provide assistance at these points.

Instructions on editing files are found at these points.

This symbol warns you not to edit the specified file.

© Vector Informatik GmbH Version 1.7 - 7 -

Manual Information User Manual CANdesc

1.1.1 Certification

Certified Quality
Management System

Vector Informatik GmbH has ISO 9001:2000 certification. The ISO standard is a
globally recognized standard.

Spice Level 3 The Embedded Software Components business area at Vector Informatik GmbH
achieved process maturity level 3 during a HIS-conformant assessment.

1.1.2 Warranty

Restriction of
warranty

We reserve the right to change the contents of the documentation and the software
without notice. Vector Informatik GmbH assumes no liability for correct contents or
damages which are resulted from the usage of the documentation. We are grateful for
references to mistakes or for suggestions for improvement to be able to offer you
even more efficient products in the future.

1.1.3 Registered trademarks

Registered
trademarks

All trademarks mentioned in this documentation and if necessary third party
registered are absolutely subject to the conditions of each valid label right and the
rights of particular registered proprietor. All trademarks, trade names or company
names are or can be trademarks or registered trademarks of their particular
proprietors. All rights which are not expressly allowed are reserved. If an explicit label
of trademarks, which are used in this documentation, fails, should not mean that a
name is free of third party rights.

 Outlook, Windows, Windows XP, Windows 2000, Windows NT, Visual Studio are
trademarks of the Microsoft Corporation.

1.1.4 Errata Sheet of manufacturers

Caution: Vector only delivers software!

Your hardware manufacturer will provide you with the necessary errata sheets
concerning your used hardware. In case of errata dealing with CAN please provide us
the relevant erratas and we will figure out whether this hardware problem is already
known to us or whether to get a possible workaround.

Info: Because of many NDAs with different hardware manufacturers or because we
are not informed about, we are not able to provide you with information concerning
hardware errata of the hardware manufacturers.

- 8 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Getting Started

2 Getting Sta

In this chapter you find the following information:

rted

2.1 How to use this Manual page 10

© Vector Informatik GmbH Version 1.7 - 9 -

Getting Started User Manual CANdesc

2.1 How to use this Manual

by step.

 nswers to special questions without reading the whole document us

 Just follow the description step

FAQ To find a e the
FAQ list (see section FAQs on page 63).

- 10 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

3 Basic Information

In this chapter you find the following information:

3.2 What is Diagnos 13tic page

3.3 What happens during Diagnostics? page 13

3.4 What is CANdesc? page 14

3.5 Tools and Files page 14
 CANdela Studio, CDDT, CDD
 Generation Tool, CDD, DBC
 Generation Process with CANbedded Software Components

3.6 What CANdesc does page 15

3.7 Diagnostics – a more detailed View page 17
 Basic Nomenclature from the Bottom Up
 The same Nomenclature from the Top Down
 Where to find this Nomenclature in CANdela Studio
 Generic Handling of a Diagnostic Request in the CANdesc Component
 User, None, OEM, Generated – what does this mean?

© Vector Informatik GmbH Version 1.7 - 11 -

Basic Information User Manual CANdesc

3.1 An Overall View

ECU in the focus What we are now talking about
shown in the figure below. Almost every

is an ECU, a module to be built-in a vehicle like
ECU participates in a certain bus system like

xRay or LIN. e.g. CAN, Fle

Vehicle with different bus systems
CAN Highspeed
CAN Lowspeed
LIN
FlexRay
MOST

 So any ECU within one bus system has to provide an identical interface to this bus
system because all ECUs have to share information via this bus system as you see in
the figure below.

CAN Lowspeed as
an example bus
system

 For that reason all ECUs are built-up in the same way. There is a software part to
realize the main job (application) of this ECU e.g. to control the engine or a door. The
other part is the software part to be able to communicate with the other ECUs via the
bus system that is the communication software.

- 12 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

Application Software

Software for Network
Communication and Diagnostics

3.2 What is Diagnostic

Dia'gno stics -
Detection,
Examination of a
machine;

[greek. diagnoskein
„analyze deeply,
differentiate]

In contrast to Dia’gno
 sis – Examination

(med.)

Diagnostics in a technical context is the examination of a machine. But diagnostics in
this context goes way beyond this definition.

Diagnostics comprises function monitoring, error detection, fault memory, activation,
data acquisition etc. and is used for variant coding, end-of-line programming,
reprogramming, identification etc.

3.3 What hap

In most cases an Off-Board tester (Client) sends a diagnostic request to the ECU (via
CAN) and the ECU (Server) sends back a diagnostic response. This can be a positive
or a negative response. The following figure clearly shows a basic representation of
this mechanism.

CANdesc –

CAN Diagnostic
Embedded Software
Component

pens during Diagnostics?

© Vector Informatik GmbH Version 1.7 - 13 -

Basic Information User Manual CANdesc

3.4 What is CANdesc?

CANdesc is totally
generated based
upon the CDD file.

CANdesc stands for CAN Diagnostic Embedded Software Component.

This software component differs from all other CANbedded Software Components in
that it is totally generated. To be able to generate this component you need a CDD
file, a DBC file and the generation tool (GENy / CANgen).

Generated Software

Component based
on .CDD and .DBC

Info: The CANdesc will be explained in the section Generic Handling of a Diagnostic
Request in the CANdesc Component on page 21, where you will get detailed insight
into the CANdesc Component and how it works when processing a diagnostic
request.

3.5 Tools and Files

3.5.1 CANdela S

ela
CANdela Studio is a PC tool. It reads in the diagnostic template file CDDT and
generates a diagnostic data base, the CDD file.

The CDDT is a description of the OEM diagnostic specification.

All necessary diagnostic information, such as supported diagnostic services, sub
services, format, signals, state filters, state transitions etc., is described via CANdela
Studio and stored in the CDD file.

To use the CANdesc component, you need the CDD file and you need to know how
to make the necessary settings in CANdela Studio.

3.5.2 Generation Tool, CDD, DBC

Remember to add
the path to the CDD
file in the Generation

ol

There is the same
DBC file per bus

The generation tool (GENy / CANgen) is a PC Tool, too. It generates configuration
files and signal interface files for the CANbedded Software Components. The
generation tool needs the DBC file to generate the files.

The DBC file is designed by the vehicle manufacturer and distributed to all suppliers
that develop an ECU. Thus every supplier uses the SAME DBC file for one vehicle
platform and one bus system (powertrain, body CAN etc.) to guarantee a common

tudio, CDDT, CDD

All settings you have
to do in CANd
Studio to use
CANdesc are stored
in the CDD file.

To

- 14 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

system (high speed,
low speed, etc) for all

basis for developm
For example, ever

suppliers to
n

ent.
y ECU has to know that a 1 in bit 7 in the 4th byte of the message

0x305 means “Ignition Key” on/off.

s the

n Process with CANbedded Software Components

 Normally the generation tool generates files that contain the configuration and the
signal interface of the CANbedded Software Components. CANbedded can be
compiled and linked using the source code of each component.

The standard
generation process
for Vector Software
Components.

Component

guarantee a commo
basis for
development

The DBC file contains information about every node and the messages / signal
node has to send and to receive.

When using CANdesc for diagnostics the CDD file must be read in by the generation
tool, to be able to generate the CANdesc code.

3.5.3 Generatio

CANdesc is a
completely
generated Software

 The main difference for CANdesc is that the source code for CANdesc is totally
generated from the CDD file and therefore not included in your delivery as the other
software components are. Since the CDD file contains most of the information about

onal request with appropriate
response message headers, corresponding to the given KWP2000/UDS (ISO

CANdesc, there are only a few configuration settings left that can be done via the
generation tool on the CANdesc tab

3.6 What CANdesc does

Handles Diagnostic
Communication

 CANdesc receives addressed requests physically or/and functionally
 CANdesc generates and handles a physical or functi

14229-1) Diagnostics on CAN manufacturer specification.
 CANdesc connects to underlying Transport Protocol and handles the

communication errors of the underlying layers.

© Vector Informatik GmbH Version 1.7 - 15 -

Basic Information User Manual CANdesc

 CANdesc is capable of communication on any bus systems, using an own
abstraction interface.

Manages Diagnostic
Data (Buffer)

 CANdesc keeps the data consistency, which guarantees that no other request wi
delete the current diagnostic re

ll
quest data being processed.

dles Diagnostic
rors

ror handling based on the method
report only first detected error.

Response pending”,

nalyzes Requests
(state machine,
filtering)

d

 CANdesc analyzes the service instance. This includes recognition of the service-
specific sub functions for each supported SID. The request length is validated if it
is defined to be constant. For dynamic fields, the application must do range
checking of the request length.

 CANdesc validates the states. The component ensures that a service is only
executed if the diagnostic state allows the processing of that service. E. g. some
services are only allowed to be executed inside a special diagnostic session. If
the current state does not allow the execution, a corresponding negative
response is sent automatically.

rocesses the
quest (optional)

 CANdesc generates a complete diagnostic handler function which fills out the
correct response data for the application.

 CANdesc generates signal handlers to help the application place the response
information.

 CANdesc generates a Service MainHandler which will use data access functions
provided by the application, but will place the information on the message as
defined in the diagnostic data description.

 CANdesc dispatches incoming request(s) to the application (Service MainHandler
or signal handler level).

 CANdesc prrovides centralized diagnostic erHan
Er

 CANdesc monitors timeouts (e.g. S3- “Tester Present”, P2- “
etc.).

