Vector CAN Driver

User Manual
(Your First Steps)

Version 2.4

Vector Informatik GmbH, Ingersheimer Str. 24, 70499 Stuttgart
Tel. 0711/80670-0, Fax 0711/80670-399, Email can@vector-informatik.de
Internet http:\\www.vector-informatik.de

User Manual Vector CAN Driver

CAN Driver

CAN Controller

Transceiver

Transmission- Reception

Klaus Emmert

24

released (in preparation/completed/inspected/released)

©2009, Vector Informatik GmbH

vector’

Version: 2.4

2 /56

User Manual Vector CAN Driver

History

vector’

Klaus Emmert
Klaus Emmert
Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert

Klaus Emmert
Klaus Emmert

Klaus Emmert

Klaus Emmert

©2009, Vector Informatik GmbH

2001-05-11
2001-08-11
2001-09.21
2001-10-10

2001-12-14
2002-09-25

2003-07-16

2004-10-26

2006-05-30

2006-09-08

2007-02-20
2007-07-26

2007-09-06
2007-10-29
2008-09-04

2009-08-26

0.4
0.6
0.6a

1.0
1.4

1.5

1.6

1.7

1.8

1.9
2.0

2.1
22
23

24

First version of the User Manual
Technical and linguistic revision
Revision (pretransmit)

Error in description of a mes-
sage, how to enter the manufac-
turer type to the example data
base.

Linguistic revision

Linguistic corrections and little
adaptations

Warning added for example code
usage

New Layout, example dbc file
deleted and description modified,
description for CANgen and the
new Generation Tool GENy, new
Symbols

Updated dialog for bus timing
register setup

Page number of Index, headline
numbering

Issues in Word Hyperlinks

Issues in steps introduction,
some typos.

Typos and reference in TOC
Baudrate setting description

Include file for CAN Driver and
GENy

Fix: v_inc.h must not be changed
manually.

Version: 2.4

User Manual Vector CAN Driver Vector [

4/56

Motivation For This Work

The CAN Driver is the only component among the CANbedded Software Compo-
nents that is directly connected with the CAN Controller hardware. It is the founda-
tion for all other CANbedded Software Components.

The first target for you is to get the CAN Driver running, to see receive and transmit
messages on the bus.

WARNING

All application code in any of the Vector User Manuals is for training pur- fi}
poses only. They are slightly tested and designed to understand the basic L
idea of using a certain component or a set of components.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

Contents

1 Welcome to the CAN Driver User Manualccooereeieeeieeeeeeeeceeeeeeeeeeeeennenees 8
1.1 Beginners with the CAN Driver starthere ?ccoooiiiiiiiiiiiiiiieeeeeen, 8
1.2 FOr AdvanCed USEIS ... 8
1.3 Special toPICS ..o e 8
14 Documents this one refers to..........ccccoveeiiiiiciiii e 8
2 About This DOCUMENt ... s 9
2.1 How This Documentation Is Set-Upcccooeiieiiiiiiiiiiee, 9
2.2 Legend and Explanation of Symbols..............ccccceeii 10
3 ECUs and Vector CANbedded Components — An Overall View.................. 1
3.1 Network Data Base File (DBC)ccoiiiiiiiiiiiiiiiiceeiieeeeee e 11
4 CANbedded Software Components..........ccccoeviiiiiiiniiiriinnier e 12
4.1 Generation TOOcoooeiiiiii 13
4.2 The Vector CAN DIIVETuueiiiiiiee e 14
421 Tasks of The Vector CAN DIriVer..........oovvvieiieeiieeiieeiiiiieeeeeeeeeeeeeeee 14
4.2.2 Vector CAN Driver FileS ... 14
4221 COmMPONENE FIlES ...uuiiiiiiiiiiiiiiiii s 14
4222 Generated FileS.........uuuiuuiiuiiiiiiiiiiiiiiiiiiiii e 14
4.2.2.3 Configurable file€Suuiiiiiiiiiiiiiiiiiii e ——————— 15
423 Include The CAN Driver Into Your Applicationccccccvvveiennennnes 15
5 Vector CAN Driver— A More Detailed View...........oooommmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeeee 16
5.1 Information Package on the CAN BUScccccveiiiniiiiiiiieees 16
5.2 Storing Information Packages...........cccccceeii 17
5.2.1 The Registers of the CAN Controller...........cccccoviiiiiiiiiiiieiinie 18

5.2.2 The Data Structure Generated by the Generation Tool for
Storing Message Data.ccooooiiiiiiiiiiiiii 18
5.2.3 Memory the Application Reserved for Signals.coeeeeeeeen. 19
6 CANDIIVErin 9 Steps ... 20
6.1 STEP 1 Unpack the Delivery..........cccouiiiiiiiiiiieeeeee 21
6.2 STEP 2 Generation Tool and dbc File ..., 22
6.2.1 Using CANgen as Generation ToOl..........ooeeeeiiiiiiiiie, 22
6.2.2 Using GENy, the new Generation Toolccccceeeiiiiiiiiiiiiis 30
6.3 STEP 3 Generate Files ... 33
6.3.1 Using CANgen Generation TOOl.........cccooevvieiiiiiii 33
6.3.2 USING GENY ..o 33

©2009, Vector Informatik GmbH

vector’

Version: 2.4

User Manual Vector CAN Driver

6.4 STEP 4 Add Files to your Applicationccccoeeeeii, 35
6.5 STEP 5 Adaptations for your Application.................cccoee. 36
6.6 STEP 6 Compile, Link and Download...........cccccceeeiiiiiiiiiiiiiiiieeeeeeee, 40
6.7 STEP 7 Receiving AMESSAgecoooeeiiiiiiiiieeeee 40
6.8 STEP 8 Sending a MesSsageccuvviiiiiieiiiiiieeeee e 43
6.9 STEP 9 Further ACtions ... 45
6.9.1 Strategies for Receiving a CAN Message............ccceeeeeeeiiiiin. 45
6.9.1.1 Hardware Filter (HW FIlter) ... 45
6.9.1.2 ApplCanMsgReCEIVEd...........cooevviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 46
L T I - 1 o 1= 46
6.9.1.4 Search AlGorithme.........cooi i 46
L T I T = o o] o P 46
6.9.1.6 Indication Flag / Indication Function......................c.ccccccininnnn, 47
6.9.2 Strategies for Sending a CAN Messageccccuvveeeeeiiiiiiiiiiiieeeneenn. 48
6.9.2.1 Update RAM BUFferooovviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 48
6.9.2.2 CanTransSmit.........oooiiiiiiiiiiiiiiiiiiie e 49
6.9.2.3 The QUEUE ..ccoeeeiiiieiieeeeeeeeeeeeeeee ettt eeeeeeeessnensenenenes 49
6.9.2.4 Pretransmit FUNCHONooooiiiiiiiiiieeeeeeeeeeeeeeee 49
6.9.2.5 Confirmation Function and Confirmation Flag..............cccccccceninnnnn. 49
7 Further Information ... s 51
71 An Exercise FOr PractiCe.............uuuuuuueiiiiiiiiiiiiiiiiiiiii 51
7.2 The Solution To The EXErCiSe.........coivuviiiiiiiieee i 54
7.21 After the first reception and transmission of a new value.................. 54
7.2.2 After the reception of the same value as before:ccccvvvvvvnnnnnnn. 54
7.2.3 The solution, step by Stepooovvvviiiiiie e 54
L 1 T = G 56

©2009, Vector Informatik GmbH

vector’

Version: 2.4

6 /56

User Manual Vector CAN Driver

lllustrations
Figure 3-1 A Modern Vehicle With Body CAN And PowerTrain Bus........................... 11
Figure 4-1 CANbedded Software CoOmpoNeNntSccccuviiiiiiieiiiiiiee e 12
Figure 4-2 Order For Including Files...........cccoo e, 15
Figure 5-1 Message and SigNal.........ccoooiiiiiiiiiiii e 16
Figure 5-2 Rx Register, Data Structure and Notification 17
Figure 5-3 Tx Register, Data Structure and CanTransmit......................cccc, 18
Figure 5-4 Memory optimization by the Generation ToOlcccciiiiiiiiiiiiiiiiiee, 19
Figure 6-1 Add adbcfile ..o 22
Figure 6-2 Warning — do NOt DOther...........ooiiiiiiiii e 22
Figure 6-3 Channel properties...........oooi i 23
Figure 6-4 Save Setting For The First Timeccccciii 23
Figure 6-5 Overview of Signals and Directoriescccuveiieiiiiiiiiiiii e 24
Figure 6-6 CAN Driver Dialog (for HC12) ... 25
Figure 6-7 Init Registers For The CAN Controller (for HC12)...........cooooi 26
Figure 6-8 Acceptance Filters For The CAN Controller (for HC12) ... 27
Figure 6-9 Bus Timing Register Settings.............ccc e, 28
Figure 6-10 TP OPLONSeiiiiiiiiiiiie e 29
Figure 6-11 Setup Dialog Window and Channel Setup Window to Create a New

(O] 1110 [=1 (o] o USSR PRERRR 30
Figure 6-12 Component SeleCtion............coooiiiiiiii 30
Figure 6-13 The Register Block Address is a General Setting for the CPU 31
Figure 6-14 Register Block Offset, Acceptance Filters and Bus Timing are

Channel-Specific Settings for the CPU ..., 31
Figure 6-15 Acceptance Filter Settings Window of GENYccoociiiiiiieeiiiiiie, 32
Figure 6-16 Generation ProCessccoooviiiiiiiiiiii 33
Figure 6-17 Information About the Generated Files and the Generation Process 33
Figure 6-18 The TranSCEIVENuuuii it e e et s e e e e e e eeaaa s e e e eaeeeanes 37
Figure 6-19 Simple Test ENVIronment ... 40
Figure 6-20 Check button for indication flag........................ 41
Figure 6-21 Calling Order Of Functions When A CAN Message Is Received............... 45
Figure 6-22 States Before Transmitting A CAN MeSSagecoovviimriiiieeeeeiniiiiiieeeen. 48
Figure 6-23 Confirmation Interrupt After Transmission Of CAN Message 50

©2009, Vector Informatik GmbH

vector’

Version: 2.4

User Manual Vector CAN Driver

1 Welcome to the CAN Driver User Manual

1.1 Beginners with the CAN Driver start here ?
You need some information about this document?

Getting started
9 Steps for the CAN Driver

1.2 For Advanced Users
Start reading here.

1.3 Special topics

Strategies for receiving a CAN message
Strategies for sending a CAN message
An exercise

1.4 Documents this one refers to...
TechnicalReference CANDriver.pdf
TechnicalReference_CAN_ xxx.pdf

©2009, Vector Informatik GmbH

vector’

- see Chapter 2
- see Chapter 3

- see Chapter 6

- see Chapter 5

- see Chapter 6.9.1
- see Chapter 6.9.2

- see Chapter 7.1

Version: 2.4

User Manual Vector CAN Driver Vector [

9 /56

2 About This Document

This document gives you an understanding of the CAN Driver. You will receive
general information, a step-by-step tutorial on how to include and use the function-
alities of the CAN Diriver.

