| User Manual

CANdesc

A Step by Step Introduction

Version 1.7
English

veactor’

Impressum

Vector Informatik GmbH
Ingersheimer StralRe 24
D-70499 Stuttgart

The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection.

© Copyright 2009, Vector Informatik GmbH

All rights reserved.

User Manual CANdesc

Manual History

Author Date Version
Klaus Emmert 2004-05-10 1.1
Klaus Emmert 2004-10-15 1.2
Klaus Emmert 2005-08-12 1.3
Klaus Emmert 2006-03-24 1.4
Oliver Garnatz 2007-01-12 15
Klaus Emmert 2008-01-28 1.6
Manuela Scheufele 2009-07-27 1.7
Reference Documents

No. Source Title

[1] Vector Informatik | Technical Reference CANdesc

[2] Vector Informatik | Technical Reference CANdescBasic
© Vector Informatik GmbH Version 1.7

Manual Information

Details

Vector symbols included, template
version 1.8 used (this history
included), AppDesc... changed to
ApplDesc due to software
modifications, description of GENy
as generation tool added, testing of
diagnostics layer described with
CANoe demo configuration, further
Information about diagnostic buffer
(linear and ring buffer mechanism)
and the repeated service call
feature

Modifications after Review.

Two new functions:
DescTimerTask(),
DescStateTask().

These two functions can be used
instead of DescTask to handle the
timers and the application
separately.

Issues in example code fixed
Document overview added

Added description of
CANdesc_ConnectorCAN GENy
component

References fixed

(see section Version 1.7 on page
66)

Manual Information

Inhaltsverzeichnis

3.1
3.2
3.3
3.4
3.5

3.6
3.7

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8

49

User Manual CANdesc

Manual Information 6
About this user manual 7
11.1 Certification 8
1.1.2 Warranty 8
1.1.3 Registered trademarks 8
1.1.4 Errata Sheet of manufacturers 8
Getting Started 9
How to use this Manual 10
Basic Information 11
An Overall View 12
What is Diagnostic 13
What happens during Diagnostics? 13
What is CANdesc? 14
Tools and Files 14
3.5.1 CANdela Studio, CDDT, CDD 14
3.5.2 Generation Tool, CDD, DBC 14
3.5.3 Generation Process with CANbedded Software Components 15
What CANdesc does 15
Diagnostics — a more detailed View 17
3.7.1 Basic Nomenclature from the Bottom Up 18
3.7.2 The same Nomenclature from the Top Down 19
3.7.3 Where to find this Nomenclature in CANdela Studio 19
3.74 Generic Handling of a Diagnostic Request in the CANdesc Component 21
3.75 User, None, OEM, Generated — what does this mean? 23
A Few STEPS to CANdesc 24
STEP What do you need before start? 25
Startup Code 25
Overview 25
STEP Installation 26
STEP Configuration with the Generation Tool 26
451 Using the Generation Tool CANgen 26
452 Using the Generation Tool GENy 27
STEP Generating Files 29
4.6.1 Using Generation Tool CANgen 29
4.6.2 Using the Generation Tool GENy 32
STEP Add CANbedded to your Project 32
STEP Adapt Your Application Files 33
481 Including, Initializing and Cyclic Calling 33
STEP Functional Connection between your Application and CANdesc/CANdela Studio 35
49.1 How to handle User-Defined Handlers 35
4.9.2 How to Handle Predefined Handlers (for MainHandler only) 38
49.3 Handling OEM-Specific Settings 40

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

4.10
411

51
52
5.3
54
55

5.6

7.1
7.2

8.1

10

11

STEP Compile and link your Project

STEP Test it via CANoe
4.11.1 Start CANoe.CAN OSEK TP enlarged
4.11.2 Test of CANdesc

Further Information

Diagnostic State Handling using CANdela Studio

Typical Examples of State Groups and States in an Automotive Environment
Creating and editing State Groups, States and Transitions

Connection between the states and your application

Diagnostic Buffer

5.5.1 Linear Diagnostic Buffer

55.2 Ring Buffer Mechanism
5521 Activation of the Ring Buffer
55.2.2 Main Control Functions for the Ring Buffer Mechanism
5.5.2.3 Examples for Ring Buffer Mechanism

Repeated Service Call Feature

5.6.1 Activation of the Repeated Service Call

5.6.2 Repeated Service Call and Ring Buffer 1 — “Write and Check”
5.6.3 Repeated Service Call and Ring Buffer 2 — “Check and Write”
Additional Information

Persistors

6.1.1 Update Persistors — Install current Version

FAQs

Introduction

Frequently Asked Questions

What’s new, what’s changed

Version 1.7
8.1.1 What's new
8.1.2 What's changed

Address table
Glossar

Index

© Vector Informatik GmbH Version 1.7

Manual Information

41

41
41
42

44

45
45
45
47

48
48
49
51
51
52

55
55
56
57
58
59
60
63

64
64

65

66
66
66

67
69

70

Manual Information

1 Manual Information

In this chapter you find the following information:

User Manual CANdesc

1.1 About this user manual
Certification
Warranty
Registered trademarks
Errata Sheet of manufacturers

page 7

-6 - Version 1.7

© Vector Informatik GmbH

User Manual CANdesc Manual Information

1.1 About this user manual

Finding information ~ The user manual provides the following access help:

quickly At the beginning of each chapter you will find a summary of the contents,
In the header you can see in which chapter and paragraph you are,

In the footer you can see to which version the user manual replies,

v v vy

At the end of the user manual you will find an index, with whose help you will
quickly find information,

Also at the end of the user manual you will find a glossary in which you can look
up an explanation of used technical terms

v

Conventions In the two following charts you will find the conventions used in the user manual
regarding utilized spellings and symbols.

Style Utilization
bold Blocks, surface elements, window- and dialog names of the
software. Accentuation of warnings and advices.
[OK] Push buttons in brackets
File|Save Notation for menus and menu entries
MICROSAR Legally protected proper names and side notes.

Source Code | File name and source code.
Hyperlink Hyperlinks and references.
<CTRL>+<S> Notation for shortcuts.

Symbol Utilization

Here you can obtain supplemental information.

Q' This symbol calls your attention to warnings.

Here you can find additional information.

=)
rY Here is an example that has been prepared for you.
=
F Step-by-step instructions provide assistance at these points.
'
/ Instructions on editing files are found at these points.
@ This symbol warns you not to edit the specified file.

© Vector Informatik GmbH Version 1.7 -7-

Manual Information

User Manual CANdesc

1.1.1 Certification

Certified Quality

Management System

Spice Level 3

1.1.2 Warranty

Restriction of

warranty

Vector Informatik GmbH has 1ISO 9001:2000 certification. The ISO standard is a
globally recognized standard.

The Embedded Software Components business area at Vector Informatik GmbH
achieved process maturity level 3 during a HIS-conformant assessment.

We reserve the right to change the contents of the documentation and the software
without notice. Vector Informatik GmbH assumes no liability for correct contents or
damages which are resulted from the usage of the documentation. We are grateful for
references to mistakes or for suggestions for improvement to be able to offer you
even more efficient products in the future.

1.1.3 Registered trademarks

Registered
trademarks

All trademarks mentioned in this documentation and if necessary third party
registered are absolutely subject to the conditions of each valid label right and the
rights of particular registered proprietor. All trademarks, trade names or company
names are or can be trademarks or registered trademarks of their particular
proprietors. All rights which are not expressly allowed are reserved. If an explicit label
of trademarks, which are used in this documentation, fails, should not mean that a
name is free of third party rights.

= Outlook, Windows, Windows XP, Windows 2000, Windows NT, Visual Studio are
trademarks of the Microsoft Corporation.

1.1.4 Errata Sheet of manufacturers

&D

Caution: Vector only delivers software!

Your hardware manufacturer will provide you with the necessary errata sheets
concerning your used hardware. In case of errata dealing with CAN please provide us
the relevant erratas and we will figure out whether this hardware problem is already
known to us or whether to get a possible workaround.

Info: Because of many NDAs with different hardware manufacturers or because we
are not informed about, we are not able to provide you with information concerning
hardware errata of the hardware manufacturers.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

2 Getting Started

In this chapter you find the following information:

Getting Started

2.1 How to use this Manual

page 10

© Vector Informatik GmbH Version 1.7

Getting Started User Manual CANdesc

2.1 How to use this Manual

Just follow the description step by step.

FAQ To find answers to special questions without reading the whole document use the
FAQ list (see section FAQs on page 63).

-10 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

3 Basic Information

In this chapter you find the following information:

3.2
3.3
3.4
3.5

3.6
3.7

What is Diagnostic
What happens during Diagnostics?
What is CANdesc?

Tools and Files

CANdela Studio, CDDT, CDD

Generation Tool, CDD, DBC

Generation Process with CANbedded Software Components

What CANdesc does

Diagnostics — a more detailed View

Basic Nomenclature from the Bottom Up

The same Nomenclature from the Top Down

Where to find this Nomenclature in CANdela Studio

Generic Handling of a Diagnostic Request in the CANdesc Component
User, None, OEM, Generated — what does this mean?

© Vector Informatik GmbH Version 1.7

Basic Information

page 13
page 13
page 14
page 14

page 15
page 17

-11 -

Basic Information User Manual CANdesc

3.1 An Overall View

ECU in the focus What we are now talking about is an ECU, a module to be built-in a vehicle like
shown in the figure below. Almost every ECU participates in a certain bus system like
e.g. CAN, FlexRay or LIN.

Vehicle with different bus systems
Q

CAN Lowspeed

LIN

FlexRay

MOST

000D

So any ECU within one bus system has to provide an identical interface to this bus
system because all ECUs have to share information via this bus system as you see in

the figure below.

: o

CAN Lowspeed as
an example bus
system

For that reason all ECUs are built-up in the same way. There is a software part to
realize the main job (application) of this ECU e.g. to control the engine or a door. The
other part is the software part to be able to communicate with the other ECUs via the
bus system that is the communication software.

-12- Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

/ Application Software

T Software for Network
Communication and Diagnostics

3.2 What is Diagnostic

Dia'gno stics -
Detection,
Examination of a
machine;

[greek. diagnoskein
.analyze deeply,
differentiate]

In contrast to Dia’'gno
* sis — Examination
(med.)

Diagnostics in a technical context is the examination of a machine. But diagnostics in
this context goes way beyond this definition.

Diagnostics comprises function monitoring, error detection, fault memory, activation,
data acquisition etc. and is used for variant coding, end-of-line programming,
reprogramming, identification etc.

3.3 What happens during Diagnostics?

CANdesc —

CAN Diagnostic
Embedded Software
Component

In most cases an Off-Board tester (Client) sends a diagnostic request to the ECU (via
CAN) and the ECU (Server) sends back a diagnostic response. This can be a positive
or a negative response. The following figure clearly shows a basic representation of
this mechanism.

sServer

Diagnostic
Service

Client

{Off-Board Tester)

Diagnostic
Data

© Vector Informatik GmbH Version 1.7 -13 -

Basic Information

User Manual CANdesc

3.4 What is CANdesc?

CANdesc is totally
generated based
upon the CDD file.

Generated Software
Component based
on .CDD and .DBC

CANdesc stands for CAN Diagnostic Embedded Software Component.

This software component differs from all other CANbedded Software Components in
that it is totally generated. To be able to generate this component you need a CDD
file, a DBC file and the generation tool (GENy / CANgen).

4)

cDDT
-

IO

ECU software components

=0 CANdel
. ela
Universal CANdela Studio Document

Measure-
Application Metwor FEE i) template

Manage- Calibration

rnent Protocal . l

— O =

Interaction
Layer

- ECU
Generation Tool datahase

CAN

Info: The CANdesc will be explained in the section Generic Handling of a Diagnostic
Request in the CANdesc Component on page 21, where you will get detailed insight
into the CANdesc Component and how it works when processing a diagnostic
request.

3.5 Tools and Files

3.5.1 CANdela Studio, CDDT, CDD

All settings you have
to do in CANdela
Studio to use
CANdesc are stored
in the CDD file.

CANdela Studio is a PC tool. It reads in the diagnostic template file CDDT and
generates a diagnostic data base, the CDD file.

The CDDT is a description of the OEM diagnostic specification.

All necessary diagnostic information, such as supported diagnostic services, sub
services, format, signals, state filters, state transitions etc., is described via CANdela
Studio and stored in the CDD file.

To use the CANdesc component, you need the CDD file and you need to know how
to make the necessary settings in CANdela Studio.

3.5.2 Generation Tool, CDD, DBC

Remember to add
the path to the CDD
file in the Generation
Tool

There is the same
DBC file per bus

-14 -

The generation tool (GENy / CANgen) is a PC Tool, too. It generates configuration
files and signal interface files for the CANbedded Software Components. The
generation tool needs the DBC file to generate the files.

The DBC file is designed by the vehicle manufacturer and distributed to all suppliers
that develop an ECU. Thus every supplier uses the SAME DBC file for one vehicle
platform and one bus system (powertrain, body CAN etc.) to guarantee a common

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

system (high speed,
low speed, etc) for all

Basic Information

basis for development.
For example, every ECU has to know that a 1 in bit 7 in the 4" byte of the message

suppliers to 0x305 means “Ignition Key” on/off.
gggirsa?éfe & common rhe PBC file contains information about every node and the messages / signals the

development node has to send and to receive.