A CANdesc detects relevant SID (Service Identifier) for the ECU. If an SID is not
supported by the current configuration, the appropriate reaction will be execute
(e.g. negative response or the request will be ignored).

P
re

- 16 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

3.7 Diagnostics – a more detailed View

 this chapter you find the following information: In

3.7.1 Basic Nomenc page 18lature from the Bottom Up

3.7.2 The same Nomenclature from the Top Down page 19

3.7.3 Where to find this Nomenclature in CANdela Studio page 19

3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component page 21

3.7.5 User, None, OEM, Generated – what does this mean? page 23

© Vector Informatik GmbH Version 1.7 - 17 -

Basic Information User Manual CANdesc

3.7.1 Basic Nomenclature from the Bottom Up

Using the same

the same thing

Basic diagnostic communication is based upon a request / response mechanism. To
ela Studio it is necessary to make some detailed

est and responses (positive and negative) forms a
re below. A service (in the scope of CANdesc) is a

d service primitives.

e Identifier =
ID

Build-up of Requests
and Response
Messages

expressions does not
mean to talk about

understand the structure of CANd
naming definitions.

The combination of a requ Service,
as you can see in the figu concrete

This nomenclature service of an ECU.

should help to
proceed with

Request and responses are so-calle

CANdesc and
CANdela.

Servic
S

Service

Protocol Service

Request

Response

Diagnostic Instance

Diagnostic Class

A protocol service is a pattern for a service. The protocol service defines how the
service primitives have to be built up. It determines the number and meaning of bytes
for the sub service, and specifies the data bytes.

Info: The order of service identifier, sub service and data bytes can be found at the
byte stream level, too.

Request A request is a service primitive and is created as shown in figure above. A request is
always sent from a tester to an ECU. The ECU processes the request and has to
send back a response message.

Response

The positive response is calculated very easily by just adding the value 0x40 (hex
format) to the SID of the request. The sub service is just repeated from the request
and the data depends on the service.

The negative response always starts with 0x7F as the SID followed by the SID of the
request. The error code shows the reason for the negative response (e.g. wrong
format of the request, …).

 Services with the same sub service (similar functional scope) are combined into the
same Diagnostic Instance. This sub service is the characteristic factor for the

- 18 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

diagnostic instance.

nostic class.

ame Subservice are

ned into a
 -

n
n

A diagnostic instance is a part of a diag

A diagnostic class is the abstract description of a use case.

This is shown in the following two illustrations.

Services with the
s
combi
Diagnostic Instance
the Sub Functio
4000 is Just a
Example

Service 4
4000Request

4000Response
(positive)
Response
(negative)

Service 4
4000Request

4000Response
(positive)
Response
(negative)

Service 3
4000Request

4000Response
(positive)
Response
(negative)

Service 3
4000Request

4000Response
(positive)
Response
(negative)

Service 2
4000Request

4000Response
(positive)
Response
(negative)

Service 2
4000Request

4000Response
(positive)
Response
(negative)

Diagnostic Instance

Service 1Service 1
4000Request

4000Response
(positive)
Response
(negative)

4000Request

4000Response
(positive)
Response
(negative)

 Diagnostic

ss

A
Instance is a part of
a Diagnostic Cla

Service 4
100ARequest

100AResponse
(positive)
Response
(negative)

Service 3
100ARequest

100AResponse
(positive)
Response
(negative)

Service 2
4000Request

4000Response
(positive)
Response
(negative)

Service 1
4000Request

4000Response
(positive)
Response
(negative)

Diagnostic Instance 2

Service 4
100ARequest

100AResponse
(positive)
Response
(negative)

Service 3
100ARequest

100AResponse
(positive)
Response
(negative)

Service 2
4000Request

4000Response
(positive)
Response
(negative)

Service 1
4000Request

4000Response
(positive)
Response
(negative)

Diagnostic Instance 2

Diagnostic Class

Service 4
4000Request

4000Response
(positive)
Response
(negative)

Service 3
4000Request

4000Response
(positive)
Response
(negative)

Service 2
4000Request

4000Response
(positive)

Diagnostic Instance 1

Response
(negative)

Service 1
4000Request

4000Response
(positive)
Response
(negative)

Service 4Service 3
Service 2 4000Request

4000Response
(positive)
Response
(negative)

4000Request

4000Response
(positive)
Response
(negative)

Service 1 4000Request

4000Response
(positive)
Response
(negative)

4000Request

4000Response
(positive)
Response
(negative)

Diagnostic Instance 1

e same Nomenclature from the Top Down

understand both
directions.

A diagnostic class is an abstract description of a use case.

A diagnostic instance is derived from a diagnostic class. Some diagnostic classes

).
ontains services.

Services are composed of the three service primitives: request, positive response

nformation unit exchanged between the
tester and the ECU. In the automotive environment you call them signals, too.

.7.3 Where to fi

Getting around in
CANdela Studio you

CANdela Studio where to make the necessary settings.

3.7.2 Th

CANdela is top
own, CANdesc d

bottom up – try to can be instantiated only once. Any diagnostic instance is unique and can be
distinguished from another diagnostic instance via its sub service (e.g. data identifier
A diagnostic instance c

and negative response. The protocol service is the pattern for the service, the
grammar definition.

The service primitive data is a concrete i

3 nd this Nomenclature in CANdela Studio

To generate CANdesc you will have to make settings in the CDD file, i.e. you will
have to work with CANdela Studio. That’s the reason why it is very important that
get to know the areas in the

Below there is a screenshot of CANdela Studio.

© Vector Informatik GmbH Version 1.7 - 19 -

Basic Information User Manual CANdesc

See the Diagnostics
Classes and
Diagnostic Instances
in the CANdela
Studio tree structure

 The structure within CANdela Studio is top down. In the tree on the left of CANdela
Studio you will find the diagnostic class and the diagnostic instances as shown in the
figure above.

Info: To get familiar with the idea of diagnostic classes and diagnostic instances,
have a look at all supported diagnostic classes. Verify for yourself what is meant by
abstract description of a use case, e.g. talking about Sessions, Security Access,
Fault Memory…

 If you click on a Service Instance you get a
figure to understand the different areas on th

window like the following figure. Use this
e diagnostic instance window and to

close the gap between the nomenclature in the section above and it appears in
CANdela Studio.

- 20 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

Diagnostic Instance
window of CA
Studio – a very
important window

Ndela

3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component

What happens in the
CANdesc if a
diagnostic message
received?

es.
c.

Now you know the basic diagnostic elements and the build-up of diagnostic servic
Now we take a closer look at how the diagnostic services are processed by CANdes
You also need to know these processing steps so you can control and adapt this
process.

Info: For this adaptation you have to use CANdela Studio.

The following figure shows the processing of a diagnostic service in detail.

© Vector Informatik GmbH Version 1.7 - 21 -

Basic Information User Manual CANdesc

Processing a
Diagnostic Message
received by
CANdesc and the
c
A

onnections to the
pplication.

 Everything starts with a diagnostic request from a tester to the ECU.

Info: The path of this message through the CAN Driver and the Transport Protocol is
not shown in the illustration.

ect

 to the tester. The error
code informs about the reason (e.g. wrong format).

 function
et it to

<none>, <user> or <OEM>.

 The next function is the MainHandler. This is a mandatory function. Every service
must provide a MainHandler. The MainHandler is designed to analyze the request
and assemble the response message. The MainHandler provides the options <user>,
<OEM> and <generated>.

 After the MainHandler has processed the diagnostic data, provided the data for the
response and informed the CANdesc Component about the end of the processing
(processing done), the positive response message will be sent back to the tester.

 Now this incoming diagnostic request will be checked in different ways. Is the SID
supported in the ECU? Is this SID supported in the current session? Is the service
supported? Is the format of this request message correct, i.e. correct length? Corr
data? etc.

If any of these checks fail a negative response is sent back

If the incoming diagnostic request passes all of these checks, a PreHandler
could be called. This PreHandler function is optional. You have options to s

Info: The path through the Transport Protocol and the CAN Driver is not shown in the
figure above.

 After the diagnostic response is sent by the transport layer (ACK)…

 …the call of the PostHandler function is triggered. This function is optional too and

- 22 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

can be set to <none>, <user> and <OEM>. Use this function to do any kind of state
updates.

Info: A typical example for the PostHandler is to reset the CPU to start the
bootloader.

3.7.5 User, None, OEM, Generated – what does this mean?

 As you have read in the section above, a Pre-, Main- and PostHandler can be
selected for any service to process the diagnostic service in a very user-friendly
manner.

All handlers can be
defined via CANdela
Studio

Handler Selectable settings

 PreHandler none, user, OEM
 MainHandler user, OEM, generated
 PostHandler none, user, OEM

None

er The setting user means that you have to do the complete code for this handler. The

OEM (predefined)
tion is part of the CANbedded Software Component. The user does not

have to add anything.

None can be selected for Pre and PostHandlers only because these handlers are
optional. As the name says, none switches the handler off.

Us
function prototype is generated in appdesc.h.

The setting OEM handles the request as required by the car manufacturer. The
implementa

Info: The setting OEM should only be used if it is predefined.

Generated
ignal Handler)

have two options for this handler (MainHandler)

1. Generate a function prototype (appdesc.h). Use this function to handle the

his variable is generated and you only need to define this

If you select Generated you
(S

diagnostic data by returning the current value (reading service) or using the
parameter (writing service).

2. In CANdela Studio you can enter the name of the variable. In appdesc.h the
external declaration of t
variable in your application and that’s all. Your application now just has to keep
the content up to date.