For more detailed information about the CAN Driver and its API refer to the Technical
Reference (TechnicalReference CANDriver.pdf) and the hardware specific refer-
ences TechnicalReference_ CAN_xxx.pdf (e.g. TechnicalReference_ CAN_HC12.pdf).

21 How This Documentation Is Set-Up

Chapter Content

Chapter 1 The welcome page is to navigate in the document. The main parts of the document
can be accessed from here via hyperlinks.

Chapter 2 It contains some formal information about this document, an explanation of legends
and symbols.

Chapter 3 An introduction to the files, the tools and information necessary to understand the
descriptions in the following chapters.

Chapter 4 Here you find some more insight in the CAN Driver about receiving and transmitting
messages, the CAN controllers and the data structure.

Chapter 5 A step-by-step guide to establish CAN communication on an ECU for the first time.
Follow the 9 steps to get the answer to most of your questions and problems..

Chapter 6 Here you find a problem to solve to check your understanding of the CAN Driver and
its functions.

Chapter 7 In this last chapter there is a list of experiences with the CAN Driver.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

10/ 56

2.2 Legend and Explanation of Symbols

You find these symbols at the right side of the document. They indicate special ar-
eas in the text. Here is a list of their meaning.

These areas
Symbol Meaning :ﬁﬂz rtlght of
X

contain brief
A I P R items of
[The building bricks mark examples. information
e that wil
facilitate your
— You will find key words and information in short sentences in the margin. This will :Zggcf”
greatly simplify your search for topics. topics.

The footprints will lead you through the steps until you can use the described Vector
CAN Diriver.

There is something you should take care about.

Useful and additional information is displayed in areas with this symbol.

This file you are allowed to edit on demand.

This file you must not edit at all.

This indicates an area dealing with frequently asked questions (FAQ).

PR NE> R

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

11/56

3 ECUs and Vector CANbedded Components — An Overall View

3.1 Network Data Base File (DBC)

Normally the different ECUs in a modern vehicle are developed by different suppli-
ers (SUPPLIER X). All ECUs within the same bus system (@ or ®) use the same
data base (dbc file) to guarantee that the ECUs will work together later on in the
vehicle.

SUPPLIER 1
_—— SUPPLIER 2

SUPPLIER 6

— Network Database
© Al_Ecus_highspeed.dbc

© Powertrain @ Al_ECUs_midspeed.dbc
® BodyCAN

SUPPLIER 4
SUPPLIER 3

Figure 3-1 A Modern Vehicle With Body CAN And PowerTrain Bus

The dbc file is designed by the vehicle manufacturer and distributed to all suppliers There is the same
that develop an ECU. Thus every supplier uses the SAME dbc file for one vehicle e
platform and one bus system (powertrain, body CAN etc.) to guarantee a common ggggg ngV)forall
basis for development. suppli’e{s o
guarantee a
The dbc file contains e.g. information about every node in the network, the mes- sl

development.

sages/signals each node has to send or to receive. The distribution of the signals
among the messages is stored in the DBC file, too.

For example: every ECU has to know that a 1 in bit 7 in the 4" byte of the message
0x305 means “Ignition Key” on/off.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

4 CANbedded Software Components

The vector CANbedded environment consists of a number of adaptive source code
components that cover the basic communication and diagnostics requirements in
automotive applications.

RHCAN|
Application
| H i i |
: Ciagnostics
! L .
! ayer H Universal
i Measure-
Interaction | ! | MNetwork ment
o - Layer i Management| | And D
ommunication . Calibration | 1 [y
Control i | Transport Protocol Protocol B Genaration
Layer : Tool
CAN Driver
|
CAN Bus
Figure 4-1 CANbedded Software Components
CAN Driver

The CAN Driver handles the hardware specific CAN chip characters and provides a standardized
application interface.

Interaction Layer

The Interaction Layer (IL for short) is responsible for the transmission of messages according to
specified rules, monitoring receive messages, timeout monitoring, etc. It provides a signal oriented
application interface for the application.

Transport Protocol

The CAN protocol is restricted to 8 data bytes per message. But in some cases (e.g. diagnostics)
you need to exchange much more than 8 data bytes. The segmentation of the data, the monitoring
of the messages and the timeouts is done by the Transport Protocol (TP for short).

Diagnostics
Diagnostics Layer according to 1ISO14229 / 1ISO14230 (Keyword Protocol 2000).

Network Management

The Network Management (NM for short) is the component to control the bus, to synchronize the
transition to bus sleep, error recovery after bus-off, etc.

Communication Control Layer (CCL)

The CCL provides an integration environment for the CANbedded Software Components, an ab-
straction for different vehicle manufacturers, microcontrollers, CAN Controllers and compil-
ers/linkers. It also provides a global debug mechanism.

©2009, Vector Informatik GmbH Version: 2.4

12 /56

User Manual Vector CAN Driver Vector [

13 /56

Universal Measurement and Calibration Protocol (XCP)

This is the Software Component for measurement and calibration on several bus systems. To men-
tion some feature: read and write access to various memory locations or flash programming.

Generation Tool

This is a PC tool for configuring the above listed components. The Generation Tool is driven by a
network database file, DBC file for short.

The CANbedded Software Components are configurable and can be adapted to
your specific needs via the Generation Tool.

4.1 Generation Tool

The Generation Tool displays the complete set of ECUs in the network. In general
you pick out the one you develop the software for. In special cases when you de-
velop ECUs that are almost identical (e.g. door ECUs) you select more than one
(so-called multiple ECUSs).

For your ECU there are special requirements concerning the hardware and the
functionality. l.e. the driver must be suitable for your hardware and the standard
components must be adaptable for your project-specific needs. The means to do
this is the Generation Tool.

The Generation Tool is a PC-Tool. It reads in the Network Data Base file (DBC)
and offers you to select the node you are going to develop and has therefore all
information about your ECU, the receive and transmit messages, the signals etc.

The Generation Tool generates files that contain this information (DBC, hardware
and specific settings) and so complete the components core files and have to be Include the
included in the compile and link process. gleensei;aty%%r

system as
shown.

= T-'f
_.:5.-.{;# Your Hardware Platform- e i

—> H H change
and Compiler information Application generated
Project specific component settings Specific Data wes 5 e

generation
process will

delete these
changes.

Right now there are two Generation Tools available, CANgen and the new Genera-
tion Tool called GENy. Which tool you have to use depends on you delivery and the
project.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

14/ 56

4.2 The Vector CAN Driver
A driver is a program to control a piece of hardware. In this case the Vector CAN
Driver controls the CAN Controller and its registers.

4.2.1 Tasks of The Vector CAN Driver

The CAN Driver basically handles the reception and transmission of information via
the CAN Bus and recognizes bus failure (bus off). The CAN Driver provides a
standard application interface for the application.

Your application only has to use a set of predefined functions to control the CAN
Driver and will be notified via interrupt about incoming information (messages). To
control the incoming and outgoing data and to be notified of important events you
have to add some service- and call-back-functions to your application (see 6.5).

For more detailed information about the CAN Driver please refer to the Vector CAN
Driver Technical Reference (TechnicalReference_CANDriver.pdf and TechnicalRe-
ferfence_ CAN_<hardwareplatform>.pdf, e.g. TechnicalReference_ CAN_HC12.pdf).

4.2.2 Vector CAN Driver Files

The Vector CAN Driver consists of 3 sets of files, component files, generated files
and configurable files

4221 Component Files

Independent of the used Generation Tool
can_drv.c - can_def.h - v_def.h @

You must not change these files at all.

4.2.2.2 Generated Files

Independent of the used Generation Tool
can_cfg.h - v_cfg.h

Only for CANgen ®
YourECU.c - YourECU.h D
Only for GENy

can_par.c - can_par.h - drv_par.c - drv_par.h - v_par.h - v_par.c -v_inc.h

Do not change these files. You will lose the changes after the next generation proc-
ess.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

15/56

4.2.2.3 Configurable files

Independent of the used Generation Tool ! |
can_inc.h il

INC stands for include. Here you can add includes you need.. You have to include
can_inc.h in every application C file where you need CAN functionality, followed by
the include of YourECU.h.

The Generation Tool CANgen generates the signal and message access macros

as well as the indication or confirmation flags to the file YourECU.h. GENy gener-
ates this to the file can_par.h.

4.2.3 Include The CAN Driver Into Your Application

Use the illustration in Figure 4-2 to include the files for the CAN Driver into your
application correctly. Please keep to the including order to avoid errors while com-
piling or linking.

Using CaMgen as Generation Tool Using GEMy as Generation Tool

Application. c Application.c

#include can_inc.h | ! l #include w_inec.h @

finclude TourECU.h @
generated

Figure 4-2 Order For Including Files

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

5 Vector CAN Driver— A More Detailed View

5.1 Information Package on the CAN Bus

As mentioned before, the information is exchanged between ECUs via the CAN
bus. The maximum amount of data which can be exchanged is 8 data bytes and
they are transmitted via a so-called message.

A message contains the ID (the “name” or number of the message), the DLC (data
length code, i.e., the number of data bytes) and the data bytes .

A message on the CAN Bus can contain from 0 to 8 data bytes.