When using CANdesc for diagnostics the CDD file must be read in by the generation
tool, to be able to generate the CANdesc code.

3.5.3 Generation Process with CANbedded Software Components

Normally the generation tool generates files that contain the configuration and the
signal interface of the CANbedded Software Components. CANbedded can be
compiled and linked using the source code of each component.

The standard CANdela | | CANdb++

generation process :

for Vector Software

Components. Y Y
CANdela Metwork

Database Database

h A

v
Generation Tool -

_ Aeelicgzion
P
Data

Generation
A 4 v
Sl e Inslie?':aa;e Heade
CANdesc is a i Includes
completely -
generated Software CANdesc Source
Component CGomponents

Compiler, Linker

The main difference for CANdesc is that the source code for CANdesc is totally
generated from the CDD file and therefore not included in your delivery as the other
software components are. Since the CDD file contains most of the information about
CANdesc, there are only a few configuration settings left that can be done via the
generation tool on the CANdesc tab

3.6 What CANdesc does

Handles Diagnostic = CANdesc receives addressed requests physically or/and functionally
Communication - CANdesc generates and handles a physical or functional request with appropriate
response message headers, corresponding to the given KWP2000/UDS (ISO
14229-1) Diagnostics on CAN manufacturer specification.
= CANdesc connects to underlying Transport Protocol and handles the

communication errors of the underlying layers.

© Vector Informatik GmbH Version 1.7 -15-

Basic Information

Manages Diagnostic
Data (Buffer)

Handles Diagnostic
Errors

Analyzes Requests
(state machine,
filtering)

Processes the
request (optional)

-16 -

User Manual CANdesc

CANdesc is capable of communication on any bus systems, using an own
abstraction interface.

CANdesc keeps the data consistency, which guarantees that no other request will
delete the current diagnostic request data being processed.

CANdesc prrovides centralized diagnostic error handling based on the method
report only first detected error.

CANdesc monitors timeouts (e.g. S3- “Tester Present”, P2- “Response pending”,
etc.).

CANdesc detects relevant SID (Service Identifier) for the ECU. If an SID is not
supported by the current configuration, the appropriate reaction will be executed
(e.g. negative response or the request will be ignored).

CANdesc analyzes the service instance. This includes recognition of the service-
specific sub functions for each supported SID. The request length is validated if it
is defined to be constant. For dynamic fields, the application must do range
checking of the request length.

CANdesc validates the states. The component ensures that a service is only
executed if the diagnostic state allows the processing of that service. E. g. some
services are only allowed to be executed inside a special diagnostic session. If
the current state does not allow the execution, a corresponding negative
response is sent automatically.

CANdesc generates a complete diagnostic handler function which fills out the
correct response data for the application.

CANdesc generates signal handlers to help the application place the response
information.

CANdesc generates a Service MainHandler which will use data access functions
provided by the application, but will place the information on the message as
defined in the diagnostic data description.

CANdesc dispatches incoming request(s) to the application (Service MainHandler
or signal handler level).

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

3.7 Diagnostics —a more detailed View

In this chapter you find the following information:

Basic Information

3.7.1 Basic Nomenclature from the Bottom Up page 18
3.7.2 The same Nomenclature from the Top Down page 19
3.7.3 Where to find this Nomenclature in CANdela Studio page 19
3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component page 21
3.7.5 User, None, OEM, Generated — what does this mean? page 23
© Vector Informatik GmbH Version 1.7 -17 -

Basic Information

User Manual CANdesc

3.7.1 Basic Nomenclature from the Bottom Up

Using the same
expressions does not
mean to talk about
the same thing

This nomenclature
should help to
proceed with
CANdesc and
CANdela.

Service ldentifier =
SID

Build-up of Requests
and Response
Messages

Service

Protocol Service
Request

Response
Diagnostic Instance

Diagnostic Class

Basic diagnostic communication is based upon a request / response mechanism. To
understand the structure of CANdela Studio it is necessary to make some detailed
naming definitions.

The combination of a request and responses (positive and negative) forms a Service,
as you can see in the figure below. A service (in the scope of CANdesc) is a concrete
service of an ECU.

Request and responses are so-called service primitives.

Protocol Service

{Grammar of
Services) Service ‘ ‘ ‘
Service
Erimitive Service Identifier Subservice Data bytes, signals

{positive)
Response Data (error code)
{negative)

A protocol service is a pattern for a service. The protocol service defines how the
service primitives have to be built up. It determines the number and meaning of bytes
for the sub service, and specifies the data bytes.

-
—

Info: The order of service identifier, sub service and data bytes can be found at the
byte stream level, too.

Request

Response

-18 -

A request is a service primitive and is created as shown in figure above. A request is
always sent from a tester to an ECU. The ECU processes the request and has to
send back a response message.

The positive response is calculated very easily by just adding the value 0x40 (hex
format) to the SID of the request. The sub service is just repeated from the request
and the data depends on the service.

The negative response always starts with Ox7F as the SID followed by the SID of the
request. The error code shows the reason for the negative response (e.g. wrong
format of the request, ...).

Services with the same sub service (similar functional scope) are combined into the
same Diagnostic Instance. This sub service is the characteristic factor for the

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

Services with the
same Subservice are
combined into a
Diagnostic Instance -
the Sub Function
4000 is Just an
Example

A Diagnostic
Instance is a part of
a Diagnostic Class

Basic Information

diagnostic instance.
A diagnostic instance is a part of a diagnostic class.
A diagnostic class is the abstract description of a use case.

This is shown in the following two illustrations.

Diagnostic Instance

Service 3 Service 4
Service 2 erVICe Reauest 4000
Service 1 O 7000 <00 §—
P — 7000 Il <000 §m— E—
rees [[000 1 ES— NS E—
e — 1 —JL
Response | | [| [|
(negative)
Diagnostic Class
Diagnostic Instance 2
Diagnostic Instance 1 | Conica 2 Slervice 4
Service 3 Service 4 o f— A
Service 2 : 2000_Hi | 1]|
Service 112 e pm o
PO e ;000 - 000) S) S——

3.7.2 The same Nomenclature from the Top Down

CANdela is top
down, CANdesc
bottom up —try to
understand both
directions.

A diagnostic class is an abstract description of a use case.

A diagnostic instance is derived from a diagnostic class. Some diagnostic classes
can be instantiated only once. Any diagnostic instance is unique and can be
distinguished from another diagnostic instance via its sub service (e.g. data identifier).
A diagnostic instance contains services.

Services are composed of the three service primitives: request, positive response
and negative response. The protocol service is the pattern for the service, the
grammar definition.

The service primitive data is a concrete information unit exchanged between the
tester and the ECU. In the automotive environment you call them signals, too.

3.7.3 Where to find this Nomenclature in CANdela Studio

Getting around in
CANdela Studio

© Vector Informatik GmbH

To generate CANdesc you will have to make settings in the CDD file, i.e. you will
have to work with CANdela Studio. That’s the reason why it is very important that you
get to know the areas in the CANdela Studio where to make the necessary settings.

Below there is a screenshot of CANdela Studio.

Version 1.7 -19 -

Basic Information User Manual CANdesc

See the Diagnostics @ [-JolEd
Classes and § Fie Edt View Insert Tools Window Help RS
) X O & u : > E lg & '1? |3 &' Fa - npath: JCommon Diagnostics
Diagnostic Instances F@ Gl it T TR]
in the CANdela @ DTC Overview
. = Rﬂ Common Diagnostics Here wou can select from the diagnostic classes that the variant should support. § you activate a disgnostic class, twil be ir
Stu d 10 tree Str‘u Ctu re & Idertifying Features automatically in the document. If you deactivate a disgnostic class, it wil ke removed from the documert.
- L&) supported Disgnostis Classes! *Vou can find further information in the online help on page How to select supported diagnostic classes
i i @ Session Diaghostic Classes:
lagnostic
Class -G Security Aocess T
@ Ecu Reset Securty Access
[B] Tester Present Ecu Resel
[Z] Control DTC Setting] Tester Present
. . =g Pips Control DTC Setting
Diagnostic _| » 2 Service instence For Demo | |] Perincic Data
Instance [TestDiagnose instance FIDs
[2) DEOD - Engine Speed O bynamically Define Data Identifier
Fault Memory
B F1a0-vin [Routine

[B) D100 - Active Diagnostic Se [birect Memary socess
[21 Faut Memary
+ @ Routine
@ variarts
1 @ States
+1 @ Vehicle System Groups
[E] Data Types
[B] Protocol Services
1 8@ Negstive Responses
& Import poal

< Brevious |[¥

The structure within CANdela Studio is top down. In the tree on the left of CANdela
Studio you will find the diagnostic class and the diagnostic instances as shown in the
figure above.

Info: To get familiar with the idea of diagnostic classes and diagnostic instances,
have a look at all supported diagnostic classes. Verify for yourself what is meant by
abstract description of a use case, e.g. talking about Sessions, Security Access,
Fault Memory...

If you click on a Service Instance you get a window like the following figure. Use this
figure to understand the different areas on the diagnostic instance window and to
close the gap between the nomenclature in the section above and it appears in
CANdela Studio.

-20 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

Diagnostic Instance

. i ji N f Diagnostic Class

window of CANdela Name of Diagnostic Instance L_ ame o g

Studio — a very [Diagnostic Instance (PIDS) |
|m portant W| ndOW Mame |Sern-ice Instance For Demonstration Purposes |

‘ Description ‘ @ |

Unique Identification ‘

(Sub Service) ———2% . fpaom | |

Service: Protocol Service Reguest Fos. Aesp heg. Resp
e T i i mee mans wee o]
‘ [~ Get Scaling J (524 ReadScalingDataByldentrier J|
Service area _*‘ v fiite] E [$2E) Write DataByldentifier 2E 4000 zz. 6E 4000 7F 2Ere ﬂ
‘ [~ Freeze: J@zn InpLt OutpLt Cortrol By ldertiier - Fresze J|
‘ I~ Conirol =] (32F) Input Outout CoryolBy dentifer - Short .. =]
[~ Releass: J 2F) Input OutpuiControl Byidertiier - Return . J'
[G S ————— |
‘ Deta (z2) }
‘ Byte .. | Bit Pos. | Mame | oot Type [
0 Voltage: HexDump (1 Byte)
‘ Current HexDump (1Byte)

Resistance HexDump (2Byte)
‘ Please clidk here to creste & new element

Diagnostic Data —T—-—b

efautt [constart | Descrigtion

Diagnostic Instance Protocol Services

3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component

What happens in the Now you know the basic diagnostic elements and the build-up of diagnostic services.
CANdesc if a Now we take a closer look at how the diagnostic services are processed by CANdesc.
diagnostic message You also need to know these processing steps so you can control and adapt this
received? process.

i I Info: For this adaptation you have to use CANdela Studio.
N—

The following figure shows the processing of a diagnostic service in detail.

© Vector Informatik GmbH Version 1.7 -21-

Basic Information

Processing a

Diagnostic Message

received by

CANdesc and the
connections to the

Application.

-22 -

User Manual CANdesc

ProHandier e | MainHandler © Eostiandier opna O
} Handle application | ' Analyse request, | Handle any kind of |
. Pre‘?ond't'ons « _ assemble response . state updates
L OPtlol"cS):E"G"e’ : i Options: user / OEM B Options: none /
I (oredefined) P (predefined) / I user / OEM
et 0 gererated B (predefined)
! : } o T yoo
L 1 I | 1
| CANdesc ________'-==----7miio---o-----tn 0 o

‘- - -

1
gheck SID 9 ‘Check Service : l
| |

Cl

Check Session heck Format ACK? t
Request L
— positive Response@
(1] . i
negative Response
Tester 9 P 9

Everything starts with a diagnostic request from a tester to the ECU.

Info: The path of this message through the CAN Driver and the Transport Protocol is
not shown in the illustration.

Now this incoming diagnostic request will be checked in different ways. Is the SID
supported in the ECU? Is this SID supported in the current session? Is the service
supported? Is the format of this request message correct, i.e. correct length? Correct
data? etc.

If any of these checks fail a negative response is sent back to the tester. The error
code informs about the reason (e.g. wrong format).

If the incoming diagnostic request passes all of these checks, a PreHandler function
could be called. This PreHandler function is optional. You have options to set it to
<none>, <user> or <OEM>,

The next function is the MainHandler. This is a mandatory function. Every service
must provide a MainHandler. The MainHandler is designed to analyze the request
and assemble the response message. The MainHandler provides the options <user>,
<OEM> and <generated>.

After the MainHandler has processed the diagnostic data, provided the data for the
response and informed the CANdesc Component about the end of the processing
(processing done), the positive response message will be sent back to the tester.

Info: The path through the Transport Protocol and the CAN Driver is hot shown in the
figure above.

18]

After the diagnostic response is sent by the transport layer (ACK)...

...the call of the PostHandler function is triggered. This function is optional too and

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Basic Information

i |

can be set to <none>, <user> and <OEM>. Use this function to do any kind of state
updates.

Info: A typical example for the PostHandler is to reset the CPU to start the
bootloader.