Cross reference: For more details about the using the handlers and how to make the
settings in CANdela refer to STEP Functional Connection between your Application
and CANdesc/CANdela Studio on page 35.

© Vector Informatik GmbH Version 1.7 - 23 -

A Few STEPS to CANdesc User Manual CANdesc

4 A Few STE

In this chapter you fin ing information:

PS to CANdesc

d the follow

4.1 STEP What do you need before start? page 25

4.2 Startup Code page 25

4.3 Overview 25 page

4.4 STEP Installatio e 26n pag

4.5 STEP Configura e Generation Tool page 26tion with th
 Using the Generation Tool CANgen
 Using the Generation Tool GENy

4.6 STEP Generating page 29 Files
 Using Generatio en n Tool CANg
 Using the Gener y ation Tool GEN

4.7 STEP Add CANb r Project page 32edded to you

4.8 STEP Adapt You 33r Application Files page
 Including, Initializing and Cyclic Calling

4.9 STEP Functional Connection between your Application and CANdesc/CANdela Studio page 35
 How to handle User-Defined Handlers
 How to Handle Predefined Handlers (for MainHandler only)
 Handling OEM-Specific Settings

4.10 STEP Compile and link your Project page 41

4.11 STEP Test it via page 41 CANoe
 Start CANoe.CAN OSEK TP enlarged
 Test of CANdesc

- 24 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

4.1 STEP What do you need before start?

 you have received everything you need.

edd ded delivery?

Except for the converter, you should answer all other questions with yes befo
ere.

.2

yo rtup code of the microcontroller is not part of the Vector delivery. Th
s in your responsibility.

ide an appropriate startup code regarding e.g. wait states, etc.

Check before you
start

Before you start make sure that

CANb ed Did you get the CANbed

YES? Then go on re going
on h

4 Startup Code

It is ur The sta e startup
responsibility code complete i

Take care to prov

Info: The startup code is not part of the Vector delivery.

4 Overview .3

steps to CANdesc. These steps are described in de
ing sections.

Step overview This overview shows the tail on
the follow

© Vector Informatik GmbH Version 1.7 - 25 -

A Few STEPS to CANdesc User Manual CANdesc

4.4 STEP Installation

As you see in the picture before, you need 2 PC tools to work with CANbedded

delivered with the CANbedded Software
Components. Extract the files to an appropriate folder and follow the installation

containing CANdesc as a diagnostic component.

Generation Tool The first tool is the generation tool. It is

instructions.

Info: There are two kinds of generation tools, CANgen and GENy. Which of them you
have to us
are shown

e depends on the delivery. In the following steps the usage of both tools
.

CANdela Stu

dio

edded
ftware

Components

To use CANdesc you need at least a CAN Driver and a Transport Protocol (e.g.

Copy all C and H files which are necessary for the components into your application
project folder.

The second PC tool is CANdela Studio. This tool is for editing the *.CDD file. Install
the tool by following the installation instructions.

Extract CANb
So

The number of CANbedded components in your delivery depends on your project.

OSEK / ISO 15765-2).

Cross reference: Refer to the corresponding user manuals (e.g. CANDriver User
Manual) to get further information about the files of the different Software
Components.

Info: Since CANdesc is totally generated, you won’t find any source files for CANdesc
in your delivery.

4.5 STEP Configuration with the Generation Tool

In t

As described above there are two generation tools for configuring the CANbedded
Software Components, CANgen and GENy.

e following chapters we describe the handling of both tools, beginning with
en. Figure out which tool you use and read the corresponding chapters only.

 the G

Open CANgen. Add a data base (DBC file) via the green plus

h
CANg

4.5.1 Using eneration Tool CANgen

.

Info: Normally you get a data base (DBC) from your vehicle manufacturer that is
designed for your project.

Are the files
generated in the

Make all the component settings as described in the appropriate User Manuals. For
the Transport Protocol use the default [Set Defaults] for the first attempt.

- 26 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

correct path?

Info: Remember to set the paths where the generation tool does the output.

Very few settings
have to be made in
the Generation Tool
CANgen for
CANdesc

To configure CANdesc, open the CANdesc options tab. For this first attempt click
[Set Defaults]. The generation tool needs to read an additional data base, the
CANdela data base (CDD file). Browse for the CANdela data base file and select the
CDD file you received from your vehicle manufacturer.

If the two checkboxes for debugging are checked you have to provide debug callback
functions in your application.

A very important entry is the Call Cycle. This call cycle must be the one you call the
DescTask function or the DescTimerTask function in your application (this will be
explained in detail in the next steps).

Using the Generation Tool GENy

Open the generation tool GENy and create a new project as described in the
OnlineHelp of GENy in the chapter First Steps.

4.5.2

Info: Normally you get a data base (DBC) from your vehicle manufacturer that is
designed for your project.

onent settings as described in the appropriate User Manuals.

Make all the comp

Info: Remember to set the paths where the generation tool does the output.

© Vector Informatik GmbH Version 1.7 - 27 -

A Few STEPS to CANdesc User Manual CANdesc

 Activate the component CANdesc in the component selection view.

iew of

Component
Selection V
GENy

 The activation of the CANdesc component is modified with the

mponent
Selection View of

CAN component

Diag_CANdesc_xxx.DLL version 3.0.

Co

GENy with separate
CANdesc_Connector

sc can be connected to more than one channel or
can be used standalone. The Diag _CANdesc_UDS/KWP component includes the

on N
component connects CANdesc to a CAN network and configures the TPMC to work

 Starting with this version CANde

main configuration window of CANdesc. The Diag_CANdesc_C nectorCA

with CANdesc.

Caution: If you do not activate CANdesc_ConnectorCAN component CANdesc will
generate successful as standalone CANdesc. Therefore it is necessary to connect
CANdesc with the CANdesc_ConnectorCAN component to a channel, if the TPMC
shall be used.

- 28 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

GENy Configuration
View for CANdesc

view. As you see in the figure above, the

rt are checked you have to provide debug
plication.

 the

4.6 n

.6.1 Using Gene

To configure CANdesc, open the CANdesc configuration via the
Diag_CANdesc_UDS in the navigation
generation tool needs to read an additional data base, the CANdela data base (CDD
file). Browse for the CANdela data base file and select the CDD file you received from
your vehicle manufacturer.

If the two checkboxes for Debug Suppo
callback functions in your ap

A very important entry is the Call Cycle (“Cycle Time”). This call cycle must be
one you call the DescTask function or your DescTimerTask function in your
application (this will be explained in detail in the next steps).

STEP Ge erating Files

4 ration Tool CANgen

If you have finished the settings in the previous step, hit the [Generate] button.
You get a message box containing information about the generation process and a
[Success] window containing information about the generated files and their paths.
Check to see if the files are generated into the correct folders.

© Vector Informatik GmbH Version 1.7 - 29 -

A Few STEPS to CANdesc User Manual CANdesc

Success Win
after a Generation
Process

dow

 Open the folder you generated in the files listed above. There you should find the
generated files for CANdesc, too. These are:

desc.c

This file contains the implementation and the private interface of the Diagnostic
Software Component.

esc.h

appdesc.c
s. All necessary callback functions are generated in this file and

commented what is left to be done (<<TBD>>). See the example below:

d This file contains the public interface of CANdesc. You will also find the <Negative
response codes> here.

This file is an implementation example for the proper usage of the diagnostics
callback function

Example: Extract of the Generated Callback Functions Template.

- 30 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

/* **
* Function name:ApplDescReadVoltageService_Instance_For_Demonstration_Purposes
* Description: Reads a signal.
* Returns: signal value
* Parameter(s): none
* Particularitie(s) and limitation(s):
* - The function "DescProcessingDone" may not be called.
* - The function "DescSetNegResponse" may not be called.
** */
vuint8 DESC_API_CALLBACK_TYPE

ApplDescReadVoltageService_Instance_For_Demonstration_Purposes(void)
{

/*<<TBD>> Remove this comment once you have completely implemented this function!!!*/
/*Return the signal value.*/
return 0xFF;

}

/* **
* Function name:ApplDescReadCurrentService_Instance_For_Demonstration_Purposes
* Description: Reads a signal.
* Returns: signal value
* Parameter(s): none
* Particularitie(s) and limitation(s):
* - The function "DescProcessingDone" may not be called.
* - The function "DescSetNegResponse" may not be called.
** */
vuint8 DESC_API_CALLBACK_TYPE

ApplDescReadCurrentService_Instance_For_Demonstration_Purposes(void)
{

/*<<TBD>> Remove this comment once you have completely implemented this function!!!*/
/*Return the signal value.*/
return 0xFF;

}

/* **
* Function name:ApplDescReadResistanceService_Instance_For_Demonstration_Purposes

YPE
ApplDescReadResistanceService_Instance_For_Demonstration_Purposes

*

* Description: Reads a signal.
* Returns: signal value
* Parameter(s): none
* Particularitie(s) and limitation(s):
* - The function "DescProcessingDone" may not be called.
* - The function "DescSetNegResponse" may not be called.
** */
vuint16 DESC_API_CALLBACK_T

(void)
{

/*<<TBD>> Remove this comment once you have completely implemented this function!!! /
/*Return the signal value.*/
return 0xFFFF;

}

pdesc modification If you start programming in the file appdesc.c, you fill in the missing code for the
new generation process, the generation tool detects whether
d or not:

Ap

Detection to prevent
loss of changes

services and you start a
the file has been change

Info: So better rename the file before you implement the diagnostic services.

appdesc.h This file provides prototypes of the application diagnostic callback functions and

© Vector Informatik GmbH Version 1.7 - 31 -

A Few STEPS to CANdesc User Manual CANdesc

All callback functio
prototypes are
generated

n

 in
appdesc.h.

external application declarations, which are accessed by CANdesc.