Every message is divided up into signals. A signal consists of 1 up to 64 bits. A
signal cannot exceed the message boundary.

We do not consider signals here which are greater than 64 bits, as this involves the
Transport Protocol.

Message

[ofowc] EEHEE [[[[|

Signal
(1 Bit to 8 Bytes) [N E oG b

e.g. Temperature,
(hi, low) A signal can exceed

byte boundaries

Figure 5-1 Message and Signal

Signals are assigned to messages by the vehicle manufacturer database engineer.
This assignment is stored in the database (dbc file).

Normally you must not change the database (dbc file).

©2009, Vector Informatik GmbH Version: 2.4

vector’

16/ 56

You access the
signals relevant
for your ECU with
the macros
generated by the
Generation Tool.

The generated
file sig_test.c
contains a list of
all access macros
to the signals.

User Manual Vector CAN Driver Vector [

17/ 56

5.2 Storing Information Packages

The more you understand about data handling in the CAN Driver the better you are
able to design your application. You have to know where the data is stored at a
specific point in time to be able to access this data correctly.

Notification for
Application

RAM buffer

T T T T]
Ignition
T T T T T 1]

CT T B T 1 T[] Copy to RAM buffer depending on ID.
Keep data consistent!

Door_State

CAN Driver

Rx register

1D [DLC
ﬁﬁ[
l

CAN messages LCAN messages

Figure 5-2 Rx Register, Data Structure and Notification

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

vector’

Updated by Application

RAM buffer
[T T T 1

Ignition
i 1
(T T B T T 1]

Door_State

CanTransmit (TxHandle)

(O.\\EP)s\=Ig Copy data to Tx register.
Tx register Keep data consistent!

ID |DLC .‘
lﬁ.i I

CAN messages

CAN messages

Figure 5-3 Tx Register, Data Structure and CanTransmit

There are 3 elements involved in storing information packages:

5.2.1 The Registers of the CAN Controller

Your CAN Controller has a receive register (Rx Register) and a transmit register
(Tx Register).

Data is always received in the Rx Register of the controller. The data is written to
the Tx Register immediately before a transmission.

You can access these two registers via the signal access macros containing the
CAN in the name (see YourECU.h if you use CANgen and can_par.h if you use
GENy).

The signal access to the Tx Register is dependent on the hardware, not all drivers
support this feature.

5.2.2 The Data Structure Generated by the Generation Tool for Storing Mes-
sage Data.

The Generation Tool defines variables to allocate memory for the data of the re-
ceive messages and the transmit messages (The data allocation is optional and
can be switched off). In the receive procedure, the data will be copied from the Rx
Register to the message-specific memory area (RAM). In the transmit procedure,
you have to enter the current values in the variables and the driver will copy the
data to the Tx Register as shown in Figure 5-2 and Figure 5-3.

©2009, Vector Informatik GmbH

Version: 2.4

Later on you will
see, that this
special access to
the hardware is
possible only in
the functions
ApplCanMsgRe-
ceived and in the
Precopy Func-
tions for reception
and in the Pre-
transmit Function
for transmission.

User Manual Vector CAN Driver Vector [

19/ 56

The decision, whether to copy the data to or from the registers (receive and transmit)
with your own function or whether you let the driver do the copying action is up to
you and is decided by the return value of specific functions (precopy function, pre-
transmit function, see 6.9).

The Generation Tool optimizes the memory consumption. The highest byte con-
taining relevant signals determines the amount of bytes to be reserved for this
message. In the picture below, the red areas and lines in the bytes show where
relevant signal information is stored within the message.

>
- J
'
4 bytes
>
— _/
g The Generation
8 byt Tool minimizes
ytes the amount of
memory reserved

Figure 5-4 Memory optimization by the Generation Tool for a message.

In the first message the 3™ byte contains the last signal (counting started with 0).
Byte 4, 5, 6 and 7 have no relevant information for your ECU. In this case the Gen-
eration Tool only reserves 4 (0-3) bytes for this message.

The second message has information in the 7" byte, so the number of byte to be
reserved is 8 (0-7).

5.2.3 Memory the Application Reserved for Signals.

Sometimes you only need one byte or even only one bit signal out of a message.
To save RAM memory do not use a generated data structure. Use the precopy
function (see 6.9.1.5) to copy the byte or the bit of the received message to the
byte or the bit field you reserved in your application to hold this specific information.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

20/ 56

6 CAN Driver in 9 Steps

STEP1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

UNPACK THE DELIVERY

Follow the install shield, unpack the delivery and install the generation tool.

GENERATION TOOL AND DBC FILE
Configure the CAN Driver using the generation tool and an appropriate data base file
(DBC)..

GENERATE FILES
The generation tool generates all necessary files for the CAN Driver.

ADD FILES TO YOUR APPLICATION PROJECT

To use the CAN Driver you have to add the CAN Driver files to your application project.

ADAPTATIONS FOR YOUR APPLICATION
Also adapt your application files to be able to use the functionality of the CAN Driver.

COMPILE AND LINK

Compile and Link your application project including the CAN Driver.

RECEPTION OF A CAN MESSAGE
Test the receiving path of the CAN Driver by sending a message to your ECU.

TRANSMISSION OF A CAN MESSAGE

Transmit your first CAN message using the CAN Driver service functions.

FURTHER ACTIONS AND SETTINGS

Topics above the very easy beginning.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

21/56

6.1 STEP1 Unpack the Delivery Y

The delivery of CANbedded Software Components normally comprises a Genera-
tion Tool and the source code of the software components.

The Generation
Tool generates

You only have to start the flos for your
application. It is

. ._Setu p.exe the connection
between your

and to follow the install shield wizard. hardware and
settings, the
requirements of
your vehicle

We recommend creating a shortcut to the Generation Tool. manufacturer and

the other ECUs,
your ECU has to
communicate
with.

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

22 /56

6.2 STEP 2 Generation Tool and dbc File
Use new Generation Tool GENy, look there >>

-
iy, "

I

6.2.1 Using CANgen as Generation Tool

When you start the Generation Tool you will see a window like Figure 6-1. This
starting window is the main window of the Generation Tool.

#2 CAME e AT
T
oot i S IR i
gt CANGen
Yy || Towwwd| W caym ey | gl | _wwier |

File Edit Options He

DileRlm] s

[rars [riM | =rs
Figure 6-1 Add a dbc file

A click on the green plus (+) will open a new window to add your database (dbc
file).

When you use

Channel properties E the browse-button
| - | | you will get an
zystem Cormpiler Buzsystem absolute path to
Database: I dbchexample.dbe Browse ... | the dbc file.
It is suggested
| rNodes | that you use
Marme: " relative paths in
Gz order to be able
: : : : - to move your
File 'Tr:\UsrTechnische Dokumentationcandriverhdbcexample. ext’ naot found. Starting with default values. project more
easily from one
Channel index; direc)t/ory to
: another.
LARS [[HNUR T alHE
Target system: I ﬂ I ! ! !
Comipiler: I ﬂ
ok | Cancel | Open CANdb editar _ _
This warning
occurs only if you
open the dbc.file
Figure 6-2 Warning — do not bother for the first time
because of the
. extension file has
Browse for your dbc file and select it. When you do this for the first time, the ([E g1 e e v
H H H ? H created. The
[fif" above will occur. Ignore it, and just confirm with OK.. e e will
. contain your
Select your node; choose your target system and compiler. settings you do in

the following.

Since we are using a CAN Driver with just one channel, the channel index has to be
left empty. When you have two or more channels, they will be distinguished via this
index.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

23 /56

Channel properties |

D atabaze: I exampletapplhdatatexample. dbe Erowze | lg‘f’tg‘fh“;eng‘ﬁn"iijf

the dbc file. You
can change the
—Modesz name . It is only

used in the list of
M ame: IE:-:amp|E TestMode your channels in
figure 2-5.
Channel index:

Target zpstem: IEE!HE12 j
Cornpiler: ||:|:|smin: j
Dreriv ative: IDGm.: j

oKk | TE— | Open C&Ndb editor ..

Figure 6-3 Channel properties

Confirm with OK and you will see your setting as text in the field of the starting win-
dow of the Generation Tool. When we save the configuration for the first time, we
have to use the menu command File/Save as.

et CANGen M= E

H[=W Ecit Options Help

[
Open...

Close

| Target spzhem | Compiler | Buzsystem |
EEKE 1 GEHC1Z Cosmic CAM

1 Colsrhs AN ector Driver HC 2WCOSMICexampletapphdataty ourECU cof
2 CoWsriTechnische Dokumentationcandriverdbc Y ourECU cof

3 DoWlsrC Ak ector Driver HC 2S00 SMICtestsuitapplidstatyourECU oot
4 DolsrTechnische Dokumentationtcandriveridbcexample cot

Exit Aft+F 4

Sawes the current channel configuration with & new name

Figure 6-4 Save Setting For The First Time

Take a look at the directory where you stored the settings of the Generation Tool.
There is your dbc file and new files (see note) only used by the Tool.

The following files belong to the Generation Tool:

<databasename>.dbc (exampleDRV.dbc)
<databasename>.ext (exampleDRV.ext)
<databasename_nodename>.msg (exampleDRV_YourECU.msg)
<databasename_nodename>.sig (exampleDRV_YourECU.sig)

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

24/ 56

yourECU.ccf this is the project file for the Generation
Tool.

Now you can open your settings in the normal way (not via the dbc file) by opening
the file YourECU.ccf.

When your vehicle manufacturer changes the dbc file, just copy all files important for
the Generation Tool into a new directory, delete the old dbc file and copy the new dbc
file in this new directory. Rename the old ext file with the name of the new dbc file.
This preserves your application-specific settings. The checkbox

Generate only bit

. and byte signal
This does not work when the target system has changed!!! macros is only
used for very
special applica-
tions. If you have
any doubt, do not
choose this.