3.7.5 User, None, OEM, Generated — what does this mean?

All handlers can be
defined via CANdela
Studio

None
User

OEM (predefined)

i |

Generated
(Signal Handler)

As you have read in the section above, a Pre-, Main- and PostHandler can be
selected for any service to process the diagnostic service in a very user-friendly
manner.

Handler Selectable settings
PreHandler none, user, OEM
MainHandler user, OEM, generated
PostHandler none, user, OEM

None can be selected for Pre and PostHandlers only because these handlers are
optional. As the name says, none switches the handler off.

The setting user means that you have to do the complete code for this handler. The
function prototype is generated in appdesc.h.

The setting OEM handles the request as required by the car manufacturer. The
implementation is part of the CANbedded Software Component. The user does not
have to add anything.

Info: The setting OEM should only be used if it is predefined.

If you select Generated you have two options for this handler (MainHandler)

1. Generate a function prototype (appdesc.h). Use this function to handle the
diagnostic data by returning the current value (reading service) or using the
parameter (writing service).

2. In CANdela Studio you can enter the name of the variable. In appdesc.h the
external declaration of this variable is generated and you only need to define this
variable in your application and that’s all. Your application now just has to keep
the content up to date.

- |

Cross reference: For more details about the using the handlers and how to make the
settings in CANdela refer to STEP Functional Connection between your Application
and CANdesc/CANdela Studio on page 35.

© Vector Informatik GmbH Version 1.7 -23-

A Few STEPS to CANdesc

4 A Few STEPS to CANdesc

In this chapter you find the following information:

4.1
4.2
43
4.4
45

4.6

4.7
4.8

4.9

4.10
411

-24-

User Manual CANdesc

STEP What do you need before start? page 25
Startup Code page 25
Overview page 25
STEP Installation page 26
STEP Configuration with the Generation Tool page 26
Using the Generation Tool CANgen

Using the Generation Tool GENy

STEP Generating Files page 29
Using Generation Tool CANgen

Using the Generation Tool GENy

STEP Add CANbedded to your Project page 32
STEP Adapt Your Application Files page 33
Including, Initializing and Cyclic Calling

STEP Functional Connection between your Application and CANdesc/CANdela Studio page 35
How to handle User-Defined Handlers

How to Handle Predefined Handlers (for MainHandler only)

Handling OEM-Specific Settings

STEP Compile and link your Project page 41
STEP Test it via CANoe page 41

Start CANoe.CAN OSEK TP enlarged
Test of CANdesc

Version 1.7

© Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

4.1 STEP What do you need before start?

Check before you Before you start make sure that you have received everything you need.

start

CANbedded Did you get the CANbedded delivery?

YES? Then go on Except for the converter, you should answer all other questions with yes before going
on here.

4.2 Startup Code

Itis your The startup code of the microcontroller is not part of the Vector delivery. The startup
responsibility code complete is in your responsibility.

Take care to provide an appropriate startup code regarding e.g. wait states, etc.

i I Info: The startup code is not part of the Vector delivery.

)
4.3 Overview

Step overview This overview shows the steps to CANdesc. These steps are described in detail on
the following sections.

CDDT

CANdela
Document
template

Application Project
— @ Makefile f Development Environment

lE

@ cANdela Studio © Application Software. ———————}
@ CAMbedded Software Components

m CANbedded Software Component
Configuration

CANdela ﬂ CANdesc
database
Compile
Link

DEC ﬁ X This step can be
(4

B M E' read after the second
i ar as the second part
et (©]| _Generate | 18] of the sixih step.
f === CANoe

o Generation Tool

© Vector Informatik GmbH Version 1.7 -25-

A Few STEPS to CANdesc User Manual CANdesc

4.4 STEP Installation

xl

Generation Tool

i |
N—
CANdela Studio

Extract CANbedded
Software
Components

As you see in the picture before, you need 2 PC tools to work with CANbedded
containing CANdesc as a diagnostic component.

The first tool is the generation tool. It is delivered with the CANbedded Software
Components. Extract the files to an appropriate folder and follow the installation
instructions.

Info: There are two kinds of generation tools, CANgen and GENy. Which of them you
have to use depends on the delivery. In the following steps the usage of both tools
are shown.

The second PC tool is CANdela Studio. This tool is for editing the *.CDD file. Install
the tool by following the installation instructions.

The number of CANbedded components in your delivery depends on your project.

To use CANdesc you need at least a CAN Driver and a Transport Protocol (e.g.
OSEK /1SO 15765-2).

Copy all C and H files which are necessary for the components into your application
project folder.

- |

S— ",
&

Cross reference: Refer to the corresponding user manuals (e.g. CANDriver User
Manual) to get further information about the files of the different Software
Components.

-
—

Info: Since CANdesc is totally generated, you won't find any source files for CANdesc
in your delivery.

4.5 STEP Configuration with the Generation Tool

r

As described above there are two generation tools for configuring the CANbedded
Software Components, CANgen and GENy.

In the following chapters we describe the handling of both tools, beginning with
CANgen. Figure out which tool you use and read the corresponding chapters only.

4.5.1 Using the Generation Tool CANgen

i |

Open CANgen. Add a data base (DBC file) via the green plus Gh .

Info: Normally you get a data base (DBC) from your vehicle manufacturer that is
designed for your project.

Are the files
generated in the

-26 -

Make all the component settings as described in the appropriate User Manuals. For
the Transport Protocol use the default [Set Defaults] for the first attempt.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

correct path?

Very few settings
have to be made in
the Generation Tool
CANgen for
CANdesc

Info: Remember to set the paths where the generation tool does the output.

To configure CANdesc, open the CANdesc options tab. For this first attempt click
[Set Defaults]. The generation tool needs to read an additional data base, the
CANdela data base (CDD file). Browse for the CANdela data base file and select the
CDD file you received from your vehicle manufacturer.

example | YourECU

MCHet options | QN wrapper] FEL options] FELLET] CCL options] CLCL advanced | Mm basic | Dynamic CAN Interface | BRSC
DOverview | CAN driver | CAN driver [Advanced) | Send messages | Receive messages | DSEK-TP options | ASDT | MCAN CAMdesc options l

¥ Use CANdesc diagnostic modules

Configuration settings for CaMNdesc embedded modules

Call cycle for CAM deschain: I‘Iﬂﬂﬂﬂi [ug] Set Defaults
Enable 4P| debug support v

Enable internal debug support 2

Diiag buffer size: ’22—

Flashable ECU ™

Ring buffer I

Enable force RCP-RP responze r
Fepeated Service Call
(+ Deactivated

" Alwaps
" Individual

CANdelaGen options
CAMdela data base file [COD):

DoSupportGenericl zerServiceH andler[bool] B

Generic support for unknown service[z] post handler(s] |

| our COD file.cdd Browse... |

Current diagnastic variant selection: | j

Generate CAMNdesc files |

If the two checkboxes for debugging are checked you have to provide debug callback
functions in your application.

A very important entry is the Call Cycle. This call cycle must be the one you call the
DescTask function or the DescTimerTask function in your application (this will be
explained in detail in the next steps).

4.5.2 Using the Generation Tool GENy

Open the generation tool GENy and create a new project as described in the
OnlineHelp of GENy in the chapter First Steps.

Info: Normally you get a data base (DBC) from your vehicle manufacturer that is
designed for your project.

Make all the component settings as described in the appropriate User Manuals.

Info: Remember to set the paths where the generation tool does the output.

© Vector Informatik GmbH Version 1.7 - 27 -

A Few STEPS to CANdesc User Manual CANdesc

Activate the component CANdesc in the component selection view.

Comp(_Jnent_ Saftware I:n:nmpn:nnents| ECU
Selection View of -
GENy Diag_CanDesc_LIDS
Hiw_Mes1 2Cpu
B comp... [&7 Gene. |
The activation of the CANdesc component is modified with the
Diag_CANdesc_xxx.DLL version 3.0.
Compc_)nent_ Saoftware Compaonients | ECL Channell | Channel2
Selection View of Tol core

GENy with separate —

Cp Cep
CANdesc_Connector E—
CAN component Diag_CanDesc_ConnectorCAM

Diag_CanDesc_LIDS

DvCan_Mcel @b zcanH |l
Hw_ Mzl 2Cpu

Tp_lzo157ER

OEOEOO0
EEEEECE

—| OEOEOCOE

B Component Selection] fe} Generated Files

Starting with this version CANdesc can be connected to more than one channel or
can be used standalone. The Diag _ CANdesc_UDS/KWP component includes the
main configuration window of CANdesc. The Diag_CANdesc_ConnectorCAN
component connects CANdesc to a CAN network and configures the TPMC to work
with CANdesc.

generate successful as standalone CANdesc. Therefore it is necessary to connect
CANdesc with the CANdesc_ConnectorCAN component to a channel, if the TPMC
shall be used.

f‘E Caution: If you do not activate CANdesc_ConnectorCAN component CANdesc will

-28 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

GENy Configuration
View for CANdesc

(=} ECU

Components

+-EF Cel__core

4B Diag_CanDesc_ConnectarCé
EX Diag_CanDesc_UDS

4B DrvCan_Mcs12xMzcanHIl
B GenT ool GenyPluginConfigD
B2 Hw_Mecs12Cpu

4 B2 MameD ecoratar

4 B3 Tp_lzol5765

+ @ Tu Meszages
#- My Tx Sigrals

A Few STEPS to CANdesc

Configurable Options

| Diag_CanDesc_UD

5

|— CANdelaGen
Open in CANdel Studio
CANdela Deta Baze File
Current Diagnostic Variart Selection
|- CANdesc
CANdest Yersion
Cycle Time [ms]
Diagnostic Butter Size [byte]
Mon-Flazhakle ECU
“ector FBL Support
Ring Buffer Support
Forced RCR-RP Response
Unknowen Services Acceptance
Unknowwn Services Post Handler Calls
Repeated Service Call Type
Generate CANCesc
|: Debug Support
Application Interface Assertions
Internal Azzertions
|- Periodic Data Rates
Fast [ms]

Medium [mz]

Slowy [mz]

[.

Your path to ".cdd i

1w

100
mE
O
O
mE
mE
mE

Deactivated

d

ana

[

Da
Da
200

o0
o007

To configure CANdesc, open the CANdesc configuration via the

Diag_CANdesc_UDS in the navigation view. As you see in the figure above, the

generation tool needs to read an additional data base, the CANdela data base (CDD
file). Browse for the CANdela data base file and select the CDD file you received from
your vehicle manufacturer.

If the two checkboxes for Debug Support are checked you have to provide debug
callback functions in your application.

A very important entry is the Call Cycle (“Cycle Time”). This call cycle must be the

one you call the DescTask function or your DescTimerTask function in your

application (this will be explained in detail in the next steps).

4.6 STEP Generating Files

4.6.1 Using Generation Tool CANgen

If you have finished the settings in the previous step, hit the [Generate] _@ button.
You get a message box containing information about the generation process and a

[Success] window containing information about the generated files and their paths.
Check to see if the files are generated into the correct folders.

© Vector Informatik GmbH

Version 1.7

-29 -

A Few STEPS to CANdesc User Manual CANdesc

Success Window
after a Generation
Process

desc.c
desc.h
appdesc.c
Y
[[
- 30 -

-

r-S uccess

The gernerated modules have to be tested and verified by the user!
mpraper configuration may lead to problems!
AN Figur i lead to problems!

Generated files;

D \UTTHEEMERATIONTOOLEXEC Testiode b
D:\UTTGENERATIONTOOLYEXEC TestNode . c
D \UTTYEEMERATIONTOOLEXEC can_cfg.h
D \UTTWEEMERATIONTOOLEXEC Y cFa.h

D UTTSEMERATIONTOOLEXEC appdesc.h
D \UTTEEMERATIONTOOLEXEC appdese. o
D UTHGENERATIONTOOLEREC appdescdey .
D \UTIVEEMERATIONTOOLEXECdese . b

D \UTIYEEMERATIONTOOLIEXEC desc.c

D UTTWEEMERATIONTOOLEXECED cfg.h
O\ LTI GENERATIONTOOLEXEC Amb_cFg.h

Open the folder you generated in the files listed above. There you should find the
generated files for CANdesc, too. These are:

This file contains the implementation and the private interface of the Diagnostic
Software Component.

This file contains the public interface of CANdesc. You will also find the <Negative
response codes> here.

This file is an implementation example for the proper usage of the diagnostics
callback functions. All necessary callback functions are generated in this file and
commented what is left to be done (<<TBD>>). See the example below:

Example: Extract of the Generated Callback Functions Template.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

/*
* Function name:ApplDescReadVoltageService_lInstance_For_Demonstration_Purposes
* Description: Reads a signal.

* Returns: signal value

* Parameter(s): none

* Particularitie(s) and limitation(s):

* - The function "DescProcessingDone’™ may not be called.
* - The function "DescSetNegResponse' may not be called.

*/
vuint8 DESC_API_CALLBACK_TYPE
ApplDescReadVoltageService_Instance_For_Demonstration_Purposes(void)

/*<<TBD>> Remove this comment once you have completely implemented this function!!!*/
/*Return the signal value.*/
return OxFF;

}

/*
* Function name:ApplDescReadCurrentService_lInstance_For_Demonstration_Purposes
* Description: Reads a signal.