Appdescdev.c This file contains the definition of the used variables in CANdela Studio.

Info: This file shall be used only during the first integration in order to make your
project fully compile- and linkable. This file is no necessary later, since the variables
that will be defined here shall be implemented within your ECU application code.

Cross reference: (see section How to Handle Predefined Handlers (for MainHandler
only) on page 38)

4.6.2 Using the Generation Tool GENy

s step, hit the [Generate]

If you have finished the settings in the previou button.

Info: All files for the CANdesc Software Component are generated!

Generated Files for
Ndesc –CANdesc

re
o!

iew you see the files listed as shown in the figure below. Use
this output to check the paths. In the list you only see the CANdesc-relevant files. The

ation.

In the Generated Files v
CA
Core Files a
Generated, to

files are the same as generated with CANgen, so refer above for detailed inform

4.7 STEP Add CANbedded to your Project

What to do in this step depends on your development environment. Perhaps you are
working with a makefile?

Regardless of this you have to add the CANbedded files to your project. These are
the files discussed in Section Extract CANbedded Software Components on page 26
and the ones generated in the previous step.

Caution: Always make sure that the path in which you generate the files and the path
your compiler is working on are the same!

 Now there are several adaptations for you to make in your application.

- 32 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

4.8 STEP Adapt Your Application Files

Now all files for CANbedded and CANdesc are included in your project, and we can
go on to make the necessary adaptations in your application files.

 These adaptations can be split in two categories:
 Include, initialize and make the cyclic calls for the CANbedded Software

Components (use the component-specific documentation for details).
 Connect your application to CANdesc

4.8.1 Including, Initializing and Cyclic Calling

Two CANdesc
headers have to be
included in your
application:

desc.h

appdesc.h

Keep the including
file structure.

As for all other CANbedded Components, CANdesc must be included, initialized and
used via a cyclic call.

The figure shows all generated files of CANdesc. Your application only needs to
include the files desc.h and appdesc.h in the order they are mentioned.

Info: Any User Manual dealing with our CANbedded Software Components shows
this kind of illustration. Always keep the

include file structure that is shown.

Like all other
CANbedded
Software
Components,
CANdesc must be
initialized and the
Interrupts must be
disabled during
initialization

As for all other CANbedded Software Components the initialization function follows
the same naming conventions. For CANdesc use:
DescInitPowerOn(initParameter);
 /*Interrupts must be disabled*/

Cross reference: For information about the initParameter refer to your OEM-specific
Technical Reference for CANdesc.

 Make sure that DescInitPowerOn is called after the call of CanInitPowerOn and

© Vector Informatik GmbH Version 1.7 - 33 -

A Few STEPS to CANdesc User Manual CANdesc

TpInitPowerOn.

Normally the components are initialized from the bottom up according to the layer
model. Always do these initializations with disabled interrupts.

This is the correct order of initialization if you use CAN Driver, Transport Protocol and
CANdesc.

1. CanInitPowerOn();

2. TpInitPowerOn();

3. DescInitPowerOn(0);

 As you adjusted things in Using the Generation Tool CANgen on page 26 (Call cycle

tions to call cyclically are:

DescTask() or
escTimerTask()

cally and keep
e adjusted call
cle

ther with DescStateTask)

for CANdescMain) the components need a cyclic call in your application to work
properly. The call cycle must be the same as entered on the CANdesc tab / view
(CANgen / GENy). The func

It is very important
that you call

DescTask(); or
DescTimerTask(); (toge

D
cycli
th
cy

Caution: Never use DescTask() and DescTimerTask() / DescStateTask() together!

Using DescTask With the call of this single function the handling of the timers and of the internal
service processing (including application functions) is triggered. If you receive a
diagnostic request, the response can be handled not until the next call of DescTask.

Info: This could lead to slower service processing.

Using
scTimerTask
d

This concept splits the timer handling for CANdesc from the internal service
processing. Now only the function DescTimerT has to be called in the predefined
(configuration tool) cycle time.

cyclic manner too, but does not
st to speed-up the reaction on a

diagnostic request or it can be called as soon as there are free resources (e.g. an idle

De
an

ask()

DescStateTask
The function DescStateTask() has to be called in a
need a fix cycle time. It can be called very fa

task in an operating system).

Info: CANdesc and DescTimerTask use the cyclic call as a time base for the timing
calculations.

Do not make this call out of a timer interrupt. J

ust call DescTask() or
DescTimerTask() at the task level.

- 34 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

4.9 STEP Functional Connection between your Application and
CANdesc/CANdela Studio

 It is up to you when you perform this step: before STEP Configuration with the
Generation Tool (page 26), as a part of STEP Adapt Your Application Files (page 33)
or perhaps at both times.

Info: There is a very close connection between the settings in CANdela Studio and
what to do in your application.

Have a look a look at section Generic Handling of a Diagnostic Request in the
CANdesc Component on page 21.

 As you can see, there are three types of handlers (Pre-, Main- and PostHandler) that

he handlers. For this decision you need an overview of the
great flexibility arising with the choice.

We will first go through the possible settings for one service as an example. With the
knowledge you gain from this you can then go on with the other services.

The settings of the handlers value can be made in the Properties windows of each
 tab (see values in the following figure).

apped
to your application?

Support for the
different Handlers
can be adjusted on
the Service Property

ge

can be selected for any service. It is very important to know what happens when you
choose the Value for t

service on the Attributes

How are the settings
in CANdela m

Pa

ow to han

4.9.1 H dle User-Defined Handlers

If you choose for the handlers to be user-defined, you have to do all the programming
work for this service yourself, except for the checks. A callback function prototype will
be generated in the file appdesc.h.

Service Qualifier

Open the Service Properties and then the General tab.

© Vector Informatik GmbH Version 1.7 - 35 -

A Few STEPS to CANdesc User Manual CANdesc

Open the Diagnostic Instance Properties and then the

Diagnostic Instance
ualifier

General Tab
Q

Names
generated callback
functions

 of the

The names of these callback functions are built as the following

Example: For this example, the callback function would look like this:

appldesc + Read + Service_Instance_For_Demonstration_Purposes

appldesc +Pre+ Read + Service_Insta

nce_For_Demonstration_Purposes

appldesc +Post+ Read + Service_Instance_For_Demonstration_Purposes

with parameters:
void ApplDescReadService_Instance_For_Demonstration_Purposes(DescMsgCont
void ApplDescPreReadService_Instance_For_Demonstration_Purposes(void);
void ApplDescPostReadService_Instance

ext* pMsgContext);

_For_Demonstration_Purposes(vuint8 status);

 Now you have to provide all the prototypes of the appdesc.h file as functions in your
application and do the coding for each service, i.e. for each Pre-, Main- and
PostHandler that is switched to User.

See an example for a ReadDataByIdentifier MainHandler for the service above

- 36 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

defined for User. The data bytes of this service are:
 g_Voltage (1 Byte)
 g_Current (1 Byte)
 g_Resistant (2 Bytes)

ws the data access for a reading service (upper figure)

and a writing service.

A writing service consists of a SID, perhaps a Sub-Service and the data. The

ly need to process the data. That is the reason

To process this service by yourself, you need to know how to access the diagnostic
data. The following figure sho

A reading service consists of a SID and perhaps a Sub-Service. The requested data
is then sent with the response.

response is only a confirmation with SID+0x40 and perhaps a Sub-Service.

When working with CANdesc you on
why the pointer is directed to the first data byte.

The same Diagnostic Buffer is used for receiving a diagnostic request AND sending the response

SID
SID + 0x40

Diagnostic
Buffer
(RAM Memory)

Sub Service
Sub Service

-
Data

-
Data

-
Data

Positive Diagnostic response

Diagnostic request (A: reading service)

reqDataLen = 0

reqData[0]

resDataLenresData[0]

resData[2]resData[1]

reqData[0]

SID
SID + 0x40

Diagnostic
Buffer
(RAM Memory)

Sub Service
Sub Service

Data
-

Data
-

Data
-

Diagnostic request (B: writing service)

Positive Diagnostic response

reqDataLen

resDataLen = 0
resData[0]

reqData[2]reqData[1]

Info: The request data and the response data are stored to the same memory
location. Writing the response data means deleting the request data.

Code Example for
e MainHandler

Example: The example below shows a very easy way to process a diagnostic
request. The data is copied to the Diagnostic Buffer, the amount of the response
data is determined and the diagnostic service is finished via DescProcessingDone.

th
Using the User
Option

© Vector Informatik GmbH Version 1.7 - 37 -

A Few STEPS to CANdesc User Manual CANdesc

Example: When preparing the diagnostic response, it is very important to provide the
correct data and calculate the length of the response (resDataLen).

To finish the service processing with a positive response, call:

DescProcessingDone();

For a negative response, finish the service processing with:

DescSetNegResponse(<errorCode>);

DescProcessingDone();

Info: A negative response can also be set in the PreHandler. There it is enough to
call DescSetNegResponse(<errorCode>). The PreHandler must not be finished with

es.

Remember: in the PreHandlers no access to the diagnostic data buffer is possible.