Now we shall make additional settings for the component CAN Driver. Use this but-
ton[] to open the Generation Options and to enter the following dialog.

example | YourECU 2]

Overview I CAMN driver I CAMN driver [fdvanced) I Send messages I Receive messagesl O5EK-TP optionsl Module options I Init registers I Mames I

MNode: “ourECL |D3__
Targetsyster: BBHC12 v
Compiler: Cozmic r \E B
- wlende: 3
SRR B Path for generated
- Recsive message - Send message configuration file can _cfgh
+0x201 Message 2 + 0x200 Message 1
Path and name for
/generated node header
Path and name for
generated c file
— Dutput fle Yl /
Target directary far config files dhusitechnizche dokumentation\candriver\d?{ WISE...
Header file |d:\usritechnizche dokumentationh.candriveridbc\woure Browsze...
C file |d:uzrtechnische dokumentation\candriver\dbc\youre' Browsze. ..

Misc
’7|_ Generate only bit and byte signal macros ‘

Generate | QK I Abbrechen [ermetmen Hilfe

Figure 6-5 Overview of Signals and Directories

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

In the overview tab page (Figure 6-5) you see all receive and send messages for
your node.

Just choose the path where the header and the C file are to be generated and the
path for the configuration file can_cfg.h.

Select the tab CAN Driver.

In the following dialog you can make settings that are the same for all CAN drivers
regardless of the hardware platform. For the first attempt we do not select anything.

example | YouwECU 2]

Overview AN driver |EAN driver [Advanced]l Send messagesl Receive messagesl OSEK-TR optionsl Madule optionsl It registersl Namesl

Browse... |

™ Use Receive Function [AppiCantsgR eceived) ™ Suppart nterupt Contral by Application
™ Estended status

[T Txobserve

™ Use MagMoth atbched function

I~ Hardware Loop Check

™ Use Lowe Level Mezsage Trarsmit ™ Use PartDifline Functionalty

= Uze Lo Levelliessage Trarsmit Catfimatior [Use Generic Precopy

j Security level: |2 'l

Path of uger CAMN config file: I

I | SinntsetieFassive Gtate

™ Suppart for
™ Suppart Owerun Motification

Debug level I More

— Range

=] Evtended (U

™ Userange 0 Range 0 mask: [[=0 Fange Oid: IDHD
Fange O precopy function;

™ Use range 1 Range 1 mask: |1=0 Fange 1id: IDHD
Range 1 precopy function: I

[Userangs 2 Range 2 mask: | 0= Range 2 id: IUHU—
Fange 2 precopy function;

™ Use range 2 Range 3 mask; | -0 Range 2id: IDHD
Range 3 precopy function:

— Dynamic object:
Mumber of dynamic tx objects ID I2 | D prari T I2 | Dprarie T Corfimation
=) Byriamiz TeBLE I Dpramic TR ransmit

I Dyrianie TirDataR

Generate | 0k I Abbrechenl (Jbemehmen Hilfe:

Figure 6-6 CAN Driver Dialog (for HC12)

The next tab, CAN driver (advanced) is very special for the specific vehicle manufac-
turer and the hardware platform. Please refer to the description of your CAN Driver
Technical Reference for the advanced settings (TechnicalRefer-
ence_CAN _hardwareplatform.pdf).

Finally we have to set the Init registers. Please select this tab (Figure 6-7).

Some of the following information might be hardware dependent but the fundamental
mechanisms are the same.

©2009, Vector Informatik GmbH

vector’

Version: 2.4

Here you see the
variety of setting
you can make to
configure a CAN
Driver. Take a
look at it but do
not enter anything
for this first
attempt.

Refer to the
document
CANdrv.doc to
get further infor-
mation about
these settings.

User Manual Vector CAN Driver Vector [

26/ 56

example | YourECU K
Dverviewl Cak driver' CAM driver [Advanced]l Send messagesl Receive messagesl OSEK-TP options| Module options Inik registers |Names|
Count of init structures |1_
Control reg. 0 IM I I
Contral reg. 1 IDHDZ I I
Bustiming req. 0 IDxBB I I
Busztiring req. 1 IDH2B I I
Receiver intermupt enable rag. |0385 I I
Acceptance control reg. IDH2D I I
|0 acceptance reg. 0, 1 IDxff IDxff I I I I Every two col-
ID acceptance reg. 2, 3 IU;-;H IU:-;H I I I I umns belong to
one so-called init
ID mask req. 0,1 [0-00 [0x00 [| f f structure consist-
D mask reg. 2,3 [000 [0:00 | [| | ing of baud rate,
acceptance
ID acceptance reg. 4. 5 IDgff IUxff I I I I filters...
|0 acoceptance reg. B, 7 |Dxff |D:<4D | I | I
ID mazk req. 4,5 IDHDD IDHDD | I | I
ID mask reg. . 7 [0-00 [0x00 [| [f
1 Acceptance registers .. | 2 Busgtiming registers ... |

Generate QK. I .-’-‘«bbrechenl [Obermehmen Hilfe

Figure 6-7 Init Registers For The CAN Controller (for HC12)

This is a very important dialog. Please pay special attention to these settings.
Here is where you can make the settings for the hardware acceptance filters and
the bus timing of your CAN Controller.
First we look at the Acceptance filters, second at the Bustiming registers.

In order to minimize the number of messages that should not be received by your
ECU, you can set a hardware filter by means of the acceptance register (1) (see
Figure 6-8).

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

The reception of any message normally causes an interrupt. To minimize the inter-
rupt load you set the filters, so only relevant message will pass and cause an inter-
rupt.

Acceptance hilter _ O]

Extended B&HE T

AcchazkReg?: (ff AccCodeReg?: [t

—Masks

Filter 0: | 30 W0 w0 T L Fiter 4 | 2 200 1 L

Filter 1: | 204 1ol 20084 L Filter 5 | Pl W s L

Filter 2: | R Wl W L Filter B | P P W T L

Filter 3: | R 3o WL Filter 7. | P i

— Mazk reqisters — D reqisters
AcchazkBegl: I—III:-:ff AccCodeRegl: IW
AcohazkReqgl: I—I:I:-:ff AccCodeReql: I—D:-:ff
AcchazkReg: I—El:-:ff AccCodeReg: I—D:-:ff
AccMazkPegd: I ke AccCodeRegd: I D=ff
AcohazkRegd: I—I:I:-:ff AccCodeRegd: I—D:-:ff
Aok azkRegh: I—I:I:-:ff AccCodeRegh: I—D:-:ff
Acchd azkF egh: I—EI:-:ff AccCodeRegh: I—El:-:ff

[odf [ol

— Filter efficiency
Cournt Rate [1/5]

b ax zearnch depth: 1 Receive meszages: 1 100
Worst caze [D; Ox007 Faszing messages; 1 10,0
E sisting messages: 1 10,0

Optirmize fiter . IDs . | oK |

Restore [DLists | Cancel |

Figure 6-8 Acceptance Filters For The CAN Controller (for HC12)

For the first attempt it is your choice whether to open all filter via the Open filters or
you use the Optimize filters button. Confirm with OK.

The setting of the filters is described in detail in the help document for the Generation
Tool. (just use the HELP button).

Next we will look at the bus timing. To do this, while still on the Init registers tab
page, click on the Bustiming registers button.

Incorrect Bus Timing settings are common mistakes that cause errors while transmis-
sion and reception. Please pay special attention to all settings in this dialog.

©2009, Vector Informatik GmbH Version: 2.4

27156

User Manual Vector CAN Driver

vector’

CANM bustiming register setup |

B audrate [kE aud]

|1EIEI.EI

CETO reqister [hex)] |41
CET1 reqister [hex] |3E

Calculate baudrate

Calculate bustiming register

— Bit tirnitg
— Wiew mode
Clock [kHz) |1 G000 1 2

TSeql [time guanta]

TSeq? [hime guanta]

Time guantum [nz]

Biit tirme: [pz)

Samplez I'I vI

Tzeql Tzeqg?
A
g _
i
01 16 20

Prezcaler [2

CRTO | CBTY | sample | BTL cycles | S0w | max df osc | =]
Ow03 w25 7% 10 1 0.50%
O3 O34 Bl 10 1 0.50% |
003 O3 Bl 10 1 0503
(w04 Qw14 7R g 1 0.60%
(w04 (w23 2% g 1 0.60%
(a1 Ow2F A 20 2 1.00%
Ow3E A% 20 2 1.00%
O [0 75 20 2 1.00% =l
Q. I Cancel Help |

Figure 6-9 Bus Timing Register Settings

Caution

Before SOP it is duty of the OEM / Tier1 supplier to recalculate and validate these
automatically calculated values for the bus timing registers.

First you have to enter the clock signal frequency. This is the base for further calcu-
lating the timing registers. Make sure to select the correct frequency.

The Bus Timing Registers of any CAN controller contain information about the bus
rate, the synchronization jump width (SJW) and the BTL cycles. There are two

ways to make these setting:

©2009, Vector Informatik GmbH

Version: 2.4

28 /56

User Manual Vector CAN Driver V@CtOf [

29 /56

1. Do you know the baud rate ?
Enter the baud rate and click on Calculate bustiming registers. You will get a
list of possible register setting. Choose your setting by a click in the list.

Between 60 and 80% is a good value for the Sample Rate and the SJW for your se-
lection. All vehicle manufacturers have strict guidelines for these settings.

2. You can also simply enter values for the two bus timing registers (CBTO and
CBT1) and let the software calculate the baud rate.
Return to the Init registers dialog via OK and see the changed values.
With a further OK you return to the main window of the Generation Tool.

Make sure that the checkboxes Use TP, Use diagnosis, Use Can Calibration
Protocol, Use MCNet ... are NOT selected (as we are working with the CAN
Driver only for this example).

The variety of these buttons is dependent on the manufacturer. Deactivate any com-
ponent but the CAN Driver.

Dlag services I MCHet options | CCF optiong I Init registers | Mamez I
Oivervisw CAM driver | CAM driver [Advanced) | Send messages | Fleceive messages OSEK-TP optians | Diag options |

il TR Pathname of uzer config file: I Bmwse...l

= Mull-inlalTDin«I- =====
Figure 6-10 TP Options

Set Defaults

The figure is only an example. The screenshot may look very different in your case.
But you see the checkbox which must not be selected.

Read the following chapter if you use GENy.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

30/56

6.2.2 Using GENy, the new Generation Tool

The following first steps with the Generation Tool are described in details in the online
help of the Generation Tool GENy;, too.