* Returns: signal value

* Parameter(s): none

* Particularitie(s) and limitation(s):

* - The function "DescProcessingDone™ may not be called.
* - The function "DescSetNegResponse' may not be called.

*/
vuint8 DESC_API_CALLBACK_TYPE
ApplDescReadCurrentService_Instance_For_Demonstration_Purposes(void)

/*<<TBD>> Remove this comment once you have completely implemented this function!!!*/
/*Return the signal value.*/
return OxFF;

/*
* Function name:ApplDescReadResistanceService_lnstance_For_Demonstration_Purposes
* Description: Reads a signal.

* Returns: signal value

* Parameter(s): none

* Particularitie(s) and limitation(s):

* - The function "DescProcessingDone’™ may not be called.
* - The function "DescSetNegResponse' may not be called.

*/
vuintl6 DESC_API_CALLBACK_TYPE
ApplDescReadResistanceService_lnstance_For_Demonstration_Purposes(void)

/*<<TBD>> Remove this comment once you have completely implemented this function!!!*/
/*Return the signal value.*/
return OxXFFFF;

}

Appdesc modification If you start programming in the file appdesc.c, you fill in the missing code for the
services and you start a new generation process, the generation tool detects whether

Detection to prevent the file has been changed or not:

loss of changes

-,

Visual C++ 2005 Express Edition

CrhukiGenerationToollexecappdesc. c

This file has been madified outside of the source editar,
Do ol wank to reload ity

Yes] [Yes ko Al] [Mo] [Mo ko all
i I Info: So better rename the file before you implement the diagnostic services.
—
appdesc.h This file provides prototypes of the application diagnostic callback functions and

© Vector Informatik GmbH Version 1.7 -31-

A Few STEPS to CANdesc User Manual CANdesc

All callback function

prototypes are
generated in
appdesc.h.

Appdescdev.c

external application declarations, which are accessed by CANdesc.

This file contains the definition of the used variables in CANdela Studio.

-
—

Info: This file shall be used only during the first integration in order to make your
project fully compile- and linkable. This file is no necessary later, since the variables
that will be defined here shall be implemented within your ECU application code.

-,]x

Cross reference: (see section How to Handle Predefined Handlers (for MainHandler
only) on page 38)

4.6.2 Using the Generation Tool GENy

Generated Files for
CANdesc —CANdesc

If you have finished the settings in the previous step, hit the [Generate] EI button.

il

=

Core Files are
Generated, too!

4.7

-32 -

Info: All files for the CANdesc Software Component are generated!

In the Generated Files view you see the files listed as shown in the figure below. Use
this output to check the paths. In the list you only see the CANdesc-relevant files. The
files are the same as generated with CANgen, so refer above for detailed information.

Ea Sourze Files

“appDesc.o

B
""" % YDUI'PElth WippDescDew.c

P “Desc.c
Ela Header Files
‘ YappDesc.h

B YourPath oot

STEP Add CANbedded to your Project

What to do in this step depends on your development environment. Perhaps you are
working with a makefile?

Regardless of this you have to add the CANbedded files to your project. These are
the files discussed in Section Extract CANbedded Software Components on page 26
and the ones generated in the previous step.

Caution: Always make sure that the path in which you generate the files and the path
your compiler is working on are the same!

Now there are several adaptations for you to make in your application.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

A Few STEPS to CANdesc

4.8 STEP Adapt Your Application Files

R

N—
&

48.1

Two CANdesc
headers have to be
included in your
application:

desc.h

appdesc.h

Keep the including
file structure.

Now all files for CANbedded and CANdesc are included in your project, and we can
go on to make the necessary adaptations in your application files.

These adaptations can be split in two categories:

= Include, initialize and make the cyclic calls for the CANbedded Software
Components (use the component-specific documentation for details).

- Connect your application to CANdesc

Including, Initializing and Cyclic Calling

As for all other CANbedded Components, CANdesc must be included, initialized and
used via a cyclic call.

CaNdela
database

generated

T)

Template file

appdesc.c @ — appdesc.h A
EET® o ®
v_def.h @

The figure shows all generated files of CANdesc. Your application only needs to
include the files desc.h and appdesc.h in the order they are mentioned.

ECU

I

1

1

I

1

I

1

I

I

1 D “T database
| =3
I

1

I

I

1

I

Generation Tool

-
—

Info: Any User Manual dealing with our CANbedded Software Components shows
this kind of illustration. Always keep the include file structure that is shown.

Like all other
CANbedded
Software
Components,
CANdesc must be
initialized and the
Interrupts must be
disabled during
initialization

=

As for all other CANbedded Software Components the initialization function follows
the same naming conventions. For CANdesc use:

DesclnitPowerOn(initParameter);
/*Interrupts must be disabled*/

Cross reference: For information about the initParameter refer to your OEM-specific
Technical Reference for CANdesc.

Y
&

© Vector Informatik GmbH

Make sure that DesclnitPowerOn is called after the call of CanlnitPowerOn and

Version 1.7 -33-

A Few STEPS to CANdesc

It is very important
that you call
DescTask() or
DescTimerTask()
cyclically and keep
the adjusted call

cycle
&

Using DescTask

User Manual CANdesc

TpInitPowerOn.

Normally the components are initialized from the bottom up according to the layer
model. Always do these initializations with disabled interrupts.

This is the correct order of initialization if you use CAN Driver, Transport Protocol and
CANdesc.

1. CanlinitPowerOn();
2. TplnitPowerOn();
3. DesclnitPowerOn(0);

As you adjusted things in Using the Generation Tool CANgen on page 26 (Call cycle
for CANdescMain) the components need a cyclic call in your application to work
properly. The call cycle must be the same as entered on the CANdesc tab / view
(CANgen / GENYy). The functions to call cyclically are:

DescTask(); or
DescTimerTask(); (together with DescStateTask)

Caution: Never use DescTask() and DescTimerTask() / DescStateTask() together!

With the call of this single function the handling of the timers and of the internal
service processing (including application functions) is triggered. If you receive a
diagnostic request, the response can be handled not until the next call of DescTask.

-
—

Using
DescTimerTask
and
DescStateTask

o

-34-

Info: This could lead to slower service processing.

This concept splits the timer handling for CANdesc from the internal service
processing. Now only the function DescTimerTask() has to be called in the predefined
(configuration tool) cycle time.

The function DescStateTask() has to be called in a cyclic manner too, but does not
need a fix cycle time. It can be called very fast to speed-up the reaction on a
diagnostic request or it can be called as soon as there are free resources (e.g. an idle
task in an operating system).

Info: CANdesc and DescTimerTask use the cyclic call as a time base for the timing
calculations.

Do not make this call out of a timer interrupt. Just call DescTask() or
DescTimerTask() at the task level.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

4.9 STEP Functional Connection between your Application and
CANdesc/CANdela Studio

It is up to you when you perform this step: before STEP Configuration with the
Generation Tool (page 26), as a part of STEP Adapt Your Application Files (page 33)
or perhaps at both times.

= Info: There is a very close connection between the settings in CANdela Studio and
) what to do in your application.
’ Have a look a look at section Generic Handling of a Diagnostic Request in the

as CANdesc Component on page 21.

As you can see, there are three types of handlers (Pre-, Main- and PostHandler) that
can be selected for any service. It is very important to know what happens when you
choose the Value for the handlers. For this decision you need an overview of the
great flexibility arising with the choice.

We will first go through the possible settings for one service as an example. With the
knowledge you gain from this you can then go on with the other services.

The settings of the handlers value can be made in the Properties windows of each
service on the Attributes tab (see values in the following figure).

How are the settings
in CANdela mapped
to your application?

Protocol Service:
=] 1$22) ReadDataby identifier

Properties of Service "Read" in instance "Service Instance For Demonstration Purposes™

General l Shortouts l Addressing] Audience l Authorization l &% state Trans'rtionsl Extended Affributes

SuppOI’t for the Categories: |A|I j
different Handlers

. Mame | Type | Cvermritten Walue | Description |
can be adjusted on p—
the Service Property *PreHandler Support Enurm [rone x| Pravide type of Service Pre Handler f...
Page niorne
9 oem
user

I~ Show only owerwritten sttributes Default
QK | Abbrechen Ubernehmen | Hilfe |

49.1 How to handle User-Defined Handlers

Cveraritten Walue | If you choose for the handlers to be user-defined, you have to do all the programming
hone =| work for this service yourself, except for the checks. A callback function prototype will
none be generated in the file appdesc.h.

0EMm

LISEr
Service Qualifier Open the Service Properties and then the General tab.

© Vector Informatik GmbH Version 1.7 -35-

A Few STEPS to CANdesc

Diagnostic Instance

Qualifier

Names of the
generated callback
functions

@)

-36 -

Pratocol Service:

($22) ReadDataByldentiier

User Manual CANdesc

Request:
22 4000

Pos. Resp.:
62 4000 zz

Meg. Resp.:

FF e ﬂ

Properties of Service "

Read" in inst

e "Service |

e For D

ration Purposes”

General] Shortcuts | Addressing | Sudience | Authorizetion | €% State Transtions | Extended | Aftriautes

Mame: |pead
Quilifier: |pead

Description: |

I Edit communication parameter

QK | Abbrechen |

| Hilfe:

Open the Diagnostic Instance Properties and then the General Tab

Mame |Servwce Instance For Demonstration Purposes

Description

PID: 04000 il weorvicn | : "
| * Service For Demonstration Purposes'

Properties of Diag)

g m
t |

Service:
v Read
[~ Get Soaling:
[wirite:
I~ Freeze:
I Control:
I Release:

Data z2) }

Byte ... | Bft Pos. | Iame
Vokage
Current

2 Resistance

New Instence | Delete instance |—§

General IAud\ence] Authatizetion I Vehicle System Groups I Adtributes 1

Mame ‘Service Instance For Demonstration Purposes

QUETEar Service_Instance_For_Demonstration_Purposes
s o B|r|u| ElE| AL Al e e

Description

[¥ Activated

Ok Ahbrechen |

Hilfe:

The names of these callback functions are built as the following

Example: For this example, the callback function would look like this:

appldesc + Read + Service_Instance_For_Demonstration_Purposes

appldesc +Pre+ Read + Service_Instance_For_Demonstration_Purposes

appldesc +Post+ Read + Service_Instance_For_Demonstration_Purposes

with parameters:

void ApplDescReadService_Instance_For_Demonstration_Purposes(DescMsgContext* pMsgContext);

void ApplDescPreReadService_lInstance_For_Demonstration_Purposes(void);

void ApplDescPostReadService_lInstance_For_Demonstration_Purposes(vuint8 status);

Now you have to provide all the prototypes of the appdesc.h file as functions in your
application and do the coding for each service, i.e. for each Pre-, Main- and

PostHandler that is switched to User.

See an example for a ReadDataByldentifier MainHandler for the service above

Version 1.7

© Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

defined for User. The data bytes of this service are:
= g_Voltage (1 Byte)

= g_Current (1 Byte)

= g_Resistant (2 Bytes)

To process this service by yourself, you need to know how to access the diagnostic
data. The following figure shows the data access for a reading service (upper figure)
and a writing service.

A reading service consists of a SID and perhaps a Sub-Service. The requested data
is then sent with the response.

A writing service consists of a SID, perhaps a Sub-Service and the data. The
response is only a confirmation with SID+0x40 and perhaps a Sub-Service.

When working with CANdesc you only need to process the data. That is the reason
why the pointer is directed to the first data byte.

The same Diagnostic Buffer is used for receiving a diagnostic request AND sending the response

reqDataLen =0

Diagnostic request (A: reading service) T regData[O]
Diagnosti e
B 6}? ostic SID Sub Service - - -
uffer :
(RAM Memory) SID + 0x40 | Sub Service ’ Data Data . Data .
resData[1] 3 resDaIa[Zy
Positive Diagnostic response Y
resData[0] resDatalen
reqData[0]
reqDatalL
Diagnostic request (B: writing service) recutien
reqData[1 1¢ reqData[m
. . . 4
g'é}?nosm SID Sub Service Data Data Data
uffer :
(RAM Memory) SID + 0x40 | Sub Service . - - -
Positive Diagnostic response l resData[0]

resDataLen =0

Info: The request data and the response data are stored to the same memory
location. Writing the response data means deleting the request data.

-
—

Example: The example below shows a very easy way to process a diagnostic
request. The data is copied to the Diagnostic Buffer, the amount of the response
data is determined and the diagnostic service is finished via DescProcessingDone.

=

woild ApplDescReadService_ Instance For Demonstration Purposes(lescHsgContext* p

Code Exanuﬂefor pH=gContext —> resData[l] = g Voltage: <% First Signal g Voltage *~

the MainHandler pH=gContext —: reslatal[l] = g_Current: <% Second Signal g Current =
. pH=gContext —» resDatal[2] = g FEezistance_lo; % The byte order depends on t

Usquthe User pH=gContext —: resData[3] = <% uzed byte format =~

Option

pH=gClontext —:

reslDatalen

DescProcessinglone()

g _Re=zistance_hi;

S

4 data bytes =~

© Vector Informatik GmbH

Version 1.7

-37 -

A Few STEPS to CANdesc User Manual CANdesc

A‘; Example: When preparing the diagnostic response, it is very important to provide the
iz correct data and calculate the length of the response (= resDatalLen).