DescProcessingDone. See desc.h for the definitions of the error cod

Response pending
will be sent
automatically by
CANdesc

What to do if the response cannot be sent immediately?

In some cases (e.g. writing data to the EEPROM) you cannot send the response
immediately, but you need not treat this as an exception. CANdesc will automatically
inform the tester about the delay in the diagnostic response. So process the request
and if you finish it, send DescProcessingDone. All other timing aspects are realized
by CANdesc (Response Pending).

4.9.2 How to Handle Predefined Handlers (for MainHandler only)

If you select generated you need not to program the complete service by hand. Using
this option gives you two further options:

1. A signal callback function will be generated

2. You can tell CANdela the name of the variable (and data type) for a certain
service and you only have to provide this variable in your application code.

To get a signal callback function generated, i.e. to implement the first option, right
click on a data object and choose Properties from the pull down menu. Now the

le it is the data
ct Voltage.

Properties window of the chosen data object opens. In this examp
obje

- 38 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

Signal Access via the
Application and a
Callback Func

tion

Example: Make sure that the Overwritten Value field on the Attributes tab is empty.
The generated prototype should look like this.

vuint8

ApplDescReadVoltageService_Instance_For_Demonstration_Purposes(
void);

Example: All you have to do in your application for this MainHandler is to provide the
function ApplDescReadVoltageService_Instance_For_Demonstration_Purposes and
return the current value for the voltage stored anywhere in your application. The data
type of the return value will be adjusted automatically to the data type (Element Type)
in CANdela Studio. In this case it is a 1 byte value, therefore it is the data type vuint8

oses(

{

.

vuint8

ApplDescReadVoltageService_Instance_For_Demonstration_Purp
void);

 return g_Voltage;

}

t
ot

ng

ming work
left to do

The second option is to connect the settings in CANdela Studio more closely to your
application. Do the same steps as described above, but now enter the name of the
variable in the value field of the Attributes tab as shown in the following figure.

Generated does no
mean that you do n
have to do anythi
– but there is little
program

© Vector Informatik GmbH Version 1.7 - 39 -

A Few STEPS to CANdesc User Manual CANdesc

Direct Signal Access

Example: Now an external declaration of the variable g_Voltage prototype should be
generated.

extern vuint8 g_Voltage;

The data type for this declaration again depends on the element type of the data
object, in this case 1 byte again.

Provide g_Voltage in your application (or use the appdescdev.c) and use it for storing
the current voltage value. If a diagnostic request requests this value, CANdesc
automatically refers to the content of g_Voltage. There is nothing more left to do f
you.

or

4.9.3 Handling OEM-Specific Settings

 The third choice is OEM. Do not change this. If the setting is on OEM, leave the
settings as they are and refer to the OEM-specific documentation on how to deal with
this service.

Now your task is to implement all diagnostic services you have to support and select
the desired status for Pre-, Main- and PostHandlers (none, user, OEM, generated).

Caution: Do not touch the OEM-defined handlers.

 Then save the settings. This will change the CDD file. Depending on which step you
are on right now, either

- 40 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

continue with STEP Configuration with the Generation Tool on page 26 or

start the generation process again to generated the files containing the changes you
made.

Info: Sometimes in development, not all diagnostic services have been defined yet by
the OEM. Provide this function anyway and send a negative response back. Then you
can compile and link and test the other functions until the specification of the missing
services is completed.

4.10 STEP Compile and link your Project

Now we have all the includes and all initializations. The components have the cyclic
calls of their task functions and all callback functions are provided and programmed.

Start the compiler or makefile and get the project compiled and linked.

Is it ok? No errors?

Congratulations! That’s it.

Go on to the next step and do the testing.

4.11 STEP Test it via CANoe

Since you have arrived at this step, you are now able to compile and link. Have you
already downloaded the code to your target platform?

e generated CANdesc depends on you and the OEM you are working for.

not have an appropriate tester, we recommend using CANoe (a Vector PC
tool) and one of its demo configurations.

4.11.1 Start CANo

The CANoe demo
environment is very
simple way to
basically test
requests and
responses

n via Start/Programs/CANoe/Demos/More Demos/CANoe.CAN OSEK
d.

Testing of th
Perhaps you do have a diagnostic tester, perhaps not.

If you do

e.CAN OSEK TP enlarged

To test you diagnostics layer use one of the CANoe demo applications. Open this
configuratio
TP enlarge

A CANoe configuration will open with four nodes (A to D). All nodes look quite the
same like this:

© Vector Informatik GmbH Version 1.7 - 41 -

A Few STEPS to CANdesc User Manual CANdesc

Set the baud rate in CANoe to the one of your ECU and connect it to CANoe via CAN
(CANcardXL, CANAC2…). Now run CANoe via the yellow lightning bolt and run

YourECU.

Info: Make sure that the CANoe mode is switched to Real bus and you have
selected the same baud rate as the real node “YourECU” is working with.

4.11.2 Test of CANdesc

 Use one of the four nodes for your tests. Change the TpTxId and the TpRxId in th
“Addressing” field of the node window.

e

Caution: The TpTxId is the Rx Diagnostic message in your generation tool and the
TpRxId is the Tx Diagnostic message. In the example case the DiagResponse
m essage is 0x7C0 and the DiagRequest message 0x7B0.

It is optional to set the time for ST Min from 64ms (default) to 20ms. This is to prevent
the ECU from running in time out.

- 42 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

Panel to Test
Diagnostics Layer

with the ones shown
in CANdela Studio

Compare the Values

 ...

 ervices using CANoe. Enter the request in the
nd see the response in the same box.

CANdela Studio. The contents of the
signals depend on the application.

It is very simple to test the s
Transmission box and press Send Data a
Compare this response with the desired one in

Info: Make some variations to the signal contents to confirm the tests.

Repeat this for all other services.

© Vector Informatik GmbH Version 1.7 - 43 -

Further Information User Manual CANdesc

5 Further Information

In this chapter you find the following information:

5.1 Diagnostic State Handling using CANdela Studio page 45

5.2 Typical Examples of State Groups and States in an Automotive Environment page 45

5.3 Creating and editing State Groups, States and Transitions page 45

5.4 Connection between the states and your application page 47

5.5 Diagnostic Buffer page 48
 Linear Diagnostic Buffer
 Ring Buffer Mechanism

5.6 Repeated Service Call Feature page 55
 Activation of the Repeated Service Call
 Repeated Service Call and Ring Buffer 1 – “Write and Check”
 Repeated Service Call and Ring Buffer 2 – “Check and Write”

- 44 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

5.1 Diagnostic State Handling using CANdela Studio

Executing a diagnostic service generally causes a state change in the electronic
control unit. Some services may only be executed if the electronic control unit is in a
particular state. For example, services that change critical data may only be executed
if the electronic control unit is first switched into a “security mode” (for example with
the specification of a numeric key).

CANdela Studio offers the opportunity to define and edit global states and state
transitions for the services of a diagnostic instance. In addition, states can be
combined into state groups.

xamples of State Groups and States in an Automotive

 The sessions (which should already be predefined) are a very “famous” example of a
state group. Any diagnostic session has its set of services that are executable while
the ECU is in this session. There are basically three sessions, defined from the ISO:

Another very easy example for state groups is the security access. The ECU must be
s the flashing

action mentioned above. For example, the states for the state group security access
would be:

We use this example to very basically explain the state concept of CANdela Studio.

5.2 Typical E
Environment

 Default session – as the name says, this is the standard session
 Programming session – while the ECU is in reprogramming mode (flashing)
 Extended Session – session for e.g. the development phase, providing an

extended amount of services

set to a specific state to be able to do critical data manipulation, such a

 Locked
 Access granted

Cross reference: For more detailed information about this topic refer to the CANdesc
Technical Reference.

5.3 Creating and editing State Groups, States and Transitions

 To create or edit the State Groups, click on [State Groups] in the CANdela Studio
tree. Enter the new State Group Security Access by clicking on the text. A new State
Group will be created called:

New State Group 1.

If you generate more than one State Group without renaming the previous ones, the
groups are numbered counting from 1 up.

To edit the new State Group you have two options. The first is to click on the State
Group name and edit the name, then click on the description field and enter the text.
Another way is to open the pull down menu of the State Group with a right click on the
row of SecurityAccess and select Properties. The Properties of State Group
Security Access” window will open. Enter the name and description.

© Vector Informatik GmbH Version 1.7 - 45 -

Further Information User Manual CANdesc

Info: The qualifier will be created automatically.

 Now we can add the states below in the same way. Click on the text to create a new
element, adjust the names and enter a description.

The next step is to assign the relevant services to the states.

Defining States for
the Service
SecurityAccess –
Request Seed

 Select the Diagnostic Instance Security Access Seed and open the Properties of the
Service Request Seed. Select the tab State Transitions and then SecurityAccess.

- 46 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

You see the service with the two columns states Locked an

d Access granted.

Info: To select yes or no just select the row, click on the yes/no and then use the pull
down menu.

Info: Pull down menu selections:

No = Must not be executed

Yes = may be executed, no state tran

sition

Locked = state transition

Access granted = state transition

 The following figure shows the properties for the service Send Key in the Key
instance. This service is also assigned to both of the states, but there is also a
transition to state defined. How do you interpret this entry?

The service Send Key could be executed in the state Locked. If the data is

onse
 state Locked.