Start the Generation Tool and setup a new configuration. Via File/New you open &
the Setup Dialog Window. Select License, Compiler, Micro and Derivative (if avail- m|
able) and confirm via [OK]. Then open the Channel Setup Window via the green LIM
plus and the selection of the underlying bus system (CAN or LIN).

Channel Setup 7] |

Channel Name IEhanneI]

D atabase I"r’aurF’athhexampleD Rv.dbe |
—Databaze Modes——————————— — Multiple Modez—
Testhode il
Setup Dialog | 7] | { Physical

Micro [HC 12 =] oK. |

Cancel |
Compiler IEDsmiI: ,,I QK. I Cancel |

Open CAMdb editor |

Drerivative

Figure 6-11 Setup Dialog Window and Channel Setup Window to Create a New Configuration

The channel name is Channel X per default (X is starting with 1). Use the browse
functionality to enter the location of the data base (dbc file).

Select your node out of the field Database Nodes and confirm the settings with
[OK].
Now save the configuration via File/Save or File/Save as.

First at all you should switch on/off the components you need, in this case we only
use the CAN Driver.

Use the component selection at the bottom of the main window of the Generation
Tool and select the suitable Driver (in this example application we use the
CPUHC12 and the Driver HC12).

ill Software Components Channel 2 =
CCP r |
CAM Drver [HC D8] r
CaM Driver [HC 12] ™ -
N [TN N Al w} 1 —

N E¥ Companent Selectin:nnl £} Generated Filesl

Figure 6-12 Component Selection

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

vector’

Now you should set the path where the Generation Tool generated the files to. To
do this, open the Generation Directories Window via Configuration/Generation
Paths. Enter the root path and select additionally individual paths for the compo-
nents, if the Generation Tool should generated the files to different folders. This is
also described very detailed in the GENy online help.

For the HC12 there are some hardware-specific settings that you have to make,
the register block address and the register block offset. It depends on you hard-
ware whether you have to do such kind of settings or not. Refer to the Technical-

Reference_ CAN_YourHardware.pdf for more information.

$ MyECU

=B Componerts

* DriverCANM ames
=B CPUHC12

- @B DriverHC12
#-f=] T Messages

#-f=] FxMessages

J""«ur T Signalz

- R Sinnals

Configurable Options CPUHCTZ2 |
Derivative HC S j
Compiler Coosmic |

|: Paging Support

Ensble Paging |r P

— HEAZ (CPLY

Register block address 040

Figure 6-13 The Register Block Address is a General Setting for the CPU

$ MyECU

=B Componerts

- B DriverCANNames
=B CPUHCIZ
g™ Channels
- B DriverHC12
=] TxMeszages
#-E=] Rx Meszages
[+ Tx Signals
[Rx Signals

Configurable Options Channel 1 |
Type of buzaystem Cam j
Manufacturer I rk i j

= HCA2 (CPL)

Register block offset 0100 I
|: Inttislization

|: Init Structures

Allocate tems: j

|: Init Structure

Mocule Control Register 0 =0
Module Control Register 1 =2
Bus Timing Redgister O =42
Bius Timing Register 1 Dx3a
Receiver Interrupt Enable Register (=25
Idertifier Acceptance Control Register | 0220

Acceptance Fitter Configuration

Bustiming Configuration

Figure 6-14 Register Block Offset, Acceptance Filters and Bus Timing are Channel-Specific Settings for the CPU

What is missing now is the settings for the acceptance filters and the bus timing.

Acceptance filter configuration and bus timing configuration are very important set-
tings. Please pay special attention to them.

As you see in the navigation tree above you can open the configuration windows
for these two settings via the channels of the hardware (e.g. CPUHC12).

©2009, Vector Informatik GmbH

Version: 2.4

(4

User Manual Vector CAN Driver

vector’

First we take a look at the Acceptance filters, second at the Bustiming registers.

In order to minimize the number of messages that should not be received by your

ECU, you can set a hardware filter by means of the acceptance register.

Acceptance filter settings

—&cceptance Fiker Register

Mr. | Acceptance Filter

[Twoe [Mr0 [MR1 | MR2 [MR3 | ARD | AR1 [ARZ | AR3 =

ERREL L

standard | OxFF
standard | OxFF
standard | OxFF
standard | OxFF
standard | OxFF
standard | OxFF
standard | OxFF

0x00
Ox00
Ox00
0x00
Ox00
0x00
Ox00

By

— Shatistic:
Count

Messages to receive:
Passing messages:
Irelevant passing messages:
Full CAN messages:

RO =R —

Known meszages:

Max. search depth: 2

 Messan

Rate [1/5] [p

Mame

| Filter |

A 0200
100 A 0201
200

100

Message_1
Message_2

1
1

(118

Cancel | {"ipen fiters

Optimize: |

Figure 6-15 Acceptance Filter Settings Window of GENy

The reception of any message normally causes an interrupt. To minimize the inter-
rupt load you set the filters, so only relevant message will pass and cause an inter-

rupt.

For the first attempt it is your choice whether to open all filter via the Open filters

or you use the Optimize filters button. Confirm with [OK].

The window for the bus timing registers is the same as for the CANgen Generation

Tool. Refer to the lines above for this explanation.

To make the settings for the component CAN Driver itself use the lists below Driv-
erHC12 and DriverHC12/Channels/Channel 1. But for the this first attempt leave
these driver settings on their default values.

Back to 9 Steps overview

©2009, Vector Informatik GmbH

Version: 2.4

32/56

User Manual Vector CAN Driver V@CtOf

6.3 STEP 3 Generate Files ’;

6.3.1 Using CANgen Generation Tool
Click on the button _@ and start the generation process.

Remember to
start the genera-
tion process after
=== any change in the
O-EmmE|=E-= dia)llog wir?dows of
tolloccting goncrotion paroncicrs .. —[the Generation
Ceparating FECTCR coofisurstion fila . Tool.
Gansralbing khasler fila
Cenevoting O file ...
Copsrsting CiN cocfiguration fils ..
Coperating CCP marvawcter fila

rizing =siqu=l li=z:t Ezl= ... B R

": Fles cenerated

The gereralsd nzculss haes bo be bagisc sed werifad e b !
Imzanze cordigursion may lead ia pob e

i A0S L LA

I

ak |

Figure 6-16 Generation Process

The double arrow is only available if you have a multi-channel CAN Driver distin-
guished via the Channel index.

Now we have generated for the first time. Check the directory and see the new
files. There should be at least the files YourECU.c and YourECU.h, and in the path
for the configuration file there should be can_cfg.h and v_cfg.h.

If you do not find the generated files check your path in the Overview dialog.

6.3.2 Using GENy
Click on the button El and start the generation process.

| Config Files X[1 WML G enerator initislization took 231718750 (787.2600) miliseconds!
I B 2:WhLG eneratar initialization took 8593.7500 (406.2500] milliseconds!

a Saurce Files Starting Code Generation
i D:husrCodeE ramples\COSMICherampleCAND iveriGE Nyhapplidatahw_par.c 4: The Rx message Message_2 [0x201] won't pass the acceptance filter on channel 0
D:susrhCodek kamples\COS MIChexampleCAMD iverGE Myhapplidatahdry_par.c E: Generation took: 1984 (1]
D:husrhCodeE vampleshCOSMIChexampleCaMDiiverGEMyhapplidatahcan_parc
E1-E3 Header Files

D:husthCodeE kampleshCOSMIChexampleCAND iverGEMyhapplidataty_par.h
D:MustCodeE vamples\COSMIChexampleCAND iverGEMyhapplidatabey_ine.h
D:husrhCodeE kamplesh\COSMIChexamplaCaMDiiverGEMyhapplidataty_cfg.h
D:husrthCodeE vampleshCOSMIChexampleCaMDriverGEMyhapplidatahdry_parh
D-husrthCodeE kampleshCOSMIChexampleCaNDiiverGE Myhapplidatatcan_parh
D MusrhCodeE samplestCOSMIChexampleCANDiiverGEMyhapplidatatcan_cfg h

Other

&-E 4 |

B Companent SE|EC1iDﬂI <} Generated F”ESI A4 (e ¥ Hessages b Generation 4Find in Filesf

Figure 6-17 Information About the Generated Files and the Generation Process

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

34 /56

The Generation Tool provides you with information about the Generated Files and
Generation information. In this example shown above the acceptance filters are
not set correctly, Message_2 will not pass the filter. Open or optimize the filters.

If a message will not pass the acceptance filters, the Generation Tool will not create
signal access macros for the hardware (_CAN __ see in chapter 5.2.1). Make sure that
the generation process runs without error messages.

Now we have generated for the first time. Check the directory and see the new
files: can_par.c, can_par.h, drv_par.c, drv_par.h, can_cfg.h, v_par.c, v_par.h,
v_cfg.h, v_inc.h.

If you do not find the files check the paths in the Generation Paths... dialog.

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

35/56

6.4 STEP 4 Add Files to your Application ’;

In this step you have to add all files of the CANbedded Software Components (In
this example these files are only the ones for the CAN Driver) and the generated
ones to your project (or makefile).

Rename the file _can_inc.h to can_inc.h (remove the underscore prefix) and open
it with an appropriate editor. As you do not use any other component but the CAN
Driver you should delete the #include of the Network Management (nm_cfg.h) at
the end of this file.

If you want to use functions of the CAN Driver or you want to access signals or mes-
sages, you only have to include the can inc.h and then the vyourkcu.h for CANgen
and v_inc.h for using GENy.

Now add the driver files to your source list for your compiler or your makefile.

If you want to apply changes you have made in the Generation Tool, you must start
the generation process again. Remember compiling afterwards.

N We are still not able to compile and link. !l

The starting point for this example is a very simple application consisting of only
one file (here applmain) and an interrupt vector table (vectors.c). It should give you
an idea of how to handle the service- and callback functions of the CAN Driver.

In the following chapters we complete this example step by step.

This example was created for using CANgen. For the usage of GENy you just have
to include the v_inc.h.