To finish the service processing with a positive response, call:
DescProcessingbone();

For a negative response, finish the service processing with:
DescSetNegResponse(<errorCode>);

DescProcessingbDone();

Info: A negative response can also be set in the PreHandler. There it is enough to
call DescSetNegResponse(<errorCode>). The PreHandler must not be finished with
DescProcessingDone. See desc.h for the definitions of the error codes.

Remember: in the PreHandlers no access to the diagnostic data buffer is possible.

Response pending What to do if the response cannot be sent immediately?

will be sent .
automatically by In some cases (e.g. writing data to the EEPROM) you cannot send the response

CANdesc immediately, but you need not treat this as an exception. CANdesc will automatically
inform the tester about the delay in the diagnostic response. So process the request
and if you finish it, send DescProcessingDone. All other timing aspects are realized
by CANdesc (Response Pending).

4.9.2 How to Handle Predefined Handlers (for MainHandler only)

| Owerwritten Value | If you select generated you need not to program the complete service by hand. Using
[aenerated =| this option gives you two further options:

Lizer
oem

generated 2. You can tell CANdela the name of the variable (and data type) for a certain
service and you only have to provide this variable in your application code.

1. A signal callback function will be generated

To get a signal callback function generated, i.e. to implement the first option, right
click on a data object and choose Properties from the pull down menu. Now the
Properties window of the chosen data object opens. In this example it is the data
object Voltage.

-38- Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

Signal Access via the
Application and a
Callback Function

@)

@)

Generated does not
mean that you do not
have to do anything
— but there is little
programming work
left to do

Mame: |Service Ihstance For Demonstration Purposes
Descrigtion: =]
FID: 0x4000 ffq
Service Protocol Service Request Pos. Resp. Meg. Resp
v Read: $22) PeadDataBy dentifier 224000 62 4000 2z FF22rc >3
[~ Get Scaling: 241 PeadScaling Data By Ideritifier
[tirite (B2E) Wirite DataBy dertifier
[” Freeze: ($2F) Input OutputControl By Identifier - Freeze current state
[~ Control: (E2F) Input Quitput Coritr ol By lderitifier - Short term acjustrmert
[Release: $2F) Input Qutput Cortrol By Ideritifisr - Returh cortrol to ECLU
Data (z2) I
Byte .. | Bit Pos. | Mame | Data Tupe ‘ Defautt Constant Description
T =S
a “altas
l;' nlewy Data ohject 3
———— Curre
rlght Resi My Data type 3
mouse b create a new element
click Impart deta abiects... | properties of Data Object "Voltage”
& o Ganera\] Data Aftributes l
in: B3 Sopy
Mew hstan j Delete in: ‘ Cetegories: |AH j
Delete
x e Marme | Type |_g;2n-m T i Description
Copy to new Packet dal *atishleForDirectdccess Text (mutidanguace) (| §ecmy harne of ¢
Re=zerve data objects
<] 1l (>
¥ Shaow only owerwriten stiributes Diefault
Goto Datatype
Properties of Data type, :
» 2 Properties... QK Abbrechen | Ubernehmen | Hilfe |

Example: Make sure that the Overwritten Value field on the Attributes tab is empty.
The generated prototype should look like this.

vuint8

ApplDescReadVoltageService_ Instance_ For_Demonstration_Purposes(
void);

Example: All you have to do in your application for this MainHandler is to provide the
function ApplDescReadVoltageService_Instance_For_Demonstration_Purposes and

return the current value for the voltage stored anywhere in your application. The data
type of the return value will be adjusted automatically to the data type (Element Type)
in CANdela Studio. In this case itis a 1 byte value, therefore it is the data type vuint8.

vuint8

ApplDescReadVoltageService_lnstance_For_Demonstration_Purposes(
void);

{

return g Voltage;

}

The second option is to connect the settings in CANdela Studio more closely to your
application. Do the same steps as described above, but now enter the name of the
variable in the value field of the Attributes tab as shown in the following figure.

© Vector Informatik GmbH Version 1.7 -39 -

A Few STEPS to CANdesc User Manual CANdesc

Direct Signal Access

Mame |Service Instance For Demonstration Purposes
Description: =
FID x4000 i
Service Protocol Service: Regquest: Pos. Resp.: Meg. Resp.:
[Read $22) ReadData By idertifier 22 4000 B2 4000 zz FF 22 rc 3
[~ Get Scaling: 324 Read Scaling Datafiy [dentifier
[write: $2E Wirite Data By Iderdifier
[~ Freeze ($2F) Input Output ControlBy Identifier - Freeze currert state
[~ cCortrol $2F) Input Output Corntrol By Ientifier - Short term adjustmert
[~ Release (32F) Input Output Cortrol By Identifier - Return cortrol to ECU
Data (=2 |
Byte ... | EBit Pos. | Mame ‘ Data Type Defautt Constant Description
T e
1} Makar
B .
< Curre
right .. NewDstatype ’
mouse f create a new elemernt
click Import dita objects... | Properties of Data Object "Voltage™
& ot Generall Data Aftributes l
in| 2 Copy
Mew Instar ﬂ Delete in: . Eties |AII j
Delets
¥ Deete Mame | Type |_gt2m.i iz 10 Description
Copy to new Packet sl *VariableFot DirectAccess Text (mutiHanguage) < ‘g_\fﬂltage 9ecrﬁy name of
Reserve data objects —_—
< >
Copy path : -
[Shawe only overwriten attributes Defaul
Goto Data type
Properties of Data type
I= (= Praperties... OK Abbrechen ‘ Ubernehmen | Hilfe: |

Example: Now an external declaration of the variable g_Voltage prototype should be
generated.

extern vuint8 g Voltage;

The data type for this declaration again depends on the element type of the data
object, in this case 1 byte again.

Provide g_Voltage in your application (or use the appdescdev.c) and use it for storing
the current voltage value. If a diagnostic request requests this value, CANdesc
automatically refers to the content of g_Voltage. There is nothing more left to do for
you.

4.9.3 Handling OEM-Specific Settings

-40 -

The third choice is OEM. Do not change this. If the setting is on OEM, leave the
settings as they are and refer to the OEM-specific documentation on how to deal with
this service.

Now your task is to implement all diagnostic services you have to support and select
the desired status for Pre-, Main- and PostHandlers (none, user, OEM, generated).

Caution: Do not touch the OEM-defined handlers.

Then save the settings. This will change the CDD file. Depending on which step you
are on right now, either

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc A Few STEPS to CANdesc

continue with STEP Configuration with the Generation Tool on page 26 or

start the generation process again to generated the files containing the changes you
made.

Info: Sometimes in development, not all diagnostic services have been defined yet by
the OEM. Provide this function anyway and send a negative response back. Then you
can compile and link and test the other functions until the specification of the missing
services is completed.

4.10 STEP Compile and link your Project

’ Now we have all the includes and all initializations. The components have the cyclic
s calls of their task functions and all callback functions are provided and programmed.

Start the compiler or makefile and get the project compiled and linked.
Is it ok? No errors?
Congratulations! That's it.

Go on to the next step and do the testing.
4.11 STEP Test it via CANoe

’ Since you have arrived at this step, you are now able to compile and link. Have you
as already downloaded the code to your target platform?

Testing of the generated CANdesc depends on you and the OEM you are working for.
Perhaps you do have a diagnostic tester, perhaps not.

If you do not have an appropriate tester, we recommend using CANoe (a Vector PC
tool) and one of its demo configurations.

4.11.1 Start CANoe.CAN OSEK TP enlarged

The CANoe demo To test you diagnostics layer use one of the CANoe demo applications. Open this
environment is very configuration via Start/Programs/CANoe/Demos/More Demos/CANoe.CAN OSEK
simple way to TP enlarged.

basically test
requests and
responses

A CANoe configuration will open with four nodes (A to D). All nodes look quite the
same like this:

© Vector Informatik GmbH Version 1.7 -41 -

A Few STEPS to CANdesc User Manual CANdesc

i |

-,

2 Node A M=

Addreszing Flow Control
TpTx 1D 0= | BA| Block Size 2
TpRx 1D 0= 603 ST Min B4 | [fin

Tranzmizzion

Fix data bytes 0 .

FillkSend | T data bytes 1]
Options

Uze OSEK TP 2003 extenzions I

"W aititg State -

Additional Settings

Set the baud rate in CANoe to the one of your ECU and connect it to CANoe via CAN
(CANcardXL, CANAC?2...). Now run CANoe via the yellow lightning bolt and run
YourECU.

2% Vector CANoe - OSEK_TP.cfg

%File View Start Mode Configuration ‘Window Help

% DEdE w3 A5 8 i sym | hex I._F!eal bus ;v[

Info: Make sure that the CANoe mode is switched to Real bus and you have
selected the same baud rate as the real node “YourECU” is working with.

4.11.2 Test of CANdesc

-42 -

&o

Use one of the four nodes for your tests. Change the TpTxId and the TpRxId in the
“Addressing” field of the node window.

Caution: The TpTxId is the Rx Diagnostic message in your generation tool and the
TpRxId is the Tx Diagnostic message. In the example case the DiagResponse
message is 0x7C0 and the DiagRequest message 0x7B0.

It is optional to set the time for ST Min from 64ms (default) to 20ms. This is to prevent
the ECU from running in time out.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

Panel to Test
Diagnostics Layer

Compare the Values
with the ones shown
in CANdela Studio

=)

Transmission
224000

Fix data bytes
FilltSend | Tx data bptes

DOptions

i Node A =)o
Addreszing Flow Control
TpTx 1D Ox | 7hi Black Size 2
TpRx 1D Ox | 7o0 ST Min 64 | [T fix

1@ [senabot)

0

A Few STEPS to CANdesc

Transmission
22 40 00EEFABB CC

Fix data bytes
T« data bytes

Options

I Node A =)o
Addressing Flow Control
TpTx 1D Ox | 7ho Black Size 2
TpRx 1D Ox 70 ST Min 64 | [fix

0@ [semana]

0

Use OSEK TP 2003 extensions I Use OSEK TP 2003 extensions I
‘waiting State 0 wiaiting State '
l Additional Settings l l Additional Settings l
>.
Protocal Service: Reguest: Fos. Resp.: Meg. Resp.:
% 1$22) Read Data By (dentifier 224000 624000 zz TF22rc 5

It is very simple to test the services using CANoe. Enter the request in the
Transmission box and press Send Data and see the response in the same box.
Compare this response with the desired one in CANdela Studio. The contents of the
signals depend on the application.

Info: Make some variations to the signal contents to confirm the tests.

Repeat this for all other services.

© Vector Informatik GmbH

Version 1.7

-43-

Further Information

5 Further Information

In this chapter you find the following information:

51
52
5.3
54
55

5.6

-44 -

Diagnostic State Handling using CANdela Studio

Typical Examples of State Groups and States in an Automotive Environment
Creating and editing State Groups, States and Transitions

Connection between the states and your application

Diagnostic Buffer
Linear Diagnostic Buffer
Ring Buffer Mechanism

Repeated Service Call Feature

Activation of the Repeated Service Call

Repeated Service Call and Ring Buffer 1 — “Write and Check”
Repeated Service Call and Ring Buffer 2 — “Check and Write”

Version 1.7

User Manual CANdesc

page 45
page 45
page 45
page 47
page 48

page 55

© Vector Informatik GmbH

User Manual CANdesc Further Information

5.1 Diagnostic State Handling using CANdela Studio

Executing a diagnostic service generally causes a state change in the electronic
control unit. Some services may only be executed if the electronic control unitis in a
particular state. For example, services that change critical data may only be executed
if the electronic control unit is first switched into a “security mode” (for example with
the specification of a numeric key).

CANdela Studio offers the opportunity to define and edit global states and state
transitions for the services of a diagnostic instance. In addition, states can be
combined into state groups.

5.2 Typical Examples of State Groups and States in an Automotive
Environment

The sessions (which should already be predefined) are a very “famous” example of a
state group. Any diagnostic session has its set of services that are executable while
the ECU is in this session. There are basically three sessions, defined from the 1SO:

- Default session — as the name says, this is the standard session
= Programming session — while the ECU is in reprogramming mode (flashing)

- Extended Session — session for e.g. the development phase, providing an
extended amount of services

Another very easy example for state groups is the security access. The ECU must be
set to a specific state to be able to do critical data manipulation, such as the flashing
action mentioned above. For example, the states for the state group security access
would be:

- Locked
- Access granted

We use this example to very basically explain the state concept of CANdela Studio.

Cross reference: For more detailed information about this topic refer to the CANdesc

) .
Technical Reference.

5.3 Creating and editing State Groups, States and Transitions

To create or edit the State Groups, click on [State Groups] in the CANdela Studio
tree. Enter the new State Group Security Access by clicking on the text. A new State
Group will be created called:

New State Group 1.

If you generate more than one State Group without renaming the previous ones, the
groups are numbered counting from 1 up.

To edit the new State Group you have two options. The first is to click on the State
Group name and edit the name, then click on the description field and enter the text.
Another way is to open the pull down menu of the State Group with a right click on the
row of SecurityAccess and select Properties. The Properties of State Group
Security Access” window will open. Enter the name and description.