A positive response
is the trigger for a
transition from the
Locked state
state Access

processed (depending on the OEM, this must be done by the application or is a
 generated, OEM-specific Code) and a positive response is sent back, CANdesc

switches the state from Locked to Access Granted. In case of a negative resp
the ECU remains in the diagnostic

to the
granted

5.4 Connectio

this case the
initial state is Locked.

n between the states and your application

The initial state after the ECU starts is the state at the top of the list. In

© Vector Informatik GmbH Version 1.7 - 47 -

Further Information User Manual CANdesc

Info: Think about the states very carefully before editing. Make sure that the initial
state is listed on top.

Example: The state transition mentioned above is monitored to your application via a
callback function. You will find the prototype of this function, as usual, in the
appdesc.h file. It may look like this:

void ApplDescOnTransitionSecurityAccess(DescStateGroup
newState, DescStateGroup formerState);

The parameters show the direction of the transition. Provide the function and react to
a transition as you wish.

Example: There is another way to switch states. Leave the transition to state empty
and do the state transition in your application. This could look like:

DescSetStateSecurityAccess(
kDescStateSecurityAccessAccess_granted);

Use

DescStateGroup DescGetStateSession (void)

to find out the current session.

Info: The function declaration and parameter can be found in the generated file
desc.h.

5.5 Diagnostic Buffer

 As described in chapter How to handle User-Defined Handlers on page 35, the
diagnostic buffer is an area in the RAM where the application and the CANdesc
Software Component are allowed to write on and read from. How this is handled is
described in this chapter above.

What is not explained until now is:
 how to choose the length of the diagnostic buffer
 that there are two mechanisms of using the buffer and
 when to use which mechanism

5.5.1 Linear Diagnostic Buffer

 The easiest way of using the diagnostic buffer is to use it as a linear buffer. The size
of the buffer in bytes must be the size of the longest data (diagnostic response or
request).

Info: Normally this is a diagnostic trouble code message (DTC) and can reach up to
100 bytes and more.

 Copy the complete response information to the diagnostic buffer and confirm this via
the call of DescProcessingDone.

- 48 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

This is easy to handle but there are some disadvantages arising with this concept:
 The RAM consumption could be enormous

f the response message.

There is another concept without these disadvantages but this concept needs a little
onality.

5.5.2 Ring Buff r

 ring buffer mechanism:
cause of small diagnostic buffer

nostic request and the first response message

 the PostHandler is

ed for linear buffer mechanism.
That means that the application has to fill the buffer in portions until the complete
diagnostic response is sent.

The following example is very simple and designed to understand the concept behind
the ring buffer mechanism.

Ring Buffer STEP 1
– Application Data
and Ring Buffer

 The delay time between the reception of a Diagnostic Request and the first
response message could be very long, depending on the service and the amount
of bytes o

bit more insight in CANdesc functi

e Mechanism

There are several reasons for using the
 Little RAM consumption be
 Shorter delay between the diag

The ring buffer mechanism offers the following features:
 Asynchronous writing of serial diagnostic data to the diagnostic buffer
 Underrun allowed, time monitored (in case of TP underrun

called with a Tx error code)
 Overrun prevented and monitored via return code

One of the advantages of the ring buffer mechanism is the little RAM consumption
(compared with the linear buffer). The consequence is that this little diagnostic buffer
can hold less data than a diagnostic buffer design

Starting point is a diagnostic buffer with 10 bytes size and 12 bytes of application data
stic data

(DescRingBufferStart).

to be sent. First you have to set the length of the complete diagno
(resDataLen = 12) and start the ring buffer mechanism

© Vector Informatik GmbH Version 1.7 - 49 -

Further Information User Manual CANdesc

Ring Buffer STEP 2
– First four data
bytes are copied to

e Ring Buffer

th

 plication data bytes
er and amount of data - DescRingBufferWrite) to the CANdesc Software

 the diagnostic buffer.

ng Buffer STEP 3
– Eight Data Bytes in
the Diagnostic
Buffer, six Bytes are

ing sent via CAN

Now h
(point

and over the pointer to the location of the first four ap

Component. CANdesc Basic copies the four data bytes to

Ri

be

 of the next four application data bytes and
CANdesc copies the data to the diagnostic buffer right after the first four bytes. Now

ta in the buffer and CANdesc sends the first six data bytes via the

 Hand over the pointer to the location

there is enough da
CAN bus.

 Info: The first 2 bytes of the message are transport information and therefore not free
for application data (TP bytes on position 0 and 1).

- 50 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

Ring Buffer STEP 4
– The Diagno
Buffer is filled round
robin

stic

 o
 9 of the buffer, the next two bytes in position 0 and

Now there are only four bytes left to be copied to the Diagnostic Buffer. The first tw
bytes are stored in position 8 and
1.

Info: Now it should be obvious why this concept is called Ring Buffer; the buffer is
filled round robin.

That is the basic mechanism, but how do you know when there is enough space in
the buffer? What happens if the application writes data and the buffer is not free?
How to handle this buffer in code details?

5.5.2.1 Activation of the Ring Buffer

Activation of Ring
Buffer in GENy

Although the ring buffer could be used for any service and you can meet this decision
at run-time you must activate this functionality in general.

Do this on the CANdesc configuration view in GENy by clicking the Ring Buffer
Support checkbox.

In a next step the six data bytes will be copied and sent via CAN starting with the byte
on position 6.

Activation of Ring
Buffer in CANgen

In CANgen you have to select the Ring buffer checkbox at tab CANdesc Options.

.5.2.2 Main

5 Control Functions for the Ring Buffer Mechanism

Cross reference: For a more detailed description of the API refer to the
TechnicalReference_CANde

sc.pdf.

DescRingBufferStart The call of this function starts the ring buffer mechanism. You can use it for any

© Vector Informatik GmbH Version 1.7 - 51 -

Further Information User Manual CANdesc

service and it replaces the DescProcessingDone that you use for the linear buffer
mechanism.

Info: Call DescRingBufferStart on MainHandler level.

DescRingBufferWrite Via this function you tell CANdesc the location and the amount of the application
diagnostic data and the software component copies this data to the diagnostic buffer.

The function has two parameters; one is a pointer which points to the memory
location of the next diagnostic data. The other parameter is the amount of data that
should be copied (should be lower or equal to the ring buffer size).

The return value of this function can be kDescOk or kDescFailed and indicates that
the write process to the diagnostic buffer was successful or that there was not enough
free space in the buffer.

Info: In case of no data has been written to the diagnostic buffer. kDescFailed

scRingBufferGetF This function shows the amount of free space in the diagnostic buffer.

GetP This function shows the amount of data that has already been written to the
diagnostic buffer (for this service).

5.5.2.3 Examples for Ring Buffer Mechanism

 Now start the coding for the example above (chapter 5.5.2). The diagnostic buffer is
10 bytes and the amount of application data to be sent via a diagnostic response is
12. In the example you write to the diagnostic buffer in four byte portions.

The examples use an OSEK-OS operating system, but it should be very easy for you
to transfer this to a system without OSEK-OS.

ing Buffer Example 1 - “Write and Check”

De
reeSpace

DescRingBuffer
rogress

R

Example: MainHandler of the Service “Service”
uint8 state; /*global variable*/

void ApplD

escService(DescMsgContext* pMsgContext)
{
pMsgContext->resDataLen = 12; /*amout of the complete data to be sent*/

first write to diagnostic buffer*/
state++;
SetRelAlarm(ALServiceStateMachine, 0, <cycle>); /*Alarm for activating the Basic

TASK*/
}

DescRingBufferStart();
state = 0;
DescRingBufferWrite(&dataPtr[state*4], 4); /*

 Define the length of the complete diagnostic response (resDataLen = 12) and start
the ring buffer mechanism (DescRingBufferStart). The global variable state is to

- 52 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

identify in which state your state machine is and it is an index for the data pointer
dataPtr.

In the MainHandler you write to the diagnostic buffer the first time for this service - it
must be free. So you can write the first four data bytes via DescRingBufferWrite.

Info: As the handling of the diagnostic (CANdesc only works if its task is called
cyclically) needs a cyclic call of the DescTask() or DescStateTask() you have to fill
the diagnostic buffer gradually e.g. by the means of a cyclic basic task. Otherwise the
DescTask() or DescStateTask() would not be called and the CANdesc could not work.

 Now start an alarm to get the basic task BTServiceStateMachine called all
<cycle> ms.

Basic Task to Handle
the Service State

achine

TASK(BTServiceStateMachine)

 use the return value of the DescRingBufferWrite function. Is it

l of

een written to the diagnostic buffer,
 handling of this diagnostic service.

am

The difference is, that you first check whether there is enough free space in the buffer
before you write the next data (check and write). Via the function
DescRingBufferGetFreeSpace you get the information about the free space in

t,

{
if(DescRingBufferWrite(&dataPtr[state*4], 4) == kDescOk)
{

state++;

CancelAlarm(ALServiceStateMachine); /*all data (3x4 bytes) has been
transferred to diagnostic buffer*/

M

}
if(state == 3)
{

}
TerminateTask(BTServiceStateMachine);

}

 This basic task is designed to write the next 8 data bytes to the diagnostic buffer. But
the application does not know if the buffer is free or not (Write and Check). To get
this information
kDescOk, then the write was successful and we can increment the state. If not
(kDescFailed), we have to repeat writing the last four bytes again in the next cal
the task.

If state is equal to three, i.e. all 12 bytes have b
we cancel the alarm to stop the

Ring Buffer Ex ple 2 - “Check and Write”

The MainHandler for this example is the same as in example 1.

the buffer. If there is enough space, write the next data and increment the state, if no
terminate the task and repeat the try with the next activation of the task.