Example for HC12: A
| [|3
| A UTHOR IDENTTITY

| ___

| Initials Name Company

I __

| em Emmert Klaus Vector Informatik GmbH

/*Includes ***********k**********************/

#include "can inc.h"
#include "yourecu.h"

void main (void)
{
}

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver V@Ctor [

36 /56

‘ I

6.5 STEP 5 Adaptations for your Application

. . . : D '
To be able to compile and link, you have to adapt a few things in your application.
Example for the HC12: A
1]
/* Includes*********************************k*k***********************/
#include "can inc.h" /*using CANgen*/
#include "yourecu.h" /*using CANgen*/
/*Function prototypes ***********k*k*k*k*k*k*k*k*k*k*k*k*k***********************/
void enableInterrupts(void);
void hardwareInit(void);
/*Maln Function **/
void main (void)
{
/* make sure that the interrupts are disabled to initialize the
modules. */
DO NOT USE any CAN API function before calling CanInitPowerOn. !'IE
It is forbidden to use CanInterruptDisable here >

hardwareInit () ;
It is forbidden to
use any CAN
CanInitPowerOn (kCanInitObjl) ; functionality
before Canlnit-
PowerOn !!!
enableInterrupts () ;
for(;:)

{

}
}

void ApplCanBusOff (void)
{

; /*Callback function for notification of BusOff*/

}

void ApplCanWakeUp (void)
{

; /*Callback function at the transition from SleepMode to sleep
indication recommended*/

}

void hardwareInit(void)
{
/*

Do your hardware specific initializations here.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

37 /56

Remember your TRANSCEIVER
*/

}

@interrupt void irg dummyO (void)
{

for(;;); /*all other interrupts except the CAN Interrupts are routed
to this function.*/

}

Now the description of the above code:

First, we have to include the can_inc.h and then the generated header, here
yourecu.h.

The following define is to enable the interrupts and is hardware dependent.
In the main() function you have to do initializations first.

In the hardwareInit you can turn on timers or PWM or something else.

As you see, the transceiver connects directly to the CAN Bus, so: ﬁ;:ggg:;sea
Il PLEASE THINK OF SWITCHING YOUR TRANSCEIVER ON !l transceiver, you
THE CAN DRIVER DOES NOT HANDLE THE TRANSCEIVER of your teminet.

ing resistor of
1200

Normally this is only necessary when using a low-speed-transceiver. Refer to your
hardware guide.

can_rx
can_tx
(standby
enable)

CAN H
CAN L
GND

Figure 6-18 The Transceiver

To start the CAN Controller and the CAN Driver, you have to call the function:
CanInitPowerOn(kCanInitObjl)

Make sure that
the interrupts are
disabled when
Make sure that you use functions of the CAN Driver API after CanInitPowerOn. sl e
erOn. Normally
the interrupts are
disabled by
default at startup.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

38 /56

The parameter passed in determines the init structure you made the settings for via
the Generation Tool. You will find the macro kCanInitObjl in the generated
yourecu.h (can par.h for GENy) normally at the end of the file. (On some hard-
ware platforms, this parameter is not necessary (e.g. V850). Refer to your hard-
ware specific documentation for this information.

Now you can enable interrupts.

The main-function is an endless-loop. Perhaps you can turn on some LEDs, to see
the application running.

You also have to provide the CAN Driver with two application functions, applCan-
BusOff and applCanWakeUp. For the first start, you can leave these functions
empty to avoid linker errors.

Think of adding
this or a similar

Since the CAN Driver uses interrupts for notifying the application when a CAN i
message has been received, you have to map the interrupts on the corresponding makefile or your

project.

interrupt service routines. Refer to your compiler manual how to do this in your
case.

For the HC12 CAN Drivers this is done in the file vectors.c. Let's have a look at this
file.

Interrupts and interrupt tables are highly dependent on the hardware. Just use this
example as a guide.

Example for HC12: A
1]

const functptr vectab[] = { // QOxFFC4 start address of table

CanTxInterrupt, // SFFC4 CAN transmit

CanRxInterrupt, // SFFC6 CAN receive

CanErrorInterrupt, // SFFC8 CAN error

irg_dummyO, // reserved

irg dummyO, //

irg dummyO, //

CanWakeUpInterrupt, // S$FFDO CAN wake-up

irg dummyO, //ATD

irg_dummyO, //SCI 2

irg dummyO, //SPI

irg dummyO, //SPI

irg dummyO, //Pulse acc input

irg dummyO, //Pulse acc overf

irg dummyO, //Timer overf

irg dummyO, //Timer channel 7

irg dummyO, //Timer channel 6

irg dummyO, //Timer channel 5

irqg dummyO, //Timer channel 4

irg dummyO, //Timer channel 3

irg dummyO, //Timer channel 2

irg dummyO, //Timer channel 1

irg dummyO, //Timer channel 0

irg dummyO, //Real time

irg dummyO, //IRQ

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver V@Ctor [

39/56

irg dummyO, //XIRQ

irg dummyO, //SWI

irg dummyO, //illegal
irg dummyO, //cop fail
irg dummyO, //clock fail
_stext //RESET

}i

As you see in the example, we only use CAN-specific interrupts and the reset vec-
tor. All other interrupts result in a dummy interrupt.

You also have to provide the function irq_dummyO() in your application. Refer to your
hardware description to figure out the solution for your situation.

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

40/ 56

6.6 STEP 6 Compile, Link and Download ’;

Now start your compiler by calling the makefile or just clicking the start button. What
you do is depends on your development tool chain.

Back to 9 Steps overview

6.7 STEP 7 Receiving A Message ,f,
Congratulations !!

You have now arrived at Step 7, i.e. you can compile and link. You are very close
to your first CAN communication.

In every project you normally have to spend a lot of the time starting up the hardware
and the development environment.

Make sure that:

You have the correct clock frequency (important for baud rate).

You have entered this clock in the dialog box of the Generation Tool.

The memory mapping is correct.

The physical CAN connection is there and has no damage.

You have a terminating resistor (1200Q) if you use high-speed CAN (powertrain).
Your transceiver is initialized properly

After the download of your Application, set a breakpoint in your debugger on the
main (void) function and start. Did it stop at main?
If so, Congratulations again.

Remove the breakpoint and restart. Now your application is running in the endless
loop. Please check this!

g/] oe CANoe is very
| convenient for

- '/_ alyzer testing a CAN
" communication.
As soon as you

see the message
Id or the Name in
the Trace win-
dow after sending
a message, you
know that your
Figure 6-19 Simple Test Environment hardware settings
are correct.

Now send a CAN message on the bus. It is best to use an ID your ECU normally
has to receive.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

41/56

A very easy way to send a message is by using the CANoe (or CANalyzer), a PC-tool
from Vector Informatik. Use the generator block and send the message.

Send the message and observe the Trace window.

Do you see the name of the message or the ID?

Great, your ECU has acknowledged the CAN message, i.e. all hardware settings
are correct.

If you see Error frames, check the list above. The main mistakes are hardware set-
tings (transceiver), the baud rate (clock of CAN Controller), wiring problems and
ground offsets.

Now we are ready to modify our application. Please check in the Generation Tool
on the tab Receive messages, if the Indication flag for the message is switched on.

example | YourECU

Diag zervices I M CMet options I CCP optionz | it reqgizl
Overviemw I CArM driver I CaM driver [&dvanced) I Send mezsages Receive messages | [
Mezzage Generate Object | Signal Access Indication Flags Frop
(w201 | Mezzage 2 :
Figure 6-20 Check button for indication flag
If not, switch it on, start a new generation process, compile and link the system again T e ey
and download it to the target. ieelas Ll
CAN message is
receiveq. Rgfer to
Now we use the so-called Indication flag to poll the reception of the CAN message. Stap inthis
When an interrupt is triggered by the reception of a CAN message, the indication
flag will be set (if chosen in the Generation Tool).
When you use another dbc file, your message will have a different name. You will find
the correct macro for your indication flag in the file yourecu.h (can_par.h). Just search
for indication.
Example for the HC12: i'L'

/* First Test modification*/
if (Message 2 ind b)
{

Message 2 ind b = 0; Breakpoint here

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

42/ 56

The names are generated out of the name of the signal and the pre- and postfixes
from the “names” tab. Refer to the file YourECU.h (can_par.h) for the correct writing of
messages, indication flags etc.

Compile, link and download the application and set a breakpoint (as shown). Now
send the CAN message via the Generator Block.

It stopped at the breakpoint?

If so, you received the message, used the correct macro for the flag and got noti-
fied of the reception.

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

43 /56

6.8 STEP 8 Sending a Message .

The next step is the transmission of a CAN message. This is done by calling the 44
function

CanTransmit (handle);

The handle specifies the message you want to send. Open the file yourecu.h
(can_par.h for GENy) and search for “handle” in the section on send/transmit

objects. Chose the appropriate macro for the send message and use it as shown.

Example: E

handle

/*Second Test modification*/
if (CanTransmit(CanTxMessage 1") == kCanTxOk)

{

Refer to the file YourECU.h (can_par.h for GENy) for the message handles.

Meaning of the return value of CanTransmit

The function CanTransmit has a return value, kCanTxOk or kCanTxFailed. The
meaning of this value is not as simple as it looks like.

Without Software Transmit Queue

kCanTxOk means that the data has been copied from the RAM to the Tx Register
and the transmit request is set in the CAN Controller hardware. The physical trans-
mission of the message depends on when the message wins the CAN bus arbitra-
tion.

kCanTxFailed means the hardware register is busy or CAN Driver is offline.

With Software Transmit Queue

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

44 | 56

kCanTxOk could mean the same as above. But it also could mean that the transmit
request is set in the software queue of the CAN Driver and will be processed as soon
as possible. Read more about the software queue in the chapter 6.9.2.3.

kCanTxFailed means the CAN Driver is offline.

Full CAN Tx Object

There is no Tx queue functionality for Full CAN Tx Objects.

This modified application sends back a CAN message. You should see the re-
sponse message in your Trace window. Refer to the TechnicalRefer-
ence_CANDriver.pdf to get information about the return value.

Do you see the response message in the Trace window?

CONGRATULATIONS!

The basic CAN communication is running.