© Vector Informatik GmbH Version 1.7 -45 -

Further Information

n

User Manual CANdesc

Info: The qualifier will be created automatically.

—D
Mew State Group
& ocu Crl+3
Copy Clrl+C
2 Faste i+
Paste Contents
. Delete Del
4 Move Up Cirl+U
& Move Down Cirl+D
@ Properties

Defining States for

the Service

SecurityAccess —
Request Seed

- 46 -

------ @ State Groups

Marne I Semartic

I Mlegati

SecurityAccess sECUFity

Ox33 - ¢

States of state group "Security Access" fopmost =1

Marne I Dezcription

Locked |au:u:ess to secured festures .. |

Access gran... access o secured features ...

Now we can add the states below in the same way. Click on the text to create a new
element, adjust the names and enter a description.

The next step is to assign the relevant services to the states.

=R security Access
B Seed
B ey

Diagnostic Instance (Security Access)

Narme: =T
Description | =
Securty level: [i
Service Protocol Serice Reguest: Pos. Resp.. Neg Resp
¥ Recuest Seed: 53] 827) securtyccess - Fequet seed 7o Btz Fe |
Send ke - e e —
B S Properties of Service "Request Seed" in instance "Seed' m
Seed (22) ||| General | Shartcuts | aderessing | Audience | Autharization <3 State Transtions: | Extendedt | tibutes |
Byfe.. ||| Disomostic bodk Seourtysccess |Level1 - Securty Sequence | Speed |
o I~ Service iz relevart for Security Aecess
Here you can et the state franstians of this service, The column names represent the current ECU state before service execution, Inthe
colurns, you can define the stetethe ECU will reach after execition of the service (yes = the service may be executed, but friggers no state
transtion)
Service Locked access or
Feaviest seed s [
New Level
&
e |

Select the Diagnostic Instance Security Access Seed and open the Properties of the
Service Request Seed. Select the tab State Transitions and then SecurityAccess.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

Further Information

You see the service with the two columns states Locked and Access granted.

-
—

Info: To select yes or no just select the row, click on the yes/no and then use the pull
down menu.

|

A positive response
is the trigger for a
transition from the
Locked state to the
state Access granted

Info: Pull down menu selections:

No = Must not be executed

Yes = may be executed, no state transition
Locked = state transition

Access granted = state transition

The following figure shows the properties for the service Send Key in the Key
instance. This service is also assigned to both of the states, but there is also a
transition to state defined. How do you interpret this entry?

The service Send Key could be executed in the state Locked. If the data is
processed (depending on the OEM, this must be done by the application or is a
generated, OEM-specific Code) and a positive response is sent back, CANdesc
switches the state from Locked to Access Granted. In case of a negative response
the ECU remains in the diagnostic state Locked.

Hame: [ikey
Description: =
= (g security Aocess securty level: o i
B seed J
B Key Service Protocal Service Reouest: Pos.Resp. Meg. Reso.
[~ Reduest Seedt: 27 SecurtvApeess - Reouest seed
[Send Key: E‘ 427) Securtyiccess - Send kel 2702y B7O2 7F 27 ro e
kev) || Properties of Service *Send Key" in instance "Key"
Byte .. | General | Shortcuts | Addressing | Audence | Authorization < State Transtions }Extenueu} Miributes
0 Disgnastic Mode Seeiitycoess | Level 1 - Seeurty Seauence | Spesd |
¥ Service is relevert for Securityscoess
Hare you can edlt the state transtions of this service. The column names represent the current ECU state before service execution. Inthe
calumrs, you ean define the state the ECL il reach after execuion of the service ('yes” =the service may be exeeuted, but friggers no state
transition)
Service Locked ‘ Access granted
Access grarted (yes)
Hew Leyel,
&
oK sotrechen | Obemetmen | e |

5.4 Connection between the states and your application

© Vector Informatik GmbH

The initial state after the ECU starts is the state at the top of the list. In this case the
initial state is Locked.

Version 1.7 -47 -

Further Information

User Manual CANdesc

Info: Think about the states very carefully before editing. Make sure that the initial
state is listed on top.

=

Example: The state transition mentioned above is monitored to your application via a
callback function. You will find the prototype of this function, as usual, in the
appdesc.h file. It may look like this:

void ApplDescOnTransitionSecurityAccess(DescStateGroup
newState, DescStateGroup formerState);

The parameters show the direction of the transition. Provide the function and react to
a transition as you wish.

=

i |

Example: There is another way to switch states. Leave the transition to state empty
and do the state transition in your application. This could look like:

DescSetStateSecurityAccess(
kDescStateSecurityAccessAccess _granted);

Use
DescStateGroup DescGetStateSession (void)

to find out the current session.

Info: The function declaration and parameter can be found in the generated file
desc.h.

5.5 Diagnostic Buffer

As described in chapter How to handle User-Defined Handlers on page 35, the
diagnostic buffer is an area in the RAM where the application and the CANdesc
Software Component are allowed to write on and read from. How this is handled is
described in this chapter above.

What is not explained until now is:

- how to choose the length of the diagnostic buffer

= that there are two mechanisms of using the buffer and
- when to use which mechanism

5.5.1 Linear Diagnostic Buffer

-48 -

i |

The easiest way of using the diagnostic buffer is to use it as a linear buffer. The size
of the buffer in bytes must be the size of the longest data (diagnostic response or
request).

Info: Normally this is a diagnostic trouble code message (DTC) and can reach up to
100 bytes and more.

Copy the complete response information to the diagnostic buffer and confirm this via
the call of DescProcessingDone.

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

This is easy to handle but there are some disadvantages arising with this concept:
= The RAM consumption could be enormous

= The delay time between the reception of a Diagnostic Request and the first
response message could be very long, depending on the service and the amount
of bytes of the response message.

There is another concept without these disadvantages but this concept needs a little
bit more insight in CANdesc functionality.

5.5.2 Ring Buffer Mechanism

Ring Buffer STEP 1
— Application Data
and Ring Buffer

There are several reasons for using the ring buffer mechanism:
- Little RAM consumption because of small diagnostic buffer
= Shorter delay between the diagnostic request and the first response message

The ring buffer mechanism offers the following features:
= Asynchronous writing of serial diagnostic data to the diagnostic buffer

= Underrun allowed, time monitored (in case of TP underrun the PostHandler is
called with a Tx error code)

- Overrun prevented and monitored via return code

One of the advantages of the ring buffer mechanism is the little RAM consumption
(compared with the linear buffer). The consequence is that this little diagnostic buffer
can hold less data than a diagnostic buffer designed for linear buffer mechanism.
That means that the application has to fill the buffer in portions until the complete
diagnostic response is sent.

The following example is very simple and designed to understand the concept behind
the ring buffer mechanism.

pMsgContext->resDatalen = 12;

Application Data to be sent DescRingBufferStart () ;
o] 1 2 3 4 5 6 7 8 9
| | | | | | | | | | | Buffer Length = 10 Bytes for example
Diagnostic Buffer [RAM Memor] In applications typically 20 bytes and more...
0 i 2 3 5 6 7
(el [[[[[|

Transport Layer / CAN Message

Starting point is a diagnostic buffer with 10 bytes size and 12 bytes of application data
to be sent. First you have to set the length of the complete diagnostic data
(resDatalLen = 12) and start the ring buffer mechanism
(DescRingBufferStart).

© Vector Informatik GmbH Version 1.7 -49 -

Further Information

Ring Buffer STEP 2

— First four data
bytes are copied to
the Ring Buffer

Ring Buffer STEP 3
— Eight Data Bytes in

the Diagnostic

Buffer, six Bytes are
being sent via CAN

-50 -

User Manual CANdesc

dataPtrl

0 1 2 3 4 5 7 8 9 10 11
F o I :oContext >resDatalen = 12;
Application Data to be sent DescRingBufferstart();
h DescRingBufferWrite({ dataPtrl,d);

i
Copy Data to |
Diagnostic Ring Buffar
'

~
o

o i 2 3 4 5]

| I ! I | | Buffer Length = 10 Bytes for example
Diagnostic Buffer [RAM Memory] In applications typically 20 bytes and more
0 1 2 3 4 5 § 7
Gelwl [[[[T]

Transport Layer / CAN Message

Now hand over the pointer to the location of the first four application data bytes
(pointer and amount of data - DescRingBufferWrite) to the CANdesc Software
Component. CANdesc Basic copies the four data bytes to the diagnostic buffer.

dataPtrl cataPtr2

[} 1 2 3 4 5 [7 a8 9 10 11
|-I—'—'—'—ﬁ '-p—i—'—'—* ---- pMsgContext->resDatalen = 12;
Application Data to be sent DescRingBufferStart () ;

DescRingBufferWrite(databPtrl,4);

Copy Data to
Dlagnostic Ring Buffer

DescRingBufferWrite(dataPtr2,4);

o 1 2 3 4 5 &

Buffer Length = 10 Bytes for example
- - - In applications typically 20 bytes and more...
Diagnostic Buffer [RAM Memary]

Send diagnostic data)
13
1] 1 2 3 4 5] 7
[] 7 e ——

Transport Layer / CAN Message

Hand over the pointer to the location of the next four application data bytes and
CANdesc copies the data to the diagnostic buffer right after the first four bytes. Now
there is enough data in the buffer and CANdesc sends the first six data bytes via the
CAN bus.

Info: The first 2 bytes of the message are transport information and therefore not free
for application data (TP bytes on position 0 and 1).

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

Rlng BUffer STEP 4 dataPtrl dataPtr2 lataPt
— The Diagnostic
Buffer is filled round b i 2l B 62 18 9 10 AL . . — 45
. |& + [6— I + [& - sgContext->resDatalen = 12;
robin = T 1T =F M N i L1 e -
Application Data to be sent DescRingBufferStart();
y Datb
r i ng Buf
|_ . ! - - 1. - ! Buffer Length = 10 Bytes for example
In applications typlcally 20 bytes and maore
Diagnostic Buffer [RAM Memory] Pr F
send diagnost |
|TP i 2. 3 ¢ .3 .6 ¢ .

Transport Layer / CAN Message

Now there are only four bytes left to be copied to the Diagnostic Buffer. The first two
bytes are stored in position 8 and 9 of the buffer, the next two bytes in position 0 and

1.
=] Info: Now it should be obvious why this concept is called Ring Buffer; the buffer is
I filled round robin.
In a next step the six data bytes will be copied and sent via CAN starting with the byte
on position 6.
That is the basic mechanism, but how do you know when there is enough space in
the buffer? What happens if the application writes data and the buffer is not free?
How to handle this buffer in code details?
55.2.1 Activation of the Ring Buffer
Activation of Ring Although the ring buffer could be used for any service and you can meet this decision
Buffer in GENy at run-time you must activate this functionality in general.
Do this on the CANdesc configuration view in GENy by clicking the Ring Buffer
Support checkbox.
Ring Buffer Support
Activation of Ring In CANgen you have to select the Ring buffer checkbox at tab CANdesc Options.
Buffer in CANgen ;
Ring buffer |
5.5.2.2 Main Control Functions for the Ring Buffer Mechanism

_’I Cross reference: For a more detailed description of the API refer to the
TechnicalReference_ CANdesc.pdf.

DescRingBufferStart The call of this function starts the ring buffer mechanism. You can use it for any

© Vector Informatik GmbH Version 1.7 -b1-

Further Information User Manual CANdesc

service and it replaces the DescProcessingDone that you use for the linear buffer
mechanism.

] Info: Call DescRingBufferStart on MainHandler level.

DescRingBufferWrite Via this function you tell CANdesc the location and the amount of the application
diagnostic data and the software component copies this data to the diagnostic buffer.

The function has two parameters; one is a pointer which points to the memory
location of the next diagnostic data. The other parameter is the amount of data that
should be copied (should be lower or equal to the ring buffer size).

The return value of this function can be kDescOk or kDescFai led and indicates that
the write process to the diagnostic buffer was successful or that there was not enough
free space in the buffer.

] Info: In case of kDescFai led no data has been written to the diagnostic buffer.

DescRingBufferGetF This function shows the amount of free space in the diagnostic buffer.
reeSpace

DescRingBufferGetP This function shows the amount of data that has already been written to the
rogress diagnostic buffer (for this service).

5.5.2.3 Examples for Ring Buffer Mechanism

Now start the coding for the example above (chapter 5.5.2). The diagnostic buffer is
10 bytes and the amount of application data to be sent via a diagnostic response is
12. In the example you write to the diagnostic buffer in four byte portions.

The examples use an OSEK-OS operating system, but it should be very easy for you
to transfer this to a system without OSEK-OS.

Ring Buffer Example 1 - “Write and Check”

Example: MainHandler of the Service “Service”
uint8 state; /*global variable*/

2

void ApplDescService(DescMsgContext* pMsgContext)

pMsgContext->resDatalLen = 12; /*amout of the complete data to be sent*/
DescRingBufferStart();

state = 0;
DescRingBufferWrite(&dataPtr[state*4], 4); /*Tirst write to diagnostic buffer*/
state++;
SetRelAlarm(ALServiceStateMachine, 0, <cycle>); /*Alarm for activating the Basic
TASK*/
T

Define the length of the complete diagnostic response (resDatalLen = 12) and start
the ring buffer mechanism (DescRingBufferStart). The global variable state is to

-52- Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

identify in which state your state machine is and it is an index for the data pointer
dataPtr.