Example:

© Vector Informatik GmbH Version 1.7 - 53 -

Further Information User Manual CANdesc

TASK(BTServiceStateMachine)
{

DescMsgLen freeSpace;
freeSpace = DescRingBufferGetFreeSpace(); /*MISRA*/

DescRingBufferWrite(&dataPtr[state*4], 4);
state++;

}

uffer*/

if(freeSpace >= 4)
{

if(state == 3)
{

CancelAlarm(ALServiceStateMachine); /*all data (3x4 bytes) has been
transferred to diagnostic b

}
TerminateTask(BTServiceStateMachine);

}

ing Buffer Example 3 – “GetProgress”

 In this example ady mentioned function
DescRingBufferGetProgress to figure out how many bytes you have written to
the buffer until now. This makes the example much easier but a little bit more difficult

As you see you do not need a global variable for the state. The state now is defined
by the amount of data that you have already written to the buffer.

R

 you use the alre

to understand why it works in this way.

Example:
void ApplDescService(DescMsgContext* pMsgContext)
{

pMsgContext->resDataLen = 12;
DescRingBufferStart();

{
DescMsgLen progress = DescRingBufferGetProgress();

[progress], 4);

TerminateTask(BTServiceStateMachi
}

DescRingBufferWrite(&dataPtr[DescRingBufferGetProgress()], 4); /* will be 0 at
the beginning*/

SetRelAlarm(ALServiceStateMachine, 0, cycle); /*Alarm for activating the Basic
TASK*/

}

TASK(BTServiceStateMachine)

if(progress < 12)
{

DescRingBufferWrite(&dataPtr
}

ne);

Conclusion

 As you see in these three little examples, the handling of the ring buffer is always the
same. You start the writing, you write cyclically and in portions and you have to define
an ending criteria – a typical state machine.

CANdesc offers a feature to support that kind of handling that is not only useful when
working with ring buffer mechanism – the repeated service call.

- 54 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

5.6 Repeated

buffer, to call DescProcessingDone and the service is d

ason
d

the function call DescStartRepeatedServiceCall(CyclicFunction) you
ith

cStateTask.

 Service Call Feature

The easy way would be to transfer all data in the MainHandler to the diagnostic
one.

But what to do with information that cannot be provided immediately? For this re
you have to trigger a further function that handles the provision of diagnostic data an
then finishes the service via DescProcessingDone.

The Repeated Service Call helps you to handle situations like above very easy. Via

trigger the call of the “CyclicFunction” with the call cycle of DescTask or w
the call of Des

call

DescStartRepeatedServiceCall(CyclicFunction)

ApplDescMainHandlerCanDesc CyclicFunctionRepeated Service
Call

 The CyclicFunction can be the function where from you call the repeated service call
or a second function.

At the end of the service handling you can stop the function from being called
cyclically in two ways:

 call De

scProcessingDone in linear mode

The repeated service call is stopped too, if you

 call (another) DescStartRepeatedServiceCall()

 if you have copied all announced data bytes to the diagnostic buffer if ring buffer
mechanism is used

 call DescRingBufferStart

Info: Using repeated service call and the ring buffer you have to take care about the
order DescRingBufferStart and DescStartRepeatedServic

eCall.

6.1 Activation of the Repeated Serv

 uffer mechanism you have to activate the repeated service call in the
generation tool.

In GENy you have to select a mode for repeated service call in the CANdesc
configuration view. CANgen offers the same modes in the CANdesc option tab.

As you see in the screenshot there are three modes for the Repeated Service Call:

5. ice Call

As the ring b

Deactivated You cannot use this feature at all.

© Vector Informatik GmbH Version 1.7 - 55 -

Further Information User Manual CANdesc

Deactivated You cannot use this feature at all.

Always
The repeated service call is switched to on for any service in the
way that the MainHandler is called cyclically as long as you call
DescProcessingDone or all data is written to the ring buffer.

Individual
With the individual setting you decide for every service whether to
use the repeated service call or not. To use it, just activate it via
DescStartRepeatedServiceCall as you see in the following
examples.

Selection for
Repeated Service
Call in GENy

Selection for
Repeated Service
Call in CANgen

 The following two examples show the handling of the ring buffer mechanism using the
repeated service call.

Info: The setting in the generation tool is individual.

5.6.2 Repeated Service Call and Ring Buffer 1 – “Write and Check”

 This is the same example as in the chapter dealing with the ring buffer mechanism.
This time use the repeated service call instead of the OSEK-OS task. And in this first
example, define the MainHandler itself to be called cyclically via:

Example: DescStartRepeatedServiceCall(ApplDescService);

 For this case the MainHandler must be realized as a state machine because the start
of the repeated service call has to be done only once per diagnostic request handling.

Example:

- 56 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

uint8 state; /*global variable, set to 0 in PreHandler*/

void ApplDescService(DescMsgContext* pMsgContext)

state++; /*if resDataLen data bytes have been copied to the diagnostic
buffer the repeated service call stops automatically*/

}
}

}

{
if(state == 0)
{
pMsgContext->resDataLen = 12; /*amout of the complete data to be sent*/
DescRingBufferStart();
DescRingBufferWrite(&dataPtr[state*4], 4)
DescStartRepeatedServiceCall(ApplDescService);
state++;

}
else
{
if(DescRingBufferWrite(*dataPtr[state*4], 4) == kDescOk)
{

5.6.3 Repeated Service Call and Ring Buffer 2 – “Check and Write”

 Now add a second function and call it cyclically after the MainHandler has been
called. The MainHandler acts as initialization of the state machine and the second
function handles all further states.

Example:
uint8 state; /*global variable*/

void ApplDescService(
{

 DescMsgContext* pMsgContext)

();
 4)
ion);

) /*prototype must be defined
by application*/

{

{
state++;

tate*4], 4);
have been copied to the diagnostic buffer

ops automatically*/
}

state = 0;
pMsgContext->resDataLen = 12; /*amout of the complete data to be

sent*/
DescRingBufferStart
DescRingBufferWrite(&dataPtr[state*4],
DescStartRepeatedServiceCall(SecondFunct

}

void SecondFunction(DescMsgContext* pMsgContext

DescMsgLen freeSpace;
freeSpace = DescRingBufferGetFreeSpace(); /*MISRA*/
if(freeSpace >= 4)

DescRingBufferWrite(&dataPtr[s
/*if resDataLen (12) data bytes
the repeated service call st

}

© Vector Informatik GmbH Version 1.7 - 57 -

Additional Information User Manual CANdesc

6 Additional o

you find the following in

 Informati n

In this chapter formation:

6.1 Persistors 9 page 5
 Update Persistors – Install current Version

- 58 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Additional Information

6.1 Persistors

What is the Persistor
for?

The CANdela data base file (CDD) is created by CANdela Studio and used by GENy
for configuring CANdesc.

If you use a newer version of the CANdela Studio, the format of the CDD file could be
also newer than your GENy is able to deal with.

The Persistors are responsible to convert the newer CDD file into a CDD file which is
able to read by GENy.

Update Persistors –
Download current
Version

The latest Persistors can be downloaded from Vector homepage

www.vector.com.

Select Downloads and then the three settings for Products, Categories and
Standards.

 Products: CANdela Studio
 Categories: Add-Ons/Freeware

 Standards: All Standards

Cross reference: See the following illustration.

Available for
NT/2000/XP or
Windows 9.x

r the Persistors download is:
 Converters for CANdela diagnostic descriptions for Windows xxx.

The name fo

© Vector Informatik GmbH Version 1.7 - 59 -

Additional Information User Manual CANdesc

Download Select on or more items from the list () and click on [>> Select one or more items,
then continue] to download the files after entering some administrative information.

6.1.1 Update Persistors – Install current Version

Follow description
step by step

Start the downloaded file SetupPersistorsXP.exe.

- 60 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Additional Information

Click [Next].

Select Custom and enter the path to the …\Generators\Components folder as
Destination Folder for Custom Setup and click [OK].

© Vector Informatik GmbH Version 1.7 - 61 -

Additional Information User Manual CANdesc

Click [Install] and the installation process will be started and then on [Finish] when
ready.

Ready Now the current Persistors are installed and your GENy is able to read the latest CDD
file.

- 62 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc FAQs

7 FAQs

In this chapter you find the following information:

7.1 Introduction page 64

7.2 Frequently Asked Questions page 64

© Vector Informatik GmbH Version 1.7 - 63 -

FAQs User Manual CANdesc

7.1 Introduction

Find not search You have a certain question? You just want to know how to do e.g. a certain setting
without reading the whole document again?

Then go on reading the following list and use the links to get at the place in the
document where your question will be answered.

This chapter will be extended continuously.

7.2 Frequently Asked Questions

FAQ: RingBuffer and the UDS SuppressPositiveResponseMessageIndicationBit
(SPRMIB)

If the application wants to use the ring-buffer for a diagnostic service with a sub-
function (usually service 0x19 "ReadDtcInformation") it shall consider the SPRMIB
prior deciding to start the ring buffer. The reason for that is, once the ring-buffer
response is activated this means to CANdesc that the application wants to send data.
But if the SPRMIB=TRUE, there shall be no positive response on the communication
bus. So in such cases the Application shall follow the sequence below:

if(pMsgContext->msgAddInfo.suppPosRes != 0)

{

 DescProcessingDone();/* just close the service processing
now. No response will be sent back*/

}

else

{

 DescRingBufferStart(); /* initate the ring-buffer response
transmission */

}

- 64 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc What’s new, what’s changed

8 What’s new, what’s changed

In this chapter you find the following information:

8.1 Version 1.7 page 66
 What’s new
 What’s changed

© Vector Informatik GmbH Version 1.7 - 65 -

What’s new, what’s changed User Manual CANdesc

- 66 - Version 1.7 © Vector Informatik GmbH

8.1 Version 1.7

What’s new and
what’s changed

8.1.1 What’s new

w chapter There is a new chapter for additional information about Persistors setup and update
see section Persistors on page 59).