Of course this is a very simple application and far away from the complexity of your
application, but as the saying goes:

The longest way starts with the first step(s).

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

45/ 56

6.9 STEP 9 Further Actions .
'Y

The next step is to build up your application around the communication. To do this
in a simple manner, read the following tips and recommendations. You will then be
given an exercise that poses a problem which you will try to solve. After finding the
correct answer, you will understand the order in which the functions of the CAN
Driver are called.

6.9.1 Strategies for Receiving a CAN Message
The Figure 6-21 shows the calling order of the functions when receiving a mes-

sage.

Indication Flag/Function

Hardware Copy of data to
locked ooftware buffer

. conditional
Precopy Function exit
Search Algorithm exit

if not found
Ranges exit

if matched

. conditional
ApplCanMsgReceived exit

Hardware Filter

CAN-BUS

Figure 6-21 Calling Order Of Functions When A CAN Message Is Received

6.9.1.1 Hardware Filter (HW Filter)

As you have learned before, you can adjust the hardware filter in the Generation
Tool. Every message that passes the hardware filter triggers an interrupt — if not
using polling mode.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

To reduce your interrupt load, optimize the filters (Generation Tool).

6.9.1.2 ApplCanMsgReceived

In the Generation Tool you can choose to have this function called with any recep-
tion of a CAN message that passes the hardware filter.

Here you can filter the messages that pass the hardware filter but contain no rele-
vant information. At this point, the data is in the receive register (Rx register). Use
the hardware access macros to figure out ID, DLC and DATA of the received mes-
sage.

6.9.1.3 Ranges
Ranges are a software filter mechanism. Since the message is filtered by its ID

and assigned to the categories Network Management, Diagnostics, Application,
etc., you can route more messages on the same Range precopy function.

6.9.1.4 Search Algorithm

To figure out whether a message is meant for your ECU and which message ID it
is the CAN Driver has to compare the ID with an ID-list. This comparison can be
done in different ways. The criterion is the speed for browsing the list. The Genera-
tion Tool offers different search algorithms to choose. Please refer to the CAN
Driver Technical Manual for the differences.

6.9.1.5 Precopy

In the Generation Tool (receive objects/functions) you can enter a name for a mes-
sage-specific precopy function. This function is called by the CAN Driver before
copying the message data from the receive register to the RAM data structure (if
selected).

The Precopy function e.g. can be used to check to see if the data has
changed. Use the _CAN _access macros to read the data out of the receive regis-
ter and compare it with the RAM buffer (look in yourECU.h for CANgen and in
can_par.h for GENy for these access macros).

This macro will be only generated if the message is a full can object or you have se-
lected a precopy-function for this message (see later).

As you are in interrupt context, data consistency is not in danger (refer to the tech-
nical reference for you hardware). Keep your actions short in any Precopy func-
tion.

The return value of the Precopy function determines what happens next.

kCanCopyData: The driver is to do the copying from receive register to RAM
buffer.

kCanNoCopyData: You did the copy of relevant data and the driver does not need
to call its copying routine.

©2009, Vector Informatik GmbH

vector’

Version: 2.4

46/ 56

If you select the
function
ApplCanMsgRe-
ceived, the
prototype will be
generated. You
only have to enter
the function.

The _CAN_
macros will be
generated only
when you have
chosen a precopy
function or the
object is a full can
obiect.

User Manual Vector CAN Driver V@CtOf [

6.9.1.6 Indication Flag / Indication Function
The application is notified by the indication flags and/or the indication functions

The driver indicates the reception of a message to the application.

Indication Function

This function runs in interrupt context and is message-specific. Keep your action
very short in this function.

You can enter a name for a message-specific Indication function in the
Generation Tool (in the same way as you did it for the Precopy function).

Indication Flag
This flag is message-specific. It is set by the CAN Driver and can be polled by the
application. It tells the application a new message has been received.

1! This flag must be reset by the application. !!!

You can use this flag to ensure you are working on the newest contents of a mes-
sage.

If the flag is set, it means that a new message has been received. Clear the flag and
access the received data. If the flag is cleared after your access, you can be sure that
you have current data. If the flag is set, new data has been received in the meantime,
S0 repeat this once again.

Remember for Data consistency

All flags are set by the driver in an interrupt context. If your yC does not perform an
atomic (i.e. uninterruptible) write access to bit data it is necessary to protect the
write access via an interrupt lock to prevent unexpected change or loss of flag
states. It is recommended to perform this (CAN-) interrupt lock via the API func-
tions CanlnterruptDisable / CaninterruptRestore.

Please refer to your controller and/or compiler manual for information about atomic
write access to bit data in your system. In case of doubts, it is recommended to
lock the interrupt during the access.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

48/ 56

6.9.2 Strategies for Sending a CAN Message

The transmission of a CAN message is divided into two parts: the preparations until
the transmission of a message and the transmit interrupt handling, which informs
you about the successful sending of a message.

First we look at the preparations before sending.

Update RAM buffer

CAN Transmit

yes
Buffer free?

Entry in Queue oxit

Pretransmit

Copy of data to
hardware buffer

Send Message

CAN-BUS 4

Figure 6-22 States Before Transmitting A CAN Message

6.9.2.1 Update RAM buffer

The methods of transmission highly depend on your application. You may have to
send in a fixed cycle, or you may have to send when a specific event occurs.

Both cases require current data. If you use the RAM buffer, you just have to keep
the data in it up-to-date.

When you use your own buffer you should enter the values directly into the trans-
mit register just before sending the message. Otherwise the data could be overwrit-
ten by another transmit message.

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

6.9.2.2 CanTransmit

The CanTransmit function initiates the transmission of a specific message. The
handle (in the file yourECU.h for CANgen and in can_par.h for GENy) specifies
which message is sent.

CanTransmit has 2 possible return values, but none of them guarantee that the
message has been sent yet. They just say that either the message will be sent as
soon as possible (with or without a queue) or the transmission request has been
rejected (see 6.8);

6.9.2.3 The Queue

There are two possible causes for a return value of kCanTxOk: either the message
has directly entered the transmit buffer or the message has entered the queue (if
chosen in the Generation Tool).

An entry in the queue means, the REQUEST to send this message is stored, not
the data. So leave the data untouched until you are sure the message has been
sent, i.e. until the Confirmation flag is set or the Confirmation function
is called.

6.9.2.4 Pretransmit Function

When you do not have a RAM buffer for your message, you must copy the data to
the transmit register of the CAN Controller in the Pretransmit function. With
the call of the function you get a pointer directly to the transmit registers. In this
case you have to know the distribution of the signals to the bytes, because you do
not get signal access macros.

The time between the call of CanTransmit and the confirmation interrupt is not pre-
dictable. To update your data short before the transmission, use the Pretransmit func-
tion too. If this function is called, you can be sure that this message is the next mes-
sage to be sent.

When the message is sent and at least one ECU receives this message, the ac-
knowledge will trigger the so-called transmit interrupt. This interrupt calls the
transmit interrupt service routine, which in turn might call the confirmation function
or set the confirmation flag.

6.9.2.5 Confirmation Function and Confirmation Flag

The Confirmation function is called in interrupt context, so keep the run time
as short as possible by not doing much in the code. Now you can be sure, your
message has been sent successfully.

The Confirmation flag has the same meaning, but you have to poll this flag in
your application (similar to the way it is done with the Indication flag). You
get the macro out of the generated file yourECU.h (can_par.h).

©2009, Vector Informatik GmbH Version: 2.4

vector’

49/ 56

You can only be
sure that the
message has
been sent when
you get the
confirmation
interrupt (confir-
mation function or
confirmation flaa)

See the parallels
between the
indication func-
tion/flag and the
confirmation
function/flaa

User Manual Vector CAN Driver Vector [

—» Leave Interrupt

CanTransmitQueuedObject

— Queue Empty?

Confirmation Flag/Function

1”' ik
CAN-BUS ACKNOWLEDGE

Figure 6-23 Confirmation Interrupt After Transmission Of CAN Message

After the confirmation the queue (if chosen) will be worked on.

Back to 9 Steps overview

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

51/56

7 Further Information

71 An Exercise For Practice

The program below is a small application (for the HC12) using the basic service- and
call-back functions of the CAN driver. Try to follow the program and answer the
questions connected with.

The application receives a CAN message containing a byte signal b_Signal 2 c.

After processing the incoming message, the application sends another message
containing only one byte signal, called b_Signal 1 c.

Can you calculate the value that will be sent back with b_Signal 1 c depending
on the value of the variable a and the value of the received signal
b Signal 2 c?

See the solution at the end of this document

Example for the HC12:

/* Includes
***************************k*k*k*k*k*k*k*k*k*k*k*k*k*k*k~k**k***********************/

Tig

#include "can inc.h" /*for CANgen*/
#include "yourecu.h" /*for CANgen*/
#include "can par.h" /*only include for GENy*/

/* Variable definition
***/

unsigned char a;

/* Function prototypes
**/

void main function (void) ;
void enablelInterrupts(void);
void hardwareInit(void);

/* The Main Function
‘k***‘k****‘k*********‘k****‘k‘k‘k‘k************************/

void main (void)
{
hardwareInit () ;

CanInitPowerOn (kCanInitObjl) ;

a = 5;
b Signal 2 ¢ = 0;

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

enableInterrupts () ;

for(;;)
{

if (Message 2 ind b)
{
b Signal 1 ¢ = b Signal 2 ¢ + a;
if (CanTransmit (CanTxMessage 1) == kCanTxOk)
{
/*Disable Interrupt*/
Message 2 ind b = 0;
/*Enable Interrupt*/
}

}
if(Message 1 conf b)
{
a=1;
/*Disable Interrupt*/
Message 1 conf b = 0;
/*Enable Interrupt*/

}
}

/* Other Functions
************'k'k'k'k'k'k'k'k'k'k'k************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k/

void enablelInterrupts(void)
{
/*Enable interrupts*/
}
void ApplCanBusOff(void) /*later uesd for bus off treatment*/
{
}
void ApplCanWakeUp(void) /*later used for wakeup functionality*/
{
}
/* new function added in the Generation Tool and application */
canuint8 ApplCanMsgReceived(void)
{
a=at2;
return(kCanCopyData);
}
canuint8 Ml PretransmitFunction(CanChipDataPtr dat)
{
b Signal 1 ¢ = b Signal 1 ¢ +1;
return (kCanCopyData);
}
void M1l ConfirmationFunction(CanTransmitHandle tmtObject)
{
a=a+23;
}
canuint8 M2 Precopy (CanReceiveHandle rcvObject)