In the MainHandler you write to the diagnostic buffer the first time for this service - it
must be free. So you can write the first four data bytes via DescRingBufferWrite.

Info: As the handling of the diagnostic (CANdesc only works if its task is called
cyclically) needs a cyclic call of the DescTask() or DescStateTask() you have to fill
the diagnostic buffer gradually e.g. by the means of a cyclic basic task. Otherwise the
DescTask() or DescStateTask() would not be called and the CANdesc could not work.

Now start an alarm to get the basic task BTServiceStateMachine called all
<cycle> ms.

Basic Task to Handle TASK(BTServiceStateMachine)

the Service State ¢ if(D RingBufferWrit &dataPt tate*4 4 == kD Ok
Machine ; (DescRingBufferWrite(&dataPtr[state*4],) == kDescOk)
state++;
}
if(state == 3)
CancelAlarm(ALServiceStateMachine);
}
TerminateTask(BTServiceStateMachine);
¥

This basic task is designed to write the next 8 data bytes to the diagnostic buffer. But
the application does not know if the buffer is free or not (Write and Check). To get
this information use the return value of the DescRingBufferWrite function. Is it
kDescOk, then the write was successful and we can increment the state. If not
(kDescFali led), we have to repeat writing the last four bytes again in the next call of
the task.

If state is equal to three, i.e. all 12 bytes have been written to the diagnostic buffer,
we cancel the alarm to stop the handling of this diagnostic service.

Ring Buffer Example 2 - “Check and Write”

The MainHandler for this example is the same as in example 1.

The difference is, that you first check whether there is enough free space in the buffer
before you write the next data (check and write). Via the function
DescRingBufferGetFreeSpace you get the information about the free space in
the buffer. If there is enough space, write the next data and increment the state, if not,
terminate the task and repeat the try with the next activation of the task.

- Example:

© Vector Informatik GmbH Version 1.7 -b3-

Further Information User Manual CANdesc

TASK(BTServiceStateMachine)
{
DescMsgLen freeSpace;
freeSpace = DescRingBufferGetFreeSpace(); /*MISRA*/
if(freeSpace >= 4)
{
DescRingBufferWrite(&dataPtr[state*4], 4);
state++;

}
if(state == 3)

CancelAlarm(ALServiceStateMachine); /*all data (3x4 bytes) has been
transferred to diagnostic buffer*/
}
TerminateTask(BTServiceStateMachine);

¥

Ring Buffer Example 3 — “GetProgress”

In this example you use the already mentioned function
DescRingBufferGetProgress to figure out how many bytes you have written to
the buffer until now. This makes the example much easier but a little bit more difficult
to understand why it works in this way.

As you see you do not need a global variable for the state. The state now is defined
by the amount of data that you have already written to the buffer.

Example:

=

void ApplDescService(DescMsgContext* pMsgContext)
{
pMsgContext->resDatalLen = 12;
DescRingBufferStart();
DescRingBufferWrite(&dataPtr[DescRingBufferGetProgress() 1, 4); /* will be 0 at
the beginning*/
SetRelAlarm(ALServiceStateMachine, 0, cycle); /*Alarm for activating the Basic
TASK*/

TASK(BTServiceStateMachine)

DescMsglLen progress = DescRingBufferGetProgress();
if(progress < 12)

DescRingBufferWrite(&dataPtr[progress], 4);
}

TerminateTask(BTServiceStateMachine);

}

Conclusion

As you see in these three little examples, the handling of the ring buffer is always the
same. You start the writing, you write cyclically and in portions and you have to define
an ending criteria — a typical state machine.

CANdesc offers a feature to support that kind of handling that is not only useful when
working with ring buffer mechanism — the repeated service call.

-54 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

5.6 Repeated Service Call Feature

The easy way would be to transfer all data in the MainHandler to the diagnostic
buffer, to call DescProcessingDone and the service is done.

But what to do with information that cannot be provided immediately? For this reason
you have to trigger a further function that handles the provision of diagnostic data and
then finishes the service via DescProcessingDone.

The Repeated Service Call helps you to handle situations like above very easy. Via
the function call DescStartRepeatedServiceCall(CyclicFunction) you
trigger the call of the “CyclicFunction” with the call cycle of DescTask or with

the call of DescStateTask.

Repeated Service ApplDescMainHandler

Call

call

DescStartRepeatedServiceCall(CyclicFunction) |:|

U
1
T]

The CyclicFunction can be the function where from you call the repeated service call
or a second function.

At the end of the service handling you can stop the function from being called
cyclically in two ways:

- call DescProcessingDone in linear mode

= if you have copied all announced data bytes to the diagnostic buffer if ring buffer
mechanism is used

The repeated service call is stopped too, if you
- call DescRingBufferStart
- call (another) DescStartRepeatedServiceCall()

= I Info: Using repeated service call and the ring buffer you have to take care about the
I order DescRingBufferStart and DescStartRepeatedServiceCall.

5.6.1 Activation of the Repeated Service Call

As the ring buffer mechanism you have to activate the repeated service call in the
generation tool.

In GENy you have to select a mode for repeated service call in the CANdesc
configuration view. CANgen offers the same modes in the CANdesc option tab.

As you see in the screenshot there are three modes for the Repeated Service Call:

Deactivated You cannot use this feature at all.

© Vector Informatik GmbH Version 1.7 -b5-

Further Information

Selection for
Repeated Service
Call in GENy

Selection for
Repeated Service
Call in CANgen

User Manual CANdesc

Deactivated You cannot use this feature at all.

The repeated service call is switched to on for any service in the
Always way that the MainHandler is called cyclically as long as you call
DescProcessingDone or all data is written to the ring buffer.

With the individual setting you decide for every service whether to
use the repeated service call or not. To use it, just activate it via
DescStartRepeatedServiceCall as you see in the following
examples.

Individual

Repeated Service Call

|— CAMdelaGen Deactrvated
Ay

Currert diagnostic wariant selection

R epeated Service Call

{+ Deachvated
7 Abaayps
O Individual

The following two examples show the handling of the ring buffer mechanism using the
repeated service call.

-
—

Info: The setting in the generation tool is individual.

5.6.2 Repeated Service Call and Ring Buffer 1 —“Write and Check”

2

This is the same example as in the chapter dealing with the ring buffer mechanism.
This time use the repeated service call instead of the OSEK-OS task. And in this first
example, define the MainHandler itself to be called cyclically via:

Example: DescStartRepeatedServiceCall (ApplDescService);

For this case the MainHandler must be realized as a state machine because the start
of the repeated service call has to be done only once per diagnostic request handling.

=

-56 -

Example:

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Further Information

uint8 state; /*global variable, set to 0 in PreHandler*/

v
void ApplDescService(DescMsgContext* pMsgContext)
{
if(state == 0)
{
pMsgContext->resDataLen = 12; /*amout of the complete data to be sent*/
DescRingBufferStart();
DescRingBufferWrite(&dataPtr[state*4], 4)
DescStartRepeatedServiceCall (ApplDescService);
state++;

}

else

iT(DescRingBufferWrite(*dataPtr[state*4], 4) == kDescOk)
{
state++; /*if resDataLen data bytes have been copied to the diagnostic
buffer the repeated service call stops automatically*/

5.6.3 Repeated Service Call and Ring Buffer 2 —“Check and Write”

Now add a second function and call it cyclically after the MainHandler has been
called. The MainHandler acts as initialization of the state machine and the second
function handles all further states.

- I Example:
i

"—} uint8 state; /*global variable*/

void ApplDescService(DescMsgContext* pMsgContext)

state = 0O;
pMsgContext->resDatalLen = 12; /*amout of the complete data to be
sent*/

DescRingBufferStart();
DescRingBufferWrite(&dataPtr[state*4], 4)
DescStartRepeatedServiceCall (SecondFunction);

}]

void SecondFunction(DescMsgContext* pMsgContext) /*prototype must be defined
by application*/

{
DescMsgLen freeSpace;
freeSpace = DescRingBufferGetFreeSpace(); /*MISRA*/
if(freeSpace >= 4)
{
state++;
DescRingBufferWrite(&dataPtr[state*4], 4);
/*iT resDataLen (12) data bytes have been copied to the diagnostic buffer
the repeated service call stops automatically*/

© Vector Informatik GmbH Version 1.7 -57 -

Additional Information

6 Additional Information

In this chapter you find the following information:

User Manual CANdesc

6.1 Persistors
Update Persistors — Install current Version

page 59

- 58 - Version 1.7

© Vector Informatik GmbH

User Manual CANdesc Additional Information

6.1 Persistors

What is the Persistor The CANdela data base file (CDD) is created by CANdela Studio and used by GENy
for? for configuring CANdesc.

If you use a newer version of the CANdela Studio, the format of the CDD file could be
also newer than your GENy is able to deal with.

The Persistors are responsible to convert the newer CDD file into a CDD file which is
able to read by GENy.

Update Persistors — The latest Persistors can be downloaded from Vector homepage
Download current WWW.vector com
Version ' ' '

Select Downloads and then the three settings for Products, Categories and
Standards.

= Products: CANdela Studio
- Categories: Add-Ons/Freeware
= Standards: All Standards

Cross reference: See the following illustration.

=

Available for The name for the Persistors download is:
NT/2000/XP or

' - Converters for CANdela diagnostic descriptions for Windows xxx.
Windows 9.x

© Vector Informatik GmbH Version 1.7 -59 -

Additional Information User Manual CANdesc

vec or Choase by product: [+] [Choose by standard: [»]

HContact HGet Price Info B Info Material B Downloads HHNews HVYector worldwide ESitemap BmyVYector
- Englizh

[Jereferred language/region

Home = Support > Dernogs

Download-Center

Instructions: Products: Categories: Standards: What is an MD5 Checksum
X CaMape ~ All types all standards ~ :
1. Select a combination of product, Canbedded [Add-Ons/Freewars ASAPZ ww
category or standard, CaMboardxL [E Application MNotes AUTOSAR = inra
2. Click on the "Show Results” CaMcabs/CaNpiggies Data Sheets/Brochures CAN
butt Chhcards Demos CAMNasrospace R
utton. CaNcardXL Drivers & Firmware CANopen Archives:
3. Inthe results list, make sure all CaNcardXLe Fresentations cCp You can find further downloads
checkboxes for the items you want ChMcaserl Press Releases CMMI t listed h th
to download are checked. CANdb++ Service Packs DeviceNat o h!s oo E;:ny‘mnre en e
N N candelastudio [V Technical Articles FlexRay] AFChives pages for
4, Click on the "Continue" button, B Service Packs
enter name and e-rnail address, Show Results: 2 Tterns I The terms and conditions for the use of Yector's website shall B Driver Updates
then yaou will get a link list for all apply, in particular section 6 regarding download of software, B Press Articles
selected downloads, Please find the TCs here,
Mote: if you select only one category, L—.J RSS Feeds
there will be no checkboxes for data _ Service Packs
sheets, driver updates, press 2 items found:

Driver Updates
articles/releaes and service packs

because these can be downloaded
directly without registration,

== Select one or more itermns, then continue |

T T

=l Converters for CANdela diagnostic descriptions for 2008-10-02 135 MB
Windows NT/Z2000/XP

CANdelaStudio and other Yector tools are delivered with the
converters that are available when the tool is released. For
loading newer versions of cdd-documents, you need the
appropriate Converter-Add-on. The Add-on is delivered with a
setup program which allows you to either install the converters
for all Vector products installed on your system or to install the
converters to a directory of your choice, You will find more
infarmation about the Add-on and the converters in the FAQ
support section,

MDS checksurn: ed5778cal7e9ffoe8d361b959951aal6

Converters for CANdela diagnostic descriptions for Z008-10-02 13 .6 MB
Windows 9.x

= Select one or more items, then continue I

Download Select on or more items from the list) and click on [>> Select one or more items,
then continue] to download the files after entering some administrative information.

6.1.1 Update Persistors — Install current Version

Follow description Start the downloaded file SetupPersistorsXP.exe.
step by step

- 60 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc Additional Information

‘CANdela Converter Add-On Setup "

Welcome to the InstallShield Wizard for CANdela
Converter Add-On

The InstallShield® Wizard will install CiMdela Converter
Add-0n on your computer. To continue, click Mexst.

uexb J[Cancel

Click [Next].

CAMdela Converter Add-On Setup

Setup Type

Select the setup type that best suits your needs. “

Pleaze zelect a setup type

() Complete

CaMdela Corvverter &dd-On will be installed automatically for all Yector
products found [ignores destination folder],

(=) Custom

Select the destination folder below where CANdela Converter Add-On will be
installed. Recommended for advanced users.

Drestination Folder for Customn Setup

<Path>\Generatars\Gomponents Choose Folder

]

Irstall

Please select the installation Folder.

[< Back][Mext »][Cancel Pzt:

Directories:

Desktop

] h_r_] Eigene Dateien

=] j Arbeitsplatz

e BRI

[%)-cgm DATA (D)

1+ 5% program auf "vistradpom1” (M) |v|
e L]

—
e 3

e s P P

PR RPL I A

Select Custom and enter the path to the ...\Generators\Components folder as
Destination Folder for Custom Setup and click [OK].