8.1.2 What’s cha

New Layout

This explains the changes within this document form the previous Version to the one
mentioned in this headline.

Ne
Persistors setup and
update

at chapter additional information (

nged

The Document has got a new template.

User Manual CANdesc Address table

9 Address table

Vector Informatik
GmbH

Vector Informatik GmbH
Ingersheimer Str. 24
D-70499 Stuttgart

one: +49 (711) 80670-0
49 (711) 80670-111

Ph
Fax: +
mailto:info@de.vector.com
http://www.vector-informatik.com/

Vector CANtech, Inc. Vector CANtech, Inc.
Suite 550
39500 Orchard Hill Place
USA-Novi, Mi 48375
Phone: +1 (248) 449 9290
Fax: +1 (248) 449 9704

mailto:info@us.vector.com
http://www.vector-cantech.com/

Vector France SAS Vector France SAS
168, Boulevard Camélinat
F-92240 Malakoff
Phone: +33 (1) 4231 4000
Fax: +33 (1) 4231 4009
mailto:info@fr.vector.com
http://www.vector-france.com/

Vector GB Ltd. Vector GB Ltd.

Rhodium Central Boulevard Blythe Valley Park

Solihull, Birmingham

West Midlands B90 8AS

Phone: +44 121 50681-50
mailto:info@uk.vector.com

http://www.vector-gb.co.uk

© Vector Informatik GmbH Version 1.7 - 67 -

Address table User Manual CANdesc

- 68 - Version 1.7 © Vector Informatik GmbH

Vector Japan Co.,
Ltd.

Vector
Seafort

Japan Co., Ltd.
 Square Center Bld. 18F

2-3-12, Higashi-shinagawa, Shinagawa-ku

Fax: +81 3 (5769) 6975

J-140-0002 Tokyo
Phone: +81 3 (5769) 7800

mailto:info@jp.vector.com
http://www.vector-japan.co.jp/

Daerung Post Tower III, 508

uro-gu, 182-4

2-790

Phone: +82(0)2 2028 0600

Fax: +82(0)2 2028 0604

Vector Korea IT Inc. Vector Korea IT Inc.

Guro-dong, G

Seoul, 15

Republic of Korea

mailto:info@kr.vector.com

http://www.vector-korea.com/

VecScan AB VecScan AB
Theres Svenssons Gata 9
SE-417 55 Göteborg
Phone: +46 (31) 76476-00
Fax: +46 (31) 76476-19
mailto:info@se.vector.com
http://www.vecscan.com/

User Manual CANdesc Glossar

10 Glossar

Callback function ded by an application. E.g. the CAN Driver calls a callback
pplication to control some action, to make decisions at runtime

 work of the driver.

Diagnostics layer omotive applications have recently become
sic requirements can be implemented by a software
S.

This is a function provi
 afunction to allow the

and to influence the

Diagnostics services that are used in aut
standardized. As a result, ba
component for KWP2000/UD

© Vector Informatik GmbH Version 1.7 - 69 -

User Manual CANdesc Index

11 Index

A
Adapt Your Application

36

31, 33

application...

Asynchronous writing..

C

 Files33

AppDesc ...

appdesc.h ...

33

49

call-back function

CANbedded 2

CANdela Studio

CANdesc.....................

Ndesc tab...15

.............

CanInitPowerOn ...

CANoe

CDD 4

Compile.......................

compiler

onfiguration 24, 26, 35, 40

clic calls...33

D

..48

..................................24, 3

......... 11, 14, 19, 20, 45, 55

..................... 11, 14, 15, 33

CA

CANgen26

33

..................................41, 42

..................................11, 1

..................................24, 41

..32

C

cy

data...19

DBC ..14

DBC file...14

Default session ...45

delay ...38

desc.c ...30

desc.h ...30, 33

desccore.h ..30

DescInitPowerOn..33

DescRingBufferGetProgress52

DescRingBufferStart ...51

DescRingBufferWrite ... 52

development environment 32

Diagnostic Buffer.. 48

Diagnostic Class .. 18, 19

Diagnostic Instance...................................... 18, 19

Diagnostic Request.................... 11, 14, 17, 21, 35

Diagnostics .. 11, 17

E
Example 1 .. 52

Example 2 .. 53

Example 3 .. 54

Examples ... 52

Extended Session.. 45

G
Generate Files ... 29

Generated .. 11, 17, 23

Generation Process 11, 15

Generation Tool ... 14, 26

GENy ... 26

I
Include ... 24, 33

Initialization .. 24, 33

initParameter.. 33

K
KWP2000... 16

L
Linear Diagnostic Buffer 48

Link .. 24, 41

M
MainHandler... 24, 32, 38

makefile.. 32

© Vector Informatik GmbH Version 1.7 - 70 -

User Manual CANdesc Index

N
Nomenclature 11, 17, 18, 19

None ...11, 17, 23

O
OEM............................

to

P

............................11, 17, 23

OSEK Transport Pro col26

Programming session...45

roperies ..38

protocol service...18

R

P

RAM consumption ..48, 49

Repeated Service Call Feature55

Request ..18

Response..18

Response Pending ...38

Ring Buffer Mechanism49

S
security access ...45

Service ... 18

service primitives ... 19

Sessions .. 45

38

e Handling ... 44, 45

T

signal..

State Groups.. 44, 45

Stat

States... 44, 45

Test .. 24, 41, 42

test environment .. 41

transition to state.. 47

Transitions ... 45

U
UDS ... 16

User ... 11, 17, 23

User-Defined Handlers 35

V
value field... 39

variable .. 38

© Vector Informatik GmbH Version 1.7 - 71 -

Get more Information!

Visit our Website for:

> Support

wid .com

> News

> Products

> Demo Software

> Training Classes

> Addresses

www.vector-world

e

	1 Manual Information
	1.1 About this user manual
	1.1.1 Certification
	1.1.2 Warranty
	1.1.3 Registered trademarks
	Errata Sheet of manufacturers

	2 Getting Started
	2.1 How to use this Manual

	3 Basic Information
	An Overall View
	3.2 What is Diagnostic
	3.3 What happens during Diagnostics?
	3.4 What is CANdesc?
	3.5 Tools and Files
	3.5.1 CANdela Studio, CDDT, CDD
	3.5.2 Generation Tool, CDD, DBC
	3.5.3 Generation Process with CANbedded Software Components

	3.6 What CANdesc does
	3.7 Diagnostics – a more detailed View
	3.7.1 Basic Nomenclature from the Bottom Up
	3.7.2 The same Nomenclature from the Top Down
	3.7.3 Where to find this Nomenclature in CANdela Studio
	3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component
	3.7.5 User, None, OEM, Generated – what does this mean?

	4 A Few STEPS to CANdesc
	4.1 STEP What do you need before start?
	Startup Code
	Overview
	4.4 STEP Installation
	4.5 STEP Configuration with the Generation Tool
	4.5.1 Using the Generation Tool CANgen
	4.5.2 Using the Generation Tool GENy

	4.6 STEP Generating Files
	4.6.1 Using Generation Tool CANgen
	4.6.2 Using the Generation Tool GENy

	4.7 STEP Add CANbedded to your Project
	4.8 STEP Adapt Your Application Files
	4.8.1 Including, Initializing and Cyclic Calling

	4.9 STEP Functional Connection between your Application and CANdesc/CANdela Studio
	4.9.1 How to handle User-Defined Handlers
	4.9.2 How to Handle Predefined Handlers (for MainHandler only)
	4.9.3 Handling OEM-Specific Settings

	4.10 STEP Compile and link your Project
	4.11 STEP Test it via CANoe
	4.11.1 Start CANoe.CAN OSEK TP enlarged
	4.11.2 Test of CANdesc

	5 Further Information
	5.1 Diagnostic State Handling using CANdela Studio
	5.2 Typical Examples of State Groups and States in an Automotive Environment
	5.3 Creating and editing State Groups, States and Transitions
	5.4 Connection between the states and your application
	5.5 Diagnostic Buffer
	5.5.1 Linear Diagnostic Buffer
	5.5.2 Ring Buffer Mechanism
	5.5.2.1 Activation of the Ring Buffer
	5.5.2.2 Main Control Functions for the Ring Buffer Mechanism
	5.5.2.3 Examples for Ring Buffer Mechanism

	5.6 Repeated Service Call Feature
	5.6.1 Activation of the Repeated Service Call
	5.6.2 Repeated Service Call and Ring Buffer 1 – “Write and Check”
	5.6.3 Repeated Service Call and Ring Buffer 2 – “Check and Write”

	6 Additional Information
	Persistors
	6.1.1 Update Persistors – Install current Version

	7 FAQs
	7.1 Introduction
	7.2 Frequently Asked Questions

	8 What’s new, what’s changed
	8.1 Version 1.7
	8.1.1 What’s new
	8.1.2 What’s changed

	Address table
	10 Glossar
	11 Index