{

©2009, Vector Informatik GmbH

Version: 2.4

52 /56

User Manual Vector CAN Driver

vector’

53 /56

rcvObject = rcvObject; /*to avoid compiler warning. You only
use this handle if you have one
precopy function for two or more
messages*/
a=2;
if(b CAN Signal 2 ¢ == b _Signal 2 c)
{
return (kCanNoCopyData); /*same value as before, no need to
copy data, leave interrupt*/
}
else
{
a = b CAN Signal 2 c;
return (kCanCopyData);
}
}
void M2 IndicationFunction (CanReceiveHandle rcvObject)
{
rcvObject = rcvObject; /*to avoid compiler warning. You only
use this handle if you have one
precopy function for two or more
messages*/
a=a+l;
}
/********************~k~k~k~k~k~k**************************/
void hardwareInit(void)
{
/*
Do your hardware specific initializations here.
Don’t forget to initialize your TRANSCEIVER, if necessary*/
}
@interrupt void irq_dummyO (void)
{
for(;7)7
}
©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver V@CtOf [

54 /56

7.2 The Solution To The Exercise

7.2.1 After the first reception and transmission of a new value:
a=1
b Signal 1 c=b Signal 2 c*2+2

7.2.2 After the reception of the same value as before:
a=2
no return message

Did you get it?

7.2.3 The solution, step by step
At the beginning,

a=5and b _Signal 2 ¢c=0

The Main loop is waiting on an Indication Flag for Message 2 and a Confirmation
Flag for Message 1.

The first function that is called after the reception of Message 2 is ApplCan-
MsgReceived. There the 2 is added to a and returned with kCanCopyData, so
the reception process continues.

At this point a=7 and b_Signal_2_c =b_Signal 2 ¢

The next function executed is M2_Precopy. The variable a is set to 2 and the re-
ceived signal b_CAN_Signal_2 c (the data in the Rx register, i.e. in the CAN Con-
troller) is compared with the signal b_Signal_2_c.

If there is no change, the return value kCanNoCopyData stops the receive process
the receive interrupt is exited.

Now a=2 and no response message will be sent.

If there is a difference, a is set to b CAN_Signal_2_c and the return value keeps
the receive interrupt going on.

At this point a= b_CAN_Signal_2 c and b_Signal_2_c=b_Signal_2 c

Now the Indication function M2 IndicatinoFunction is called, where a
is increased by 1.

Now a=b_Signal 2 c+1and b_Signal 2 c=b Signal 2 c

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver Vector [

55/ 56

Since the Indication flag is set, now the main loop put b_Signal 1 ¢ =
b_Signal_2 c+a,i.e. b_Signal_1_c=2*b_Signal_2_c+1.

Now the message is requested to be sent (CanTransmit). If the request is an-
swered with a kCanTxOk, the Indication flag is cleared to avoid sending the mes-

sage again and again. Otherwise the flags stay set until the request of sending this
message is successful.

At this point a = b_Signal 2 c+1 and b_Signal 2 ¢ = b_Signal_ 2 ¢ and
b_Signal 1 c¢c=2*b_Signal 2 c +1

Before the message is on its way, the function M1_PretransmitFunction is
called. This function increments the send signal by 1 and the return value lets the
driver copy the data from the RAM buffer to the Tx register.

At this point a = b_Signal 2 c+1 and b _Signal 2 ¢ = b _Signal 2 ¢ and
b_Signal_ 1 c=2*b_Signal 2 c +2

Now the message is on its way via CAN. The first node to receive this message (in
this test case, CANoe) gives an acknowledge that triggers a transmit interrupt.

In the function M1_ConfirmationFunction 23 is added to a.

Now a = b_Signal_2 c+24 and b_Signal_2 c =b_Signal_2 _c and b_Signal_1_c = 2*
b_Signal_2 c +2

Then the Confirmation flag is set and recognized by the main loop. There the
variable a is set to 1 and the Confirmation flag is reset to 0 to prevent setting
a over and over again.

So the result is:

b Signal 1 c=2*b_Signal 2 c +2

©2009, Vector Informatik GmbH Version: 2.4

User Manual Vector CAN Driver

8 Index

Acceptance filterscccl 26, 32
applCanBusOff ... 38
ApplCanMsgReceived.................... 46, 52, 54
applCanWakeUp............cccoeevviiieeeeeeeeeienn, 38
baud rate........cccoccveiiiii 29, 41
Bootloaderoccoviiiiiii e 10
Bustiming.......cccoovevveieiiiee, 26, 27, 32
Bustiming registerscccooccceeeniineenn. 26, 32

CAN Driver. 12, 14, 15, 17, 22, 25, 33, 35, 45,
46

can_cfg.h o 25, 33
CaN_iNC.N ...ouiiiiii 35
CANalyzZer.......cooeiiiieeeee e 41
CANdesc IN8 STEPS.ccceieviiieeeee 53
CANdesc tab......cccceeveiiiiicceee e 15
CanInitPowerOncccevciiiienee e 37
CanlinterruptDisable...........cccccccvveeeeiiinnnnnee. 47
CanlnterruptRestoreccccceeiiiieiiinen. 47
CANOE ... 41,55
Channel propertiescocccoieiieeeieiins 23
ClOCK. .. 28, 39, 40, 41
COMPIIE ..ovveiiiii 35, 36, 40, 41
Confirmationcccooiiiiiii 49
Data consistencyccccoevviiiiiiii 47
dbC file .o 11, 22, 41
dbe-file .o 22,23,24
DiagnoStiCscoovviiieiiiiiiieeee e 12
example ..o 35, 38, 39
Example......cccoeeeeene 35, 36, 38, 41, 43, 51
generation process 14, 33, 35, 41

©2009, Vector Informatik GmbH

vector’

Hardware.........cocooeiiiiiiiec e 45
Including Order.........cccoeeeiiiiiiiiiee e, 15
Indication flagcccceevveviciiiiiiennnnn, 41, 49, 55
Indication Flag.......cccocvveiiiiiiiiiiiee, 47
Indication Function.........c.coccceiiiieiiinnen. 47
Init registers.........cccooeiviiiiii s 25, 29
Interaction Layer ..., 12,13
INterruPt ... 47
K 35, 36, 40, 41, 42
Makefile ... 35, 40
memory requirement..........ccccceveeeeeeeennnen, 19
MESSAGE e eeeeeiiirereeeieee e e s e e e e e e 16
Motivation ... 4
Network Management............cccoccoeeenineenn. 12
Openfilters........ccooeeeeeeeeiiiieccieee 27, 32
Optimze filtersccoovveeeeiiiiiiiiee. 27,32
Precopycooocveeeeeeieeiiinee 19, 46, 47, 52, 54
Pretransmit.........cccocooviiiiiiieee, 19, 49
QUEUE ...t 49
RaANGES ...t 46
receive register.........ccovveiniee e 18
Registers ... 18
Search Algorithm.........occoceiiii 46
SIGNAIS ... 16
Strategiesoccvveveeieiie e 45,48
transmit registerccc 18
Transport Protocol..............ccccooeiiiiiinn, 12
Universal Measurement and Calibration
Protocol (XCP)....cccccevviiieiiiieeee 12,13
yourecu.h 35, 36, 37, 38, 41, 43, 51

Version: 2.4

56 / 56

	1 Welcome to the CAN Driver User Manual
	1.1 Beginners with the CAN Driver start here ?
	1.2 For Advanced Users
	1.3 Special topics
	1.4 Documents this one refers to…

	2 About This Document
	2.1 How This Documentation Is Set-Up
	Legend and Explanation of Symbols

	3 ECUs and Vector CANbedded Components – An Overall View
	Network Data Base File (DBC)

	CANbedded Software Components
	Generation Tool
	4.2 The Vector CAN Driver
	4.2.1 Tasks of The Vector CAN Driver
	4.2.2 Vector CAN Driver Files
	4.2.2.1 Component Files
	4.2.2.2 Generated Files
	4.2.2.3 Configurable files

	4.2.3 Include The CAN Driver Into Your Application

	Vector CAN Driver– A More Detailed View
	5.1 Information Package on the CAN Bus
	5.2 Storing Information Packages
	5.2.1 The Registers of the CAN Controller
	5.2.2 The Data Structure Generated by the Generation Tool for Storing Message Data.
	5.2.3 Memory the Application Reserved for Signals.

	6 CAN Driver in 9 Steps
	STEP 1 Unpack the Delivery
	STEP 2 Generation Tool and dbc File
	6.2.1 Using CANgen as Generation Tool
	6.2.2 Using GENy, the new Generation Tool

	STEP 3 Generate Files
	6.3.1 Using CANgen Generation Tool
	6.3.2 Using GENy

	STEP 4 Add Files to your Application
	STEP 5 Adaptations for your Application
	STEP 6 Compile, Link and Download
	STEP 7 Receiving A Message
	STEP 8 Sending a Message
	STEP 9 Further Actions
	6.9.1 Strategies for Receiving a CAN Message
	6.9.1.1 Hardware Filter (HW Filter)
	6.9.1.2 ApplCanMsgReceived
	6.9.1.3 Ranges
	6.9.1.4 Search Algorithm
	6.9.1.5 Precopy
	6.9.1.6 Indication Flag / Indication Function

	6.9.2 Strategies for Sending a CAN Message
	6.9.2.1 Update RAM buffer
	6.9.2.2 CanTransmit
	6.9.2.3 The Queue
	6.9.2.4 Pretransmit Function
	6.9.2.5 Confirmation Function and Confirmation Flag

	7 Further Information
	7.1 An Exercise For Practice
	7.2 The Solution To The Exercise
	7.2.1 After the first reception and transmission of a new value:
	7.2.2 After the reception of the same value as before:
	7.2.3 The solution, step by step

	8 Index