© Vector Informatik GmbH Version 1.7

-61 -

Additional Information User Manual CANdesc

CANdela Converter Add-On Setup ﬁ

Ready to Install the Program
The wizard is ready to begin installation.

Click Inzstall to begin the installation,

If you want bo review or change any of your installation settings, click Back. Click Cancel to exit
the wizard.

InztallShield

[<Back [Instal |’ Cancel]

Click [Install] and the installation process will be started and then on [Finish] when

ready.
CAMdela Converter Add-On Setup
InstallS hield Wizard Complete
. The InstallShield “wizard has successfully installed CaMdela
Converter Add-On. Click Finizh bo exit the wizard.
Bact Cancel
Ready Now the current Persistors are installed and your GENy is able to read the latest CDD

file.

-62 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

7 FAQs

In this chapter you find the following information:

FAQs

7.1 Introduction page 64
7.2 Frequently Asked Questions page 64
© Vector Informatik GmbH Version 1.7 - 63 -

FAQs

User Manual CANdesc

7.1 Introduction

Find not search

You have a certain question? You just want to know how to do e.g. a certain setting
without reading the whole document again?

Then go on reading the following list and use the links to get at the place in the
document where your question will be answered.

This chapter will be extended continuously.

7.2 Frequently Asked Questions

?®

-64-

FAQ: RingBuffer and the UDS SuppressPositiveResponseMessagelndicationBit
(SPRMIB)

If the application wants to use the ring-buffer for a diagnostic service with a sub-
function (usually service 0x19 "ReadDtcInformation") it shall consider the SPRMIB
prior deciding to start the ring buffer. The reason for that is, once the ring-buffer
response is activated this means to CANdesc that the application wants to send data.
But if the SPRMIB=TRUE, there shall be no positive response on the communication
bus. So in such cases the Application shall follow the sequence below:

i f(pMsgContext->msgAddInfo.suppPosRes 1= 0)
{

DescProcessingDone();/* just close the service processing
now. No response will be sent back*/

}

else

{

DescRingBufferStart(); /* initate the ring-buffer response
transmission */

}

Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

8 What’s new, what’s changed

In this chapter you find the following information:

What's new, what's changed

8.1 Version 1.7 page 66
What's new
What's changed

© Vector Informatik GmbH Version 1.7 - 65 -

What's new, what's changed User Manual CANdesc

8.1 Version 1.7

What's new and This explains the changes within this document form the previous Version to the one
what's changed mentioned in this headline.

8.1.1 What's new

New chapter There is a new chapter for additional information about Persistors setup and update
Persistors setup and ~ at chapter additional information (see section Persistors on page 59).

update

8.1.2 What's changed

New Layout The Document has got a new template.

- 66 - Version 1.7 © Vector Informatik GmbH

User Manual CANdesc

9 Address table

Vector Informatik Vector Informatik GmbH

GmbH Ingersheimer Str. 24
D-70499 Stuttgart
Phone: +49 (711) 80670-0
Fax: +49 (711) 80670-111
mailto:info@de.vector.com
http://www.vector-informatik.com/

Vector CANtech, Inc. Vector CANtech, Inc.
Suite 550
39500 Orchard Hill Place
USA-Novi, Mi 48375
Phone: +1 (248) 449 9290
Fax: +1 (248) 449 9704
mailto:info@us.vector.com
http://www.vector-cantech.com/

Vector France SAS Vector France SAS
168, Boulevard Camélinat
F-92240 Malakoff
Phone: +33 (1) 4231 4000
Fax: +33 (1) 4231 4009
mailto:info@fr.vector.com
http://www.vector-france.com/

Vector GB Ltd. Vector GB Ltd.
Rhodium Central Boulevard Blythe Valley Park
Solihull, Birmingham
West Midlands B90 8AS

Phone: +44 121 50681-50
mailto:info@uk.vector.com

http://www.vector-gb.co.uk

© Vector Informatik GmbH Version 1.7

Address table

- 67 -

Address table

Vector Japan Co.,
Ltd.

Vector Korea IT Inc.

VecScan AB

- 68 -

Vector Japan Co., Ltd.

Seafort Square Center Bld. 18F
2-3-12, Higashi-shinagawa, Shinagawa-ku

J-140-0002 Tokyo

Phone: +81 3 (5769) 7800
Fax: +81 3 (5769) 6975
mailto:info@jp.vector.com
http://www.vector-japan.co.jp/

Vector Korea IT Inc.
Daerung Post Tower llI, 508
Guro-dong, Guro-gu, 182-4
Seoul, 152-790

Republic of Korea

Phone: +82(0)2 2028 0600
Fax: +82(0)2 2028 0604
mailto:info@kr.vector.com

http://www.vector-korea.com/

VecScan AB

Theres Svenssons Gata 9
SE-417 55 Goteborg
Phone: +46 (31) 76476-00
Fax: +46 (31) 76476-19
mailto:info@se.vector.com
http://www.vecscan.com/

Version 1.7

User Manual CANdesc

© Vector Informatik GmbH

User Manual CANdesc Glossar

10 Glossar

Callback function This is a function provided by an application. E.g. the CAN Driver calls a callback
function to allow the application to control some action, to make decisions at runtime
and to influence the work of the driver.

Diagnostics layer Diagnostics services that are used in automotive applications have recently become
standardized. As a result, basic requirements can be implemented by a software
component for KWP2000/UDS.

© Vector Informatik GmbH Version 1.7 -69 -

User Manual CANdesc

11 Index

A

Adapt Your Application Filescccceecvvvvneennnn. 33
APPDESC ... 36
aApPAESC.N oo, 31, 33
APPlICALION......eeeiieiiee e 33
Asynchronous Writing..........cooceeeevvieneennieee e 49
C

call-back fuUNCHoNcccceeiiiiiiie e, 48
CANbeddedccouveeeiiieiiie e, 24, 32
CANdela Studio 11, 14, 19, 20, 45, 55
CANAESC...coviiiiiiiiiiiiiiee e 11, 14, 15, 33
CANAESC tabh......oveiiieiiii e 15
CANQGEN ..ot 26
CanInitPOWErONccovivierie e 33
CANOE ..o 41, 42
L1 5 11, 14
COMPIIB..eeeeiiee e 24, 41
COMPIIEE e 32
Configurationccccevviiiiiieeennnn. 24, 26, 35, 40
CYCIC CallS ..covieiiiie e 33
D

A8 19
DBC 14
DBC fil€..ciieiiii e 14
Default SESSIONccocvvveriiiiiecree e 45
eIAY .. 38
ESC.C ettt 30
AESC.N oo 30, 33
deSCCOre.N ... 30
DesCINItPOWEION........ccooiiiiiieiiiee e 33
DescRingBufferGetProgressccocoeeeviiiieeeenns 52
DescRingBufferStart..........ccccccoovvivieeeee e, 51

© Vector Informatik GmbH

Version 1.7

Index

DescRingBufferWritecccccccveeeei i, 52
development environmentccccccvveeeeeiienns 32
Diagnostic BUffer.........ccccooccviiiiiiiee i, 48
Diagnostic Classcuveveeeiiiceviiiieieeeee i 18, 19
Diagnostic Instance...........cccocvvveveeeeeiiicennnn, 18, 19
Diagnostic Request.................... 11, 14,17, 21, 35
DIagnOoSLCSoooeviiiieieee e 11,17
E
Example 1. 52
EXample 2.....oooii e 53
EXample 3 ..o 54
EXaMPIES ..coooooiieee e 52
Extended SeSSiON.........viiiiiiiiiiiieeeee e 45
G
Generate Filesccccccoei 29
Generated.........ccoeeeeeeieiieee 11,17, 23
Generation Process.........ccccccceeveeeiiienenennnnn, 11,15
Generation TOOlccveeeiieiiiiiiiieee e, 14, 26
GENY oot 26
|
INCIUAE v 24, 33
Initializationccooeveeiiiiiiiiieee e 24, 33
INItPArameter.......c.oooveeviiieeieeeeeeee e 33
K
KWP2000.......00uueiiiiiiiiiiiiiiiiinnen e s se e 16
L
Linear Diagnostic Buffercccccccovvvcvvviennnnnnn, 48
LINK ©vvveviieiiiiiii e 24,41
M
MainHandler........cccooeevieiiiiiiiiiiieeeeeeeeie, 24, 32, 38
MAKETIE....cciieeeee e 32

- 70 -

User Manual CANdesc Index
N SEIVICE .o 18
NOMENCIAtUIE oo 11,17, 18, 19 Service primitives ... 19
NONE oo 11,17, 23 SESSIONS ...eeiiiiieiiee e 45

SIGNAL e 38
O

State Groups.......ccooevvviiiiiiiiii 44, 45
OEM..cciiiiii et 11,17, 23 State HANGING oo 44, 45
OSEK Transport Protocolccwsssivveesssvees 26 SEALES oo 44, 45
P

T
PIOGAMIMING SESSION orvrvrrrrsrsssssssssssrne 45 LT 24, 41, 42
Properies ... 38 test enviconment ... M
ProtOCOl SEIVICE......cciiviiiieiiiiiee e 18 ransition to state........ 47
R TranSItioNScoovvviiiiiiiiieiieeeeeeeeeeeeeeeree s 45
RAM consumMptioncccccvveeeiiiiiiiiieeeneeeennn 48, 49 U
R i Il Featureccccvvveevnnnnnn.

epeated Service Call Feature 55 UDS ettt 16

REQUEST ... 18 User ... 11,17, 23
RESPONSE....ccoiiiii 18 User-Defined Handlers ... 35
Response Pendingccccceeviiiiiiiiiieieeeeie 38
Ring Buffer Mechanismcccccoiiinnnnee. 49 \%

value field ... 39
S vaniable ... 38
SECUNLY ACCESS ...uvrrriiiieeeeeiiiiirreeee e e e e e s e e snrrraeeeeeas 45
© Vector Informatik GmbH Version 1.7 -71-

Get more Information!

Visit our Website for:
> News

> Products

> Demo Software

> Support

>Training Classes

> Addresses

www.vector-worldwide.com

vector®

	1 Manual Information
	1.1 About this user manual
	1.1.1 Certification
	1.1.2 Warranty
	1.1.3 Registered trademarks
	Errata Sheet of manufacturers

	2 Getting Started
	2.1 How to use this Manual

	3 Basic Information
	An Overall View
	3.2 What is Diagnostic
	3.3 What happens during Diagnostics?
	3.4 What is CANdesc?
	3.5 Tools and Files
	3.5.1 CANdela Studio, CDDT, CDD
	3.5.2 Generation Tool, CDD, DBC
	3.5.3 Generation Process with CANbedded Software Components

	3.6 What CANdesc does
	3.7 Diagnostics – a more detailed View
	3.7.1 Basic Nomenclature from the Bottom Up
	3.7.2 The same Nomenclature from the Top Down
	3.7.3 Where to find this Nomenclature in CANdela Studio
	3.7.4 Generic Handling of a Diagnostic Request in the CANdesc Component
	3.7.5 User, None, OEM, Generated – what does this mean?

	4 A Few STEPS to CANdesc
	4.1 STEP What do you need before start?
	Startup Code
	Overview
	4.4 STEP Installation
	4.5 STEP Configuration with the Generation Tool
	4.5.1 Using the Generation Tool CANgen
	4.5.2 Using the Generation Tool GENy

	4.6 STEP Generating Files
	4.6.1 Using Generation Tool CANgen
	4.6.2 Using the Generation Tool GENy

	4.7 STEP Add CANbedded to your Project
	4.8 STEP Adapt Your Application Files
	4.8.1 Including, Initializing and Cyclic Calling

	4.9 STEP Functional Connection between your Application and CANdesc/CANdela Studio
	4.9.1 How to handle User-Defined Handlers
	4.9.2 How to Handle Predefined Handlers (for MainHandler only)
	4.9.3 Handling OEM-Specific Settings

	4.10 STEP Compile and link your Project
	4.11 STEP Test it via CANoe
	4.11.1 Start CANoe.CAN OSEK TP enlarged
	4.11.2 Test of CANdesc

	5 Further Information
	5.1 Diagnostic State Handling using CANdela Studio
	5.2 Typical Examples of State Groups and States in an Automotive Environment
	5.3 Creating and editing State Groups, States and Transitions
	5.4 Connection between the states and your application
	5.5 Diagnostic Buffer
	5.5.1 Linear Diagnostic Buffer
	5.5.2 Ring Buffer Mechanism
	5.5.2.1 Activation of the Ring Buffer
	5.5.2.2 Main Control Functions for the Ring Buffer Mechanism
	5.5.2.3 Examples for Ring Buffer Mechanism

	5.6 Repeated Service Call Feature
	5.6.1 Activation of the Repeated Service Call
	5.6.2 Repeated Service Call and Ring Buffer 1 – “Write and Check”
	5.6.3 Repeated Service Call and Ring Buffer 2 – “Check and Write”

	6 Additional Information
	Persistors
	6.1.1 Update Persistors – Install current Version

	7 FAQs
	7.1 Introduction
	7.2 Frequently Asked Questions

	8 What’s new, what’s changed
	8.1 Version 1.7
	8.1.1 What’s new
	8.1.2 What’s changed

	Address table
	10 Glossar
	11 Index

